1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/pmbus.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/of.h> 23 #include <linux/thermal.h> 24 #include "pmbus.h" 25 26 /* 27 * Number of additional attribute pointers to allocate 28 * with each call to krealloc 29 */ 30 #define PMBUS_ATTR_ALLOC_SIZE 32 31 #define PMBUS_NAME_SIZE 24 32 33 struct pmbus_sensor { 34 struct pmbus_sensor *next; 35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 36 struct device_attribute attribute; 37 u8 page; /* page number */ 38 u8 phase; /* phase number, 0xff for all phases */ 39 u16 reg; /* register */ 40 enum pmbus_sensor_classes class; /* sensor class */ 41 bool update; /* runtime sensor update needed */ 42 bool convert; /* Whether or not to apply linear/vid/direct */ 43 int data; /* Sensor data. 44 Negative if there was a read error */ 45 }; 46 #define to_pmbus_sensor(_attr) \ 47 container_of(_attr, struct pmbus_sensor, attribute) 48 49 struct pmbus_boolean { 50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 51 struct sensor_device_attribute attribute; 52 struct pmbus_sensor *s1; 53 struct pmbus_sensor *s2; 54 }; 55 #define to_pmbus_boolean(_attr) \ 56 container_of(_attr, struct pmbus_boolean, attribute) 57 58 struct pmbus_label { 59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 60 struct device_attribute attribute; 61 char label[PMBUS_NAME_SIZE]; /* label */ 62 }; 63 #define to_pmbus_label(_attr) \ 64 container_of(_attr, struct pmbus_label, attribute) 65 66 /* Macros for converting between sensor index and register/page/status mask */ 67 68 #define PB_STATUS_MASK 0xffff 69 #define PB_REG_SHIFT 16 70 #define PB_REG_MASK 0x3ff 71 #define PB_PAGE_SHIFT 26 72 #define PB_PAGE_MASK 0x3f 73 74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ 75 ((reg) << PB_REG_SHIFT) | (mask)) 76 77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) 78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) 79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) 80 81 struct pmbus_data { 82 struct device *dev; 83 struct device *hwmon_dev; 84 struct regulator_dev **rdevs; 85 86 u32 flags; /* from platform data */ 87 88 int exponent[PMBUS_PAGES]; 89 /* linear mode: exponent for output voltages */ 90 91 const struct pmbus_driver_info *info; 92 93 int max_attributes; 94 int num_attributes; 95 struct attribute_group group; 96 const struct attribute_group **groups; 97 struct dentry *debugfs; /* debugfs device directory */ 98 99 struct pmbus_sensor *sensors; 100 101 struct mutex update_lock; 102 103 bool has_status_word; /* device uses STATUS_WORD register */ 104 int (*read_status)(struct i2c_client *client, int page); 105 106 s16 currpage; /* current page, -1 for unknown/unset */ 107 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 108 109 int vout_low[PMBUS_PAGES]; /* voltage low margin */ 110 int vout_high[PMBUS_PAGES]; /* voltage high margin */ 111 }; 112 113 struct pmbus_debugfs_entry { 114 struct i2c_client *client; 115 u8 page; 116 u8 reg; 117 }; 118 119 static const int pmbus_fan_rpm_mask[] = { 120 PB_FAN_1_RPM, 121 PB_FAN_2_RPM, 122 PB_FAN_1_RPM, 123 PB_FAN_2_RPM, 124 }; 125 126 static const int pmbus_fan_config_registers[] = { 127 PMBUS_FAN_CONFIG_12, 128 PMBUS_FAN_CONFIG_12, 129 PMBUS_FAN_CONFIG_34, 130 PMBUS_FAN_CONFIG_34 131 }; 132 133 static const int pmbus_fan_command_registers[] = { 134 PMBUS_FAN_COMMAND_1, 135 PMBUS_FAN_COMMAND_2, 136 PMBUS_FAN_COMMAND_3, 137 PMBUS_FAN_COMMAND_4, 138 }; 139 140 void pmbus_clear_cache(struct i2c_client *client) 141 { 142 struct pmbus_data *data = i2c_get_clientdata(client); 143 struct pmbus_sensor *sensor; 144 145 for (sensor = data->sensors; sensor; sensor = sensor->next) 146 sensor->data = -ENODATA; 147 } 148 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS); 149 150 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update) 151 { 152 struct pmbus_data *data = i2c_get_clientdata(client); 153 struct pmbus_sensor *sensor; 154 155 for (sensor = data->sensors; sensor; sensor = sensor->next) 156 if (sensor->reg == reg) 157 sensor->update = update; 158 } 159 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS); 160 161 int pmbus_set_page(struct i2c_client *client, int page, int phase) 162 { 163 struct pmbus_data *data = i2c_get_clientdata(client); 164 int rv; 165 166 if (page < 0) 167 return 0; 168 169 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 170 data->info->pages > 1 && page != data->currpage) { 171 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 172 if (rv < 0) 173 return rv; 174 175 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 176 if (rv < 0) 177 return rv; 178 179 if (rv != page) 180 return -EIO; 181 } 182 data->currpage = page; 183 184 if (data->info->phases[page] && data->currphase != phase && 185 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 186 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 187 phase); 188 if (rv) 189 return rv; 190 } 191 data->currphase = phase; 192 193 return 0; 194 } 195 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS); 196 197 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 198 { 199 int rv; 200 201 rv = pmbus_set_page(client, page, 0xff); 202 if (rv < 0) 203 return rv; 204 205 return i2c_smbus_write_byte(client, value); 206 } 207 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS); 208 209 /* 210 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 211 * a device specific mapping function exists and calls it if necessary. 212 */ 213 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 214 { 215 struct pmbus_data *data = i2c_get_clientdata(client); 216 const struct pmbus_driver_info *info = data->info; 217 int status; 218 219 if (info->write_byte) { 220 status = info->write_byte(client, page, value); 221 if (status != -ENODATA) 222 return status; 223 } 224 return pmbus_write_byte(client, page, value); 225 } 226 227 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 228 u16 word) 229 { 230 int rv; 231 232 rv = pmbus_set_page(client, page, 0xff); 233 if (rv < 0) 234 return rv; 235 236 return i2c_smbus_write_word_data(client, reg, word); 237 } 238 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS); 239 240 241 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 242 u16 word) 243 { 244 int bit; 245 int id; 246 int rv; 247 248 switch (reg) { 249 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 250 id = reg - PMBUS_VIRT_FAN_TARGET_1; 251 bit = pmbus_fan_rpm_mask[id]; 252 rv = pmbus_update_fan(client, page, id, bit, bit, word); 253 break; 254 default: 255 rv = -ENXIO; 256 break; 257 } 258 259 return rv; 260 } 261 262 /* 263 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 264 * a device specific mapping function exists and calls it if necessary. 265 */ 266 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 267 u16 word) 268 { 269 struct pmbus_data *data = i2c_get_clientdata(client); 270 const struct pmbus_driver_info *info = data->info; 271 int status; 272 273 if (info->write_word_data) { 274 status = info->write_word_data(client, page, reg, word); 275 if (status != -ENODATA) 276 return status; 277 } 278 279 if (reg >= PMBUS_VIRT_BASE) 280 return pmbus_write_virt_reg(client, page, reg, word); 281 282 return pmbus_write_word_data(client, page, reg, word); 283 } 284 285 /* 286 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if 287 * a device specific mapping function exists and calls it if necessary. 288 */ 289 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value) 290 { 291 struct pmbus_data *data = i2c_get_clientdata(client); 292 const struct pmbus_driver_info *info = data->info; 293 int status; 294 295 if (info->write_byte_data) { 296 status = info->write_byte_data(client, page, reg, value); 297 if (status != -ENODATA) 298 return status; 299 } 300 return pmbus_write_byte_data(client, page, reg, value); 301 } 302 303 /* 304 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 305 * a device specific mapping function exists and calls it if necessary. 306 */ 307 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 308 { 309 struct pmbus_data *data = i2c_get_clientdata(client); 310 const struct pmbus_driver_info *info = data->info; 311 int status; 312 313 if (info->read_byte_data) { 314 status = info->read_byte_data(client, page, reg); 315 if (status != -ENODATA) 316 return status; 317 } 318 return pmbus_read_byte_data(client, page, reg); 319 } 320 321 int pmbus_update_fan(struct i2c_client *client, int page, int id, 322 u8 config, u8 mask, u16 command) 323 { 324 int from; 325 int rv; 326 u8 to; 327 328 from = _pmbus_read_byte_data(client, page, 329 pmbus_fan_config_registers[id]); 330 if (from < 0) 331 return from; 332 333 to = (from & ~mask) | (config & mask); 334 if (to != from) { 335 rv = _pmbus_write_byte_data(client, page, 336 pmbus_fan_config_registers[id], to); 337 if (rv < 0) 338 return rv; 339 } 340 341 return _pmbus_write_word_data(client, page, 342 pmbus_fan_command_registers[id], command); 343 } 344 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS); 345 346 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 347 { 348 int rv; 349 350 rv = pmbus_set_page(client, page, phase); 351 if (rv < 0) 352 return rv; 353 354 return i2c_smbus_read_word_data(client, reg); 355 } 356 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS); 357 358 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 359 { 360 int rv; 361 int id; 362 363 switch (reg) { 364 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 365 id = reg - PMBUS_VIRT_FAN_TARGET_1; 366 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 367 break; 368 default: 369 rv = -ENXIO; 370 break; 371 } 372 373 return rv; 374 } 375 376 /* 377 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 378 * a device specific mapping function exists and calls it if necessary. 379 */ 380 static int _pmbus_read_word_data(struct i2c_client *client, int page, 381 int phase, int reg) 382 { 383 struct pmbus_data *data = i2c_get_clientdata(client); 384 const struct pmbus_driver_info *info = data->info; 385 int status; 386 387 if (info->read_word_data) { 388 status = info->read_word_data(client, page, phase, reg); 389 if (status != -ENODATA) 390 return status; 391 } 392 393 if (reg >= PMBUS_VIRT_BASE) 394 return pmbus_read_virt_reg(client, page, reg); 395 396 return pmbus_read_word_data(client, page, phase, reg); 397 } 398 399 /* Same as above, but without phase parameter, for use in check functions */ 400 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 401 { 402 return _pmbus_read_word_data(client, page, 0xff, reg); 403 } 404 405 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 406 { 407 int rv; 408 409 rv = pmbus_set_page(client, page, 0xff); 410 if (rv < 0) 411 return rv; 412 413 return i2c_smbus_read_byte_data(client, reg); 414 } 415 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS); 416 417 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 418 { 419 int rv; 420 421 rv = pmbus_set_page(client, page, 0xff); 422 if (rv < 0) 423 return rv; 424 425 return i2c_smbus_write_byte_data(client, reg, value); 426 } 427 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS); 428 429 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 430 u8 mask, u8 value) 431 { 432 unsigned int tmp; 433 int rv; 434 435 rv = _pmbus_read_byte_data(client, page, reg); 436 if (rv < 0) 437 return rv; 438 439 tmp = (rv & ~mask) | (value & mask); 440 441 if (tmp != rv) 442 rv = _pmbus_write_byte_data(client, page, reg, tmp); 443 444 return rv; 445 } 446 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS); 447 448 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg, 449 char *data_buf) 450 { 451 int rv; 452 453 rv = pmbus_set_page(client, page, 0xff); 454 if (rv < 0) 455 return rv; 456 457 return i2c_smbus_read_block_data(client, reg, data_buf); 458 } 459 460 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 461 int reg) 462 { 463 struct pmbus_sensor *sensor; 464 465 for (sensor = data->sensors; sensor; sensor = sensor->next) { 466 if (sensor->page == page && sensor->reg == reg) 467 return sensor; 468 } 469 470 return ERR_PTR(-EINVAL); 471 } 472 473 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 474 enum pmbus_fan_mode mode, 475 bool from_cache) 476 { 477 struct pmbus_data *data = i2c_get_clientdata(client); 478 bool want_rpm, have_rpm; 479 struct pmbus_sensor *s; 480 int config; 481 int reg; 482 483 want_rpm = (mode == rpm); 484 485 if (from_cache) { 486 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 487 s = pmbus_find_sensor(data, page, reg + id); 488 if (IS_ERR(s)) 489 return PTR_ERR(s); 490 491 return s->data; 492 } 493 494 config = _pmbus_read_byte_data(client, page, 495 pmbus_fan_config_registers[id]); 496 if (config < 0) 497 return config; 498 499 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 