1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/pmbus.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/of.h> 23 #include <linux/thermal.h> 24 #include "pmbus.h" 25 26 /* 27 * Number of additional attribute pointers to allocate 28 * with each call to krealloc 29 */ 30 #define PMBUS_ATTR_ALLOC_SIZE 32 31 #define PMBUS_NAME_SIZE 24 32 33 struct pmbus_sensor { 34 struct pmbus_sensor *next; 35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 36 struct device_attribute attribute; 37 u8 page; /* page number */ 38 u8 phase; /* phase number, 0xff for all phases */ 39 u16 reg; /* register */ 40 enum pmbus_sensor_classes class; /* sensor class */ 41 bool update; /* runtime sensor update needed */ 42 bool convert; /* Whether or not to apply linear/vid/direct */ 43 int data; /* Sensor data. 44 Negative if there was a read error */ 45 }; 46 #define to_pmbus_sensor(_attr) \ 47 container_of(_attr, struct pmbus_sensor, attribute) 48 49 struct pmbus_boolean { 50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 51 struct sensor_device_attribute attribute; 52 struct pmbus_sensor *s1; 53 struct pmbus_sensor *s2; 54 }; 55 #define to_pmbus_boolean(_attr) \ 56 container_of(_attr, struct pmbus_boolean, attribute) 57 58 struct pmbus_label { 59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 60 struct device_attribute attribute; 61 char label[PMBUS_NAME_SIZE]; /* label */ 62 }; 63 #define to_pmbus_label(_attr) \ 64 container_of(_attr, struct pmbus_label, attribute) 65 66 /* Macros for converting between sensor index and register/page/status mask */ 67 68 #define PB_STATUS_MASK 0xffff 69 #define PB_REG_SHIFT 16 70 #define PB_REG_MASK 0x3ff 71 #define PB_PAGE_SHIFT 26 72 #define PB_PAGE_MASK 0x3f 73 74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ 75 ((reg) << PB_REG_SHIFT) | (mask)) 76 77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) 78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) 79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) 80 81 struct pmbus_data { 82 struct device *dev; 83 struct device *hwmon_dev; 84 struct regulator_dev **rdevs; 85 86 u32 flags; /* from platform data */ 87 88 u8 revision; /* The PMBus revision the device is compliant with */ 89 90 int exponent[PMBUS_PAGES]; 91 /* linear mode: exponent for output voltages */ 92 93 const struct pmbus_driver_info *info; 94 95 int max_attributes; 96 int num_attributes; 97 struct attribute_group group; 98 const struct attribute_group **groups; 99 struct dentry *debugfs; /* debugfs device directory */ 100 101 struct pmbus_sensor *sensors; 102 103 struct mutex update_lock; 104 105 bool has_status_word; /* device uses STATUS_WORD register */ 106 int (*read_status)(struct i2c_client *client, int page); 107 108 s16 currpage; /* current page, -1 for unknown/unset */ 109 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 110 111 int vout_low[PMBUS_PAGES]; /* voltage low margin */ 112 int vout_high[PMBUS_PAGES]; /* voltage high margin */ 113 }; 114 115 struct pmbus_debugfs_entry { 116 struct i2c_client *client; 117 u8 page; 118 u8 reg; 119 }; 120 121 static const int pmbus_fan_rpm_mask[] = { 122 PB_FAN_1_RPM, 123 PB_FAN_2_RPM, 124 PB_FAN_1_RPM, 125 PB_FAN_2_RPM, 126 }; 127 128 static const int pmbus_fan_config_registers[] = { 129 PMBUS_FAN_CONFIG_12, 130 PMBUS_FAN_CONFIG_12, 131 PMBUS_FAN_CONFIG_34, 132 PMBUS_FAN_CONFIG_34 133 }; 134 135 static const int pmbus_fan_command_registers[] = { 136 PMBUS_FAN_COMMAND_1, 137 PMBUS_FAN_COMMAND_2, 138 PMBUS_FAN_COMMAND_3, 139 PMBUS_FAN_COMMAND_4, 140 }; 141 142 void pmbus_clear_cache(struct i2c_client *client) 143 { 144 struct pmbus_data *data = i2c_get_clientdata(client); 145 struct pmbus_sensor *sensor; 146 147 for (sensor = data->sensors; sensor; sensor = sensor->next) 148 sensor->data = -ENODATA; 149 } 150 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS); 151 152 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update) 153 { 154 struct pmbus_data *data = i2c_get_clientdata(client); 155 struct pmbus_sensor *sensor; 156 157 for (sensor = data->sensors; sensor; sensor = sensor->next) 158 if (sensor->reg == reg) 159 sensor->update = update; 160 } 161 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS); 162 163 int pmbus_set_page(struct i2c_client *client, int page, int phase) 164 { 165 struct pmbus_data *data = i2c_get_clientdata(client); 166 int rv; 167 168 if (page < 0) 169 return 0; 170 171 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 172 data->info->pages > 1 && page != data->currpage) { 173 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 174 if (rv < 0) 175 return rv; 176 177 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 178 if (rv < 0) 179 return rv; 180 181 if (rv != page) 182 return -EIO; 183 } 184 data->currpage = page; 185 186 if (data->info->phases[page] && data->currphase != phase && 187 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 188 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 189 phase); 190 if (rv) 191 return rv; 192 } 193 data->currphase = phase; 194 195 return 0; 196 } 197 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS); 198 199 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 200 { 201 int rv; 202 203 rv = pmbus_set_page(client, page, 0xff); 204 if (rv < 0) 205 return rv; 206 207 return i2c_smbus_write_byte(client, value); 208 } 209 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS); 210 211 /* 212 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 213 * a device specific mapping function exists and calls it if necessary. 214 */ 215 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 216 { 217 struct pmbus_data *data = i2c_get_clientdata(client); 218 const struct pmbus_driver_info *info = data->info; 219 int status; 220 221 if (info->write_byte) { 222 status = info->write_byte(client, page, value); 223 if (status != -ENODATA) 224 return status; 225 } 226 return pmbus_write_byte(client, page, value); 227 } 228 229 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 230 u16 word) 231 { 232 int rv; 233 234 rv = pmbus_set_page(client, page, 0xff); 235 if (rv < 0) 236 return rv; 237 238 return i2c_smbus_write_word_data(client, reg, word); 239 } 240 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS); 241 242 243 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 244 u16 word) 245 { 246 int bit; 247 int id; 248 int rv; 249 250 switch (reg) { 251 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 252 id = reg - PMBUS_VIRT_FAN_TARGET_1; 253 bit = pmbus_fan_rpm_mask[id]; 254 rv = pmbus_update_fan(client, page, id, bit, bit, word); 255 break; 256 default: 257 rv = -ENXIO; 258 break; 259 } 260 261 return rv; 262 } 263 264 /* 265 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 266 * a device specific mapping function exists and calls it if necessary. 267 */ 268 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 269 u16 word) 270 { 271 struct pmbus_data *data = i2c_get_clientdata(client); 272 const struct pmbus_driver_info *info = data->info; 273 int status; 274 275 if (info->write_word_data) { 276 status = info->write_word_data(client, page, reg, word); 277 if (status != -ENODATA) 278 return status; 279 } 280 281 if (reg >= PMBUS_VIRT_BASE) 282 return pmbus_write_virt_reg(client, page, reg, word); 283 284 return pmbus_write_word_data(client, page, reg, word); 285 } 286 287 /* 288 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if 289 * a device specific mapping function exists and calls it if necessary. 290 */ 291 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value) 292 { 293 struct pmbus_data *data = i2c_get_clientdata(client); 294 const struct pmbus_driver_info *info = data->info; 295 int status; 296 297 if (info->write_byte_data) { 298 status = info->write_byte_data(client, page, reg, value); 299 if (status != -ENODATA) 300 return status; 301 } 302 return pmbus_write_byte_data(client, page, reg, value); 303 } 304 305 /* 306 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 307 * a device specific mapping function exists and calls it if necessary. 308 */ 309 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 310 { 311 struct pmbus_data *data = i2c_get_clientdata(client); 312 const struct pmbus_driver_info *info = data->info; 313 int status; 314 315 if (info->read_byte_data) { 316 status = info->read_byte_data(client, page, reg); 317 if (status != -ENODATA) 318 return status; 319 } 320 return pmbus_read_byte_data(client, page, reg); 321 } 322 323 int pmbus_update_fan(struct i2c_client *client, int page, int id, 324 u8 config, u8 mask, u16 command) 325 { 326 int from; 327 int rv; 328 u8 to; 329 330 from = _pmbus_read_byte_data(client, page, 331 pmbus_fan_config_registers[id]); 332 if (from < 0) 333 return from; 334 335 to = (from & ~mask) | (config & mask); 336 if (to != from) { 337 rv = _pmbus_write_byte_data(client, page, 338 pmbus_fan_config_registers[id], to); 339 if (rv < 0) 340 return rv; 341 } 342 343 return _pmbus_write_word_data(client, page, 344 pmbus_fan_command_registers[id], command); 345 } 346 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS); 347 348 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 349 { 350 int rv; 351 352 rv = pmbus_set_page(client, page, phase); 353 if (rv < 0) 354 return rv; 355 356 return i2c_smbus_read_word_data(client, reg); 357 } 358 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS); 359 360 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 361 { 362 int rv; 363 int id; 364 365 switch (reg) { 366 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 367 id = reg - PMBUS_VIRT_FAN_TARGET_1; 368 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 369 break; 370 default: 371 rv = -ENXIO; 372 break; 373 } 374 375 return rv; 376 } 377 378 /* 379 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 380 * a device specific mapping function exists and calls it if necessary. 381 */ 382 static int _pmbus_read_word_data(struct i2c_client *client, int page, 383 int phase, int reg) 384 { 385 struct pmbus_data *data = i2c_get_clientdata(client); 386 const struct pmbus_driver_info *info = data->info; 387 int status; 388 389 if (info->read_word_data) { 390 status = info->read_word_data(client, page, phase, reg); 391 if (status != -ENODATA) 392 return status; 393 } 394 395 if (reg >= PMBUS_VIRT_BASE) 396 return pmbus_read_virt_reg(client, page, reg); 397 398 return pmbus_read_word_data(client, page, phase, reg); 399 } 400 401 /* Same as above, but without phase parameter, for use in check functions */ 402 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 403 { 404 return _pmbus_read_word_data(client, page, 0xff, reg); 405 } 406 407 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 408 { 409 int rv; 410 411 rv = pmbus_set_page(client, page, 0xff); 412 if (rv < 0) 413 return rv; 414 415 return i2c_smbus_read_byte_data(client, reg); 416 } 417 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS); 418 419 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 420 { 421 int rv; 422 423 rv = pmbus_set_page(client, page, 0xff); 424 if (rv < 0) 425 return rv; 426 427 return i2c_smbus_write_byte_data(client, reg, value); 428 } 429 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS); 430 431 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 432 u8 mask, u8 value) 433 { 434 unsigned int tmp; 435 int rv; 436 437 rv = _pmbus_read_byte_data(client, page, reg); 438 if (rv < 0) 439 return rv; 440 441 tmp = (rv & ~mask) | (value & mask); 442 443 if (tmp != rv) 444 rv = _pmbus_write_byte_data(client, page, reg, tmp); 445 446 return rv; 447 } 448 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS); 449 450 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg, 451 char *data_buf) 452 { 453 int rv; 454 455 rv = pmbus_set_page(client, page, 0xff); 456 if (rv < 0) 457 return rv; 458 459 return i2c_smbus_read_block_data(client, reg, data_buf); 460 } 461 462 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 463 int reg) 464 { 465 struct pmbus_sensor *sensor; 466 467 for (sensor = data->sensors; sensor; sensor = sensor->next) { 468 if (sensor->page == page && sensor->reg == reg) 469 return sensor; 470 } 471 472 return ERR_PTR(-EINVAL); 473 } 474 475 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 476 enum pmbus_fan_mode mode, 477 bool from_cache) 478 { 479 struct pmbus_data *data = i2c_get_clientdata(client); 480 bool want_rpm, have_rpm; 481 struct pmbus_sensor *s; 482 int config; 483 int reg; 484 485 want_rpm = (mode == rpm); 486 487 if (from_cache) { 488 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 489 s = pmbus_find_sensor(data, page, reg + id); 490 if (IS_ERR(s)) 491 return PTR_ERR(s); 492 493 return s->data; 494 } 495 496 config = _pmbus_read_byte_data(client, page, 497 pmbus_fan_config_registers[id]); 498 if (config < 0) 499 return config; 500 501 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 