xref: /openbmc/linux/drivers/hwmon/pmbus/pmbus_core.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include "pmbus.h"
23 
24 /*
25  * Number of additional attribute pointers to allocate
26  * with each call to krealloc
27  */
28 #define PMBUS_ATTR_ALLOC_SIZE	32
29 #define PMBUS_NAME_SIZE		24
30 
31 struct pmbus_sensor {
32 	struct pmbus_sensor *next;
33 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
34 	struct device_attribute attribute;
35 	u8 page;		/* page number */
36 	u8 phase;		/* phase number, 0xff for all phases */
37 	u16 reg;		/* register */
38 	enum pmbus_sensor_classes class;	/* sensor class */
39 	bool update;		/* runtime sensor update needed */
40 	bool convert;		/* Whether or not to apply linear/vid/direct */
41 	int data;		/* Sensor data.
42 				   Negative if there was a read error */
43 };
44 #define to_pmbus_sensor(_attr) \
45 	container_of(_attr, struct pmbus_sensor, attribute)
46 
47 struct pmbus_boolean {
48 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
49 	struct sensor_device_attribute attribute;
50 	struct pmbus_sensor *s1;
51 	struct pmbus_sensor *s2;
52 };
53 #define to_pmbus_boolean(_attr) \
54 	container_of(_attr, struct pmbus_boolean, attribute)
55 
56 struct pmbus_label {
57 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
58 	struct device_attribute attribute;
59 	char label[PMBUS_NAME_SIZE];	/* label */
60 };
61 #define to_pmbus_label(_attr) \
62 	container_of(_attr, struct pmbus_label, attribute)
63 
64 /* Macros for converting between sensor index and register/page/status mask */
65 
66 #define PB_STATUS_MASK	0xffff
67 #define PB_REG_SHIFT	16
68 #define PB_REG_MASK	0x3ff
69 #define PB_PAGE_SHIFT	26
70 #define PB_PAGE_MASK	0x3f
71 
72 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
73 						 ((reg) << PB_REG_SHIFT) | (mask))
74 
75 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
76 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
77 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
78 
79 struct pmbus_data {
80 	struct device *dev;
81 	struct device *hwmon_dev;
82 
83 	u32 flags;		/* from platform data */
84 
85 	int exponent[PMBUS_PAGES];
86 				/* linear mode: exponent for output voltages */
87 
88 	const struct pmbus_driver_info *info;
89 
90 	int max_attributes;
91 	int num_attributes;
92 	struct attribute_group group;
93 	const struct attribute_group **groups;
94 	struct dentry *debugfs;		/* debugfs device directory */
95 
96 	struct pmbus_sensor *sensors;
97 
98 	struct mutex update_lock;
99 
100 	bool has_status_word;		/* device uses STATUS_WORD register */
101 	int (*read_status)(struct i2c_client *client, int page);
102 
103 	s16 currpage;	/* current page, -1 for unknown/unset */
104 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
105 };
106 
107 struct pmbus_debugfs_entry {
108 	struct i2c_client *client;
109 	u8 page;
110 	u8 reg;
111 };
112 
113 static const int pmbus_fan_rpm_mask[] = {
114 	PB_FAN_1_RPM,
115 	PB_FAN_2_RPM,
116 	PB_FAN_1_RPM,
117 	PB_FAN_2_RPM,
118 };
119 
120 static const int pmbus_fan_config_registers[] = {
121 	PMBUS_FAN_CONFIG_12,
122 	PMBUS_FAN_CONFIG_12,
123 	PMBUS_FAN_CONFIG_34,
124 	PMBUS_FAN_CONFIG_34
125 };
126 
127 static const int pmbus_fan_command_registers[] = {
128 	PMBUS_FAN_COMMAND_1,
129 	PMBUS_FAN_COMMAND_2,
130 	PMBUS_FAN_COMMAND_3,
131 	PMBUS_FAN_COMMAND_4,
132 };
133 