500 if (want_rpm == have_rpm) 501 return pmbus_read_word_data(client, page, 0xff, 502 pmbus_fan_command_registers[id]); 503 504 /* Can't sensibly map between RPM and PWM, just return zero */ 505 return 0; 506 } 507 508 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 509 enum pmbus_fan_mode mode) 510 { 511 return pmbus_get_fan_rate(client, page, id, mode, false); 512 } 513 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS); 514 515 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 516 enum pmbus_fan_mode mode) 517 { 518 return pmbus_get_fan_rate(client, page, id, mode, true); 519 } 520 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS); 521 522 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 523 { 524 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 525 } 526 527 void pmbus_clear_faults(struct i2c_client *client) 528 { 529 struct pmbus_data *data = i2c_get_clientdata(client); 530 int i; 531 532 for (i = 0; i < data->info->pages; i++) 533 pmbus_clear_fault_page(client, i); 534 } 535 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS); 536 537 static int pmbus_check_status_cml(struct i2c_client *client) 538 { 539 struct pmbus_data *data = i2c_get_clientdata(client); 540 int status, status2; 541 542 status = data->read_status(client, -1); 543 if (status < 0 || (status & PB_STATUS_CML)) { 544 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 545 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 546 return -EIO; 547 } 548 return 0; 549 } 550 551 static bool pmbus_check_register(struct i2c_client *client, 552 int (*func)(struct i2c_client *client, 553 int page, int reg), 554 int page, int reg) 555 { 556 int rv; 557 struct pmbus_data *data = i2c_get_clientdata(client); 558 559 rv = func(client, page, reg); 560 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 561 rv = pmbus_check_status_cml(client); 562 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) 563 data->read_status(client, -1); 564 pmbus_clear_fault_page(client, -1); 565 return rv >= 0; 566 } 567 568 static bool pmbus_check_status_register(struct i2c_client *client, int page) 569 { 570 int status; 571 struct pmbus_data *data = i2c_get_clientdata(client); 572 573 status = data->read_status(client, page); 574 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 575 (status & PB_STATUS_CML)) { 576 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 577 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 578 status = -EIO; 579 } 580 581 pmbus_clear_fault_page(client, -1); 582 return status >= 0; 583 } 584 585 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 586 { 587 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 588 } 589 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS); 590 591 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 592 { 593 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 594 } 595 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS); 596 597 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client, 598 int page, int reg) 599 { 600 int rv; 601 struct pmbus_data *data = i2c_get_clientdata(client); 602 char data_buf[I2C_SMBUS_BLOCK_MAX + 2]; 603 604 rv = pmbus_read_block_data(client, page, reg, data_buf); 605 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 606 rv = pmbus_check_status_cml(client); 607 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) 608 data->read_status(client, -1); 609 pmbus_clear_fault_page(client, -1); 610 return rv >= 0; 611 } 612 613 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 614 { 615 struct pmbus_data *data = i2c_get_clientdata(client); 616 617 return data->info; 618 } 619 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS); 620 621 static int pmbus_get_status(struct i2c_client *client, int page, int reg) 622 { 623 struct pmbus_data *data = i2c_get_clientdata(client); 624 int status; 625 626 switch (reg) { 627 case PMBUS_STATUS_WORD: 628 status = data->read_status(client, page); 629 break; 630 default: 631 status = _pmbus_read_byte_data(client, page, reg); 632 break; 633 } 634 if (status < 0) 635 pmbus_clear_faults(client); 636 return status; 637 } 638 639 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) 640 { 641 if (sensor->data < 0 || sensor->update) 642 sensor->data = _pmbus_read_word_data(client, sensor->page, 643 sensor->phase, sensor->reg); 644 } 645 646 /* 647 * Convert ieee754 sensor values to milli- or micro-units 648 * depending on sensor type. 649 * 650 * ieee754 data format: 651 * bit 15: sign 652 * bit 10..14: exponent 653 * bit 0..9: mantissa 654 * exponent=0: 655 * v=(−1)^signbit * 2^(−14) * 0.significantbits 656 * exponent=1..30: 657 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits 658 * exponent=31: 659 * v=NaN 660 * 661 * Add the number mantissa bits into the calculations for simplicity. 662 * To do that, add '10' to the exponent. By doing that, we can just add 663 * 0x400 to normal values and get the expected result. 664 */ 665 static long pmbus_reg2data_ieee754(struct pmbus_data *data, 666 struct pmbus_sensor *sensor) 667 { 668 int exponent; 669 bool sign; 670 long val; 671 672 /* only support half precision for now */ 673 sign = sensor->data & 0x8000; 674 exponent = (sensor->data >> 10) & 0x1f; 675 val = sensor->data & 0x3ff; 676 677 if (exponent == 0) { /* subnormal */ 678 exponent = -(14 + 10); 679 } else if (exponent == 0x1f) { /* NaN, convert to min/max */ 680 exponent = 0; 681 val = 65504; 682 } else { 683 exponent -= (15 + 10); /* normal */ 684 val |= 0x400; 685 } 686 687 /* scale result to milli-units for all sensors except fans */ 688 if (sensor->class != PSC_FAN) 689 val = val * 1000L; 690 691 /* scale result to micro-units for power sensors */ 692 if (sensor->class == PSC_POWER) 693 val = val * 1000L; 694 695 if (exponent >= 0) 696 val <<= exponent; 697 else 698 val >>= -exponent; 699 700 if (sign) 701 val = -val; 702 703 return val; 704 } 705 706 /* 707 * Convert linear sensor values to milli- or micro-units 708 * depending on sensor type. 709 */ 710 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 711 struct pmbus_sensor *sensor) 712 { 713 s16 exponent; 714 s32 mantissa; 715 s64 val; 716 717 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 718 exponent = data->exponent[sensor->page]; 719 mantissa = (u16) sensor->data; 720 } else { /* LINEAR11 */ 721 exponent = ((s16)sensor->data) >> 11; 722 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 723 } 724 725 val = mantissa; 726 727 /* scale result to milli-units for all sensors except fans */ 728 if (sensor->class != PSC_FAN) 729 val = val * 1000LL; 730 731 /* scale result to micro-units for power sensors */ 732 if (sensor->class == PSC_POWER) 733 val = val * 1000LL; 734 735 if (exponent >= 0) 736 val <<= exponent; 737 else 738 val >>= -exponent; 739 740 return val; 741 } 742 743 /* 744 * Convert direct sensor values to milli- or micro-units 745 * depending on sensor type. 746 */ 747 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 748 struct pmbus_sensor *sensor) 749 { 750 s64 b, val = (s16)sensor->data; 751 s32 m, R; 752 753 m = data->info->m[sensor->class]; 754 b = data->info->b[sensor->class]; 755 R = data->info->R[sensor->class]; 756 757 if (m == 0) 758 return 0; 759 760 /* X = 1/m * (Y * 10^-R - b) */ 761 R = -R; 762 /* scale result to milli-units for everything but fans */ 763 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 764 R += 3; 765 b *= 1000; 766 } 767 768 /* scale result to micro-units for power sensors */ 769 if (sensor->class == PSC_POWER) { 770 R += 3; 771 b *= 1000; 772 } 773 774 while (R > 0) { 775 val *= 10; 776 R--; 777 } 778 while (R < 0) { 779 val = div_s64(val + 5LL, 10L); /* round closest */ 780 R++; 781 } 782 783 val = div_s64(val - b, m); 784 return val; 785 } 786 787 /* 788 * Convert VID sensor values to milli- or micro-units 789 * depending on sensor type. 790 */ 791 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 792 struct pmbus_sensor *sensor) 793 { 794 long val = sensor->data; 795 long rv = 0; 796 797 switch (data->info->vrm_version[sensor->page]) { 798 case vr11: 799 if (val >= 0x02 && val <= 0xb2) 800 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 801 break; 802 case vr12: 803 if (val >= 0x01) 804 rv = 250 + (val - 1) * 5; 805 break; 806 case vr13: 807 if (val >= 0x01) 808 rv = 500 + (val - 1) * 10; 809 break; 810 case imvp9: 811 if (val >= 0x01) 812 rv = 200 + (val - 1) * 10; 813 break; 814 case amd625mv: 815 if (val >= 0x0 && val <= 0xd8) 816 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 817 break; 818 } 819 return rv; 820 } 821 822 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 823 { 824 s64 val; 825 826 if (!sensor->convert) 827 return sensor->data; 828 829 switch (data->info->format[sensor->class]) { 830 case direct: 831 val = pmbus_reg2data_direct(data, sensor); 832 break; 833 case vid: 834 val = pmbus_reg2data_vid(data, sensor); 835 break; 836 case ieee754: 837 val = pmbus_reg2data_ieee754(data, sensor); 838 break; 839 case linear: 840 default: 841 val = pmbus_reg2data_linear(data, sensor); 842 break; 843 } 844 return val; 845 } 846 847 #define MAX_IEEE_MANTISSA (0x7ff * 1000) 848 #define MIN_IEEE_MANTISSA (0x400 * 1000) 849 850 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data, 851 struct pmbus_sensor *sensor, long val) 852 { 853 u16 exponent = (15 + 10); 854 long mantissa; 855 u16 sign = 0; 856 857 /* simple case */ 858 if (val == 0) 859 return 0; 860 861 if (val < 0) { 862 sign = 0x8000; 863 val = -val; 864 } 865 866 /* Power is in uW. Convert to mW before converting. */ 867 if (sensor->class == PSC_POWER) 868 val = DIV_ROUND_CLOSEST(val, 1000L); 869 870 /* 871 * For simplicity, convert fan data to milli-units 872 * before calculating the exponent. 873 */ 874 if (sensor->class == PSC_FAN) 875 val = val * 1000; 876 877 /* Reduce large mantissa until it fits into 10 bit */ 878 while (val > MAX_IEEE_MANTISSA && exponent < 30) { 879 exponent++; 880 val >>= 1; 881 } 882 /* 883 * Increase small mantissa to generate valid 'normal' 884 * number 885 */ 886 while (val < MIN_IEEE_MANTISSA && exponent > 1) { 887 exponent--; 888 val <<= 1; 889 } 890 891 /* Convert mantissa from milli-units to units */ 892 mantissa = DIV_ROUND_CLOSEST(val, 1000); 893 894 /* 895 * Ensure that the resulting number is within range. 896 * Valid range is 0x400..0x7ff, where bit 10 reflects 897 * the implied high bit in normalized ieee754 numbers. 898 * Set the range to 0x400..0x7ff to reflect this. 899 * The upper bit is then removed by the mask against 900 * 0x3ff in the final assignment. 901 */ 902 if (mantissa > 0x7ff) 903 mantissa = 0x7ff; 904 else if (mantissa < 0x400) 905 mantissa = 0x400; 906 907 /* Convert to sign, 5 bit exponent, 10 bit mantissa */ 908 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00); 909 } 910 911 #define MAX_LIN_MANTISSA (1023 * 1000) 912 #define MIN_LIN_MANTISSA (511 * 1000) 913 914 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 915 struct pmbus_sensor *sensor, s64 val) 916 { 917 s16 exponent = 0, mantissa; 918 bool negative = false; 919 920 /* simple case */ 921 if (val == 0) 922 return 0; 923 924 if (sensor->class == PSC_VOLTAGE_OUT) { 925 /* LINEAR16 does not support negative voltages */ 926 if (val < 0) 927 return 0; 928 929 /* 930 * For a static exponents, we don't have a choice 931 * but to adjust the value to it. 932 */ 933 if (data->exponent[sensor->page] < 0) 934 val <<= -data->exponent[sensor->page]; 935 else 936 val >>= data->exponent[sensor->page]; 937 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 938 return clamp_val(val, 0, 0xffff); 939 } 940 941 if (val < 0) { 942 negative = true; 943 val = -val; 944 } 945 946 /* Power is in uW. Convert to mW before converting. */ 947 if (sensor->class == PSC_POWER) 948 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 949 950 /* 951 * For simplicity, convert fan data to milli-units 952 * before calculating the exponent. 