502 if (want_rpm == have_rpm) 503 return pmbus_read_word_data(client, page, 0xff, 504 pmbus_fan_command_registers[id]); 505 506 /* Can't sensibly map between RPM and PWM, just return zero */ 507 return 0; 508 } 509 510 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 511 enum pmbus_fan_mode mode) 512 { 513 return pmbus_get_fan_rate(client, page, id, mode, false); 514 } 515 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS); 516 517 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 518 enum pmbus_fan_mode mode) 519 { 520 return pmbus_get_fan_rate(client, page, id, mode, true); 521 } 522 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS); 523 524 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 525 { 526 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 527 } 528 529 void pmbus_clear_faults(struct i2c_client *client) 530 { 531 struct pmbus_data *data = i2c_get_clientdata(client); 532 int i; 533 534 for (i = 0; i < data->info->pages; i++) 535 pmbus_clear_fault_page(client, i); 536 } 537 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS); 538 539 static int pmbus_check_status_cml(struct i2c_client *client) 540 { 541 struct pmbus_data *data = i2c_get_clientdata(client); 542 int status, status2; 543 544 status = data->read_status(client, -1); 545 if (status < 0 || (status & PB_STATUS_CML)) { 546 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 547 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 548 return -EIO; 549 } 550 return 0; 551 } 552 553 static bool pmbus_check_register(struct i2c_client *client, 554 int (*func)(struct i2c_client *client, 555 int page, int reg), 556 int page, int reg) 557 { 558 int rv; 559 struct pmbus_data *data = i2c_get_clientdata(client); 560 561 rv = func(client, page, reg); 562 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 563 rv = pmbus_check_status_cml(client); 564 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) 565 data->read_status(client, -1); 566 if (reg < PMBUS_VIRT_BASE) 567 pmbus_clear_fault_page(client, -1); 568 return rv >= 0; 569 } 570 571 static bool pmbus_check_status_register(struct i2c_client *client, int page) 572 { 573 int status; 574 struct pmbus_data *data = i2c_get_clientdata(client); 575 576 status = data->read_status(client, page); 577 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 578 (status & PB_STATUS_CML)) { 579 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 580 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 581 status = -EIO; 582 } 583 584 pmbus_clear_fault_page(client, -1); 585 return status >= 0; 586 } 587 588 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 589 { 590 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 591 } 592 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS); 593 594 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 595 { 596 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 597 } 598 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS); 599 600 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client, 601 int page, int reg) 602 { 603 int rv; 604 struct pmbus_data *data = i2c_get_clientdata(client); 605 char data_buf[I2C_SMBUS_BLOCK_MAX + 2]; 606 607 rv = pmbus_read_block_data(client, page, reg, data_buf); 608 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 609 rv = pmbus_check_status_cml(client); 610 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) 611 data->read_status(client, -1); 612 pmbus_clear_fault_page(client, -1); 613 return rv >= 0; 614 } 615 616 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 617 { 618 struct pmbus_data *data = i2c_get_clientdata(client); 619 620 return data->info; 621 } 622 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS); 623 624 static int pmbus_get_status(struct i2c_client *client, int page, int reg) 625 { 626 struct pmbus_data *data = i2c_get_clientdata(client); 627 int status; 628 629 switch (reg) { 630 case PMBUS_STATUS_WORD: 631 status = data->read_status(client, page); 632 break; 633 default: 634 status = _pmbus_read_byte_data(client, page, reg); 635 break; 636 } 637 if (status < 0) 638 pmbus_clear_faults(client); 639 return status; 640 } 641 642 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) 643 { 644 if (sensor->data < 0 || sensor->update) 645 sensor->data = _pmbus_read_word_data(client, sensor->page, 646 sensor->phase, sensor->reg); 647 } 648 649 /* 650 * Convert ieee754 sensor values to milli- or micro-units 651 * depending on sensor type. 652 * 653 * ieee754 data format: 654 * bit 15: sign 655 * bit 10..14: exponent 656 * bit 0..9: mantissa 657 * exponent=0: 658 * v=(−1)^signbit * 2^(−14) * 0.significantbits 659 * exponent=1..30: 660 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits 661 * exponent=31: 662 * v=NaN 663 * 664 * Add the number mantissa bits into the calculations for simplicity. 665 * To do that, add '10' to the exponent. By doing that, we can just add 666 * 0x400 to normal values and get the expected result. 667 */ 668 static long pmbus_reg2data_ieee754(struct pmbus_data *data, 669 struct pmbus_sensor *sensor) 670 { 671 int exponent; 672 bool sign; 673 long val; 674 675 /* only support half precision for now */ 676 sign = sensor->data & 0x8000; 677 exponent = (sensor->data >> 10) & 0x1f; 678 val = sensor->data & 0x3ff; 679 680 if (exponent == 0) { /* subnormal */ 681 exponent = -(14 + 10); 682 } else if (exponent == 0x1f) { /* NaN, convert to min/max */ 683 exponent = 0; 684 val = 65504; 685 } else { 686 exponent -= (15 + 10); /* normal */ 687 val |= 0x400; 688 } 689 690 /* scale result to milli-units for all sensors except fans */ 691 if (sensor->class != PSC_FAN) 692 val = val * 1000L; 693 694 /* scale result to micro-units for power sensors */ 695 if (sensor->class == PSC_POWER) 696 val = val * 1000L; 697 698 if (exponent >= 0) 699 val <<= exponent; 700 else 701 val >>= -exponent; 702 703 if (sign) 704 val = -val; 705 706 return val; 707 } 708 709 /* 710 * Convert linear sensor values to milli- or micro-units 711 * depending on sensor type. 712 */ 713 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 714 struct pmbus_sensor *sensor) 715 { 716 s16 exponent; 717 s32 mantissa; 718 s64 val; 719 720 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 721 exponent = data->exponent[sensor->page]; 722 mantissa = (u16) sensor->data; 723 } else { /* LINEAR11 */ 724 exponent = ((s16)sensor->data) >> 11; 725 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 726 } 727 728 val = mantissa; 729 730 /* scale result to milli-units for all sensors except fans */ 731 if (sensor->class != PSC_FAN) 732 val = val * 1000LL; 733 734 /* scale result to micro-units for power sensors */ 735 if (sensor->class == PSC_POWER) 736 val = val * 1000LL; 737 738 if (exponent >= 0) 739 val <<= exponent; 740 else 741 val >>= -exponent; 742 743 return val; 744 } 745 746 /* 747 * Convert direct sensor values to milli- or micro-units 748 * depending on sensor type. 749 */ 750 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 751 struct pmbus_sensor *sensor) 752 { 753 s64 b, val = (s16)sensor->data; 754 s32 m, R; 755 756 m = data->info->m[sensor->class]; 757 b = data->info->b[sensor->class]; 758 R = data->info->R[sensor->class]; 759 760 if (m == 0) 761 return 0; 762 763 /* X = 1/m * (Y * 10^-R - b) */ 764 R = -R; 765 /* scale result to milli-units for everything but fans */ 766 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 767 R += 3; 768 b *= 1000; 769 } 770 771 /* scale result to micro-units for power sensors */ 772 if (sensor->class == PSC_POWER) { 773 R += 3; 774 b *= 1000; 775 } 776 777 while (R > 0) { 778 val *= 10; 779 R--; 780 } 781 while (R < 0) { 782 val = div_s64(val + 5LL, 10L); /* round closest */ 783 R++; 784 } 785 786 val = div_s64(val - b, m); 787 return val; 788 } 789 790 /* 791 * Convert VID sensor values to milli- or micro-units 792 * depending on sensor type. 793 */ 794 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 795 struct pmbus_sensor *sensor) 796 { 797 long val = sensor->data; 798 long rv = 0; 799 800 switch (data->info->vrm_version[sensor->page]) { 801 case vr11: 802 if (val >= 0x02 && val <= 0xb2) 803 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 804 break; 805 case vr12: 806 if (val >= 0x01) 807 rv = 250 + (val - 1) * 5; 808 break; 809 case vr13: 810 if (val >= 0x01) 811 rv = 500 + (val - 1) * 10; 812 break; 813 case imvp9: 814 if (val >= 0x01) 815 rv = 200 + (val - 1) * 10; 816 break; 817 case amd625mv: 818 if (val >= 0x0 && val <= 0xd8) 819 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 820 break; 821 } 822 return rv; 823 } 824 825 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 826 { 827 s64 val; 828 829 if (!sensor->convert) 830 return sensor->data; 831 832 switch (data->info->format[sensor->class]) { 833 case direct: 834 val = pmbus_reg2data_direct(data, sensor); 835 break; 836 case vid: 837 val = pmbus_reg2data_vid(data, sensor); 838 break; 839 case ieee754: 840 val = pmbus_reg2data_ieee754(data, sensor); 841 break; 842 case linear: 843 default: 844 val = pmbus_reg2data_linear(data, sensor); 845 break; 846 } 847 return val; 848 } 849 850 #define MAX_IEEE_MANTISSA (0x7ff * 1000) 851 #define MIN_IEEE_MANTISSA (0x400 * 1000) 852 853 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data, 854 struct pmbus_sensor *sensor, long val) 855 { 856 u16 exponent = (15 + 10); 857 long mantissa; 858 u16 sign = 0; 859 860 /* simple case */ 861 if (val == 0) 862 return 0; 863 864 if (val < 0) { 865 sign = 0x8000; 866 val = -val; 867 } 868 869 /* Power is in uW. Convert to mW before converting. */ 870 if (sensor->class == PSC_POWER) 871 val = DIV_ROUND_CLOSEST(val, 1000L); 872 873 /* 874 * For simplicity, convert fan data to milli-units 875 * before calculating the exponent. 876 */ 877 if (sensor->class == PSC_FAN) 878 val = val * 1000; 879 880 /* Reduce large mantissa until it fits into 10 bit */ 881 while (val > MAX_IEEE_MANTISSA && exponent < 30) { 882 exponent++; 883 val >>= 1; 884 } 885 /* 886 * Increase small mantissa to generate valid 'normal' 887 * number 888 */ 889 while (val < MIN_IEEE_MANTISSA && exponent > 1) { 890 exponent--; 891 val <<= 1; 892 } 893 894 /* Convert mantissa from milli-units to units */ 895 mantissa = DIV_ROUND_CLOSEST(val, 1000); 896 897 /* 898 * Ensure that the resulting number is within range. 899 * Valid range is 0x400..0x7ff, where bit 10 reflects 900 * the implied high bit in normalized ieee754 numbers. 901 * Set the range to 0x400..0x7ff to reflect this. 902 * The upper bit is then removed by the mask against 903 * 0x3ff in the final assignment. 904 */ 905 if (mantissa > 0x7ff) 906 mantissa = 0x7ff; 907 else if (mantissa < 0x400) 908 mantissa = 0x400; 909 910 /* Convert to sign, 5 bit exponent, 10 bit mantissa */ 911 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00); 912 } 913 914 #define MAX_LIN_MANTISSA (1023 * 1000) 915 #define MIN_LIN_MANTISSA (511 * 1000) 916 917 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 918 struct pmbus_sensor *sensor, s64 val) 919 { 920 s16 exponent = 0, mantissa; 921 bool negative = false; 922 923 /* simple case */ 924 if (val == 0) 925 return 0; 926 927 if (sensor->class == PSC_VOLTAGE_OUT) { 928 /* LINEAR16 does not support negative voltages */ 929 if (val < 0) 930 return 0; 931 932 /* 933 * For a static exponents, we don't have a choice 934 * but to adjust the value to it. 935 */ 936 if (data->exponent[sensor->page] < 0) 937 val <<= -data->exponent[sensor->page]; 938 else 939 val >>= data->exponent[sensor->page]; 940 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 941 return clamp_val(val, 0, 0xffff); 942 } 943 944 if (val < 0) { 945 negative = true; 946 val = -val; 947 } 948 949 /* Power is in uW. Convert to mW before converting. */ 950 if (sensor->class == PSC_POWER) 951 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 952 953 /* 954 * For simplicity, convert fan data to milli-units 955 * before calculating the exponent. 