134 void pmbus_clear_cache(struct i2c_client *client)
135 {
136 	struct pmbus_data *data = i2c_get_clientdata(client);
137 	struct pmbus_sensor *sensor;
138 
139 	for (sensor = data->sensors; sensor; sensor = sensor->next)
140 		sensor->data = -ENODATA;
141 }
142 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
143 
144 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
145 {
146 	struct pmbus_data *data = i2c_get_clientdata(client);
147 	struct pmbus_sensor *sensor;
148 
149 	for (sensor = data->sensors; sensor; sensor = sensor->next)
150 		if (sensor->reg == reg)
151 			sensor->update = update;
152 }
153 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
154 
155 int pmbus_set_page(struct i2c_client *client, int page, int phase)
156 {
157 	struct pmbus_data *data = i2c_get_clientdata(client);
158 	int rv;
159 
160 	if (page < 0)
161 		return 0;
162 
163 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
164 	    data->info->pages > 1 && page != data->currpage) {
165 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
166 		if (rv < 0)
167 			return rv;
168 
169 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
170 		if (rv < 0)
171 			return rv;
172 
173 		if (rv != page)
174 			return -EIO;
175 	}
176 	data->currpage = page;
177 
178 	if (data->info->phases[page] && data->currphase != phase &&
179 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
180 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
181 					       phase);
182 		if (rv)
183 			return rv;
184 	}
185 	data->currphase = phase;
186 
187 	return 0;
188 }
189 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
190 
191 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
192 {
193 	int rv;
194 
195 	rv = pmbus_set_page(client, page, 0xff);
196 	if (rv < 0)
197 		return rv;
198 
199 	return i2c_smbus_write_byte(client, value);
200 }
201 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
202 
203 /*
204  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
205  * a device specific mapping function exists and calls it if necessary.
206  */
207 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
208 {
209 	struct pmbus_data *data = i2c_get_clientdata(client);
210 	const struct pmbus_driver_info *info = data->info;
211 	int status;
212 
213 	if (info->write_byte) {
214 		status = info->write_byte(client, page, value);
215 		if (status != -ENODATA)
216 			return status;
217 	}
218 	return pmbus_write_byte(client, page, value);
219 }
220 
221 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
222 			  u16 word)
223 {
224 	int rv;
225 
226 	rv = pmbus_set_page(client, page, 0xff);
227 	if (rv < 0)
228 		return rv;
229 
230 	return i2c_smbus_write_word_data(client, reg, word);
231 }
232 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
233 
234 
235 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
236 				u16 word)
237 {
238 	int bit;
239 	int id;
240 	int rv;
241 
242 	switch (reg) {
243 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
244 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
245 		bit = pmbus_fan_rpm_mask[id];
246 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
247 		break;
248 	default:
249 		rv = -ENXIO;
250 		break;
251 	}
252 
253 	return rv;
254 }
255 
256 /*
257  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
258  * a device specific mapping function exists and calls it if necessary.