953 */ 954 if (sensor->class == PSC_FAN) 955 val = val * 1000LL; 956 957 /* Reduce large mantissa until it fits into 10 bit */ 958 while (val >= MAX_LIN_MANTISSA && exponent < 15) { 959 exponent++; 960 val >>= 1; 961 } 962 /* Increase small mantissa to improve precision */ 963 while (val < MIN_LIN_MANTISSA && exponent > -15) { 964 exponent--; 965 val <<= 1; 966 } 967 968 /* Convert mantissa from milli-units to units */ 969 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 970 971 /* restore sign */ 972 if (negative) 973 mantissa = -mantissa; 974 975 /* Convert to 5 bit exponent, 11 bit mantissa */ 976 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 977 } 978 979 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 980 struct pmbus_sensor *sensor, s64 val) 981 { 982 s64 b; 983 s32 m, R; 984 985 m = data->info->m[sensor->class]; 986 b = data->info->b[sensor->class]; 987 R = data->info->R[sensor->class]; 988 989 /* Power is in uW. Adjust R and b. */ 990 if (sensor->class == PSC_POWER) { 991 R -= 3; 992 b *= 1000; 993 } 994 995 /* Calculate Y = (m * X + b) * 10^R */ 996 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 997 R -= 3; /* Adjust R and b for data in milli-units */ 998 b *= 1000; 999 } 1000 val = val * m + b; 1001 1002 while (R > 0) { 1003 val *= 10; 1004 R--; 1005 } 1006 while (R < 0) { 1007 val = div_s64(val + 5LL, 10L); /* round closest */ 1008 R++; 1009 } 1010 1011 return (u16)clamp_val(val, S16_MIN, S16_MAX); 1012 } 1013 1014 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 1015 struct pmbus_sensor *sensor, s64 val) 1016 { 1017 val = clamp_val(val, 500, 1600); 1018 1019 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 1020 } 1021 1022 static u16 pmbus_data2reg(struct pmbus_data *data, 1023 struct pmbus_sensor *sensor, s64 val) 1024 { 1025 u16 regval; 1026 1027 if (!sensor->convert) 1028 return val; 1029 1030 switch (data->info->format[sensor->class]) { 1031 case direct: 1032 regval = pmbus_data2reg_direct(data, sensor, val); 1033 break; 1034 case vid: 1035 regval = pmbus_data2reg_vid(data, sensor, val); 1036 break; 1037 case ieee754: 1038 regval = pmbus_data2reg_ieee754(data, sensor, val); 1039 break; 1040 case linear: 1041 default: 1042 regval = pmbus_data2reg_linear(data, sensor, val); 1043 break; 1044 } 1045 return regval; 1046 } 1047 1048 /* 1049 * Return boolean calculated from converted data. 1050 * <index> defines a status register index and mask. 1051 * The mask is in the lower 8 bits, the register index is in bits 8..23. 1052 * 1053 * The associated pmbus_boolean structure contains optional pointers to two 1054 * sensor attributes. If specified, those attributes are compared against each 1055 * other to determine if a limit has been exceeded. 1056 * 1057 * If the sensor attribute pointers are NULL, the function returns true if 1058 * (status[reg] & mask) is true. 1059 * 1060 * If sensor attribute pointers are provided, a comparison against a specified 1061 * limit has to be performed to determine the boolean result. 1062 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 1063 * sensor values referenced by sensor attribute pointers s1 and s2). 1064 * 1065 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 1066 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 1067 * 1068 * If a negative value is stored in any of the referenced registers, this value 1069 * reflects an error code which will be returned. 1070 */ 1071 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, 1072 int index) 1073 { 1074 struct pmbus_data *data = i2c_get_clientdata(client); 1075 struct pmbus_sensor *s1 = b->s1; 1076 struct pmbus_sensor *s2 = b->s2; 1077 u16 mask = pb_index_to_mask(index); 1078 u8 page = pb_index_to_page(index); 1079 u16 reg = pb_index_to_reg(index); 1080 int ret, status; 1081 u16 regval; 1082 1083 mutex_lock(&data->update_lock); 1084 status = pmbus_get_status(client, page, reg); 1085 if (status < 0) { 1086 ret = status; 1087 goto unlock; 1088 } 1089 1090 if (s1) 1091 pmbus_update_sensor_data(client, s1); 1092 if (s2) 1093 pmbus_update_sensor_data(client, s2); 1094 1095 regval = status & mask; 1096 if (regval) { 1097 ret = _pmbus_write_byte_data(client, page, reg, regval); 1098 if (ret) 1099 goto unlock; 1100 } 1101 if (s1 && s2) { 1102 s64 v1, v2; 1103 1104 if (s1->data < 0) { 1105 ret = s1->data; 1106 goto unlock; 1107 } 1108 if (s2->data < 0) { 1109 ret = s2->data; 1110 goto unlock; 1111 } 1112 1113 v1 = pmbus_reg2data(data, s1); 1114 v2 = pmbus_reg2data(data, s2); 1115 ret = !!(regval && v1 >= v2); 1116 } else { 1117 ret = !!regval; 1118 } 1119 unlock: 1120 mutex_unlock(&data->update_lock); 1121 return ret; 1122 } 1123 1124 static ssize_t pmbus_show_boolean(struct device *dev, 1125 struct device_attribute *da, char *buf) 1126 { 1127 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 1128 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 1129 struct i2c_client *client = to_i2c_client(dev->parent); 1130 int val; 1131 1132 val = pmbus_get_boolean(client, boolean, attr->index); 1133 if (val < 0) 1134 return val; 1135 return sysfs_emit(buf, "%d\n", val); 1136 } 1137 1138 static ssize_t pmbus_show_sensor(struct device *dev, 1139 struct device_attribute *devattr, char *buf) 1140 { 1141 struct i2c_client *client = to_i2c_client(dev->parent); 1142 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 1143 struct pmbus_data *data = i2c_get_clientdata(client); 1144 ssize_t ret; 1145 1146 mutex_lock(&data->update_lock); 1147 pmbus_update_sensor_data(client, sensor); 1148 if (sensor->data < 0) 1149 ret = sensor->data; 1150 else 1151 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor)); 1152 mutex_unlock(&data->update_lock); 1153 return ret; 1154 } 1155 1156 static ssize_t pmbus_set_sensor(struct device *dev, 1157 struct device_attribute *devattr, 1158 const char *buf, size_t count) 1159 { 1160 struct i2c_client *client = to_i2c_client(dev->parent); 1161 struct pmbus_data *data = i2c_get_clientdata(client); 1162 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 1163 ssize_t rv = count; 1164 s64 val; 1165 int ret; 1166 u16 regval; 1167 1168 if (kstrtos64(buf, 10, &val) < 0) 1169 return -EINVAL; 1170 1171 mutex_lock(&data->update_lock); 1172 regval = pmbus_data2reg(data, sensor, val); 1173 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 1174 if (ret < 0) 1175 rv = ret; 1176 else 1177 sensor->data = -ENODATA; 1178 mutex_unlock(&data->update_lock); 1179 return rv; 1180 } 1181 1182 static ssize_t pmbus_show_label(struct device *dev, 1183 struct device_attribute *da, char *buf) 1184 { 1185 struct pmbus_label *label = to_pmbus_label(da); 1186 1187 return sysfs_emit(buf, "%s\n", label->label); 1188 } 1189 1190 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 1191 { 1192 if (data->num_attributes >= data->max_attributes - 1) { 1193 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 1194 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs, 1195 new_max_attrs, sizeof(void *), 1196 GFP_KERNEL); 1197 if (!new_attrs) 1198 return -ENOMEM; 1199 data->group.attrs = new_attrs; 1200 data->max_attributes = new_max_attrs; 1201 } 1202 1203 data->group.attrs[data->num_attributes++] = attr; 1204 data->group.attrs[data->num_attributes] = NULL; 1205 return 0; 1206 } 1207 1208 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1209 const char *name, 1210 umode_t mode, 1211 ssize_t (*show)(struct device *dev, 1212 struct device_attribute *attr, 1213 char *buf), 1214 ssize_t (*store)(struct device *dev, 1215 struct device_attribute *attr, 1216 const char *buf, size_t count)) 1217 { 1218 sysfs_attr_init(&dev_attr->attr); 1219 dev_attr->attr.name = name; 1220 dev_attr->attr.mode = mode; 1221 dev_attr->show = show; 1222 dev_attr->store = store; 1223 } 1224 1225 static void pmbus_attr_init(struct sensor_device_attribute *a, 1226 const char *name, 1227 umode_t mode, 1228 ssize_t (*show)(struct device *dev, 1229 struct device_attribute *attr, 1230 char *buf), 1231 ssize_t (*store)(struct device *dev, 1232 struct device_attribute *attr, 1233 const char *buf, size_t count), 1234 int idx) 1235 { 1236 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1237 a->index = idx; 1238 } 1239 1240 static int pmbus_add_boolean(struct pmbus_data *data, 1241 const char *name, const char *type, int seq, 1242 struct pmbus_sensor *s1, 1243 struct pmbus_sensor *s2, 1244 u8 page, u16 reg, u16 mask) 1245 { 1246 struct pmbus_boolean *boolean; 1247 struct sensor_device_attribute *a; 1248 1249 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) 1250 return -EINVAL; 1251 1252 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1253 if (!boolean) 1254 return -ENOMEM; 1255 1256 a = &boolean->attribute; 1257 1258 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1259 name, seq, type); 1260 boolean->s1 = s1; 1261 boolean->s2 = s2; 1262 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1263 pb_reg_to_index(page, reg, mask)); 1264 1265 return pmbus_add_attribute(data, &a->dev_attr.attr); 1266 } 1267 1268 /* of thermal for pmbus temperature sensors */ 1269 struct pmbus_thermal_data { 1270 struct pmbus_data *pmbus_data; 1271 struct pmbus_sensor *sensor; 1272 }; 1273 1274 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp) 1275 { 1276 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz); 1277 struct pmbus_sensor *sensor = tdata->sensor; 1278 struct pmbus_data *pmbus_data = tdata->pmbus_data; 1279 struct i2c_client *client = to_i2c_client(pmbus_data->dev); 1280 struct device *dev = pmbus_data->hwmon_dev; 1281 int ret = 0; 1282 1283 if (!dev) { 1284 /* May not even get to hwmon yet */ 1285 *temp = 0; 1286 return 0; 1287 } 1288 1289 mutex_lock(&pmbus_data->update_lock); 1290 pmbus_update_sensor_data(client, sensor); 1291 if (sensor->data < 0) 1292 ret = sensor->data; 1293 else 1294 *temp = (int)pmbus_reg2data(pmbus_data, sensor); 1295 mutex_unlock(&pmbus_data->update_lock); 1296 1297 return ret; 1298 } 1299 1300 static const struct thermal_zone_device_ops pmbus_thermal_ops = { 1301 .get_temp = pmbus_thermal_get_temp, 1302 }; 1303 1304 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data, 1305 struct pmbus_sensor *sensor, int index) 1306 { 1307 struct device *dev = pmbus_data->dev; 1308 struct pmbus_thermal_data *tdata; 1309 struct thermal_zone_device *tzd; 1310 1311 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL); 1312 if (!tdata) 1313 return -ENOMEM; 1314 1315 tdata->sensor = sensor; 1316 tdata->pmbus_data = pmbus_data; 1317 1318 tzd = devm_thermal_of_zone_register(dev, index, tdata, 1319 &pmbus_thermal_ops); 1320 /* 1321 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV, 1322 * so ignore that error but forward any other error. 1323 */ 1324 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV)) 1325 return PTR_ERR(tzd); 1326 1327 return 0; 1328 } 1329 1330 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1331 const char *name, const char *type, 1332 int seq, int page, int phase, 1333 int reg, 1334 enum pmbus_sensor_classes class, 1335 bool update, bool readonly, 1336 bool convert) 1337 { 1338 struct pmbus_sensor *sensor; 1339 struct device_attribute *a; 1340 1341 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1342 if (!sensor) 1343 return NULL; 1344 a = &sensor->attribute; 1345 1346 if (type) 1347 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1348 name, seq, type); 1349 else 1350 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1351 name, seq); 1352 1353 if (data->flags & PMBUS_WRITE_PROTECTED) 1354 readonly = true; 1355 1356 sensor->page = page; 1357 sensor->phase = phase; 1358 sensor->reg = reg; 1359 sensor->class = class; 1360 sensor->update = update; 1361 sensor->convert = convert; 1362 sensor->data = -ENODATA; 1363 pmbus_dev_attr_init(a, sensor->name, 1364 readonly ? 0444 : 0644, 1365 pmbus_show_sensor, pmbus_set_sensor); 1366 1367 if (pmbus_add_attribute(data, &a->attr)) 1368 return NULL; 1369 1370 sensor->next = data->sensors; 1371 data->sensors = sensor; 1372 1373 /* temperature sensors with _input values are registered with thermal */ 1374 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0) 1375 pmbus_thermal_add_sensor(data, sensor, seq); 1376 1377 return sensor; 1378 } 1379 1380 static int pmbus_add_label(struct pmbus_data *data, 1381 const char *name, int seq, 1382 const char *lstring, int index, int phase) 1383 { 1384 struct pmbus_label *label; 1385 struct device_attribute *a; 1386 1387 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1388 if (!label) 1389 return -ENOMEM; 1390 1391 a = &label->attribute; 1392 1393 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1394 if (!index) { 1395 if (phase == 0xff) 1396 strncpy(label->label, lstring, 1397 sizeof(label->label) - 1); 1398 else 1399 snprintf(label->label, sizeof(label->label), "%s.%d", 1400 lstring, phase); 1401 } else { 1402 if (phase == 0xff) 1403 snprintf(label->label, sizeof(label->label), "%s%d", 1404 lstring, index); 1405 else 1406 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1407 lstring, index, phase); 1408 } 1409 1410 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1411 return pmbus_add_attribute(data, &a->attr); 1412 } 1413 1414 /* 1415 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1416 */ 1417 1418 /* 1419 * The pmbus_limit_attr structure describes a single limit attribute 1420 * and its associated alarm attribute. 1421 */ 1422 struct pmbus_limit_attr { 1423 u16 reg; /* Limit register */ 1424 u16 sbit; /* Alarm attribute status bit */ 1425 bool update; /* True if register needs updates */ 1426 bool low; /* True if low limit; for limits with compare 1427 functions only */ 1428 const char *attr; /* Attribute name */ 1429 const char *alarm; /* Alarm attribute name */ 1430 }; 1431 1432 /* 1433 * The pmbus_sensor_attr structure describes one sensor attribute. This 1434 * description includes a reference to the associated limit attributes. 