956 */ 957 if (sensor->class == PSC_FAN) 958 val = val * 1000LL; 959 960 /* Reduce large mantissa until it fits into 10 bit */ 961 while (val >= MAX_LIN_MANTISSA && exponent < 15) { 962 exponent++; 963 val >>= 1; 964 } 965 /* Increase small mantissa to improve precision */ 966 while (val < MIN_LIN_MANTISSA && exponent > -15) { 967 exponent--; 968 val <<= 1; 969 } 970 971 /* Convert mantissa from milli-units to units */ 972 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 973 974 /* restore sign */ 975 if (negative) 976 mantissa = -mantissa; 977 978 /* Convert to 5 bit exponent, 11 bit mantissa */ 979 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 980 } 981 982 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 983 struct pmbus_sensor *sensor, s64 val) 984 { 985 s64 b; 986 s32 m, R; 987 988 m = data->info->m[sensor->class]; 989 b = data->info->b[sensor->class]; 990 R = data->info->R[sensor->class]; 991 992 /* Power is in uW. Adjust R and b. */ 993 if (sensor->class == PSC_POWER) { 994 R -= 3; 995 b *= 1000; 996 } 997 998 /* Calculate Y = (m * X + b) * 10^R */ 999 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 1000 R -= 3; /* Adjust R and b for data in milli-units */ 1001 b *= 1000; 1002 } 1003 val = val * m + b; 1004 1005 while (R > 0) { 1006 val *= 10; 1007 R--; 1008 } 1009 while (R < 0) { 1010 val = div_s64(val + 5LL, 10L); /* round closest */ 1011 R++; 1012 } 1013 1014 return (u16)clamp_val(val, S16_MIN, S16_MAX); 1015 } 1016 1017 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 1018 struct pmbus_sensor *sensor, s64 val) 1019 { 1020 val = clamp_val(val, 500, 1600); 1021 1022 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 1023 } 1024 1025 static u16 pmbus_data2reg(struct pmbus_data *data, 1026 struct pmbus_sensor *sensor, s64 val) 1027 { 1028 u16 regval; 1029 1030 if (!sensor->convert) 1031 return val; 1032 1033 switch (data->info->format[sensor->class]) { 1034 case direct: 1035 regval = pmbus_data2reg_direct(data, sensor, val); 1036 break; 1037 case vid: 1038 regval = pmbus_data2reg_vid(data, sensor, val); 1039 break; 1040 case ieee754: 1041 regval = pmbus_data2reg_ieee754(data, sensor, val); 1042 break; 1043 case linear: 1044 default: 1045 regval = pmbus_data2reg_linear(data, sensor, val); 1046 break; 1047 } 1048 return regval; 1049 } 1050 1051 /* 1052 * Return boolean calculated from converted data. 1053 * <index> defines a status register index and mask. 1054 * The mask is in the lower 8 bits, the register index is in bits 8..23. 1055 * 1056 * The associated pmbus_boolean structure contains optional pointers to two 1057 * sensor attributes. If specified, those attributes are compared against each 1058 * other to determine if a limit has been exceeded. 1059 * 1060 * If the sensor attribute pointers are NULL, the function returns true if 1061 * (status[reg] & mask) is true. 1062 * 1063 * If sensor attribute pointers are provided, a comparison against a specified 1064 * limit has to be performed to determine the boolean result. 1065 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 1066 * sensor values referenced by sensor attribute pointers s1 and s2). 1067 * 1068 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 1069 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 1070 * 1071 * If a negative value is stored in any of the referenced registers, this value 1072 * reflects an error code which will be returned. 1073 */ 1074 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, 1075 int index) 1076 { 1077 struct pmbus_data *data = i2c_get_clientdata(client); 1078 struct pmbus_sensor *s1 = b->s1; 1079 struct pmbus_sensor *s2 = b->s2; 1080 u16 mask = pb_index_to_mask(index); 1081 u8 page = pb_index_to_page(index); 1082 u16 reg = pb_index_to_reg(index); 1083 int ret, status; 1084 u16 regval; 1085 1086 mutex_lock(&data->update_lock); 1087 status = pmbus_get_status(client, page, reg); 1088 if (status < 0) { 1089 ret = status; 1090 goto unlock; 1091 } 1092 1093 if (s1) 1094 pmbus_update_sensor_data(client, s1); 1095 if (s2) 1096 pmbus_update_sensor_data(client, s2); 1097 1098 regval = status & mask; 1099 if (regval) { 1100 if (data->revision >= PMBUS_REV_12) { 1101 ret = _pmbus_write_byte_data(client, page, reg, regval); 1102 if (ret) 1103 goto unlock; 1104 } else { 1105 pmbus_clear_fault_page(client, page); 1106 } 1107 1108 } 1109 if (s1 && s2) { 1110 s64 v1, v2; 1111 1112 if (s1->data < 0) { 1113 ret = s1->data; 1114 goto unlock; 1115 } 1116 if (s2->data < 0) { 1117 ret = s2->data; 1118 goto unlock; 1119 } 1120 1121 v1 = pmbus_reg2data(data, s1); 1122 v2 = pmbus_reg2data(data, s2); 1123 ret = !!(regval && v1 >= v2); 1124 } else { 1125 ret = !!regval; 1126 } 1127 unlock: 1128 mutex_unlock(&data->update_lock); 1129 return ret; 1130 } 1131 1132 static ssize_t pmbus_show_boolean(struct device *dev, 1133 struct device_attribute *da, char *buf) 1134 { 1135 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 1136 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 1137 struct i2c_client *client = to_i2c_client(dev->parent); 1138 int val; 1139 1140 val = pmbus_get_boolean(client, boolean, attr->index); 1141 if (val < 0) 1142 return val; 1143 return sysfs_emit(buf, "%d\n", val); 1144 } 1145 1146 static ssize_t pmbus_show_sensor(struct device *dev, 1147 struct device_attribute *devattr, char *buf) 1148 { 1149 struct i2c_client *client = to_i2c_client(dev->parent); 1150 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 1151 struct pmbus_data *data = i2c_get_clientdata(client); 1152 ssize_t ret; 1153 1154 mutex_lock(&data->update_lock); 1155 pmbus_update_sensor_data(client, sensor); 1156 if (sensor->data < 0) 1157 ret = sensor->data; 1158 else 1159 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor)); 1160 mutex_unlock(&data->update_lock); 1161 return ret; 1162 } 1163 1164 static ssize_t pmbus_set_sensor(struct device *dev, 1165 struct device_attribute *devattr, 1166 const char *buf, size_t count) 1167 { 1168 struct i2c_client *client = to_i2c_client(dev->parent); 1169 struct pmbus_data *data = i2c_get_clientdata(client); 1170 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 1171 ssize_t rv = count; 1172 s64 val; 1173 int ret; 1174 u16 regval; 1175 1176 if (kstrtos64(buf, 10, &val) < 0) 1177 return -EINVAL; 1178 1179 mutex_lock(&data->update_lock); 1180 regval = pmbus_data2reg(data, sensor, val); 1181 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 1182 if (ret < 0) 1183 rv = ret; 1184 else 1185 sensor->data = -ENODATA; 1186 mutex_unlock(&data->update_lock); 1187 return rv; 1188 } 1189 1190 static ssize_t pmbus_show_label(struct device *dev, 1191 struct device_attribute *da, char *buf) 1192 { 1193 struct pmbus_label *label = to_pmbus_label(da); 1194 1195 return sysfs_emit(buf, "%s\n", label->label); 1196 } 1197 1198 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 1199 { 1200 if (data->num_attributes >= data->max_attributes - 1) { 1201 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 1202 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs, 1203 new_max_attrs, sizeof(void *), 1204 GFP_KERNEL); 1205 if (!new_attrs) 1206 return -ENOMEM; 1207 data->group.attrs = new_attrs; 1208 data->max_attributes = new_max_attrs; 1209 } 1210 1211 data->group.attrs[data->num_attributes++] = attr; 1212 data->group.attrs[data->num_attributes] = NULL; 1213 return 0; 1214 } 1215 1216 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1217 const char *name, 1218 umode_t mode, 1219 ssize_t (*show)(struct device *dev, 1220 struct device_attribute *attr, 1221 char *buf), 1222 ssize_t (*store)(struct device *dev, 1223 struct device_attribute *attr, 1224 const char *buf, size_t count)) 1225 { 1226 sysfs_attr_init(&dev_attr->attr); 1227 dev_attr->attr.name = name; 1228 dev_attr->attr.mode = mode; 1229 dev_attr->show = show; 1230 dev_attr->store = store; 1231 } 1232 1233 static void pmbus_attr_init(struct sensor_device_attribute *a, 1234 const char *name, 1235 umode_t mode, 1236 ssize_t (*show)(struct device *dev, 1237 struct device_attribute *attr, 1238 char *buf), 1239 ssize_t (*store)(struct device *dev, 1240 struct device_attribute *attr, 1241 const char *buf, size_t count), 1242 int idx) 1243 { 1244 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1245 a->index = idx; 1246 } 1247 1248 static int pmbus_add_boolean(struct pmbus_data *data, 1249 const char *name, const char *type, int seq, 1250 struct pmbus_sensor *s1, 1251 struct pmbus_sensor *s2, 1252 u8 page, u16 reg, u16 mask) 1253 { 1254 struct pmbus_boolean *boolean; 1255 struct sensor_device_attribute *a; 1256 1257 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) 1258 return -EINVAL; 1259 1260 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1261 if (!boolean) 1262 return -ENOMEM; 1263 1264 a = &boolean->attribute; 1265 1266 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1267 name, seq, type); 1268 boolean->s1 = s1; 1269 boolean->s2 = s2; 1270 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1271 pb_reg_to_index(page, reg, mask)); 1272 1273 return pmbus_add_attribute(data, &a->dev_attr.attr); 1274 } 1275 1276 /* of thermal for pmbus temperature sensors */ 1277 struct pmbus_thermal_data { 1278 struct pmbus_data *pmbus_data; 1279 struct pmbus_sensor *sensor; 1280 }; 1281 1282 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp) 1283 { 1284 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz); 1285 struct pmbus_sensor *sensor = tdata->sensor; 1286 struct pmbus_data *pmbus_data = tdata->pmbus_data; 1287 struct i2c_client *client = to_i2c_client(pmbus_data->dev); 1288 struct device *dev = pmbus_data->hwmon_dev; 1289 int ret = 0; 1290 1291 if (!dev) { 1292 /* May not even get to hwmon yet */ 1293 *temp = 0; 1294 return 0; 1295 } 1296 1297 mutex_lock(&pmbus_data->update_lock); 1298 pmbus_update_sensor_data(client, sensor); 1299 if (sensor->data < 0) 1300 ret = sensor->data; 1301 else 1302 *temp = (int)pmbus_reg2data(pmbus_data, sensor); 1303 mutex_unlock(&pmbus_data->update_lock); 1304 1305 return ret; 1306 } 1307 1308 static const struct thermal_zone_device_ops pmbus_thermal_ops = { 1309 .get_temp = pmbus_thermal_get_temp, 1310 }; 1311 1312 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data, 1313 struct pmbus_sensor *sensor, int index) 1314 { 1315 struct device *dev = pmbus_data->dev; 1316 struct pmbus_thermal_data *tdata; 1317 struct thermal_zone_device *tzd; 1318 1319 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL); 1320 if (!tdata) 1321 return -ENOMEM; 1322 1323 tdata->sensor = sensor; 1324 tdata->pmbus_data = pmbus_data; 1325 1326 tzd = devm_thermal_of_zone_register(dev, index, tdata, 1327 &pmbus_thermal_ops); 1328 /* 1329 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV, 1330 * so ignore that error but forward any other error. 1331 */ 1332 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV)) 1333 return PTR_ERR(tzd); 1334 1335 return 0; 1336 } 1337 1338 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1339 const char *name, const char *type, 1340 int seq, int page, int phase, 1341 int reg, 1342 enum pmbus_sensor_classes class, 1343 bool update, bool readonly, 1344 bool convert) 1345 { 1346 struct pmbus_sensor *sensor; 1347 struct device_attribute *a; 1348 1349 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1350 if (!sensor) 1351 return NULL; 1352 a = &sensor->attribute; 1353 1354 if (type) 1355 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1356 name, seq, type); 1357 else 1358 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1359 name, seq); 1360 1361 if (data->flags & PMBUS_WRITE_PROTECTED) 1362 readonly = true; 1363 1364 sensor->page = page; 1365 sensor->phase = phase; 1366 sensor->reg = reg; 1367 sensor->class = class; 1368 sensor->update = update; 1369 sensor->convert = convert; 1370 sensor->data = -ENODATA; 1371 pmbus_dev_attr_init(a, sensor->name, 1372 readonly ? 0444 : 0644, 1373 pmbus_show_sensor, pmbus_set_sensor); 1374 1375 if (pmbus_add_attribute(data, &a->attr)) 1376 return NULL; 1377 1378 sensor->next = data->sensors; 1379 data->sensors = sensor; 1380 1381 /* temperature sensors with _input values are registered with thermal */ 1382 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0) 1383 pmbus_thermal_add_sensor(data, sensor, seq); 1384 1385 return sensor; 1386 } 1387 1388 static int pmbus_add_label(struct pmbus_data *data, 1389 const char *name, int seq, 1390 const char *lstring, int index, int phase) 1391 { 1392 struct pmbus_label *label; 1393 struct device_attribute *a; 1394 1395 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1396 if (!label) 1397 return -ENOMEM; 1398 1399 a = &label->attribute; 1400 1401 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1402 if (!index) { 1403 if (phase == 0xff) 1404 strncpy(label->label, lstring, 1405 sizeof(label->label) - 1); 1406 else 1407 snprintf(label->label, sizeof(label->label), "%s.%d", 1408 lstring, phase); 1409 } else { 1410 if (phase == 0xff) 1411 snprintf(label->label, sizeof(label->label), "%s%d", 1412 lstring, index); 1413 else 1414 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1415 lstring, index, phase); 1416 } 1417 1418 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1419 return pmbus_add_attribute(data, &a->attr); 1420 } 1421 1422 /* 1423 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1424 */ 1425 1426 /* 1427 * The pmbus_limit_attr structure describes a single limit attribute 1428 * and its associated alarm attribute. 