259  */
260 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
261 				  u16 word)
262 {
263 	struct pmbus_data *data = i2c_get_clientdata(client);
264 	const struct pmbus_driver_info *info = data->info;
265 	int status;
266 
267 	if (info->write_word_data) {
268 		status = info->write_word_data(client, page, reg, word);
269 		if (status != -ENODATA)
270 			return status;
271 	}
272 
273 	if (reg >= PMBUS_VIRT_BASE)
274 		return pmbus_write_virt_reg(client, page, reg, word);
275 
276 	return pmbus_write_word_data(client, page, reg, word);
277 }
278 
279 int pmbus_update_fan(struct i2c_client *client, int page, int id,
280 		     u8 config, u8 mask, u16 command)
281 {
282 	int from;
283 	int rv;
284 	u8 to;
285 
286 	from = pmbus_read_byte_data(client, page,
287 				    pmbus_fan_config_registers[id]);
288 	if (from < 0)
289 		return from;
290 
291 	to = (from & ~mask) | (config & mask);
292 	if (to != from) {
293 		rv = pmbus_write_byte_data(client, page,
294 					   pmbus_fan_config_registers[id], to);
295 		if (rv < 0)
296 			return rv;
297 	}
298 
299 	return _pmbus_write_word_data(client, page,
300 				      pmbus_fan_command_registers[id], command);
301 }
302 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
303 
304 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
305 {
306 	int rv;
307 
308 	rv = pmbus_set_page(client, page, phase);
309 	if (rv < 0)
310 		return rv;
311 
312 	return i2c_smbus_read_word_data(client, reg);
313 }
314 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
315 
316 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
317 {
318 	int rv;
319 	int id;
320 
321 	switch (reg) {
322 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
323 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
324 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
325 		break;
326 	default:
327 		rv = -ENXIO;
328 		break;
329 	}
330 
331 	return rv;
332 }
333 
334 /*
335  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
336  * a device specific mapping function exists and calls it if necessary.
337  */
338 static int _pmbus_read_word_data(struct i2c_client *client, int page,
339 				 int phase, int reg)
340 {
341 	struct pmbus_data *data = i2c_get_clientdata(client);
342 	const struct pmbus_driver_info *info = data->info;
343 	int status;
344 
345 	if (info->read_word_data) {
346 		status = info->read_word_data(client, page, phase, reg);
347 		if (status != -ENODATA)
348 			return status;
349 	}
350 
351 	if (reg >= PMBUS_VIRT_BASE)
352 		return pmbus_read_virt_reg(client, page, reg);
353 
354 	return pmbus_read_word_data(client, page, phase, reg);
355 }
356 
357 /* Same as above, but without phase parameter, for use in check functions */
358 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
359 {
360 	return _pmbus_read_word_data(client, page, 0xff, reg);
361 }
362 
363 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
364 {
365 	int rv;
366 
367 	rv = pmbus_set_page(client, page, 0xff);
368 	if (rv < 0)
369 		return rv;
370 
371 	return i2c_smbus_read_byte_data(client, reg);
372 }
373 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
374 
375 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
376 {
377 	int rv;
378 
379 	rv = pmbus_set_page(client, page, 0xff);
380 	if (rv < 0)
381 		return rv;
382 
383 	return i2c_smbus_write_byte_data(client, reg, value);
384 }
385 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
386 
387 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
388 			   u8 mask, u8 value)
389 {
390 	unsigned int tmp;
391 	int rv;
392 
393 	rv = pmbus_read_byte_data(client, page, reg);
394 	if (rv < 0)
395 		return rv;
396 
397 	tmp = (rv & ~mask) | (value & mask);
398 
399 	if (tmp != rv)
400 		rv = pmbus_write_byte_data(client, page, reg, tmp);
401 
402 	return rv;
403 }
404 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
405 
406 /*
407  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
408  * a device specific mapping function exists and calls it if necessary.