1435 */ 1436 struct pmbus_sensor_attr { 1437 u16 reg; /* sensor register */ 1438 u16 gbit; /* generic status bit */ 1439 u8 nlimit; /* # of limit registers */ 1440 enum pmbus_sensor_classes class;/* sensor class */ 1441 const char *label; /* sensor label */ 1442 bool paged; /* true if paged sensor */ 1443 bool update; /* true if update needed */ 1444 bool compare; /* true if compare function needed */ 1445 u32 func; /* sensor mask */ 1446 u32 sfunc; /* sensor status mask */ 1447 int sreg; /* status register */ 1448 const struct pmbus_limit_attr *limit;/* limit registers */ 1449 }; 1450 1451 /* 1452 * Add a set of limit attributes and, if supported, the associated 1453 * alarm attributes. 1454 * returns 0 if no alarm register found, 1 if an alarm register was found, 1455 * < 0 on errors. 1456 */ 1457 static int pmbus_add_limit_attrs(struct i2c_client *client, 1458 struct pmbus_data *data, 1459 const struct pmbus_driver_info *info, 1460 const char *name, int index, int page, 1461 struct pmbus_sensor *base, 1462 const struct pmbus_sensor_attr *attr) 1463 { 1464 const struct pmbus_limit_attr *l = attr->limit; 1465 int nlimit = attr->nlimit; 1466 int have_alarm = 0; 1467 int i, ret; 1468 struct pmbus_sensor *curr; 1469 1470 for (i = 0; i < nlimit; i++) { 1471 if (pmbus_check_word_register(client, page, l->reg)) { 1472 curr = pmbus_add_sensor(data, name, l->attr, index, 1473 page, 0xff, l->reg, attr->class, 1474 attr->update || l->update, 1475 false, true); 1476 if (!curr) 1477 return -ENOMEM; 1478 if (l->sbit && (info->func[page] & attr->sfunc)) { 1479 ret = pmbus_add_boolean(data, name, 1480 l->alarm, index, 1481 attr->compare ? l->low ? curr : base 1482 : NULL, 1483 attr->compare ? l->low ? base : curr 1484 : NULL, 1485 page, attr->sreg, l->sbit); 1486 if (ret) 1487 return ret; 1488 have_alarm = 1; 1489 } 1490 } 1491 l++; 1492 } 1493 return have_alarm; 1494 } 1495 1496 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1497 struct pmbus_data *data, 1498 const struct pmbus_driver_info *info, 1499 const char *name, 1500 int index, int page, int phase, 1501 const struct pmbus_sensor_attr *attr, 1502 bool paged) 1503 { 1504 struct pmbus_sensor *base; 1505 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1506 int ret; 1507 1508 if (attr->label) { 1509 ret = pmbus_add_label(data, name, index, attr->label, 1510 paged ? page + 1 : 0, phase); 1511 if (ret) 1512 return ret; 1513 } 1514 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1515 attr->reg, attr->class, true, true, true); 1516 if (!base) 1517 return -ENOMEM; 1518 /* No limit and alarm attributes for phase specific sensors */ 1519 if (attr->sfunc && phase == 0xff) { 1520 ret = pmbus_add_limit_attrs(client, data, info, name, 1521 index, page, base, attr); 1522 if (ret < 0) 1523 return ret; 1524 /* 1525 * Add generic alarm attribute only if there are no individual 1526 * alarm attributes, if there is a global alarm bit, and if 1527 * the generic status register (word or byte, depending on 1528 * which global bit is set) for this page is accessible. 1529 */ 1530 if (!ret && attr->gbit && 1531 (!upper || data->has_status_word) && 1532 pmbus_check_status_register(client, page)) { 1533 ret = pmbus_add_boolean(data, name, "alarm", index, 1534 NULL, NULL, 1535 page, PMBUS_STATUS_WORD, 1536 attr->gbit); 1537 if (ret) 1538 return ret; 1539 } 1540 } 1541 return 0; 1542 } 1543 1544 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1545 const struct pmbus_sensor_attr *attr) 1546 { 1547 int p; 1548 1549 if (attr->paged) 1550 return true; 1551 1552 /* 1553 * Some attributes may be present on more than one page despite 1554 * not being marked with the paged attribute. If that is the case, 1555 * then treat the sensor as being paged and add the page suffix to the 1556 * attribute name. 1557 * We don't just add the paged attribute to all such attributes, in 1558 * order to maintain the un-suffixed labels in the case where the 1559 * attribute is only on page 0. 1560 */ 1561 for (p = 1; p < info->pages; p++) { 1562 if (info->func[p] & attr->func) 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1569 struct pmbus_data *data, 1570 const char *name, 1571 const struct pmbus_sensor_attr *attrs, 1572 int nattrs) 1573 { 1574 const struct pmbus_driver_info *info = data->info; 1575 int index, i; 1576 int ret; 1577 1578 index = 1; 1579 for (i = 0; i < nattrs; i++) { 1580 int page, pages; 1581 bool paged = pmbus_sensor_is_paged(info, attrs); 1582 1583 pages = paged ? info->pages : 1; 1584 for (page = 0; page < pages; page++) { 1585 if (info->func[page] & attrs->func) { 1586 ret = pmbus_add_sensor_attrs_one(client, data, info, 1587 name, index, page, 1588 0xff, attrs, paged); 1589 if (ret) 1590 return ret; 1591 index++; 1592 } 1593 if (info->phases[page]) { 1594 int phase; 1595 1596 for (phase = 0; phase < info->phases[page]; 1597 phase++) { 1598 if (!(info->pfunc[phase] & attrs->func)) 1599 continue; 1600 ret = pmbus_add_sensor_attrs_one(client, 1601 data, info, name, index, page, 1602 phase, attrs, paged); 1603 if (ret) 1604 return ret; 1605 index++; 1606 } 1607 } 1608 } 1609 attrs++; 1610 } 1611 return 0; 1612 } 1613 1614 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1615 { 1616 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1617 .attr = "min", 1618 .alarm = "min_alarm", 1619 .sbit = PB_VOLTAGE_UV_WARNING, 1620 }, { 1621 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1622 .attr = "lcrit", 1623 .alarm = "lcrit_alarm", 1624 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF, 1625 }, { 1626 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1627 .attr = "max", 1628 .alarm = "max_alarm", 1629 .sbit = PB_VOLTAGE_OV_WARNING, 1630 }, { 1631 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1632 .attr = "crit", 1633 .alarm = "crit_alarm", 1634 .sbit = PB_VOLTAGE_OV_FAULT, 1635 }, { 1636 .reg = PMBUS_VIRT_READ_VIN_AVG, 1637 .update = true, 1638 .attr = "average", 1639 }, { 1640 .reg = PMBUS_VIRT_READ_VIN_MIN, 1641 .update = true, 1642 .attr = "lowest", 1643 }, { 1644 .reg = PMBUS_VIRT_READ_VIN_MAX, 1645 .update = true, 1646 .attr = "highest", 1647 }, { 1648 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1649 .attr = "reset_history", 1650 }, { 1651 .reg = PMBUS_MFR_VIN_MIN, 1652 .attr = "rated_min", 1653 }, { 1654 .reg = PMBUS_MFR_VIN_MAX, 1655 .attr = "rated_max", 1656 }, 1657 }; 1658 1659 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1660 { 1661 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1662 .attr = "min", 1663 .alarm = "min_alarm", 1664 .sbit = PB_VOLTAGE_UV_WARNING, 1665 }, { 1666 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1667 .attr = "lcrit", 1668 .alarm = "lcrit_alarm", 1669 .sbit = PB_VOLTAGE_UV_FAULT, 1670 }, { 1671 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1672 .attr = "max", 1673 .alarm = "max_alarm", 1674 .sbit = PB_VOLTAGE_OV_WARNING, 1675 }, { 1676 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1677 .attr = "crit", 1678 .alarm = "crit_alarm", 1679 .sbit = PB_VOLTAGE_OV_FAULT, 1680 } 1681 }; 1682 1683 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1684 { 1685 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1686 .attr = "min", 1687 .alarm = "min_alarm", 1688 .sbit = PB_VOLTAGE_UV_WARNING, 1689 }, { 1690 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1691 .attr = "lcrit", 1692 .alarm = "lcrit_alarm", 1693 .sbit = PB_VOLTAGE_UV_FAULT, 1694 }, { 1695 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1696 .attr = "max", 1697 .alarm = "max_alarm", 1698 .sbit = PB_VOLTAGE_OV_WARNING, 1699 }, { 1700 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1701 .attr = "crit", 1702 .alarm = "crit_alarm", 1703 .sbit = PB_VOLTAGE_OV_FAULT, 1704 }, { 1705 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1706 .update = true, 1707 .attr = "average", 1708 }, { 1709 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1710 .update = true, 1711 .attr = "lowest", 1712 }, { 1713 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1714 .update = true, 1715 .attr = "highest", 1716 }, { 1717 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1718 .attr = "reset_history", 1719 }, { 1720 .reg = PMBUS_MFR_VOUT_MIN, 1721 .attr = "rated_min", 1722 }, { 1723 .reg = PMBUS_MFR_VOUT_MAX, 1724 .attr = "rated_max", 1725 }, 1726 }; 1727 1728 static const struct pmbus_sensor_attr voltage_attributes[] = { 1729 { 1730 .reg = PMBUS_READ_VIN, 1731 .class = PSC_VOLTAGE_IN, 1732 .label = "vin", 1733 .func = PMBUS_HAVE_VIN, 1734 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1735 .sreg = PMBUS_STATUS_INPUT, 1736 .gbit = PB_STATUS_VIN_UV, 1737 .limit = vin_limit_attrs, 1738 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1739 }, { 1740 .reg = PMBUS_VIRT_READ_VMON, 1741 .class = PSC_VOLTAGE_IN, 1742 .label = "vmon", 1743 .func = PMBUS_HAVE_VMON, 1744 .sfunc = PMBUS_HAVE_STATUS_VMON, 1745 .sreg = PMBUS_VIRT_STATUS_VMON, 1746 .limit = vmon_limit_attrs, 1747 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1748 }, { 1749 .reg = PMBUS_READ_VCAP, 1750 .class = PSC_VOLTAGE_IN, 1751 .label = "vcap", 1752 .func = PMBUS_HAVE_VCAP, 1753 }, { 1754 .reg = PMBUS_READ_VOUT, 1755 .class = PSC_VOLTAGE_OUT, 1756 .label = "vout", 1757 .paged = true, 1758 .func = PMBUS_HAVE_VOUT, 1759 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1760 .sreg = PMBUS_STATUS_VOUT, 1761 .gbit = PB_STATUS_VOUT_OV, 1762 .limit = vout_limit_attrs, 1763 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1764 } 1765 }; 1766 1767 /* Current attributes */ 1768 1769 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1770 { 1771 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1772 .attr = "max", 1773 .alarm = "max_alarm", 1774 .sbit = PB_IIN_OC_WARNING, 1775 }, { 1776 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1777 .attr = "crit", 1778 .alarm = "crit_alarm", 1779 .sbit = PB_IIN_OC_FAULT, 1780 }, { 1781 .reg = PMBUS_VIRT_READ_IIN_AVG, 1782 .update = true, 1783 .attr = "average", 1784 }, { 1785 .reg = PMBUS_VIRT_READ_IIN_MIN, 1786 .update = true, 1787 .attr = "lowest", 1788 }, { 1789 .reg = PMBUS_VIRT_READ_IIN_MAX, 1790 .update = true, 1791 .attr = "highest", 1792 }, { 1793 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1794 .attr = "reset_history", 1795 }, { 1796 .reg = PMBUS_MFR_IIN_MAX, 1797 .attr = "rated_max", 1798 }, 1799 }; 1800 1801 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1802 { 1803 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1804 .attr = "max", 1805 .alarm = "max_alarm", 1806 .sbit = PB_IOUT_OC_WARNING, 1807 }, { 1808 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1809 .attr = "lcrit", 1810 .alarm = "lcrit_alarm", 1811 .sbit = PB_IOUT_UC_FAULT, 1812 }, { 1813 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1814 .attr = "crit", 1815 .alarm = "crit_alarm", 1816 .sbit = PB_IOUT_OC_FAULT, 1817 }, { 1818 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1819 .update = true, 1820 .attr = "average", 1821 }, { 1822 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1823 .update = true, 1824 .attr = "lowest", 1825 }, { 1826 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1827 .update = true, 1828 .attr = "highest", 1829 }, { 1830 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1831 .attr = "reset_history", 1832 }, { 1833 .reg = PMBUS_MFR_IOUT_MAX, 1834 .attr = "rated_max", 1835 }, 1836 }; 1837 1838 static const struct pmbus_sensor_attr current_attributes[] = { 1839 { 1840 .reg = PMBUS_READ_IIN, 1841 .class = PSC_CURRENT_IN, 1842 .label = "iin", 1843 .func = PMBUS_HAVE_IIN, 1844 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1845 .sreg = PMBUS_STATUS_INPUT, 1846 .gbit = PB_STATUS_INPUT, 1847 .limit = iin_limit_attrs, 1848 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1849 }, { 1850 .reg = PMBUS_READ_IOUT, 1851 .class = PSC_CURRENT_OUT, 1852 .label = "iout", 1853 .paged = true, 1854 .func = PMBUS_HAVE_IOUT, 1855 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1856 .sreg = PMBUS_STATUS_IOUT, 1857 .gbit = PB_STATUS_IOUT_OC, 1858 .limit = iout_limit_attrs, 1859 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1860 } 1861 }; 1862 1863 /* Power attributes */ 1864 1865 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1866 { 1867 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1868 .attr = "max", 1869 .alarm = "alarm", 1870 .sbit = PB_PIN_OP_WARNING, 1871 }, { 1872 .reg = PMBUS_VIRT_READ_PIN_AVG, 1873 .update = true, 1874 .attr = "average", 1875 }, { 1876 .reg = PMBUS_VIRT_READ_PIN_MIN, 1877 .update = true, 1878 .attr = "input_lowest", 1879 }, { 1880 .reg = PMBUS_VIRT_READ_PIN_MAX, 1881 .update = true, 1882 .attr = "input_highest", 1883 }, { 1884 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1885 .attr = "reset_history", 1886 }, { 1887 .reg = PMBUS_MFR_PIN_MAX, 1888 .attr = "rated_max", 1889 }, 1890 }; 1891 1892 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1893 { 1894 .reg = PMBUS_POUT_MAX, 1895 .attr = "cap", 1896 .alarm = "cap_alarm", 1897 .sbit = PB_POWER_LIMITING, 1898 }, { 1899 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1900 .attr = "max", 1901 .alarm = "max_alarm", 1902 .sbit = PB_POUT_OP_WARNING, 1903 }, { 1904 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1905 .attr = "crit", 1906 .alarm = "crit_alarm", 1907 .sbit = PB_POUT_OP_FAULT, 1908 }, { 1909 .reg = PMBUS_VIRT_READ_POUT_AVG, 1910 .update = true, 1911 .attr = "average", 1912 }, { 1913 .reg = PMBUS_VIRT_READ_POUT_MIN, 1914 .update = true, 1915 .attr = "input_lowest", 1916 }, { 1917 .reg = PMBUS_VIRT_READ_POUT_MAX, 1918 .update = true, 1919 .attr = "input_highest", 1920 }, { 1921 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1922 .attr = "reset_history", 1923 }, { 1924 .reg = PMBUS_MFR_POUT_MAX, 1925 .attr = "rated_max", 1926 }, 1927 }; 1928 1929 static const struct pmbus_sensor_attr power_attributes[] = { 1930 { 1931 .reg = PMBUS_READ_PIN, 1932 .class = PSC_POWER, 1933 .label = "pin", 1934 .func = PMBUS_HAVE_PIN, 1935 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1936 .sreg = PMBUS_STATUS_INPUT, 1937 .gbit = PB_STATUS_INPUT, 1938 .limit = pin_limit_attrs, 1939 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1940 }, { 1941 .reg = PMBUS_READ_POUT, 1942 .class = PSC_POWER, 1943 .label = "pout", 1944 .paged = true, 1945 .func = PMBUS_HAVE_POUT, 1946 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1947 .sreg = PMBUS_STATUS_IOUT, 1948 .limit = pout_limit_attrs, 1949 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1950 } 1951 }; 1952 1953 /* Temperature atributes */ 1954 1955 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1956 { 1957 .reg = PMBUS_UT_WARN_LIMIT, 1958 .low = true, 1959 .attr = "min", 1960 .alarm = "min_alarm", 1961 .sbit = PB_TEMP_UT_WARNING, 1962 }, { 1963 .reg = PMBUS_UT_FAULT_LIMIT, 1964 .low = true, 1965 .attr = "lcrit", 1966 .alarm = "lcrit_alarm", 1967 .sbit = PB_TEMP_UT_FAULT, 1968 }, { 1969 .reg = PMBUS_OT_WARN_LIMIT, 1970 .attr = "max", 1971 .alarm = "max_alarm", 1972 .sbit = PB_TEMP_OT_WARNING, 1973 }, { 1974 .reg = PMBUS_OT_FAULT_LIMIT, 1975 .attr = "crit", 1976 .alarm = "crit_alarm", 1977 .sbit = PB_TEMP_OT_FAULT, 1978 }, { 1979 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1980 .attr = "lowest", 1981 }, { 1982 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1983 .attr = "average", 1984 }, { 1985 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1986 .attr = "highest", 1987 }, { 1988 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1989 .attr = "reset_history", 1990 }, { 1991 .reg = PMBUS_MFR_MAX_TEMP_1, 1992 .attr = "rated_max", 1993 }, 1994 }; 1995 1996 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1997 { 1998 .reg = PMBUS_UT_WARN_LIMIT, 1999 .low = true, 2000 .attr = "min", 2001 .alarm = "min_alarm", 2002 .sbit = PB_TEMP_UT_WARNING, 2003 }, { 2004 .reg = PMBUS_UT_FAULT_LIMIT, 2005 .low = true, 2006 .attr = "lcrit", 2007 .alarm = "lcrit_alarm", 2008 .sbit = PB_TEMP_UT_FAULT, 2009 }, { 2010 .reg = PMBUS_OT_WARN_LIMIT, 2011 .attr = "max", 2012 .alarm = "max_alarm", 2013 .sbit = PB_TEMP_OT_WARNING, 2014 }, { 2015 .reg = PMBUS_OT_FAULT_LIMIT, 2016 .attr = "crit", 2017 .alarm = "crit_alarm", 2018 .sbit = PB_TEMP_OT_FAULT, 2019 }, { 2020 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 2021 .attr = "lowest", 2022 }, { 2023 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 2024 .attr = "average", 2025 }, { 2026 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 2027 .attr = "highest", 2028 }, { 2029 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 2030 .attr = "reset_history", 2031 }, { 2032 .reg = PMBUS_MFR_MAX_TEMP_2, 2033 .attr = "rated_max", 2034 }, 2035 }; 2036 2037 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 2038 { 2039 .reg = PMBUS_UT_WARN_LIMIT, 2040 .low = true, 2041 .attr = "min", 2042 .alarm = "min_alarm", 2043 .sbit = PB_TEMP_UT_WARNING, 2044 }, { 2045 .reg = PMBUS_UT_FAULT_LIMIT, 2046 .low = true, 2047 .attr = "lcrit", 2048 .alarm = "lcrit_alarm", 2049 .sbit = PB_TEMP_UT_FAULT, 2050 }, { 2051 .reg = PMBUS_OT_WARN_LIMIT, 2052 .attr = "max", 2053 .alarm = "max_alarm", 2054 .sbit = PB_TEMP_OT_WARNING, 2055 }, { 2056 .reg = PMBUS_OT_FAULT_LIMIT, 2057 .attr = "crit", 2058 .alarm = "crit_alarm", 2059 .sbit = PB_TEMP_OT_FAULT, 2060 }, { 2061 .reg = PMBUS_MFR_MAX_TEMP_3, 2062 .attr = "rated_max", 2063 }, 2064 }; 2065 2066 static const struct pmbus_sensor_attr temp_attributes[] = { 2067 { 2068 .reg = PMBUS_READ_TEMPERATURE_1, 2069 .class = PSC_TEMPERATURE, 2070 .paged = true, 2071 .update = true, 2072 .compare = true, 2073 .func = PMBUS_HAVE_TEMP, 2074 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2075 .sreg = PMBUS_STATUS_TEMPERATURE, 2076 .gbit = PB_STATUS_TEMPERATURE, 2077 .limit = temp_limit_attrs, 2078 .nlimit = ARRAY_SIZE(temp_limit_attrs), 2079 }, { 2080 .reg = PMBUS_READ_TEMPERATURE_2, 2081 .class = PSC_TEMPERATURE, 2082 .paged = true, 2083 .update = true, 2084 .compare = true, 2085 .func = PMBUS_HAVE_TEMP2, 2086 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2087 .sreg = PMBUS_STATUS_TEMPERATURE, 2088 .gbit = PB_STATUS_TEMPERATURE, 2089 .limit = temp_limit_attrs2, 2090 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 2091 }, { 2092 .reg = PMBUS_READ_TEMPERATURE_3, 2093 .class = PSC_TEMPERATURE, 2094 .paged = true, 2095 .update = true, 2096 .compare = true, 2097 .func = PMBUS_HAVE_TEMP3, 2098 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2099 .sreg = PMBUS_STATUS_TEMPERATURE, 2100 .gbit = PB_STATUS_TEMPERATURE, 2101 .limit = temp_limit_attrs3, 2102 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 2103 } 2104 }; 2105 2106 static const int pmbus_fan_registers[] = { 2107 PMBUS_READ_FAN_SPEED_1, 2108 PMBUS_READ_FAN_SPEED_2, 2109 PMBUS_READ_FAN_SPEED_3, 2110 PMBUS_READ_FAN_SPEED_4 2111 }; 2112 2113 static const int pmbus_fan_status_registers[] = { 2114 PMBUS_STATUS_FAN_12, 2115 PMBUS_STATUS_FAN_12, 2116 PMBUS_STATUS_FAN_34, 2117 PMBUS_STATUS_FAN_34 2118 }; 2119 2120 static const u32 pmbus_fan_flags[] = { 2121 PMBUS_HAVE_FAN12, 2122 PMBUS_HAVE_FAN12, 2123 PMBUS_HAVE_FAN34, 2124 PMBUS_HAVE_FAN34 2125 }; 2126 2127 static const u32 pmbus_fan_status_flags[] = { 2128 PMBUS_HAVE_STATUS_FAN12, 2129 PMBUS_HAVE_STATUS_FAN12, 2130 PMBUS_HAVE_STATUS_FAN34, 2131 PMBUS_HAVE_STATUS_FAN34 2132 }; 2133 2134 /* Fans */ 2135 2136 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 2137 static int pmbus_add_fan_ctrl(struct i2c_client *client, 2138 struct pmbus_data *data, int index, int page, int id, 2139 u8 config) 2140 { 2141 struct pmbus_sensor *sensor; 2142 2143 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 2144 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 2145 false, false, true); 2146 2147 if (!sensor) 2148 return -ENOMEM; 2149 2150 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 2151 (data->info->func[page] & PMBUS_HAVE_PWM34))) 2152 return 0; 2153 2154 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 2155 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 2156 false, false, true); 2157 2158 if (!sensor) 2159 return -ENOMEM; 2160 2161 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 2162 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 2163 true, false, false); 2164 2165 if (!sensor) 2166 return -ENOMEM; 2167 2168 return 0; 2169 } 2170 2171 static int pmbus_add_fan_attributes(struct i2c_client *client, 2172 struct pmbus_data *data) 2173 { 2174 const struct pmbus_driver_info *info = data->info; 2175 int index = 1; 2176 int page; 2177 int ret; 2178 2179 for (page = 0; page < info->pages; page++) { 2180 int f; 2181 2182 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 2183 int regval; 2184 2185 if (!(info->func[page] & pmbus_fan_flags[f])) 2186 break; 2187 2188 if (!pmbus_check_word_register(client, page, 2189 pmbus_fan_registers[f])) 2190 break; 2191 2192 /* 2193 * Skip fan if not installed. 2194 * Each fan configuration register covers multiple fans, 2195 * so we have to do some magic. 2196 */ 2197 regval = _pmbus_read_byte_data(client, page, 2198 pmbus_fan_config_registers[f]); 2199 if (regval < 0 || 2200 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 2201 continue; 2202 2203 if (pmbus_add_sensor(data, "fan", "input", index, 2204 page, 0xff, pmbus_fan_registers[f], 2205 PSC_FAN, true, true, true) == NULL) 2206 return -ENOMEM; 2207 2208 /* Fan control */ 2209 if (pmbus_check_word_register(client, page, 2210 pmbus_fan_command_registers[f])) { 2211 ret = pmbus_add_fan_ctrl(client, data, index, 2212 page, f, regval); 2213 if (ret < 0) 2214 return ret; 2215 } 2216 2217 /* 2218 * Each fan status register covers multiple fans, 2219 * so we have to do some magic. 2220 */ 2221 if ((info->func[page] & pmbus_fan_status_flags[f]) && 2222 pmbus_check_byte_register(client, 2223 page, pmbus_fan_status_registers[f])) { 2224 int reg; 2225 2226 if (f > 1) /* fan 3, 4 */ 2227 reg = PMBUS_STATUS_FAN_34; 2228 else 2229 reg = PMBUS_STATUS_FAN_12; 2230 ret = pmbus_add_boolean(data, "fan", 2231 "alarm", index, NULL, NULL, page, reg, 2232 PB_FAN_FAN1_WARNING >> (f & 1)); 2233 if (ret) 2234 return ret; 2235 ret = pmbus_add_boolean(data, "fan", 2236 "fault", index, NULL, NULL, page, reg, 2237 PB_FAN_FAN1_FAULT >> (f & 1)); 2238 if (ret) 2239 return ret; 2240 } 2241 index++; 2242 } 2243 } 2244 return 0; 2245 } 2246 2247 struct pmbus_samples_attr { 2248 int reg; 2249 char *name; 2250 }; 2251 2252 struct pmbus_samples_reg { 2253 int page; 2254 struct pmbus_samples_attr *attr; 2255 struct device_attribute dev_attr; 2256 }; 2257 2258 static struct pmbus_samples_attr pmbus_samples_registers[] = { 2259 { 2260 .reg = PMBUS_VIRT_SAMPLES, 2261 .name = "samples", 2262 }, { 2263 .reg = PMBUS_VIRT_IN_SAMPLES, 2264 .name = "in_samples", 2265 }, { 2266 .reg = PMBUS_VIRT_CURR_SAMPLES, 2267 .name = "curr_samples", 2268 }, { 2269 .reg = PMBUS_VIRT_POWER_SAMPLES, 2270 .name = "power_samples", 2271 }, { 2272 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2273 .name = "temp_samples", 2274 } 2275 }; 2276 2277 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2278 2279 static ssize_t pmbus_show_samples(struct device *dev, 2280 struct device_attribute *devattr, char *buf) 2281 { 2282 int val; 2283 struct i2c_client *client = to_i2c_client(dev->parent); 2284 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2285 struct pmbus_data *data = i2c_get_clientdata(client); 2286 2287 mutex_lock(&data->update_lock); 2288 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2289 mutex_unlock(&data->update_lock); 2290 if (val < 0) 2291 return val; 2292 2293 return sysfs_emit(buf, "%d\n", val); 2294 } 2295 2296 static ssize_t pmbus_set_samples(struct device *dev, 2297 struct device_attribute *devattr, 2298 const char *buf, size_t count) 2299 { 2300 int ret; 2301 long val; 2302 struct i2c_client *client = to_i2c_client(dev->parent); 2303 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2304 struct pmbus_data *data = i2c_get_clientdata(client); 2305 2306 if (kstrtol(buf, 0, &val) < 0) 2307 return -EINVAL; 2308 2309 mutex_lock(&data->update_lock); 2310 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2311 mutex_unlock(&data->update_lock); 2312 2313 return ret ? : count; 2314 } 2315 2316 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2317 struct pmbus_samples_attr *attr) 2318 { 2319 struct pmbus_samples_reg *reg; 2320 2321 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2322 if (!reg) 2323 return -ENOMEM; 2324 2325 reg->attr = attr; 2326 reg->page = page; 2327 2328 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2329 pmbus_show_samples, pmbus_set_samples); 2330 2331 return pmbus_add_attribute(data, ®->dev_attr.attr); 2332 } 2333 2334 static int pmbus_add_samples_attributes(struct i2c_client *client, 2335 struct pmbus_data *data) 2336 { 2337 const struct pmbus_driver_info *info = data->info; 2338 int s; 2339 2340 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2341 return 0; 2342 2343 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2344 struct pmbus_samples_attr *attr; 2345 int ret; 2346 2347 attr = &pmbus_samples_registers[s]; 2348 if (!pmbus_check_word_register(client, 0, attr->reg)) 2349 continue; 2350 2351 ret = pmbus_add_samples_attr(data, 0, attr); 2352 if (ret) 2353 return ret; 2354 } 2355 2356 return 0; 2357 } 2358 2359 static int pmbus_find_attributes(struct i2c_client *client, 2360 struct pmbus_data *data) 2361 { 2362 int ret; 2363 2364 /* Voltage sensors */ 2365 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2366 ARRAY_SIZE(voltage_attributes)); 2367 if (ret) 2368 return ret; 2369 2370 /* Current sensors */ 2371 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2372 ARRAY_SIZE(current_attributes)); 2373 if (ret) 2374 return ret; 2375 2376 /* Power sensors */ 2377 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2378 ARRAY_SIZE(power_attributes)); 2379 if (ret) 2380 return ret; 2381 2382 /* Temperature sensors */ 2383 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2384 ARRAY_SIZE(temp_attributes)); 2385 if (ret) 2386 return ret; 2387 2388 /* Fans */ 2389 ret = pmbus_add_fan_attributes(client, data); 2390 if (ret) 2391 return ret; 2392 2393 ret = pmbus_add_samples_attributes(client, data); 2394 return ret; 2395 } 2396 2397 /* 2398 * The pmbus_class_attr_map structure maps one sensor class to 2399 * it's corresponding sensor attributes array. 