1429 */ 1430 struct pmbus_limit_attr { 1431 u16 reg; /* Limit register */ 1432 u16 sbit; /* Alarm attribute status bit */ 1433 bool update; /* True if register needs updates */ 1434 bool low; /* True if low limit; for limits with compare 1435 functions only */ 1436 const char *attr; /* Attribute name */ 1437 const char *alarm; /* Alarm attribute name */ 1438 }; 1439 1440 /* 1441 * The pmbus_sensor_attr structure describes one sensor attribute. This 1442 * description includes a reference to the associated limit attributes. 1443 */ 1444 struct pmbus_sensor_attr { 1445 u16 reg; /* sensor register */ 1446 u16 gbit; /* generic status bit */ 1447 u8 nlimit; /* # of limit registers */ 1448 enum pmbus_sensor_classes class;/* sensor class */ 1449 const char *label; /* sensor label */ 1450 bool paged; /* true if paged sensor */ 1451 bool update; /* true if update needed */ 1452 bool compare; /* true if compare function needed */ 1453 u32 func; /* sensor mask */ 1454 u32 sfunc; /* sensor status mask */ 1455 int sreg; /* status register */ 1456 const struct pmbus_limit_attr *limit;/* limit registers */ 1457 }; 1458 1459 /* 1460 * Add a set of limit attributes and, if supported, the associated 1461 * alarm attributes. 1462 * returns 0 if no alarm register found, 1 if an alarm register was found, 1463 * < 0 on errors. 1464 */ 1465 static int pmbus_add_limit_attrs(struct i2c_client *client, 1466 struct pmbus_data *data, 1467 const struct pmbus_driver_info *info, 1468 const char *name, int index, int page, 1469 struct pmbus_sensor *base, 1470 const struct pmbus_sensor_attr *attr) 1471 { 1472 const struct pmbus_limit_attr *l = attr->limit; 1473 int nlimit = attr->nlimit; 1474 int have_alarm = 0; 1475 int i, ret; 1476 struct pmbus_sensor *curr; 1477 1478 for (i = 0; i < nlimit; i++) { 1479 if (pmbus_check_word_register(client, page, l->reg)) { 1480 curr = pmbus_add_sensor(data, name, l->attr, index, 1481 page, 0xff, l->reg, attr->class, 1482 attr->update || l->update, 1483 false, true); 1484 if (!curr) 1485 return -ENOMEM; 1486 if (l->sbit && (info->func[page] & attr->sfunc)) { 1487 ret = pmbus_add_boolean(data, name, 1488 l->alarm, index, 1489 attr->compare ? l->low ? curr : base 1490 : NULL, 1491 attr->compare ? l->low ? base : curr 1492 : NULL, 1493 page, attr->sreg, l->sbit); 1494 if (ret) 1495 return ret; 1496 have_alarm = 1; 1497 } 1498 } 1499 l++; 1500 } 1501 return have_alarm; 1502 } 1503 1504 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1505 struct pmbus_data *data, 1506 const struct pmbus_driver_info *info, 1507 const char *name, 1508 int index, int page, int phase, 1509 const struct pmbus_sensor_attr *attr, 1510 bool paged) 1511 { 1512 struct pmbus_sensor *base; 1513 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1514 int ret; 1515 1516 if (attr->label) { 1517 ret = pmbus_add_label(data, name, index, attr->label, 1518 paged ? page + 1 : 0, phase); 1519 if (ret) 1520 return ret; 1521 } 1522 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1523 attr->reg, attr->class, true, true, true); 1524 if (!base) 1525 return -ENOMEM; 1526 /* No limit and alarm attributes for phase specific sensors */ 1527 if (attr->sfunc && phase == 0xff) { 1528 ret = pmbus_add_limit_attrs(client, data, info, name, 1529 index, page, base, attr); 1530 if (ret < 0) 1531 return ret; 1532 /* 1533 * Add generic alarm attribute only if there are no individual 1534 * alarm attributes, if there is a global alarm bit, and if 1535 * the generic status register (word or byte, depending on 1536 * which global bit is set) for this page is accessible. 1537 */ 1538 if (!ret && attr->gbit && 1539 (!upper || data->has_status_word) && 1540 pmbus_check_status_register(client, page)) { 1541 ret = pmbus_add_boolean(data, name, "alarm", index, 1542 NULL, NULL, 1543 page, PMBUS_STATUS_WORD, 1544 attr->gbit); 1545 if (ret) 1546 return ret; 1547 } 1548 } 1549 return 0; 1550 } 1551 1552 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1553 const struct pmbus_sensor_attr *attr) 1554 { 1555 int p; 1556 1557 if (attr->paged) 1558 return true; 1559 1560 /* 1561 * Some attributes may be present on more than one page despite 1562 * not being marked with the paged attribute. If that is the case, 1563 * then treat the sensor as being paged and add the page suffix to the 1564 * attribute name. 1565 * We don't just add the paged attribute to all such attributes, in 1566 * order to maintain the un-suffixed labels in the case where the 1567 * attribute is only on page 0. 1568 */ 1569 for (p = 1; p < info->pages; p++) { 1570 if (info->func[p] & attr->func) 1571 return true; 1572 } 1573 return false; 1574 } 1575 1576 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1577 struct pmbus_data *data, 1578 const char *name, 1579 const struct pmbus_sensor_attr *attrs, 1580 int nattrs) 1581 { 1582 const struct pmbus_driver_info *info = data->info; 1583 int index, i; 1584 int ret; 1585 1586 index = 1; 1587 for (i = 0; i < nattrs; i++) { 1588 int page, pages; 1589 bool paged = pmbus_sensor_is_paged(info, attrs); 1590 1591 pages = paged ? info->pages : 1; 1592 for (page = 0; page < pages; page++) { 1593 if (info->func[page] & attrs->func) { 1594 ret = pmbus_add_sensor_attrs_one(client, data, info, 1595 name, index, page, 1596 0xff, attrs, paged); 1597 if (ret) 1598 return ret; 1599 index++; 1600 } 1601 if (info->phases[page]) { 1602 int phase; 1603 1604 for (phase = 0; phase < info->phases[page]; 1605 phase++) { 1606 if (!(info->pfunc[phase] & attrs->func)) 1607 continue; 1608 ret = pmbus_add_sensor_attrs_one(client, 1609 data, info, name, index, page, 1610 phase, attrs, paged); 1611 if (ret) 1612 return ret; 1613 index++; 1614 } 1615 } 1616 } 1617 attrs++; 1618 } 1619 return 0; 1620 } 1621 1622 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1623 { 1624 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1625 .attr = "min", 1626 .alarm = "min_alarm", 1627 .sbit = PB_VOLTAGE_UV_WARNING, 1628 }, { 1629 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1630 .attr = "lcrit", 1631 .alarm = "lcrit_alarm", 1632 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF, 1633 }, { 1634 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1635 .attr = "max", 1636 .alarm = "max_alarm", 1637 .sbit = PB_VOLTAGE_OV_WARNING, 1638 }, { 1639 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1640 .attr = "crit", 1641 .alarm = "crit_alarm", 1642 .sbit = PB_VOLTAGE_OV_FAULT, 1643 }, { 1644 .reg = PMBUS_VIRT_READ_VIN_AVG, 1645 .update = true, 1646 .attr = "average", 1647 }, { 1648 .reg = PMBUS_VIRT_READ_VIN_MIN, 1649 .update = true, 1650 .attr = "lowest", 1651 }, { 1652 .reg = PMBUS_VIRT_READ_VIN_MAX, 1653 .update = true, 1654 .attr = "highest", 1655 }, { 1656 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1657 .attr = "reset_history", 1658 }, { 1659 .reg = PMBUS_MFR_VIN_MIN, 1660 .attr = "rated_min", 1661 }, { 1662 .reg = PMBUS_MFR_VIN_MAX, 1663 .attr = "rated_max", 1664 }, 1665 }; 1666 1667 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1668 { 1669 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1670 .attr = "min", 1671 .alarm = "min_alarm", 1672 .sbit = PB_VOLTAGE_UV_WARNING, 1673 }, { 1674 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1675 .attr = "lcrit", 1676 .alarm = "lcrit_alarm", 1677 .sbit = PB_VOLTAGE_UV_FAULT, 1678 }, { 1679 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1680 .attr = "max", 1681 .alarm = "max_alarm", 1682 .sbit = PB_VOLTAGE_OV_WARNING, 1683 }, { 1684 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1685 .attr = "crit", 1686 .alarm = "crit_alarm", 1687 .sbit = PB_VOLTAGE_OV_FAULT, 1688 } 1689 }; 1690 1691 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1692 { 1693 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1694 .attr = "min", 1695 .alarm = "min_alarm", 1696 .sbit = PB_VOLTAGE_UV_WARNING, 1697 }, { 1698 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1699 .attr = "lcrit", 1700 .alarm = "lcrit_alarm", 1701 .sbit = PB_VOLTAGE_UV_FAULT, 1702 }, { 1703 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1704 .attr = "max", 1705 .alarm = "max_alarm", 1706 .sbit = PB_VOLTAGE_OV_WARNING, 1707 }, { 1708 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1709 .attr = "crit", 1710 .alarm = "crit_alarm", 1711 .sbit = PB_VOLTAGE_OV_FAULT, 1712 }, { 1713 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1714 .update = true, 1715 .attr = "average", 1716 }, { 1717 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1718 .update = true, 1719 .attr = "lowest", 1720 }, { 1721 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1722 .update = true, 1723 .attr = "highest", 1724 }, { 1725 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1726 .attr = "reset_history", 1727 }, { 1728 .reg = PMBUS_MFR_VOUT_MIN, 1729 .attr = "rated_min", 1730 }, { 1731 .reg = PMBUS_MFR_VOUT_MAX, 1732 .attr = "rated_max", 1733 }, 1734 }; 1735 1736 static const struct pmbus_sensor_attr voltage_attributes[] = { 1737 { 1738 .reg = PMBUS_READ_VIN, 1739 .class = PSC_VOLTAGE_IN, 1740 .label = "vin", 1741 .func = PMBUS_HAVE_VIN, 1742 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1743 .sreg = PMBUS_STATUS_INPUT, 1744 .gbit = PB_STATUS_VIN_UV, 1745 .limit = vin_limit_attrs, 1746 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1747 }, { 1748 .reg = PMBUS_VIRT_READ_VMON, 1749 .class = PSC_VOLTAGE_IN, 1750 .label = "vmon", 1751 .func = PMBUS_HAVE_VMON, 1752 .sfunc = PMBUS_HAVE_STATUS_VMON, 1753 .sreg = PMBUS_VIRT_STATUS_VMON, 1754 .limit = vmon_limit_attrs, 1755 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1756 }, { 1757 .reg = PMBUS_READ_VCAP, 1758 .class = PSC_VOLTAGE_IN, 1759 .label = "vcap", 1760 .func = PMBUS_HAVE_VCAP, 1761 }, { 1762 .reg = PMBUS_READ_VOUT, 1763 .class = PSC_VOLTAGE_OUT, 1764 .label = "vout", 1765 .paged = true, 1766 .func = PMBUS_HAVE_VOUT, 1767 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1768 .sreg = PMBUS_STATUS_VOUT, 1769 .gbit = PB_STATUS_VOUT_OV, 1770 .limit = vout_limit_attrs, 1771 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1772 } 1773 }; 1774 1775 /* Current attributes */ 1776 1777 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1778 { 1779 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1780 .attr = "max", 1781 .alarm = "max_alarm", 1782 .sbit = PB_IIN_OC_WARNING, 1783 }, { 1784 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1785 .attr = "crit", 1786 .alarm = "crit_alarm", 1787 .sbit = PB_IIN_OC_FAULT, 1788 }, { 1789 .reg = PMBUS_VIRT_READ_IIN_AVG, 1790 .update = true, 1791 .attr = "average", 1792 }, { 1793 .reg = PMBUS_VIRT_READ_IIN_MIN, 1794 .update = true, 1795 .attr = "lowest", 1796 }, { 1797 .reg = PMBUS_VIRT_READ_IIN_MAX, 1798 .update = true, 1799 .attr = "highest", 1800 }, { 1801 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1802 .attr = "reset_history", 1803 }, { 1804 .reg = PMBUS_MFR_IIN_MAX, 1805 .attr = "rated_max", 1806 }, 1807 }; 1808 1809 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1810 { 1811 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1812 .attr = "max", 1813 .alarm = "max_alarm", 1814 .sbit = PB_IOUT_OC_WARNING, 1815 }, { 1816 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1817 .attr = "lcrit", 1818 .alarm = "lcrit_alarm", 1819 .sbit = PB_IOUT_UC_FAULT, 1820 }, { 1821 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1822 .attr = "crit", 1823 .alarm = "crit_alarm", 1824 .sbit = PB_IOUT_OC_FAULT, 1825 }, { 1826 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1827 .update = true, 1828 .attr = "average", 1829 }, { 1830 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1831 .update = true, 1832 .attr = "lowest", 1833 }, { 1834 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1835 .update = true, 1836 .attr = "highest", 1837 }, { 1838 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1839 .attr = "reset_history", 1840 }, { 1841 .reg = PMBUS_MFR_IOUT_MAX, 1842 .attr = "rated_max", 1843 }, 1844 }; 1845 1846 static const struct pmbus_sensor_attr current_attributes[] = { 1847 { 1848 .reg = PMBUS_READ_IIN, 1849 .class = PSC_CURRENT_IN, 1850 .label = "iin", 1851 .func = PMBUS_HAVE_IIN, 1852 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1853 .sreg = PMBUS_STATUS_INPUT, 1854 .gbit = PB_STATUS_INPUT, 1855 .limit = iin_limit_attrs, 1856 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1857 }, { 1858 .reg = PMBUS_READ_IOUT, 1859 .class = PSC_CURRENT_OUT, 1860 .label = "iout", 1861 .paged = true, 1862 .func = PMBUS_HAVE_IOUT, 1863 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1864 .sreg = PMBUS_STATUS_IOUT, 1865 .gbit = PB_STATUS_IOUT_OC, 1866 .limit = iout_limit_attrs, 1867 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1868 } 1869 }; 1870 1871 /* Power attributes */ 1872 1873 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1874 { 1875 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1876 .attr = "max", 1877 .alarm = "alarm", 1878 .sbit = PB_PIN_OP_WARNING, 1879 }, { 1880 .reg = PMBUS_VIRT_READ_PIN_AVG, 1881 .update = true, 1882 .attr = "average", 1883 }, { 1884 .reg = PMBUS_VIRT_READ_PIN_MIN, 1885 .update = true, 1886 .attr = "input_lowest", 1887 }, { 1888 .reg = PMBUS_VIRT_READ_PIN_MAX, 1889 .update = true, 1890 .attr = "input_highest", 1891 }, { 1892 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1893 .attr = "reset_history", 1894 }, { 1895 .reg = PMBUS_MFR_PIN_MAX, 1896 .attr = "rated_max", 1897 }, 1898 }; 1899 1900 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1901 { 1902 .reg = PMBUS_POUT_MAX, 1903 .attr = "cap", 1904 .alarm = "cap_alarm", 1905 .sbit = PB_POWER_LIMITING, 1906 }, { 1907 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1908 .attr = "max", 1909 .alarm = "max_alarm", 1910 .sbit = PB_POUT_OP_WARNING, 1911 }, { 1912 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1913 .attr = "crit", 1914 .alarm = "crit_alarm", 1915 .sbit = PB_POUT_OP_FAULT, 1916 }, { 1917 .reg = PMBUS_VIRT_READ_POUT_AVG, 1918 .update = true, 1919 .attr = "average", 1920 }, { 1921 .reg = PMBUS_VIRT_READ_POUT_MIN, 1922 .update = true, 1923 .attr = "input_lowest", 1924 }, { 1925 .reg = PMBUS_VIRT_READ_POUT_MAX, 1926 .update = true, 1927 .attr = "input_highest", 1928 }, { 1929 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1930 .attr = "reset_history", 1931 }, { 1932 .reg = PMBUS_MFR_POUT_MAX, 1933 .attr = "rated_max", 1934 }, 1935 }; 1936 1937 static const struct pmbus_sensor_attr power_attributes[] = { 1938 { 1939 .reg = PMBUS_READ_PIN, 1940 .class = PSC_POWER, 1941 .label = "pin", 1942 .func = PMBUS_HAVE_PIN, 1943 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1944 .sreg = PMBUS_STATUS_INPUT, 1945 .gbit = PB_STATUS_INPUT, 1946 .limit = pin_limit_attrs, 1947 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1948 }, { 1949 .reg = PMBUS_READ_POUT, 1950 .class = PSC_POWER, 1951 .label = "pout", 1952 .paged = true, 1953 .func = PMBUS_HAVE_POUT, 1954 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1955 .sreg = PMBUS_STATUS_IOUT, 1956 .limit = pout_limit_attrs, 1957 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1958 } 1959 }; 1960 1961 /* Temperature atributes */ 1962 1963 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1964 { 1965 .reg = PMBUS_UT_WARN_LIMIT, 1966 .low = true, 1967 .attr = "min", 1968 .alarm = "min_alarm", 1969 .sbit = PB_TEMP_UT_WARNING, 1970 }, { 1971 .reg = PMBUS_UT_FAULT_LIMIT, 1972 .low = true, 1973 .attr = "lcrit", 1974 .alarm = "lcrit_alarm", 1975 .sbit = PB_TEMP_UT_FAULT, 1976 }, { 1977 .reg = PMBUS_OT_WARN_LIMIT, 1978 .attr = "max", 1979 .alarm = "max_alarm", 1980 .sbit = PB_TEMP_OT_WARNING, 1981 }, { 1982 .reg = PMBUS_OT_FAULT_LIMIT, 1983 .attr = "crit", 1984 .alarm = "crit_alarm", 1985 .sbit = PB_TEMP_OT_FAULT, 1986 }, { 1987 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1988 .attr = "lowest", 1989 }, { 1990 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1991 .attr = "average", 1992 }, { 1993 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1994 .attr = "highest", 1995 }, { 1996 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1997 .attr = "reset_history", 1998 }, { 1999 .reg = PMBUS_MFR_MAX_TEMP_1, 2000 .attr = "rated_max", 2001 }, 2002 }; 2003 2004 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 2005 { 2006 .reg = PMBUS_UT_WARN_LIMIT, 2007 .low = true, 2008 .attr = "min", 2009 .alarm = "min_alarm", 2010 .sbit = PB_TEMP_UT_WARNING, 2011 }, { 2012 .reg = PMBUS_UT_FAULT_LIMIT, 2013 .low = true, 2014 .attr = "lcrit", 2015 .alarm = "lcrit_alarm", 2016 .sbit = PB_TEMP_UT_FAULT, 2017 }, { 2018 .reg = PMBUS_OT_WARN_LIMIT, 2019 .attr = "max", 2020 .alarm = "max_alarm", 2021 .sbit = PB_TEMP_OT_WARNING, 2022 }, { 2023 .reg = PMBUS_OT_FAULT_LIMIT, 2024 .attr = "crit", 2025 .alarm = "crit_alarm", 2026 .sbit = PB_TEMP_OT_FAULT, 2027 }, { 2028 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 2029 .attr = "lowest", 2030 }, { 2031 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 2032 .attr = "average", 2033 }, { 2034 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 2035 .attr = "highest", 2036 }, { 2037 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 2038 .attr = "reset_history", 2039 }, { 2040 .reg = PMBUS_MFR_MAX_TEMP_2, 2041 .attr = "rated_max", 2042 }, 2043 }; 2044 2045 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 2046 { 2047 .reg = PMBUS_UT_WARN_LIMIT, 2048 .low = true, 2049 .attr = "min", 2050 .alarm = "min_alarm", 2051 .sbit = PB_TEMP_UT_WARNING, 2052 }, { 2053 .reg = PMBUS_UT_FAULT_LIMIT, 2054 .low = true, 2055 .attr = "lcrit", 2056 .alarm = "lcrit_alarm", 2057 .sbit = PB_TEMP_UT_FAULT, 2058 }, { 2059 .reg = PMBUS_OT_WARN_LIMIT, 2060 .attr = "max", 2061 .alarm = "max_alarm", 2062 .sbit = PB_TEMP_OT_WARNING, 2063 }, { 2064 .reg = PMBUS_OT_FAULT_LIMIT, 2065 .attr = "crit", 2066 .alarm = "crit_alarm", 2067 .sbit = PB_TEMP_OT_FAULT, 2068 }, { 2069 .reg = PMBUS_MFR_MAX_TEMP_3, 2070 .attr = "rated_max", 2071 }, 2072 }; 2073 2074 static const struct pmbus_sensor_attr temp_attributes[] = { 2075 { 2076 .reg = PMBUS_READ_TEMPERATURE_1, 2077 .class = PSC_TEMPERATURE, 2078 .paged = true, 2079 .update = true, 2080 .compare = true, 2081 .func = PMBUS_HAVE_TEMP, 2082 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2083 .sreg = PMBUS_STATUS_TEMPERATURE, 2084 .gbit = PB_STATUS_TEMPERATURE, 2085 .limit = temp_limit_attrs, 2086 .nlimit = ARRAY_SIZE(temp_limit_attrs), 2087 }, { 2088 .reg = PMBUS_READ_TEMPERATURE_2, 2089 .class = PSC_TEMPERATURE, 2090 .paged = true, 2091 .update = true, 2092 .compare = true, 2093 .func = PMBUS_HAVE_TEMP2, 2094 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2095 .sreg = PMBUS_STATUS_TEMPERATURE, 2096 .gbit = PB_STATUS_TEMPERATURE, 2097 .limit = temp_limit_attrs2, 2098 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 2099 }, { 2100 .reg = PMBUS_READ_TEMPERATURE_3, 2101 .class = PSC_TEMPERATURE, 2102 .paged = true, 2103 .update = true, 2104 .compare = true, 2105 .func = PMBUS_HAVE_TEMP3, 2106 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2107 .sreg = PMBUS_STATUS_TEMPERATURE, 2108 .gbit = PB_STATUS_TEMPERATURE, 2109 .limit = temp_limit_attrs3, 2110 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 2111 } 2112 }; 2113 2114 static const int pmbus_fan_registers[] = { 2115 PMBUS_READ_FAN_SPEED_1, 2116 PMBUS_READ_FAN_SPEED_2, 2117 PMBUS_READ_FAN_SPEED_3, 2118 PMBUS_READ_FAN_SPEED_4 2119 }; 2120 2121 static const int pmbus_fan_status_registers[] = { 2122 PMBUS_STATUS_FAN_12, 2123 PMBUS_STATUS_FAN_12, 2124 PMBUS_STATUS_FAN_34, 2125 PMBUS_STATUS_FAN_34 2126 }; 2127 2128 static const u32 pmbus_fan_flags[] = { 2129 PMBUS_HAVE_FAN12, 2130 PMBUS_HAVE_FAN12, 2131 PMBUS_HAVE_FAN34, 2132 PMBUS_HAVE_FAN34 2133 }; 2134 2135 static const u32 pmbus_fan_status_flags[] = { 2136 PMBUS_HAVE_STATUS_FAN12, 2137 PMBUS_HAVE_STATUS_FAN12, 2138 PMBUS_HAVE_STATUS_FAN34, 2139 PMBUS_HAVE_STATUS_FAN34 2140 }; 2141 2142 /* Fans */ 2143 2144 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 2145 static int pmbus_add_fan_ctrl(struct i2c_client *client, 2146 struct pmbus_data *data, int index, int page, int id, 2147 u8 config) 2148 { 2149 struct pmbus_sensor *sensor; 2150 2151 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 2152 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 2153 false, false, true); 2154 2155 if (!sensor) 2156 return -ENOMEM; 2157 2158 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 2159 (data->info->func[page] & PMBUS_HAVE_PWM34))) 2160 return 0; 2161 2162 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 2163 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 2164 false, false, true); 2165 2166 if (!sensor) 2167 return -ENOMEM; 2168 2169 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 2170 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 2171 true, false, false); 2172 2173 if (!sensor) 2174 return -ENOMEM; 2175 2176 return 0; 2177 } 2178 2179 static int pmbus_add_fan_attributes(struct i2c_client *client, 2180 struct pmbus_data *data) 2181 { 2182 const struct pmbus_driver_info *info = data->info; 2183 int index = 1; 2184 int page; 2185 int ret; 2186 2187 for (page = 0; page < info->pages; page++) { 2188 int f; 2189 2190 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 2191 int regval; 2192 2193 if (!(info->func[page] & pmbus_fan_flags[f])) 2194 break; 2195 2196 if (!pmbus_check_word_register(client, page, 2197 pmbus_fan_registers[f])) 2198 break; 2199 2200 /* 2201 * Skip fan if not installed. 2202 * Each fan configuration register covers multiple fans, 2203 * so we have to do some magic. 2204 */ 2205 regval = _pmbus_read_byte_data(client, page, 2206 pmbus_fan_config_registers[f]); 2207 if (regval < 0 || 2208 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 2209 continue; 2210 2211 if (pmbus_add_sensor(data, "fan", "input", index, 2212 page, 0xff, pmbus_fan_registers[f], 2213 PSC_FAN, true, true, true) == NULL) 2214 return -ENOMEM; 2215 2216 /* Fan control */ 2217 if (pmbus_check_word_register(client, page, 2218 pmbus_fan_command_registers[f])) { 2219 ret = pmbus_add_fan_ctrl(client, data, index, 2220 page, f, regval); 2221 if (ret < 0) 2222 return ret; 2223 } 2224 2225 /* 2226 * Each fan status register covers multiple fans, 2227 * so we have to do some magic. 2228 */ 2229 if ((info->func[page] & pmbus_fan_status_flags[f]) && 2230 pmbus_check_byte_register(client, 2231 page, pmbus_fan_status_registers[f])) { 2232 int reg; 2233 2234 if (f > 1) /* fan 3, 4 */ 2235 reg = PMBUS_STATUS_FAN_34; 2236 else 2237 reg = PMBUS_STATUS_FAN_12; 2238 ret = pmbus_add_boolean(data, "fan", 2239 "alarm", index, NULL, NULL, page, reg, 2240 PB_FAN_FAN1_WARNING >> (f & 1)); 2241 if (ret) 2242 return ret; 2243 ret = pmbus_add_boolean(data, "fan", 2244 "fault", index, NULL, NULL, page, reg, 2245 PB_FAN_FAN1_FAULT >> (f & 1)); 2246 if (ret) 2247 return ret; 2248 } 2249 index++; 2250 } 2251 } 2252 return 0; 2253 } 2254 2255 struct pmbus_samples_attr { 2256 int reg; 2257 char *name; 2258 }; 2259 2260 struct pmbus_samples_reg { 2261 int page; 2262 struct pmbus_samples_attr *attr; 2263 struct device_attribute dev_attr; 2264 }; 2265 2266 static struct pmbus_samples_attr pmbus_samples_registers[] = { 2267 { 2268 .reg = PMBUS_VIRT_SAMPLES, 2269 .name = "samples", 2270 }, { 2271 .reg = PMBUS_VIRT_IN_SAMPLES, 2272 .name = "in_samples", 2273 }, { 2274 .reg = PMBUS_VIRT_CURR_SAMPLES, 2275 .name = "curr_samples", 2276 }, { 2277 .reg = PMBUS_VIRT_POWER_SAMPLES, 2278 .name = "power_samples", 2279 }, { 2280 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2281 .name = "temp_samples", 2282 } 2283 }; 2284 2285 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2286 2287 static ssize_t pmbus_show_samples(struct device *dev, 2288 struct device_attribute *devattr, char *buf) 2289 { 2290 int val; 2291 struct i2c_client *client = to_i2c_client(dev->parent); 2292 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2293 struct pmbus_data *data = i2c_get_clientdata(client); 2294 2295 mutex_lock(&data->update_lock); 2296 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2297 mutex_unlock(&data->update_lock); 2298 if (val < 0) 2299 return val; 2300 2301 return sysfs_emit(buf, "%d\n", val); 2302 } 2303 2304 static ssize_t pmbus_set_samples(struct device *dev, 2305 struct device_attribute *devattr, 2306 const char *buf, size_t count) 2307 { 2308 int ret; 2309 long val; 2310 struct i2c_client *client = to_i2c_client(dev->parent); 2311 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2312 struct pmbus_data *data = i2c_get_clientdata(client); 2313 2314 if (kstrtol(buf, 0, &val) < 0) 2315 return -EINVAL; 2316 2317 mutex_lock(&data->update_lock); 2318 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2319 mutex_unlock(&data->update_lock); 2320 2321 return ret ? : count; 2322 } 2323 2324 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2325 struct pmbus_samples_attr *attr) 2326 { 2327 struct pmbus_samples_reg *reg; 2328 2329 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2330 if (!reg) 2331 return -ENOMEM; 2332 2333 reg->attr = attr; 2334 reg->page = page; 2335 2336 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2337 pmbus_show_samples, pmbus_set_samples); 2338 2339 return pmbus_add_attribute(data, ®->dev_attr.attr); 2340 } 2341 2342 static int pmbus_add_samples_attributes(struct i2c_client *client, 2343 struct pmbus_data *data) 2344 { 2345 const struct pmbus_driver_info *info = data->info; 2346 int s; 2347 2348 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2349 return 0; 2350 2351 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2352 struct pmbus_samples_attr *attr; 2353 int ret; 2354 2355 attr = &pmbus_samples_registers[s]; 2356 if (!pmbus_check_word_register(client, 0, attr->reg)) 2357 continue; 2358 2359 ret = pmbus_add_samples_attr(data, 0, attr); 2360 if (ret) 2361 return ret; 2362 } 2363 2364 return 0; 2365 } 2366 2367 static int pmbus_find_attributes(struct i2c_client *client, 2368 struct pmbus_data *data) 2369 { 2370 int ret; 2371 2372 /* Voltage sensors */ 2373 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2374 ARRAY_SIZE(voltage_attributes)); 2375 if (ret) 2376 return ret; 2377 2378 /* Current sensors */ 2379 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2380 ARRAY_SIZE(current_attributes)); 2381 if (ret) 2382 return ret; 2383 2384 /* Power sensors */ 2385 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2386 ARRAY_SIZE(power_attributes)); 2387 if (ret) 2388 return ret; 2389 2390 /* Temperature sensors */ 2391 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2392 ARRAY_SIZE(temp_attributes)); 2393 if (ret) 2394 return ret; 2395 2396 /* Fans */ 2397 ret = pmbus_add_fan_attributes(client, data); 2398 if (ret) 2399 return ret; 2400 2401 ret = pmbus_add_samples_attributes(client, data); 2402 return ret; 2403 } 2404 2405 /* 2406 * The pmbus_class_attr_map structure maps one sensor class to 2407 * it's corresponding sensor attributes array. 