409  */
410 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
411 {
412 	struct pmbus_data *data = i2c_get_clientdata(client);
413 	const struct pmbus_driver_info *info = data->info;
414 	int status;
415 
416 	if (info->read_byte_data) {
417 		status = info->read_byte_data(client, page, reg);
418 		if (status != -ENODATA)
419 			return status;
420 	}
421 	return pmbus_read_byte_data(client, page, reg);
422 }
423 
424 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
425 					      int reg)
426 {
427 	struct pmbus_sensor *sensor;
428 
429 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
430 		if (sensor->page == page && sensor->reg == reg)
431 			return sensor;
432 	}
433 
434 	return ERR_PTR(-EINVAL);
435 }
436 
437 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
438 			      enum pmbus_fan_mode mode,
439 			      bool from_cache)
440 {
441 	struct pmbus_data *data = i2c_get_clientdata(client);
442 	bool want_rpm, have_rpm;
443 	struct pmbus_sensor *s;
444 	int config;
445 	int reg;
446 
447 	want_rpm = (mode == rpm);
448 
449 	if (from_cache) {
450 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
451 		s = pmbus_find_sensor(data, page, reg + id);
452 		if (IS_ERR(s))
453 			return PTR_ERR(s);
454 
455 		return s->data;
456 	}
457 
458 	config = pmbus_read_byte_data(client, page,
459 				      pmbus_fan_config_registers[id]);
460 	if (config < 0)
461 		return config;
462 
463 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
464 	if (want_rpm == have_rpm)
465 		return pmbus_read_word_data(client, page, 0xff,
466 					    pmbus_fan_command_registers[id]);
467 
468 	/* Can't sensibly map between RPM and PWM, just return zero */
469 	return 0;
470 }
471 
472 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
473 			      enum pmbus_fan_mode mode)
474 {
475 	return pmbus_get_fan_rate(client, page, id, mode, false);
476 }
477 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
478 
479 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
480 			      enum pmbus_fan_mode mode)
481 {
482 	return pmbus_get_fan_rate(client, page, id, mode, true);
483 }
484 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
485 
486 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
487 {
488 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
489 }
490 
491 void pmbus_clear_faults(struct i2c_client *client)
492 {
493 	struct pmbus_data *data = i2c_get_clientdata(client);
494 	int i;
495 
496 	for (i = 0; i < data->info->pages; i++)
497 		pmbus_clear_fault_page(client, i);
498 }
499 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
500 
501 static int pmbus_check_status_cml(struct i2c_client *client)
502 {
503 	struct pmbus_data *data = i2c_get_clientdata(client);
504 	int status, status2;
505 
506 	status = data->read_status(client, -1);
507 	if (status < 0 || (status & PB_STATUS_CML)) {
508 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
509 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
510 			return -EIO;
511 	}
512 	return 0;
513 }
514 
515 static bool pmbus_check_register(struct i2c_client *client,
516 				 int (*func)(struct i2c_client *client,
517 					     int page, int reg),
518 				 int page, int reg)
519 {
520 	int rv;
521 	struct pmbus_data *data = i2c_get_clientdata(client);
522 
523 	rv = func(client, page, reg);
524 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
525 		rv = pmbus_check_status_cml(client);
526 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
527 		data->read_status(client, -1);
528 	pmbus_clear_fault_page(client, -1);
529 	return rv >= 0;
530 }
531 
532 static bool pmbus_check_status_register(struct i2c_client *client, int page)
533 {
534 	int status;
535 	struct pmbus_data *data = i2c_get_clientdata(client);
536 
537 	status = data->read_status(client, page);
538 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
539 	    (status & PB_STATUS_CML)) {
540 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
541 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
542 			status = -EIO;
543 	}
544 
545 	pmbus_clear_fault_page(client, -1);
546 	return status >= 0;
547 }
548 
549 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
550 {
551 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
552 }
553 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
554 
555 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
556 {
557 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
558 }
559 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
560 
561 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
562 {
563 	struct pmbus_data *data = i2c_get_clientdata(client);
564 
565 	return data->info;
566 }
567 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
568 
569 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
570 {
571 	struct pmbus_data *data = i2c_get_clientdata(client);
572 	int status;
573 
574 	switch (reg) {
575 	case PMBUS_STATUS_WORD:
576 		status = data->read_status(client, page);
577 		break;
578 	default:
579 		status = _pmbus_read_byte_data(client, page, reg);
580 		break;
581 	}
582 	if (status < 0)
583 		pmbus_clear_faults(client);
584 	return status;
585 }
586 
587 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
588 {
589 	if (sensor->data < 0 || sensor->update)
590 		sensor->data = _pmbus_read_word_data(client, sensor->page,
591 						     sensor->phase, sensor->reg);
592 }
593 
594 /*
595  * Convert linear sensor values to milli- or micro-units
596  * depending on sensor type.