2400 */ 2401 struct pmbus_class_attr_map { 2402 enum pmbus_sensor_classes class; 2403 int nattr; 2404 const struct pmbus_sensor_attr *attr; 2405 }; 2406 2407 static const struct pmbus_class_attr_map class_attr_map[] = { 2408 { 2409 .class = PSC_VOLTAGE_IN, 2410 .attr = voltage_attributes, 2411 .nattr = ARRAY_SIZE(voltage_attributes), 2412 }, { 2413 .class = PSC_VOLTAGE_OUT, 2414 .attr = voltage_attributes, 2415 .nattr = ARRAY_SIZE(voltage_attributes), 2416 }, { 2417 .class = PSC_CURRENT_IN, 2418 .attr = current_attributes, 2419 .nattr = ARRAY_SIZE(current_attributes), 2420 }, { 2421 .class = PSC_CURRENT_OUT, 2422 .attr = current_attributes, 2423 .nattr = ARRAY_SIZE(current_attributes), 2424 }, { 2425 .class = PSC_POWER, 2426 .attr = power_attributes, 2427 .nattr = ARRAY_SIZE(power_attributes), 2428 }, { 2429 .class = PSC_TEMPERATURE, 2430 .attr = temp_attributes, 2431 .nattr = ARRAY_SIZE(temp_attributes), 2432 } 2433 }; 2434 2435 /* 2436 * Read the coefficients for direct mode. 2437 */ 2438 static int pmbus_read_coefficients(struct i2c_client *client, 2439 struct pmbus_driver_info *info, 2440 const struct pmbus_sensor_attr *attr) 2441 { 2442 int rv; 2443 union i2c_smbus_data data; 2444 enum pmbus_sensor_classes class = attr->class; 2445 s8 R; 2446 s16 m, b; 2447 2448 data.block[0] = 2; 2449 data.block[1] = attr->reg; 2450 data.block[2] = 0x01; 2451 2452 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags, 2453 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS, 2454 I2C_SMBUS_BLOCK_PROC_CALL, &data); 2455 2456 if (rv < 0) 2457 return rv; 2458 2459 if (data.block[0] != 5) 2460 return -EIO; 2461 2462 m = data.block[1] | (data.block[2] << 8); 2463 b = data.block[3] | (data.block[4] << 8); 2464 R = data.block[5]; 2465 info->m[class] = m; 2466 info->b[class] = b; 2467 info->R[class] = R; 2468 2469 return rv; 2470 } 2471 2472 static int pmbus_init_coefficients(struct i2c_client *client, 2473 struct pmbus_driver_info *info) 2474 { 2475 int i, n, ret = -EINVAL; 2476 const struct pmbus_class_attr_map *map; 2477 const struct pmbus_sensor_attr *attr; 2478 2479 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) { 2480 map = &class_attr_map[i]; 2481 if (info->format[map->class] != direct) 2482 continue; 2483 for (n = 0; n < map->nattr; n++) { 2484 attr = &map->attr[n]; 2485 if (map->class != attr->class) 2486 continue; 2487 ret = pmbus_read_coefficients(client, info, attr); 2488 if (ret >= 0) 2489 break; 2490 } 2491 if (ret < 0) { 2492 dev_err(&client->dev, 2493 "No coefficients found for sensor class %d\n", 2494 map->class); 2495 return -EINVAL; 2496 } 2497 } 2498 2499 return 0; 2500 } 2501 2502 /* 2503 * Identify chip parameters. 2504 * This function is called for all chips. 2505 */ 2506 static int pmbus_identify_common(struct i2c_client *client, 2507 struct pmbus_data *data, int page) 2508 { 2509 int vout_mode = -1; 2510 2511 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2512 vout_mode = _pmbus_read_byte_data(client, page, 2513 PMBUS_VOUT_MODE); 2514 if (vout_mode >= 0 && vout_mode != 0xff) { 2515 /* 2516 * Not all chips support the VOUT_MODE command, 2517 * so a failure to read it is not an error. 2518 */ 2519 switch (vout_mode >> 5) { 2520 case 0: /* linear mode */ 2521 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2522 return -ENODEV; 2523 2524 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2525 break; 2526 case 1: /* VID mode */ 2527 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2528 return -ENODEV; 2529 break; 2530 case 2: /* direct mode */ 2531 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2532 return -ENODEV; 2533 break; 2534 case 3: /* ieee 754 half precision */ 2535 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754) 2536 return -ENODEV; 2537 break; 2538 default: 2539 return -ENODEV; 2540 } 2541 } 2542 2543 pmbus_clear_fault_page(client, page); 2544 return 0; 2545 } 2546 2547 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2548 { 2549 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2550 } 2551 2552 static int pmbus_read_status_word(struct i2c_client *client, int page) 2553 { 2554 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2555 } 2556 2557 /* PEC attribute support */ 2558 2559 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy, 2560 char *buf) 2561 { 2562 struct i2c_client *client = to_i2c_client(dev); 2563 2564 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); 2565 } 2566 2567 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy, 2568 const char *buf, size_t count) 2569 { 2570 struct i2c_client *client = to_i2c_client(dev); 2571 bool enable; 2572 int err; 2573 2574 err = kstrtobool(buf, &enable); 2575 if (err < 0) 2576 return err; 2577 2578 if (enable) 2579 client->flags |= I2C_CLIENT_PEC; 2580 else 2581 client->flags &= ~I2C_CLIENT_PEC; 2582 2583 return count; 2584 } 2585 2586 static DEVICE_ATTR_RW(pec); 2587 2588 static void pmbus_remove_pec(void *dev) 2589 { 2590 device_remove_file(dev, &dev_attr_pec); 2591 } 2592 2593 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2594 struct pmbus_driver_info *info) 2595 { 2596 struct device *dev = &client->dev; 2597 int page, ret; 2598 2599 /* 2600 * Figure out if PEC is enabled before accessing any other register. 2601 * Make sure PEC is disabled, will be enabled later if needed. 2602 */ 2603 client->flags &= ~I2C_CLIENT_PEC; 2604 2605 /* Enable PEC if the controller and bus supports it */ 2606 if (!(data->flags & PMBUS_NO_CAPABILITY)) { 2607 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2608 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) { 2609 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) 2610 client->flags |= I2C_CLIENT_PEC; 2611 } 2612 } 2613 2614 /* 2615 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2616 * to use PMBUS_STATUS_BYTE instead if that is the case. 2617 * Bail out if both registers are not supported. 2618 */ 2619 data->read_status = pmbus_read_status_word; 2620 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2621 if (ret < 0 || ret == 0xffff) { 2622 data->read_status = pmbus_read_status_byte; 2623 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2624 if (ret < 0 || ret == 0xff) { 2625 dev_err(dev, "PMBus status register not found\n"); 2626 return -ENODEV; 2627 } 2628 } else { 2629 data->has_status_word = true; 2630 } 2631 2632 /* 2633 * Check if the chip is write protected. If it is, we can not clear 2634 * faults, and we should not try it. Also, in that case, writes into 2635 * limit registers need to be disabled. 2636 */ 2637 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) { 2638 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2639 if (ret > 0 && (ret & PB_WP_ANY)) 2640 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2641 } 2642 2643 if (data->info->pages) 2644 pmbus_clear_faults(client); 2645 else 2646 pmbus_clear_fault_page(client, -1); 2647 2648 if (info->identify) { 2649 ret = (*info->identify)(client, info); 2650 if (ret < 0) { 2651 dev_err(dev, "Chip identification failed\n"); 2652 return ret; 2653 } 2654 } 2655 2656 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2657 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2658 return -ENODEV; 2659 } 2660 2661 for (page = 0; page < info->pages; page++) { 2662 ret = pmbus_identify_common(client, data, page); 2663 if (ret < 0) { 2664 dev_err(dev, "Failed to identify chip capabilities\n"); 2665 return ret; 2666 } 2667 } 2668 2669 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) { 2670 if (!i2c_check_functionality(client->adapter, 2671 I2C_FUNC_SMBUS_BLOCK_PROC_CALL)) 2672 return -ENODEV; 2673 2674 ret = pmbus_init_coefficients(client, info); 2675 if (ret < 0) 2676 return ret; 2677 } 2678 2679 if (client->flags & I2C_CLIENT_PEC) { 2680 /* 2681 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the 2682 * chip support PEC. Add 'pec' attribute to client device to let 2683 * the user control it. 2684 */ 2685 ret = device_create_file(dev, &dev_attr_pec); 2686 if (ret) 2687 return ret; 2688 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev); 2689 if (ret) 2690 return ret; 2691 } 2692 2693 return 0; 2694 } 2695 2696 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */ 2697 struct pmbus_status_assoc { 2698 int pflag, rflag, eflag; 2699 }; 2700 2701 /* PMBus->regulator bit mappings for a PMBus status register */ 2702 struct pmbus_status_category { 2703 int func; 2704 int reg; 2705 const struct pmbus_status_assoc *bits; /* zero-terminated */ 2706 }; 2707 2708 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = { 2709 { 2710 .func = PMBUS_HAVE_STATUS_VOUT, 2711 .reg = PMBUS_STATUS_VOUT, 2712 .bits = (const struct pmbus_status_assoc[]) { 2713 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN, 2714 REGULATOR_EVENT_UNDER_VOLTAGE_WARN }, 2715 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE, 2716 REGULATOR_EVENT_UNDER_VOLTAGE }, 2717 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN, 2718 REGULATOR_EVENT_OVER_VOLTAGE_WARN }, 2719 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT, 2720 REGULATOR_EVENT_OVER_VOLTAGE_WARN }, 2721 { }, 2722 }, 2723 }, { 2724 .func = PMBUS_HAVE_STATUS_IOUT, 2725 .reg = PMBUS_STATUS_IOUT, 2726 .bits = (const struct pmbus_status_assoc[]) { 2727 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN, 2728 REGULATOR_EVENT_OVER_CURRENT_WARN }, 2729 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT, 2730 REGULATOR_EVENT_OVER_CURRENT }, 2731 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT, 2732 REGULATOR_EVENT_OVER_CURRENT }, 2733 { }, 2734 }, 2735 }, { 2736 .func = PMBUS_HAVE_STATUS_TEMP, 2737 .reg = PMBUS_STATUS_TEMPERATURE, 2738 .bits = (const struct pmbus_status_assoc[]) { 2739 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN, 2740 REGULATOR_EVENT_OVER_TEMP_WARN }, 2741 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP, 2742 REGULATOR_EVENT_OVER_TEMP }, 2743 { }, 2744 }, 2745 }, 2746 }; 2747 2748 static int _pmbus_is_enabled(struct i2c_client *client, u8 page) 2749 { 2750 int ret; 2751 2752 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2753 2754 if (ret < 0) 2755 return ret; 2756 2757 return !!(ret & PB_OPERATION_CONTROL_ON); 2758 } 2759 2760 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page) 2761 { 2762 struct pmbus_data *data = i2c_get_clientdata(client); 2763 int ret; 2764 2765 mutex_lock(&data->update_lock); 2766 ret = _pmbus_is_enabled(client, page); 2767 mutex_unlock(&data->update_lock); 2768 2769 return ret; 2770 } 2771 2772 #define to_dev_attr(_dev_attr) \ 2773 container_of(_dev_attr, struct device_attribute, attr) 2774 2775 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags) 2776 { 2777 int i; 2778 2779 for (i = 0; i < data->num_attributes; i++) { 2780 struct device_attribute *da = to_dev_attr(data->group.attrs[i]); 2781 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 2782 int index = attr->index; 2783 u16 smask = pb_index_to_mask(index); 2784 u8 spage = pb_index_to_page(index); 2785 u16 sreg = pb_index_to_reg(index); 2786 2787 if (reg == sreg && page == spage && (smask & flags)) { 2788 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name); 2789 sysfs_notify(&data->dev->kobj, NULL, da->attr.name); 2790 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE); 2791 flags &= ~smask; 2792 } 2793 2794 if (!flags) 2795 break; 2796 } 2797 } 2798 2799 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, 2800 unsigned int *event, bool notify) 2801 { 2802 int i, status; 2803 const struct pmbus_status_category *cat; 2804 const struct pmbus_status_assoc *bit; 2805 struct device *dev = data->dev; 2806 struct i2c_client *client = to_i2c_client(dev); 2807 int func = data->info->func[page]; 2808 2809 *flags = 0; 2810 *event = 0; 2811 2812 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) { 2813 cat = &pmbus_status_flag_map[i]; 2814 if (!