2408 */ 2409 struct pmbus_class_attr_map { 2410 enum pmbus_sensor_classes class; 2411 int nattr; 2412 const struct pmbus_sensor_attr *attr; 2413 }; 2414 2415 static const struct pmbus_class_attr_map class_attr_map[] = { 2416 { 2417 .class = PSC_VOLTAGE_IN, 2418 .attr = voltage_attributes, 2419 .nattr = ARRAY_SIZE(voltage_attributes), 2420 }, { 2421 .class = PSC_VOLTAGE_OUT, 2422 .attr = voltage_attributes, 2423 .nattr = ARRAY_SIZE(voltage_attributes), 2424 }, { 2425 .class = PSC_CURRENT_IN, 2426 .attr = current_attributes, 2427 .nattr = ARRAY_SIZE(current_attributes), 2428 }, { 2429 .class = PSC_CURRENT_OUT, 2430 .attr = current_attributes, 2431 .nattr = ARRAY_SIZE(current_attributes), 2432 }, { 2433 .class = PSC_POWER, 2434 .attr = power_attributes, 2435 .nattr = ARRAY_SIZE(power_attributes), 2436 }, { 2437 .class = PSC_TEMPERATURE, 2438 .attr = temp_attributes, 2439 .nattr = ARRAY_SIZE(temp_attributes), 2440 } 2441 }; 2442 2443 /* 2444 * Read the coefficients for direct mode. 2445 */ 2446 static int pmbus_read_coefficients(struct i2c_client *client, 2447 struct pmbus_driver_info *info, 2448 const struct pmbus_sensor_attr *attr) 2449 { 2450 int rv; 2451 union i2c_smbus_data data; 2452 enum pmbus_sensor_classes class = attr->class; 2453 s8 R; 2454 s16 m, b; 2455 2456 data.block[0] = 2; 2457 data.block[1] = attr->reg; 2458 data.block[2] = 0x01; 2459 2460 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags, 2461 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS, 2462 I2C_SMBUS_BLOCK_PROC_CALL, &data); 2463 2464 if (rv < 0) 2465 return rv; 2466 2467 if (data.block[0] != 5) 2468 return -EIO; 2469 2470 m = data.block[1] | (data.block[2] << 8); 2471 b = data.block[3] | (data.block[4] << 8); 2472 R = data.block[5]; 2473 info->m[class] = m; 2474 info->b[class] = b; 2475 info->R[class] = R; 2476 2477 return rv; 2478 } 2479 2480 static int pmbus_init_coefficients(struct i2c_client *client, 2481 struct pmbus_driver_info *info) 2482 { 2483 int i, n, ret = -EINVAL; 2484 const struct pmbus_class_attr_map *map; 2485 const struct pmbus_sensor_attr *attr; 2486 2487 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) { 2488 map = &class_attr_map[i]; 2489 if (info->format[map->class] != direct) 2490 continue; 2491 for (n = 0; n < map->nattr; n++) { 2492 attr = &map->attr[n]; 2493 if (map->class != attr->class) 2494 continue; 2495 ret = pmbus_read_coefficients(client, info, attr); 2496 if (ret >= 0) 2497 break; 2498 } 2499 if (ret < 0) { 2500 dev_err(&client->dev, 2501 "No coefficients found for sensor class %d\n", 2502 map->class); 2503 return -EINVAL; 2504 } 2505 } 2506 2507 return 0; 2508 } 2509 2510 /* 2511 * Identify chip parameters. 2512 * This function is called for all chips. 2513 */ 2514 static int pmbus_identify_common(struct i2c_client *client, 2515 struct pmbus_data *data, int page) 2516 { 2517 int vout_mode = -1; 2518 2519 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2520 vout_mode = _pmbus_read_byte_data(client, page, 2521 PMBUS_VOUT_MODE); 2522 if (vout_mode >= 0 && vout_mode != 0xff) { 2523 /* 2524 * Not all chips support the VOUT_MODE command, 2525 * so a failure to read it is not an error. 2526 */ 2527 switch (vout_mode >> 5) { 2528 case 0: /* linear mode */ 2529 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2530 return -ENODEV; 2531 2532 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2533 break; 2534 case 1: /* VID mode */ 2535 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2536 return -ENODEV; 2537 break; 2538 case 2: /* direct mode */ 2539 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2540 return -ENODEV; 2541 break; 2542 case 3: /* ieee 754 half precision */ 2543 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754) 2544 return -ENODEV; 2545 break; 2546 default: 2547 return -ENODEV; 2548 } 2549 } 2550 2551 return 0; 2552 } 2553 2554 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2555 { 2556 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2557 } 2558 2559 static int pmbus_read_status_word(struct i2c_client *client, int page) 2560 { 2561 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2562 } 2563 2564 /* PEC attribute support */ 2565 2566 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy, 2567 char *buf) 2568 { 2569 struct i2c_client *client = to_i2c_client(dev); 2570 2571 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); 2572 } 2573 2574 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy, 2575 const char *buf, size_t count) 2576 { 2577 struct i2c_client *client = to_i2c_client(dev); 2578 bool enable; 2579 int err; 2580 2581 err = kstrtobool(buf, &enable); 2582 if (err < 0) 2583 return err; 2584 2585 if (enable) 2586 client->flags |= I2C_CLIENT_PEC; 2587 else 2588 client->flags &= ~I2C_CLIENT_PEC; 2589 2590 return count; 2591 } 2592 2593 static DEVICE_ATTR_RW(pec); 2594 2595 static void pmbus_remove_pec(void *dev) 2596 { 2597 device_remove_file(dev, &dev_attr_pec); 2598 } 2599 2600 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2601 struct pmbus_driver_info *info) 2602 { 2603 struct device *dev = &client->dev; 2604 int page, ret; 2605 2606 /* 2607 * Figure out if PEC is enabled before accessing any other register. 2608 * Make sure PEC is disabled, will be enabled later if needed. 2609 */ 2610 client->flags &= ~I2C_CLIENT_PEC; 2611 2612 /* Enable PEC if the controller and bus supports it */ 2613 if (!(data->flags & PMBUS_NO_CAPABILITY)) { 2614 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2615 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) { 2616 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) 2617 client->flags |= I2C_CLIENT_PEC; 2618 } 2619 } 2620 2621 /* 2622 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2623 * to use PMBUS_STATUS_BYTE instead if that is the case. 2624 * Bail out if both registers are not supported. 2625 */ 2626 data->read_status = pmbus_read_status_word; 2627 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2628 if (ret < 0 || ret == 0xffff) { 2629 data->read_status = pmbus_read_status_byte; 2630 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2631 if (ret < 0 || ret == 0xff) { 2632 dev_err(dev, "PMBus status register not found\n"); 2633 return -ENODEV; 2634 } 2635 } else { 2636 data->has_status_word = true; 2637 } 2638 2639 /* 2640 * Check if the chip is write protected. If it is, we can not clear 2641 * faults, and we should not try it. Also, in that case, writes into 2642 * limit registers need to be disabled. 2643 */ 2644 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) { 2645 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2646 if (ret > 0 && (ret & PB_WP_ANY)) 2647 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2648 } 2649 2650 ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION); 2651 if (ret >= 0) 2652 data->revision = ret; 2653 2654 if (data->info->pages) 2655 pmbus_clear_faults(client); 2656 else 2657 pmbus_clear_fault_page(client, -1); 2658 2659 if (info->identify) { 2660 ret = (*info->identify)(client, info); 2661 if (ret < 0) { 2662 dev_err(dev, "Chip identification failed\n"); 2663 return ret; 2664 } 2665 } 2666 2667 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2668 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2669 return -ENODEV; 2670 } 2671 2672 for (page = 0; page < info->pages; page++) { 2673 ret = pmbus_identify_common(client, data, page); 2674 if (ret < 0) { 2675 dev_err(dev, "Failed to identify chip capabilities\n"); 2676 return ret; 2677 } 2678 } 2679 2680 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) { 2681 if (!i2c_check_functionality(client->adapter, 2682 I2C_FUNC_SMBUS_BLOCK_PROC_CALL)) 2683 return -ENODEV; 2684 2685 ret = pmbus_init_coefficients(client, info); 2686 if (ret < 0) 2687 return ret; 2688 } 2689 2690 if (client->flags & I2C_CLIENT_PEC) { 2691 /* 2692 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the 2693 * chip support PEC. Add 'pec' attribute to client device to let 2694 * the user control it. 2695 */ 2696 ret = device_create_file(dev, &dev_attr_pec); 2697 if (ret) 2698 return ret; 2699 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev); 2700 if (ret) 2701 return ret; 2702 } 2703 2704 return 0; 2705 } 2706 2707 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */ 2708 struct pmbus_status_assoc { 2709 int pflag, rflag, eflag; 2710 }; 2711 2712 /* PMBus->regulator bit mappings for a PMBus status register */ 2713 struct pmbus_status_category { 2714 int func; 2715 int reg; 2716 const struct pmbus_status_assoc *bits; /* zero-terminated */ 2717 }; 2718 2719 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = { 2720 { 2721 .func = PMBUS_HAVE_STATUS_VOUT, 2722 .reg = PMBUS_STATUS_VOUT, 2723 .bits = (const struct pmbus_status_assoc[]) { 2724 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN, 2725 REGULATOR_EVENT_UNDER_VOLTAGE_WARN }, 2726 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE, 2727 REGULATOR_EVENT_UNDER_VOLTAGE }, 2728 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN, 2729 REGULATOR_EVENT_OVER_VOLTAGE_WARN }, 2730 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT, 2731 REGULATOR_EVENT_OVER_VOLTAGE_WARN }, 2732 { }, 2733 }, 2734 }, { 2735 .func = PMBUS_HAVE_STATUS_IOUT, 2736 .reg = PMBUS_STATUS_IOUT, 2737 .bits = (const struct pmbus_status_assoc[]) { 2738 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN, 2739 REGULATOR_EVENT_OVER_CURRENT_WARN }, 2740 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT, 2741 REGULATOR_EVENT_OVER_CURRENT }, 2742 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT, 2743 REGULATOR_EVENT_OVER_CURRENT }, 2744 { }, 2745 }, 2746 }, { 2747 .func = PMBUS_HAVE_STATUS_TEMP, 2748 .reg = PMBUS_STATUS_TEMPERATURE, 2749 .bits = (const struct pmbus_status_assoc[]) { 2750 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN, 2751 REGULATOR_EVENT_OVER_TEMP_WARN }, 2752 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP, 2753 REGULATOR_EVENT_OVER_TEMP }, 2754 { }, 2755 }, 2756 }, 2757 }; 2758 2759 static int _pmbus_is_enabled(struct i2c_client *client, u8 page) 2760 { 2761 int ret; 2762 2763 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2764 2765 if (ret < 0) 2766 return ret; 2767 2768 return !!(ret & PB_OPERATION_CONTROL_ON); 2769 } 2770 2771 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page) 2772 { 2773 struct pmbus_data *data = i2c_get_clientdata(client); 2774 int ret; 2775 2776 mutex_lock(&data->update_lock); 2777 ret = _pmbus_is_enabled(client, page); 2778 mutex_unlock(&data->update_lock); 2779 2780 return ret; 2781 } 2782 2783 #define to_dev_attr(_dev_attr) \ 2784 container_of(_dev_attr, struct device_attribute, attr) 2785 2786 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags) 2787 { 2788 int i; 2789 2790 for (i = 0; i < data->num_attributes; i++) { 2791 struct device_attribute *da = to_dev_attr(data->group.attrs[i]); 2792 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 2793 int index = attr->index; 2794 u16 smask = pb_index_to_mask(index); 2795 u8 spage = pb_index_to_page(index); 2796 u16 sreg = pb_index_to_reg(index); 2797 2798 if (reg == sreg && page == spage && (smask & flags)) { 2799 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name); 2800 sysfs_notify(&data->dev->kobj, NULL, da->attr.name); 2801 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE); 2802 flags &= ~smask; 2803 } 2804 2805 if (!flags) 2806 break; 2807 } 2808 } 2809 2810 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, 2811 unsigned int *event, bool notify) 2812 { 2813 int i, status; 2814 const struct pmbus_status_category *cat; 2815 const struct pmbus_status_assoc *bit; 2816 struct device *dev = data->dev; 2817 struct i2c_client *client = to_i2c_client(dev); 2818 int func = data->info->func[page]; 2819 2820 *flags = 0; 2821 *event = 0; 2822 2823 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) { 2824 cat = &pmbus_status_flag_map[i]; 2825 if (!