597  */
598 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
599 				 struct pmbus_sensor *sensor)
600 {
601 	s16 exponent;
602 	s32 mantissa;
603 	s64 val;
604 
605 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
606 		exponent = data->exponent[sensor->page];
607 		mantissa = (u16) sensor->data;
608 	} else {				/* LINEAR11 */
609 		exponent = ((s16)sensor->data) >> 11;
610 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
611 	}
612 
613 	val = mantissa;
614 
615 	/* scale result to milli-units for all sensors except fans */
616 	if (sensor->class != PSC_FAN)
617 		val = val * 1000LL;
618 
619 	/* scale result to micro-units for power sensors */
620 	if (sensor->class == PSC_POWER)
621 		val = val * 1000LL;
622 
623 	if (exponent >= 0)
624 		val <<= exponent;
625 	else
626 		val >>= -exponent;
627 
628 	return val;
629 }
630 
631 /*
632  * Convert direct sensor values to milli- or micro-units
633  * depending on sensor type.
634  */
635 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
636 				 struct pmbus_sensor *sensor)
637 {
638 	s64 b, val = (s16)sensor->data;
639 	s32 m, R;
640 
641 	m = data->info->m[sensor->class];
642 	b = data->info->b[sensor->class];
643 	R = data->info->R[sensor->class];
644 
645 	if (m == 0)
646 		return 0;
647 
648 	/* X = 1/m * (Y * 10^-R - b) */
649 	R = -R;
650 	/* scale result to milli-units for everything but fans */
651 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
652 		R += 3;
653 		b *= 1000;
654 	}
655 
656 	/* scale result to micro-units for power sensors */
657 	if (sensor->class == PSC_POWER) {
658 		R += 3;
659 		b *= 1000;
660 	}
661 
662 	while (R > 0) {
663 		val *= 10;
664 		R--;
665 	}
666 	while (R < 0) {
667 		val = div_s64(val + 5LL, 10L);  /* round closest */
668 		R++;
669 	}
670 
671 	val = div_s64(val - b, m);
672 	return val;
673 }
674 
675 /*
676  * Convert VID sensor values to milli- or micro-units
677  * depending on sensor type.
678  */
679 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
680 			      struct pmbus_sensor *sensor)
681 {
682 	long val = sensor->data;
683 	long rv = 0;
684 
685 	switch (data->info->vrm_version[sensor->page]) {
686 	case vr11:
687 		if (val >= 0x02 && val <= 0xb2)
688 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
689 		break;
690 	case vr12:
691 		if (val >= 0x01)
692 			rv = 250 + (val - 1) * 5;
693 		break;
694 	case vr13:
695 		if (val >= 0x01)
696 			rv = 500 + (val - 1) * 10;
697 		break;
698 	case imvp9:
699 		if (val >= 0x01)
700 			rv = 200 + (val - 1) * 10;
701 		break;
702 	case amd625mv:
703 		if (val >= 0x0 && val <= 0xd8)
704 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
705 		break;
706 	}
707 	return rv;
708 }
709 
710 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
711 {
712 	s64 val;
713 
714 	if (!sensor->convert)
715 		return sensor->data;
716 
717 	switch (data->info->format[sensor->class]) {
718 	case direct:
719 		val = pmbus_reg2data_direct(data, sensor);
720 		break;
721 	case vid:
722 		val = pmbus_reg2data_vid(data, sensor);
723 		break;
724 	case linear:
725 	default:
726 		val = pmbus_reg2data_linear(data, sensor);
727 		break;
728 	}
729 	return val;
730 }
731 
732 #define MAX_MANTISSA	(1023 * 1000)
733 #define MIN_MANTISSA	(511 * 1000)
734 
735 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
736 				 struct pmbus_sensor *sensor, s64 val)
737 {
738 	s16 exponent = 0, mantissa;
739 	bool negative = false;
740 
741 	/* simple case */
742 	if (val == 0)
743 		return 0;
744 
745 	if (sensor->class == PSC_VOLTAGE_OUT) {
746 		/* LINEAR16 does not support negative voltages */
747 		if (val < 0)
748 			return 0;
749 
750 		/*
751 		 * For a static exponents, we don't have a choice
752 		 * but to adjust the value to it.