(func & cat->func)) 2815 continue; 2816 2817 status = _pmbus_read_byte_data(client, page, cat->reg); 2818 if (status < 0) 2819 return status; 2820 2821 for (bit = cat->bits; bit->pflag; bit++) 2822 if (status & bit->pflag) { 2823 *flags |= bit->rflag; 2824 *event |= bit->eflag; 2825 } 2826 2827 if (notify && status) 2828 pmbus_notify(data, page, cat->reg, status); 2829 2830 } 2831 2832 /* 2833 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_* 2834 * bits. Some of the other bits are tempting (especially for cases 2835 * where we don't have the relevant PMBUS_HAVE_STATUS_* 2836 * functionality), but there's an unfortunate ambiguity in that 2837 * they're defined as indicating a fault *or* a warning, so we can't 2838 * easily determine whether to report REGULATOR_ERROR_<foo> or 2839 * REGULATOR_ERROR_<foo>_WARN. 2840 */ 2841 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); 2842 if (status < 0) 2843 return status; 2844 2845 if (_pmbus_is_enabled(client, page)) { 2846 if (status & PB_STATUS_OFF) { 2847 *flags |= REGULATOR_ERROR_FAIL; 2848 *event |= REGULATOR_EVENT_FAIL; 2849 } 2850 2851 if (status & PB_STATUS_POWER_GOOD_N) { 2852 *flags |= REGULATOR_ERROR_REGULATION_OUT; 2853 *event |= REGULATOR_EVENT_REGULATION_OUT; 2854 } 2855 } 2856 /* 2857 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are 2858 * defined strictly as fault indicators (not warnings). 2859 */ 2860 if (status & PB_STATUS_IOUT_OC) { 2861 *flags |= REGULATOR_ERROR_OVER_CURRENT; 2862 *event |= REGULATOR_EVENT_OVER_CURRENT; 2863 } 2864 if (status & PB_STATUS_VOUT_OV) { 2865 *flags |= REGULATOR_ERROR_REGULATION_OUT; 2866 *event |= REGULATOR_EVENT_FAIL; 2867 } 2868 2869 /* 2870 * If we haven't discovered any thermal faults or warnings via 2871 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as 2872 * a (conservative) best-effort interpretation. 2873 */ 2874 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) && 2875 (status & PB_STATUS_TEMPERATURE)) { 2876 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN; 2877 *event |= REGULATOR_EVENT_OVER_TEMP_WARN; 2878 } 2879 2880 2881 return 0; 2882 } 2883 2884 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, 2885 unsigned int *event, bool notify) 2886 { 2887 int ret; 2888 2889 mutex_lock(&data->update_lock); 2890 ret = _pmbus_get_flags(data, page, flags, event, notify); 2891 mutex_unlock(&data->update_lock); 2892 2893 return ret; 2894 } 2895 2896 #if IS_ENABLED(CONFIG_REGULATOR) 2897 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2898 { 2899 struct device *dev = rdev_get_dev(rdev); 2900 struct i2c_client *client = to_i2c_client(dev->parent); 2901 2902 return pmbus_is_enabled(client, rdev_get_id(rdev)); 2903 } 2904 2905 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2906 { 2907 struct device *dev = rdev_get_dev(rdev); 2908 struct i2c_client *client = to_i2c_client(dev->parent); 2909 struct pmbus_data *data = i2c_get_clientdata(client); 2910 u8 page = rdev_get_id(rdev); 2911 int ret; 2912 2913 mutex_lock(&data->update_lock); 2914 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2915 PB_OPERATION_CONTROL_ON, 2916 enable ? PB_OPERATION_CONTROL_ON : 0); 2917 mutex_unlock(&data->update_lock); 2918 2919 return ret; 2920 } 2921 2922 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2923 { 2924 return _pmbus_regulator_on_off(rdev, 1); 2925 } 2926 2927 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2928 { 2929 return _pmbus_regulator_on_off(rdev, 0); 2930 } 2931 2932 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags) 2933 { 2934 struct device *dev = rdev_get_dev(rdev); 2935 struct i2c_client *client = to_i2c_client(dev->parent); 2936 struct pmbus_data *data = i2c_get_clientdata(client); 2937 int event; 2938 2939 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false); 2940 } 2941 2942 static int pmbus_regulator_get_status(struct regulator_dev *rdev) 2943 { 2944 struct device *dev = rdev_get_dev(rdev); 2945 struct i2c_client *client = to_i2c_client(dev->parent); 2946 struct pmbus_data *data = i2c_get_clientdata(client); 2947 u8 page = rdev_get_id(rdev); 2948 int status, ret; 2949 int event; 2950 2951 mutex_lock(&data->update_lock); 2952 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); 2953 if (status < 0) { 2954 ret = status; 2955 goto unlock; 2956 } 2957 2958 if (status & PB_STATUS_OFF) { 2959 ret = REGULATOR_STATUS_OFF; 2960 goto unlock; 2961 } 2962 2963 /* If regulator is ON & reports power good then return ON */ 2964 if (!(status & PB_STATUS_POWER_GOOD_N)) { 2965 ret = REGULATOR_STATUS_ON; 2966 goto unlock; 2967 } 2968 2969 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false); 2970 if (ret) 2971 goto unlock; 2972 2973 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT | 2974 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) { 2975 ret = REGULATOR_STATUS_ERROR; 2976 goto unlock; 2977 } 2978 2979 ret = REGULATOR_STATUS_UNDEFINED; 2980 2981 unlock: 2982 mutex_unlock(&data->update_lock); 2983 return ret; 2984 } 2985 2986 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page) 2987 { 2988 struct pmbus_data *data = i2c_get_clientdata(client); 2989 struct pmbus_sensor s = { 2990 .page = page, 2991 .class = PSC_VOLTAGE_OUT, 2992 .convert = true, 2993 .data = -1, 2994 }; 2995 2996 if (data->vout_low[page] < 0) { 2997 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN)) 2998 s.data = _pmbus_read_word_data(client, page, 0xff, 2999 PMBUS_MFR_VOUT_MIN); 3000 if (s.data < 0) { 3001 s.data = _pmbus_read_word_data(client, page, 0xff, 3002 PMBUS_VOUT_MARGIN_LOW); 3003 if (s.data < 0) 3004 return s.data; 3005 } 3006 data->vout_low[page] = pmbus_reg2data(data, &s); 3007 } 3008 3009 return data->vout_low[page]; 3010 } 3011 3012 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page) 3013 { 3014 struct pmbus_data *data = i2c_get_clientdata(client); 3015 struct pmbus_sensor s = { 3016 .page = page, 3017 .class = PSC_VOLTAGE_OUT, 3018 .convert = true, 3019 .data = -1, 3020 }; 3021 3022 if (data->vout_high[page] < 0) { 3023 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX)) 3024 s.data = _pmbus_read_word_data(client, page, 0xff, 3025 PMBUS_MFR_VOUT_MAX); 3026 if (s.data < 0) { 3027 s.data = _pmbus_read_word_data(client, page, 0xff, 3028 PMBUS_VOUT_MARGIN_HIGH); 3029 if (s.data < 0) 3030 return s.data; 3031 } 3032 data->vout_high[page] = pmbus_reg2data(data, &s); 3033 } 3034 3035 return data->vout_high[page]; 3036 } 3037 3038 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev) 3039 { 3040 struct device *dev = rdev_get_dev(rdev); 3041 struct i2c_client *client = to_i2c_client(dev->parent); 3042 struct pmbus_data *data = i2c_get_clientdata(client); 3043 struct pmbus_sensor s = { 3044 .page = rdev_get_id(rdev), 3045 .class = PSC_VOLTAGE_OUT, 3046 .convert = true, 3047 }; 3048 3049 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT); 3050 if (s.data < 0) 3051 return s.data; 3052 3053 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */ 3054 } 3055 3056 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv, 3057 int max_uv, unsigned int *selector) 3058 { 3059 struct device *dev = rdev_get_dev(rdev); 3060 struct i2c_client *client = to_i2c_client(dev->parent); 3061 struct pmbus_data *data = i2c_get_clientdata(client); 3062 struct pmbus_sensor s = { 3063 .page = rdev_get_id(rdev), 3064 .class = PSC_VOLTAGE_OUT, 3065 .convert = true, 3066 .data = -1, 3067 }; 3068 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */ 3069 int low, high; 3070 3071 *selector = 0; 3072 3073 low = pmbus_regulator_get_low_margin(client, s.page); 3074 if (low < 0) 3075 return low; 3076 3077 high = pmbus_regulator_get_high_margin(client, s.page); 3078 if (high < 0) 3079 return high; 3080 3081 /* Make sure we are within margins */ 3082 if (low > val) 3083 val = low; 3084 if (high < val) 3085 val = high; 3086 3087 val = pmbus_data2reg(data, &s, val); 3088 3089 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val); 3090 } 3091 3092 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev, 3093 unsigned int selector) 3094 { 3095 struct device *dev = rdev_get_dev(rdev); 3096 struct i2c_client *client = to_i2c_client(dev->parent); 3097 int val, low, high; 3098 3099 if (selector >= rdev->desc->n_voltages || 3100 selector < rdev->desc->linear_min_sel) 3101 return -EINVAL; 3102 3103 selector -= rdev->desc->linear_min_sel; 3104 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV + 3105 (rdev->desc->uV_step * selector), 1000); /* convert to mV */ 3106 3107 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev)); 3108 if (low < 0) 3109 return low; 3110 3111 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev)); 3112 if (high < 0) 3113 return high; 3114 3115 if (val >= low && val <= high) 3116 return val * 1000; /* unit is uV */ 3117 3118 return 0; 3119 } 3120 3121 const struct regulator_ops pmbus_regulator_ops = { 3122 .enable = pmbus_regulator_enable, 3123 .disable = pmbus_regulator_disable, 3124 .is_enabled = pmbus_regulator_is_enabled, 3125 .get_error_flags = pmbus_regulator_get_error_flags, 3126 .get_status = pmbus_regulator_get_status, 3127 .get_voltage = pmbus_regulator_get_voltage, 3128 .set_voltage = pmbus_regulator_set_voltage, 3129 .list_voltage = pmbus_regulator_list_voltage, 3130 }; 3131 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS); 3132 3133 static int pmbus_regulator_register(struct pmbus_data *data) 3134 { 3135 struct device *dev = data->dev; 3136 const struct pmbus_driver_info *info = data->info; 3137 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 3138 int i; 3139 3140 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators, 3141 GFP_KERNEL); 3142 if (!data->rdevs) 3143 return -ENOMEM; 3144 3145 for (i = 0; i < info->num_regulators; i++) { 3146 struct regulator_config config = { }; 3147 3148 config.dev = dev; 3149 config.driver_data = data; 3150 3151 if (pdata && pdata->reg_init_data) 3152 config.init_data = &pdata->reg_init_data[i]; 3153 3154 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i], 3155 &config); 3156 if (IS_ERR(data->rdevs[i])) 3157 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]), 3158 "Failed to register %s regulator\n", 3159 info->reg_desc[i].name); 3160 } 3161 3162 return 0; 3163 } 3164 3165 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) 3166 { 3167 int j; 3168 3169 for (j = 0; j < data->info->num_regulators; j++) { 3170 if (page == rdev_get_id(data->rdevs[j])) { 3171 regulator_notifier_call_chain(data->rdevs[j], event, NULL); 3172 break; 3173 } 3174 } 3175 return 0; 3176 } 3177 #else 3178 static int pmbus_regulator_register(struct pmbus_data *data) 3179 { 3180 return 0; 3181 } 3182 3183 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) 3184 { 3185 return 0; 3186 } 3187 #endif 3188 3189 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val) 3190 { 3191 return pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8)); 3192 } 3193 3194 static irqreturn_t pmbus_fault_handler(int irq, void *pdata) 3195 { 3196 struct pmbus_data *data = pdata; 3197 struct i2c_client *client = to_i2c_client(data->dev); 3198 3199 int i, status, event; 3200 mutex_lock(&data->update_lock); 3201 for (i = 0; i < data->info->pages; i++) { 3202 _pmbus_get_flags(data, i, &status, &event, true); 3203 3204 if (event) 3205 pmbus_regulator_notify(data, i, event); 3206 } 3207 3208 pmbus_clear_faults(client); 3209 mutex_unlock(&data->update_lock); 3210 3211 return IRQ_HANDLED; 3212 } 3213 3214 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data) 3215 { 3216 struct device *dev = &client->dev; 3217 const struct pmbus_status_category *cat; 3218 const struct pmbus_status_assoc *bit; 3219 int i, j, err, func; 3220 u8 mask; 3221 3222 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER, 3223 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12, 3224 PMBUS_STATUS_FAN_34}; 3225 3226 if (!client->irq) 3227 return 0; 3228 3229 for (i = 0; i < data->info->pages; i++) { 3230 func = data->info->func[i]; 3231 3232 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) { 3233 cat = &pmbus_status_flag_map[j]; 3234 if (!