(func & cat->func)) 2826 continue; 2827 2828 status = _pmbus_read_byte_data(client, page, cat->reg); 2829 if (status < 0) 2830 return status; 2831 2832 for (bit = cat->bits; bit->pflag; bit++) 2833 if (status & bit->pflag) { 2834 *flags |= bit->rflag; 2835 *event |= bit->eflag; 2836 } 2837 2838 if (notify && status) 2839 pmbus_notify(data, page, cat->reg, status); 2840 2841 } 2842 2843 /* 2844 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_* 2845 * bits. Some of the other bits are tempting (especially for cases 2846 * where we don't have the relevant PMBUS_HAVE_STATUS_* 2847 * functionality), but there's an unfortunate ambiguity in that 2848 * they're defined as indicating a fault *or* a warning, so we can't 2849 * easily determine whether to report REGULATOR_ERROR_<foo> or 2850 * REGULATOR_ERROR_<foo>_WARN. 2851 */ 2852 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); 2853 if (status < 0) 2854 return status; 2855 2856 if (_pmbus_is_enabled(client, page)) { 2857 if (status & PB_STATUS_OFF) { 2858 *flags |= REGULATOR_ERROR_FAIL; 2859 *event |= REGULATOR_EVENT_FAIL; 2860 } 2861 2862 if (status & PB_STATUS_POWER_GOOD_N) { 2863 *flags |= REGULATOR_ERROR_REGULATION_OUT; 2864 *event |= REGULATOR_EVENT_REGULATION_OUT; 2865 } 2866 } 2867 /* 2868 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are 2869 * defined strictly as fault indicators (not warnings). 2870 */ 2871 if (status & PB_STATUS_IOUT_OC) { 2872 *flags |= REGULATOR_ERROR_OVER_CURRENT; 2873 *event |= REGULATOR_EVENT_OVER_CURRENT; 2874 } 2875 if (status & PB_STATUS_VOUT_OV) { 2876 *flags |= REGULATOR_ERROR_REGULATION_OUT; 2877 *event |= REGULATOR_EVENT_FAIL; 2878 } 2879 2880 /* 2881 * If we haven't discovered any thermal faults or warnings via 2882 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as 2883 * a (conservative) best-effort interpretation. 2884 */ 2885 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) && 2886 (status & PB_STATUS_TEMPERATURE)) { 2887 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN; 2888 *event |= REGULATOR_EVENT_OVER_TEMP_WARN; 2889 } 2890 2891 2892 return 0; 2893 } 2894 2895 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, 2896 unsigned int *event, bool notify) 2897 { 2898 int ret; 2899 2900 mutex_lock(&data->update_lock); 2901 ret = _pmbus_get_flags(data, page, flags, event, notify); 2902 mutex_unlock(&data->update_lock); 2903 2904 return ret; 2905 } 2906 2907 #if IS_ENABLED(CONFIG_REGULATOR) 2908 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2909 { 2910 struct device *dev = rdev_get_dev(rdev); 2911 struct i2c_client *client = to_i2c_client(dev->parent); 2912 2913 return pmbus_is_enabled(client, rdev_get_id(rdev)); 2914 } 2915 2916 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2917 { 2918 struct device *dev = rdev_get_dev(rdev); 2919 struct i2c_client *client = to_i2c_client(dev->parent); 2920 struct pmbus_data *data = i2c_get_clientdata(client); 2921 u8 page = rdev_get_id(rdev); 2922 int ret; 2923 2924 mutex_lock(&data->update_lock); 2925 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2926 PB_OPERATION_CONTROL_ON, 2927 enable ? PB_OPERATION_CONTROL_ON : 0); 2928 mutex_unlock(&data->update_lock); 2929 2930 return ret; 2931 } 2932 2933 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2934 { 2935 return _pmbus_regulator_on_off(rdev, 1); 2936 } 2937 2938 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2939 { 2940 return _pmbus_regulator_on_off(rdev, 0); 2941 } 2942 2943 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags) 2944 { 2945 struct device *dev = rdev_get_dev(rdev); 2946 struct i2c_client *client = to_i2c_client(dev->parent); 2947 struct pmbus_data *data = i2c_get_clientdata(client); 2948 int event; 2949 2950 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false); 2951 } 2952 2953 static int pmbus_regulator_get_status(struct regulator_dev *rdev) 2954 { 2955 struct device *dev = rdev_get_dev(rdev); 2956 struct i2c_client *client = to_i2c_client(dev->parent); 2957 struct pmbus_data *data = i2c_get_clientdata(client); 2958 u8 page = rdev_get_id(rdev); 2959 int status, ret; 2960 int event; 2961 2962 mutex_lock(&data->update_lock); 2963 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); 2964 if (status < 0) { 2965 ret = status; 2966 goto unlock; 2967 } 2968 2969 if (status & PB_STATUS_OFF) { 2970 ret = REGULATOR_STATUS_OFF; 2971 goto unlock; 2972 } 2973 2974 /* If regulator is ON & reports power good then return ON */ 2975 if (!(status & PB_STATUS_POWER_GOOD_N)) { 2976 ret = REGULATOR_STATUS_ON; 2977 goto unlock; 2978 } 2979 2980 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false); 2981 if (ret) 2982 goto unlock; 2983 2984 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT | 2985 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) { 2986 ret = REGULATOR_STATUS_ERROR; 2987 goto unlock; 2988 } 2989 2990 ret = REGULATOR_STATUS_UNDEFINED; 2991 2992 unlock: 2993 mutex_unlock(&data->update_lock); 2994 return ret; 2995 } 2996 2997 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page) 2998 { 2999 struct pmbus_data *data = i2c_get_clientdata(client); 3000 struct pmbus_sensor s = { 3001 .page = page, 3002 .class = PSC_VOLTAGE_OUT, 3003 .convert = true, 3004 .data = -1, 3005 }; 3006 3007 if (data->vout_low[page] < 0) { 3008 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN)) 3009 s.data = _pmbus_read_word_data(client, page, 0xff, 3010 PMBUS_MFR_VOUT_MIN); 3011 if (s.data < 0) { 3012 s.data = _pmbus_read_word_data(client, page, 0xff, 3013 PMBUS_VOUT_MARGIN_LOW); 3014 if (s.data < 0) 3015 return s.data; 3016 } 3017 data->vout_low[page] = pmbus_reg2data(data, &s); 3018 } 3019 3020 return data->vout_low[page]; 3021 } 3022 3023 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page) 3024 { 3025 struct pmbus_data *data = i2c_get_clientdata(client); 3026 struct pmbus_sensor s = { 3027 .page = page, 3028 .class = PSC_VOLTAGE_OUT, 3029 .convert = true, 3030 .data = -1, 3031 }; 3032 3033 if (data->vout_high[page] < 0) { 3034 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX)) 3035 s.data = _pmbus_read_word_data(client, page, 0xff, 3036 PMBUS_MFR_VOUT_MAX); 3037 if (s.data < 0) { 3038 s.data = _pmbus_read_word_data(client, page, 0xff, 3039 PMBUS_VOUT_MARGIN_HIGH); 3040 if (s.data < 0) 3041 return s.data; 3042 } 3043 data->vout_high[page] = pmbus_reg2data(data, &s); 3044 } 3045 3046 return data->vout_high[page]; 3047 } 3048 3049 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev) 3050 { 3051 struct device *dev = rdev_get_dev(rdev); 3052 struct i2c_client *client = to_i2c_client(dev->parent); 3053 struct pmbus_data *data = i2c_get_clientdata(client); 3054 struct pmbus_sensor s = { 3055 .page = rdev_get_id(rdev), 3056 .class = PSC_VOLTAGE_OUT, 3057 .convert = true, 3058 }; 3059 3060 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT); 3061 if (s.data < 0) 3062 return s.data; 3063 3064 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */ 3065 } 3066 3067 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv, 3068 int max_uv, unsigned int *selector) 3069 { 3070 struct device *dev = rdev_get_dev(rdev); 3071 struct i2c_client *client = to_i2c_client(dev->parent); 3072 struct pmbus_data *data = i2c_get_clientdata(client); 3073 struct pmbus_sensor s = { 3074 .page = rdev_get_id(rdev), 3075 .class = PSC_VOLTAGE_OUT, 3076 .convert = true, 3077 .data = -1, 3078 }; 3079 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */ 3080 int low, high; 3081 3082 *selector = 0; 3083 3084 low = pmbus_regulator_get_low_margin(client, s.page); 3085 if (low < 0) 3086 return low; 3087 3088 high = pmbus_regulator_get_high_margin(client, s.page); 3089 if (high < 0) 3090 return high; 3091 3092 /* Make sure we are within margins */ 3093 if (low > val) 3094 val = low; 3095 if (high < val) 3096 val = high; 3097 3098 val = pmbus_data2reg(data, &s, val); 3099 3100 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val); 3101 } 3102 3103 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev, 3104 unsigned int selector) 3105 { 3106 struct device *dev = rdev_get_dev(rdev); 3107 struct i2c_client *client = to_i2c_client(dev->parent); 3108 int val, low, high; 3109 3110 if (selector >= rdev->desc->n_voltages || 3111 selector < rdev->desc->linear_min_sel) 3112 return -EINVAL; 3113 3114 selector -= rdev->desc->linear_min_sel; 3115 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV + 3116 (rdev->desc->uV_step * selector), 1000); /* convert to mV */ 3117 3118 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev)); 3119 if (low < 0) 3120 return low; 3121 3122 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev)); 3123 if (high < 0) 3124 return high; 3125 3126 if (val >= low && val <= high) 3127 return val * 1000; /* unit is uV */ 3128 3129 return 0; 3130 } 3131 3132 const struct regulator_ops pmbus_regulator_ops = { 3133 .enable = pmbus_regulator_enable, 3134 .disable = pmbus_regulator_disable, 3135 .is_enabled = pmbus_regulator_is_enabled, 3136 .get_error_flags = pmbus_regulator_get_error_flags, 3137 .get_status = pmbus_regulator_get_status, 3138 .get_voltage = pmbus_regulator_get_voltage, 3139 .set_voltage = pmbus_regulator_set_voltage, 3140 .list_voltage = pmbus_regulator_list_voltage, 3141 }; 3142 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS); 3143 3144 static int pmbus_regulator_register(struct pmbus_data *data) 3145 { 3146 struct device *dev = data->dev; 3147 const struct pmbus_driver_info *info = data->info; 3148 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 3149 int i; 3150 3151 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators, 3152 GFP_KERNEL); 3153 if (!data->rdevs) 3154 return -ENOMEM; 3155 3156 for (i = 0; i < info->num_regulators; i++) { 3157 struct regulator_config config = { }; 3158 3159 config.dev = dev; 3160 config.driver_data = data; 3161 3162 if (pdata && pdata->reg_init_data) 3163 config.init_data = &pdata->reg_init_data[i]; 3164 3165 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i], 3166 &config); 3167 if (IS_ERR(data->rdevs[i])) 3168 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]), 3169 "Failed to register %s regulator\n", 3170 info->reg_desc[i].name); 3171 } 3172 3173 return 0; 3174 } 3175 3176 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) 3177 { 3178 int j; 3179 3180 for (j = 0; j < data->info->num_regulators; j++) { 3181 if (page == rdev_get_id(data->rdevs[j])) { 3182 regulator_notifier_call_chain(data->rdevs[j], event, NULL); 3183 break; 3184 } 3185 } 3186 return 0; 3187 } 3188 #else 3189 static int pmbus_regulator_register(struct pmbus_data *data) 3190 { 3191 return 0; 3192 } 3193 3194 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) 3195 { 3196 return 0; 3197 } 3198 #endif 3199 3200 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val) 3201 { 3202 int ret; 3203 3204 ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8)); 3205 3206 /* 3207 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK 3208 * is not supported by the chip. 3209 */ 3210 pmbus_clear_fault_page(client, page); 3211 3212 return ret; 3213 } 3214 3215 static irqreturn_t pmbus_fault_handler(int irq, void *pdata) 3216 { 3217 struct pmbus_data *data = pdata; 3218 struct i2c_client *client = to_i2c_client(data->dev); 3219 3220 int i, status, event; 3221 mutex_lock(&data->update_lock); 3222 for (i = 0; i < data->info->pages; i++) { 3223 _pmbus_get_flags(data, i, &status, &event, true); 3224 3225 if (event) 3226 pmbus_regulator_notify(data, i, event); 3227 } 3228 3229 pmbus_clear_faults(client); 3230 mutex_unlock(&data->update_lock); 3231 3232 return IRQ_HANDLED; 3233 } 3234 3235 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data) 3236 { 3237 struct device *dev = &client->dev; 3238 const struct pmbus_status_category *cat; 3239 const struct pmbus_status_assoc *bit; 3240 int i, j, err, func; 3241 u8 mask; 3242 3243 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER, 3244 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12, 3245 PMBUS_STATUS_FAN_34}; 3246 3247 if (!client->irq) 3248 return 0; 3249 3250 for (i = 0; i < data->info->pages; i++) { 3251 func = data->info->func[i]; 3252 3253 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) { 3254 cat = &pmbus_status_flag_map[j]; 3255 if (!(func & cat->func)) 3256 continue; 3257 mask = 0; 3258 for (bit = cat->bits; bit->pflag; bit++) 3259 mask |= bit->pflag; 3260 3261 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask); 3262 if (err) 3263 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n", 3264 cat->reg); 3265 } 3266 3267 for (j = 0; j < ARRAY_SIZE(misc_status); j++) 3268 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff); 3269 } 3270 3271 /* Register notifiers */ 3272 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler, 3273 IRQF_ONESHOT, "pmbus-irq", data); 3274 if (err) { 3275 dev_err(dev, "failed to request an irq %d\n", err); 3276 return err; 3277 } 3278 3279 return 0; 3280 } 3281 3282 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 3283 3284 #if IS_ENABLED(CONFIG_DEBUG_FS) 3285 static int pmbus_debugfs_get(void *data, u64 *val) 3286 { 3287 int rc; 3288 struct pmbus_debugfs_entry *entry = data; 3289 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3290 3291 rc = mutex_lock_interruptible(&pdata->update_lock); 3292 if (rc) 3293 return rc; 3294 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 3295 mutex_unlock(&pdata->update_lock); 3296 if (rc < 0) 3297 return rc; 3298 3299 *val = rc; 3300 3301 return 0; 3302 } 3303 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 3304 "0x%02llx\n"); 3305 3306 static int pmbus_debugfs_get_status(void *data, u64 *val) 3307 { 3308 int rc; 3309 struct pmbus_debugfs_entry *entry = data; 3310 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3311 3312 rc = mutex_lock_interruptible(&pdata->update_lock); 3313 if (rc) 3314 return rc; 3315 rc = pdata->read_status(entry->client, entry->page); 3316 mutex_unlock(&pdata->update_lock); 3317 if (rc < 0) 3318 return rc; 3319 3320 *val = rc; 3321 3322 return 0; 3323 } 3324 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 3325 NULL, "0x%04llx\n"); 3326 3327 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf, 3328 size_t count, loff_t *ppos) 3329 { 3330 int rc; 3331 struct pmbus_debugfs_entry *entry = file->private_data; 3332 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3333 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 }; 3334 3335 rc = mutex_lock_interruptible(&pdata->update_lock); 3336 if (rc) 3337 return rc; 3338 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg, 3339 data); 3340 mutex_unlock(&pdata->update_lock); 3341 if (rc < 0) 3342 return rc; 3343 3344 /* Add newline at the end of a read data */ 3345 data[rc] = '\n'; 3346 3347 /* Include newline into the length */ 3348 rc += 1; 3349 3350 return simple_read_from_buffer(buf, count, ppos, data, rc); 3351 } 3352 3353 static const struct file_operations pmbus_debugfs_ops_mfr = { 3354 .llseek = noop_llseek, 3355 .read = pmbus_debugfs_mfr_read, 3356 .write = NULL, 3357 .open = simple_open, 3358 }; 3359 3360 static void pmbus_remove_debugfs(void *data) 3361 { 3362 struct dentry *entry = data; 3363 3364 debugfs_remove_recursive(entry); 3365 } 3366 3367 static int pmbus_init_debugfs(struct i2c_client *client, 3368 struct pmbus_data *data) 3369 { 3370 int i, idx = 0; 3371 char name[PMBUS_NAME_SIZE]; 3372 struct pmbus_debugfs_entry *entries; 3373 3374 if (!pmbus_debugfs_dir) 3375 return -ENODEV; 3376 3377 /* 3378 * Create the debugfs directory for this device. Use the hwmon device 3379 * name to avoid conflicts (hwmon numbers are globally unique). 3380 */ 3381 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 3382 pmbus_debugfs_dir); 3383 if (IS_ERR_OR_NULL(data->debugfs)) { 3384 data->debugfs = NULL; 3385 return -ENODEV; 3386 } 3387 3388 /* 3389 * Allocate the max possible entries we need. 3390 * 6 entries device-specific 3391 * 10 entries page-specific 3392 */ 3393 entries = devm_kcalloc(data->dev, 3394 6 + data->info->pages * 10, sizeof(*entries), 3395 GFP_KERNEL); 3396 if (!entries) 3397 return -ENOMEM; 3398 3399 /* 3400 * Add device-specific entries. 3401 * Please note that the PMBUS standard allows all registers to be 3402 * page-specific. 3403 * To reduce the number of debugfs entries for devices with many pages 3404 * assume that values of the following registers are the same for all 3405 * pages and report values only for page 0. 3406 */ 3407 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) { 3408 entries[idx].client = client; 3409 entries[idx].page = 0; 3410 entries[idx].reg = PMBUS_MFR_ID; 3411 debugfs_create_file("mfr_id", 0444, data->debugfs, 3412 &entries[idx++], 3413 &pmbus_debugfs_ops_mfr); 3414 } 3415 3416 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) { 3417 entries[idx].client = client; 3418 entries[idx].page = 0; 3419 entries[idx].reg = PMBUS_MFR_MODEL; 3420 debugfs_create_file("mfr_model", 0444, data->debugfs, 3421 &entries[idx++], 3422 &pmbus_debugfs_ops_mfr); 3423 } 3424 3425 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) { 3426 entries[idx].client = client; 3427 entries[idx].page = 0; 3428 entries[idx].reg = PMBUS_MFR_REVISION; 3429 debugfs_create_file("mfr_revision", 0444, data->debugfs, 3430 &entries[idx++], 3431 &pmbus_debugfs_ops_mfr); 3432 } 3433 3434 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) { 3435 entries[idx].client = client; 3436 entries[idx].page = 0; 3437 entries[idx].reg = PMBUS_MFR_LOCATION; 3438 debugfs_create_file("mfr_location", 0444, data->debugfs, 3439 &entries[idx++], 3440 &pmbus_debugfs_ops_mfr); 3441 } 3442 3443 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) { 3444 entries[idx].client = client; 3445 entries[idx].page = 0; 3446 entries[idx].reg = PMBUS_MFR_DATE; 3447 debugfs_create_file("mfr_date", 0444, data->debugfs, 3448 &entries[idx++], 3449 &pmbus_debugfs_ops_mfr); 3450 } 3451 3452 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) { 3453 entries[idx].client = client; 3454 entries[idx].page = 0; 3455 entries[idx].reg = PMBUS_MFR_SERIAL; 3456 debugfs_create_file("mfr_serial", 0444, data->debugfs, 3457 &entries[idx++], 3458 &pmbus_debugfs_ops_mfr); 3459 } 3460 3461 /* Add page specific entries */ 3462 for (i = 0; i < data->info->pages; ++i) { 3463 /* Check accessibility of status register if it's not page 0 */ 3464 if (!i || pmbus_check_status_register(client, i)) { 3465 /* No need to set reg as we have special read op. */ 3466 entries[idx].client = client; 3467 entries[idx].page = i; 3468 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 3469 debugfs_create_file(name, 0444, data->debugfs, 3470 &entries[idx++], 3471 &pmbus_debugfs_ops_status); 3472 } 3473 3474 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 3475 entries[idx].client = client; 3476 entries[idx].page = i; 3477 entries[idx].reg = PMBUS_STATUS_VOUT; 3478 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 3479 debugfs_create_file(name, 0444, data->debugfs, 3480 &entries[idx++], 3481 &pmbus_debugfs_ops); 3482 } 3483 3484 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 3485 entries[idx].client = client; 3486 entries[idx].page = i; 3487 entries[idx].reg = PMBUS_STATUS_IOUT; 3488 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 3489 debugfs_create_file(name, 0444, data->debugfs, 3490 &entries[idx++], 3491 &pmbus_debugfs_ops); 3492 } 3493 3494 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 3495 entries[idx].client = client; 3496 entries[idx].page = i; 3497 entries[idx].reg = PMBUS_STATUS_INPUT; 3498 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 3499 debugfs_create_file(name, 0444, data->debugfs, 3500 &entries[idx++], 3501 &pmbus_debugfs_ops); 3502 } 3503 3504 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 3505 entries[idx].client = client; 3506 entries[idx].page = i; 3507 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 3508 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 3509 debugfs_create_file(name, 0444, data->debugfs, 3510 &entries[idx++], 3511 &pmbus_debugfs_ops); 3512 } 3513 3514 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 3515 entries[idx].client = client; 3516 entries[idx].page = i; 3517 entries[idx].reg = PMBUS_STATUS_CML; 3518 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 3519 debugfs_create_file(name, 0444, data->debugfs, 3520 &entries[idx++], 3521 &pmbus_debugfs_ops); 3522 } 3523 3524 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 3525 entries[idx].client = client; 3526 entries[idx].page = i; 3527 entries[idx].reg = PMBUS_STATUS_OTHER; 3528 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 3529 debugfs_create_file(name, 0444, data->debugfs, 3530 &entries[idx++], 3531 &pmbus_debugfs_ops); 3532 } 3533 3534 if (pmbus_check_byte_register(client, i, 3535 PMBUS_STATUS_MFR_SPECIFIC)) { 3536 entries[idx].client = client; 3537 entries[idx].page = i; 3538 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 3539 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 3540 debugfs_create_file(name, 0444, data->debugfs, 3541 &entries[idx++], 3542 &pmbus_debugfs_ops); 3543 } 3544 3545 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 3546 entries[idx].client = client; 3547 entries[idx].page = i; 3548 entries[idx].reg = PMBUS_STATUS_FAN_12; 3549 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 3550 debugfs_create_file(name, 0444, data->debugfs, 3551 &entries[idx++], 3552 &pmbus_debugfs_ops); 3553 } 3554 3555 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 3556 entries[idx].client = client; 3557 entries[idx].page = i; 3558 entries[idx].reg = PMBUS_STATUS_FAN_34; 3559 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 3560 debugfs_create_file(name, 0444, data->debugfs, 3561 &entries[idx++], 3562 &pmbus_debugfs_ops); 3563 } 3564 } 3565 3566 return devm_add_action_or_reset(data->dev, 3567 pmbus_remove_debugfs, data->debugfs); 3568 } 3569 #else 3570 static int pmbus_init_debugfs(struct i2c_client *client, 3571 struct pmbus_data *data) 3572 { 3573 return 0; 3574 } 3575 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 3576 3577 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) 3578 { 3579 struct device *dev = &client->dev; 3580 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 3581 struct pmbus_data *data; 3582 size_t groups_num = 0; 3583 int ret; 3584 int i; 3585 char *name; 3586 3587 if (!info) 3588 return -ENODEV; 3589 3590 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 3591 | I2C_FUNC_SMBUS_BYTE_DATA 3592 | I2C_FUNC_SMBUS_WORD_DATA)) 3593 return -ENODEV; 3594 3595 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 3596 if (!data) 3597 return -ENOMEM; 3598 3599 if (info->groups) 3600 while (info->groups[groups_num]) 3601 groups_num++; 3602 3603 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 3604 GFP_KERNEL); 3605 if (!data->groups) 3606 return -ENOMEM; 3607 3608 i2c_set_clientdata(client, data); 3609 mutex_init(&data->update_lock); 3610 data->dev = dev; 3611 3612 if (pdata) 3613 data->flags = pdata->flags; 3614 data->info = info; 3615 data->currpage = -1; 3616 data->currphase = -1; 3617 3618 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) { 3619 data->vout_low[i] = -1; 3620 data->vout_high[i] = -1; 3621 } 3622 3623 ret = pmbus_init_common(client, data, info); 3624 if (ret < 0) 3625 return ret; 3626 3627 ret = pmbus_find_attributes(client, data); 3628 if (ret) 3629 return ret; 3630 3631 /* 3632 * If there are no attributes, something is wrong. 3633 * Bail out instead of trying to register nothing. 3634 */ 3635 if (!data->num_attributes) { 3636 dev_err(dev, "No attributes found\n"); 3637 return -ENODEV; 3638 } 3639 3640 name = devm_kstrdup(dev, client->name, GFP_KERNEL); 3641 if (!name) 3642 return -ENOMEM; 3643 strreplace(name, '-', '_'); 3644 3645 data->groups[0] = &data->group; 3646 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 3647 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, 3648 name, data, data->groups); 3649 if (IS_ERR(data->hwmon_dev)) { 3650 dev_err(dev, "Failed to register hwmon device\n"); 3651 return PTR_ERR(data->hwmon_dev); 3652 } 3653 3654 ret = pmbus_regulator_register(data); 3655 if (ret) 3656 return ret; 3657 3658 ret = pmbus_irq_setup(client, data); 3659 if (ret) 3660 return ret; 3661 3662 ret = pmbus_init_debugfs(client, data); 3663 if (ret) 3664 dev_warn(dev, "Failed to register debugfs\n"); 3665 3666 return 0; 3667 } 3668 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS); 3669 3670 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 3671 { 3672 struct pmbus_data *data = i2c_get_clientdata(client); 3673 3674 return data->debugfs; 3675 } 3676 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS); 3677 3678 int pmbus_lock_interruptible(struct i2c_client *client) 3679 { 3680 struct pmbus_data *data = i2c_get_clientdata(client); 3681 3682 return mutex_lock_interruptible(&data->update_lock); 3683 } 3684 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS); 3685 3686 void pmbus_unlock(struct i2c_client *client) 3687 { 3688 struct pmbus_data *data = i2c_get_clientdata(client); 3689 3690 mutex_unlock(&data->update_lock); 3691 } 3692 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS); 3693 3694 static int __init pmbus_core_init(void) 3695 { 3696 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 3697 if (IS_ERR(pmbus_debugfs_dir)) 3698 pmbus_debugfs_dir = NULL; 3699 3700 return 0; 3701 } 3702 3703 static void __exit pmbus_core_exit(void) 3704 { 3705 debugfs_remove_recursive(pmbus_debugfs_dir); 3706 } 3707 3708 module_init(pmbus_core_init); 3709 module_exit(pmbus_core_exit); 3710 3711 MODULE_AUTHOR("Guenter Roeck"); 3712 MODULE_DESCRIPTION("PMBus core driver"); 3713 MODULE_LICENSE("GPL"); 3714