(func & cat->func)) 3235 continue; 3236 mask = 0; 3237 for (bit = cat->bits; bit->pflag; bit++) 3238 mask |= bit->pflag; 3239 3240 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask); 3241 if (err) 3242 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n", 3243 cat->reg); 3244 } 3245 3246 for (j = 0; j < ARRAY_SIZE(misc_status); j++) 3247 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff); 3248 } 3249 3250 /* Register notifiers */ 3251 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler, 3252 IRQF_ONESHOT, "pmbus-irq", data); 3253 if (err) { 3254 dev_err(dev, "failed to request an irq %d\n", err); 3255 return err; 3256 } 3257 3258 return 0; 3259 } 3260 3261 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 3262 3263 #if IS_ENABLED(CONFIG_DEBUG_FS) 3264 static int pmbus_debugfs_get(void *data, u64 *val) 3265 { 3266 int rc; 3267 struct pmbus_debugfs_entry *entry = data; 3268 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3269 3270 rc = mutex_lock_interruptible(&pdata->update_lock); 3271 if (rc) 3272 return rc; 3273 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 3274 mutex_unlock(&pdata->update_lock); 3275 if (rc < 0) 3276 return rc; 3277 3278 *val = rc; 3279 3280 return 0; 3281 } 3282 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 3283 "0x%02llx\n"); 3284 3285 static int pmbus_debugfs_get_status(void *data, u64 *val) 3286 { 3287 int rc; 3288 struct pmbus_debugfs_entry *entry = data; 3289 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3290 3291 rc = mutex_lock_interruptible(&pdata->update_lock); 3292 if (rc) 3293 return rc; 3294 rc = pdata->read_status(entry->client, entry->page); 3295 mutex_unlock(&pdata->update_lock); 3296 if (rc < 0) 3297 return rc; 3298 3299 *val = rc; 3300 3301 return 0; 3302 } 3303 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 3304 NULL, "0x%04llx\n"); 3305 3306 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf, 3307 size_t count, loff_t *ppos) 3308 { 3309 int rc; 3310 struct pmbus_debugfs_entry *entry = file->private_data; 3311 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3312 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 }; 3313 3314 rc = mutex_lock_interruptible(&pdata->update_lock); 3315 if (rc) 3316 return rc; 3317 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg, 3318 data); 3319 mutex_unlock(&pdata->update_lock); 3320 if (rc < 0) 3321 return rc; 3322 3323 /* Add newline at the end of a read data */ 3324 data[rc] = '\n'; 3325 3326 /* Include newline into the length */ 3327 rc += 1; 3328 3329 return simple_read_from_buffer(buf, count, ppos, data, rc); 3330 } 3331 3332 static const struct file_operations pmbus_debugfs_ops_mfr = { 3333 .llseek = noop_llseek, 3334 .read = pmbus_debugfs_mfr_read, 3335 .write = NULL, 3336 .open = simple_open, 3337 }; 3338 3339 static void pmbus_remove_debugfs(void *data) 3340 { 3341 struct dentry *entry = data; 3342 3343 debugfs_remove_recursive(entry); 3344 } 3345 3346 static int pmbus_init_debugfs(struct i2c_client *client, 3347 struct pmbus_data *data) 3348 { 3349 int i, idx = 0; 3350 char name[PMBUS_NAME_SIZE]; 3351 struct pmbus_debugfs_entry *entries; 3352 3353 if (!pmbus_debugfs_dir) 3354 return -ENODEV; 3355 3356 /* 3357 * Create the debugfs directory for this device. Use the hwmon device 3358 * name to avoid conflicts (hwmon numbers are globally unique). 3359 */ 3360 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 3361 pmbus_debugfs_dir); 3362 if (IS_ERR_OR_NULL(data->debugfs)) { 3363 data->debugfs = NULL; 3364 return -ENODEV; 3365 } 3366 3367 /* 3368 * Allocate the max possible entries we need. 3369 * 6 entries device-specific 3370 * 10 entries page-specific 3371 */ 3372 entries = devm_kcalloc(data->dev, 3373 6 + data->info->pages * 10, sizeof(*entries), 3374 GFP_KERNEL); 3375 if (!entries) 3376 return -ENOMEM; 3377 3378 /* 3379 * Add device-specific entries. 3380 * Please note that the PMBUS standard allows all registers to be 3381 * page-specific. 3382 * To reduce the number of debugfs entries for devices with many pages 3383 * assume that values of the following registers are the same for all 3384 * pages and report values only for page 0. 3385 */ 3386 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) { 3387 entries[idx].client = client; 3388 entries[idx].page = 0; 3389 entries[idx].reg = PMBUS_MFR_ID; 3390 debugfs_create_file("mfr_id", 0444, data->debugfs, 3391 &entries[idx++], 3392 &pmbus_debugfs_ops_mfr); 3393 } 3394 3395 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) { 3396 entries[idx].client = client; 3397 entries[idx].page = 0; 3398 entries[idx].reg = PMBUS_MFR_MODEL; 3399 debugfs_create_file("mfr_model", 0444, data->debugfs, 3400 &entries[idx++], 3401 &pmbus_debugfs_ops_mfr); 3402 } 3403 3404 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) { 3405 entries[idx].client = client; 3406 entries[idx].page = 0; 3407 entries[idx].reg = PMBUS_MFR_REVISION; 3408 debugfs_create_file("mfr_revision", 0444, data->debugfs, 3409 &entries[idx++], 3410 &pmbus_debugfs_ops_mfr); 3411 } 3412 3413 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) { 3414 entries[idx].client = client; 3415 entries[idx].page = 0; 3416 entries[idx].reg = PMBUS_MFR_LOCATION; 3417 debugfs_create_file("mfr_location", 0444, data->debugfs, 3418 &entries[idx++], 3419 &pmbus_debugfs_ops_mfr); 3420 } 3421 3422 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) { 3423 entries[idx].client = client; 3424 entries[idx].page = 0; 3425 entries[idx].reg = PMBUS_MFR_DATE; 3426 debugfs_create_file("mfr_date", 0444, data->debugfs, 3427 &entries[idx++], 3428 &pmbus_debugfs_ops_mfr); 3429 } 3430 3431 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) { 3432 entries[idx].client = client; 3433 entries[idx].page = 0; 3434 entries[idx].reg = PMBUS_MFR_SERIAL; 3435 debugfs_create_file("mfr_serial", 0444, data->debugfs, 3436 &entries[idx++], 3437 &pmbus_debugfs_ops_mfr); 3438 } 3439 3440 /* Add page specific entries */ 3441 for (i = 0; i < data->info->pages; ++i) { 3442 /* Check accessibility of status register if it's not page 0 */ 3443 if (!i || pmbus_check_status_register(client, i)) { 3444 /* No need to set reg as we have special read op. */ 3445 entries[idx].client = client; 3446 entries[idx].page = i; 3447 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 3448 debugfs_create_file(name, 0444, data->debugfs, 3449 &entries[idx++], 3450 &pmbus_debugfs_ops_status); 3451 } 3452 3453 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 3454 entries[idx].client = client; 3455 entries[idx].page = i; 3456 entries[idx].reg = PMBUS_STATUS_VOUT; 3457 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 3458 debugfs_create_file(name, 0444, data->debugfs, 3459 &entries[idx++], 3460 &pmbus_debugfs_ops); 3461 } 3462 3463 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 3464 entries[idx].client = client; 3465 entries[idx].page = i; 3466 entries[idx].reg = PMBUS_STATUS_IOUT; 3467 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 3468 debugfs_create_file(name, 0444, data->debugfs, 3469 &entries[idx++], 3470 &pmbus_debugfs_ops); 3471 } 3472 3473 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 3474 entries[idx].client = client; 3475 entries[idx].page = i; 3476 entries[idx].reg = PMBUS_STATUS_INPUT; 3477 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 3478 debugfs_create_file(name, 0444, data->debugfs, 3479 &entries[idx++], 3480 &pmbus_debugfs_ops); 3481 } 3482 3483 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 3484 entries[idx].client = client; 3485 entries[idx].page = i; 3486 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 3487 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 3488 debugfs_create_file(name, 0444, data->debugfs, 3489 &entries[idx++], 3490 &pmbus_debugfs_ops); 3491 } 3492 3493 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 3494 entries[idx].client = client; 3495 entries[idx].page = i; 3496 entries[idx].reg = PMBUS_STATUS_CML; 3497 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 3498 debugfs_create_file(name, 0444, data->debugfs, 3499 &entries[idx++], 3500 &pmbus_debugfs_ops); 3501 } 3502 3503 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 3504 entries[idx].client = client; 3505 entries[idx].page = i; 3506 entries[idx].reg = PMBUS_STATUS_OTHER; 3507 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 3508 debugfs_create_file(name, 0444, data->debugfs, 3509 &entries[idx++], 3510 &pmbus_debugfs_ops); 3511 } 3512 3513 if (pmbus_check_byte_register(client, i, 3514 PMBUS_STATUS_MFR_SPECIFIC)) { 3515 entries[idx].client = client; 3516 entries[idx].page = i; 3517 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 3518 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 3519 debugfs_create_file(name, 0444, data->debugfs, 3520 &entries[idx++], 3521 &pmbus_debugfs_ops); 3522 } 3523 3524 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 3525 entries[idx].client = client; 3526 entries[idx].page = i; 3527 entries[idx].reg = PMBUS_STATUS_FAN_12; 3528 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 3529 debugfs_create_file(name, 0444, data->debugfs, 3530 &entries[idx++], 3531 &pmbus_debugfs_ops); 3532 } 3533 3534 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 3535 entries[idx].client = client; 3536 entries[idx].page = i; 3537 entries[idx].reg = PMBUS_STATUS_FAN_34; 3538 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 3539 debugfs_create_file(name, 0444, data->debugfs, 3540 &entries[idx++], 3541 &pmbus_debugfs_ops); 3542 } 3543 } 3544 3545 return devm_add_action_or_reset(data->dev, 3546 pmbus_remove_debugfs, data->debugfs); 3547 } 3548 #else 3549 static int pmbus_init_debugfs(struct i2c_client *client, 3550 struct pmbus_data *data) 3551 { 3552 return 0; 3553 } 3554 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 3555 3556 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) 3557 { 3558 struct device *dev = &client->dev; 3559 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 3560 struct pmbus_data *data; 3561 size_t groups_num = 0; 3562 int ret; 3563 int i; 3564 char *name; 3565 3566 if (!info) 3567 return -ENODEV; 3568 3569 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 3570 | I2C_FUNC_SMBUS_BYTE_DATA 3571 | I2C_FUNC_SMBUS_WORD_DATA)) 3572 return -ENODEV; 3573 3574 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 3575 if (!data) 3576 return -ENOMEM; 3577 3578 if (info->groups) 3579 while (info->groups[groups_num]) 3580 groups_num++; 3581 3582 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 3583 GFP_KERNEL); 3584 if (!data->groups) 3585 return -ENOMEM; 3586 3587 i2c_set_clientdata(client, data); 3588 mutex_init(&data->update_lock); 3589 data->dev = dev; 3590 3591 if (pdata) 3592 data->flags = pdata->flags; 3593 data->info = info; 3594 data->currpage = -1; 3595 data->currphase = -1; 3596 3597 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) { 3598 data->vout_low[i] = -1; 3599 data->vout_high[i] = -1; 3600 } 3601 3602 ret = pmbus_init_common(client, data, info); 3603 if (ret < 0) 3604 return ret; 3605 3606 ret = pmbus_find_attributes(client, data); 3607 if (ret) 3608 return ret; 3609 3610 /* 3611 * If there are no attributes, something is wrong. 3612 * Bail out instead of trying to register nothing. 3613 */ 3614 if (!data->num_attributes) { 3615 dev_err(dev, "No attributes found\n"); 3616 return -ENODEV; 3617 } 3618 3619 name = devm_kstrdup(dev, client->name, GFP_KERNEL); 3620 if (!name) 3621 return -ENOMEM; 3622 strreplace(name, '-', '_'); 3623 3624 data->groups[0] = &data->group; 3625 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 3626 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, 3627 name, data, data->groups); 3628 if (IS_ERR(data->hwmon_dev)) { 3629 dev_err(dev, "Failed to register hwmon device\n"); 3630 return PTR_ERR(data->hwmon_dev); 3631 } 3632 3633 ret = pmbus_regulator_register(data); 3634 if (ret) 3635 return ret; 3636 3637 ret = pmbus_irq_setup(client, data); 3638 if (ret) 3639 return ret; 3640 3641 ret = pmbus_init_debugfs(client, data); 3642 if (ret) 3643 dev_warn(dev, "Failed to register debugfs\n"); 3644 3645 return 0; 3646 } 3647 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS); 3648 3649 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 3650 { 3651 struct pmbus_data *data = i2c_get_clientdata(client); 3652 3653 return data->debugfs; 3654 } 3655 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS); 3656 3657 int pmbus_lock_interruptible(struct i2c_client *client) 3658 { 3659 struct pmbus_data *data = i2c_get_clientdata(client); 3660 3661 return mutex_lock_interruptible(&data->update_lock); 3662 } 3663 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS); 3664 3665 void pmbus_unlock(struct i2c_client *client) 3666 { 3667 struct pmbus_data *data = i2c_get_clientdata(client); 3668 3669 mutex_unlock(&data->update_lock); 3670 } 3671 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS); 3672 3673 static int __init pmbus_core_init(void) 3674 { 3675 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 3676 if (IS_ERR(pmbus_debugfs_dir)) 3677 pmbus_debugfs_dir = NULL; 3678 3679 return 0; 3680 } 3681 3682 static void __exit pmbus_core_exit(void) 3683 { 3684 debugfs_remove_recursive(pmbus_debugfs_dir); 3685 } 3686 3687 module_init(pmbus_core_init); 3688 module_exit(pmbus_core_exit); 3689 3690 MODULE_AUTHOR("Guenter Roeck"); 3691 MODULE_DESCRIPTION("PMBus core driver"); 3692 MODULE_LICENSE("GPL"); 3693