753 		 */
754 		if (data->exponent[sensor->page] < 0)
755 			val <<= -data->exponent[sensor->page];
756 		else
757 			val >>= data->exponent[sensor->page];
758 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
759 		return clamp_val(val, 0, 0xffff);
760 	}
761 
762 	if (val < 0) {
763 		negative = true;
764 		val = -val;
765 	}
766 
767 	/* Power is in uW. Convert to mW before converting. */
768 	if (sensor->class == PSC_POWER)
769 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
770 
771 	/*
772 	 * For simplicity, convert fan data to milli-units
773 	 * before calculating the exponent.
774 	 */
775 	if (sensor->class == PSC_FAN)
776 		val = val * 1000LL;
777 
778 	/* Reduce large mantissa until it fits into 10 bit */
779 	while (val >= MAX_MANTISSA && exponent < 15) {
780 		exponent++;
781 		val >>= 1;
782 	}
783 	/* Increase small mantissa to improve precision */
784 	while (val < MIN_MANTISSA && exponent > -15) {
785 		exponent--;
786 		val <<= 1;
787 	}
788 
789 	/* Convert mantissa from milli-units to units */
790 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
791 
792 	/* restore sign */
793 	if (negative)
794 		mantissa = -mantissa;
795 
796 	/* Convert to 5 bit exponent, 11 bit mantissa */
797 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
798 }
799 
800 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
801 				 struct pmbus_sensor *sensor, s64 val)
802 {
803 	s64 b;
804 	s32 m, R;
805 
806 	m = data->info->m[sensor->class];
807 	b = data->info->b[sensor->class];
808 	R = data->info->R[sensor->class];
809 
810 	/* Power is in uW. Adjust R and b. */
811 	if (sensor->class == PSC_POWER) {
812 		R -= 3;
813 		b *= 1000;
814 	}
815 
816 	/* Calculate Y = (m * X + b) * 10^R */
817 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
818 		R -= 3;		/* Adjust R and b for data in milli-units */
819 		b *= 1000;
820 	}
821 	val = val * m + b;
822 
823 	while (R > 0) {
824 		val *= 10;
825 		R--;
826 	}
827 	while (R < 0) {
828 		val = div_s64(val + 5LL, 10L);  /* round closest */
829 		R++;
830 	}
831 
832 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
833 }
834 
835 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
836 			      struct pmbus_sensor *sensor, s64 val)
837 {
838 	val = clamp_val(val, 500, 1600);
839 
840 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
841 }
842 
843 static u16 pmbus_data2reg(struct pmbus_data *data,
844 			  struct pmbus_sensor *sensor, s64 val)
845 {
846 	u16 regval;
847 
848 	if (!sensor->convert)
849 		return val;
850 
851 	switch (data->info->format[sensor->class]) {
852 	case direct:
853 		regval = pmbus_data2reg_direct(data, sensor, val);
854 		break;
855 	case vid:
856 		regval = pmbus_data2reg_vid(data, sensor, val);
857 		break;
858 	case linear:
859 	default:
860 		regval = pmbus_data2reg_linear(data, sensor, val);
861 		break;
862 	}
863 	return regval;
864 }
865 
866 /*
867  * Return boolean calculated from converted data.
868  * <index> defines a status register index and mask.
869  * The mask is in the lower 8 bits, the register index is in bits 8..23.
870  *
871  * The associated pmbus_boolean structure contains optional pointers to two
872  * sensor attributes. If specified, those attributes are compared against each
873  * other to determine if a limit has been exceeded.
874  *
875  * If the sensor attribute pointers are NULL, the function returns true if
876  * (status[reg] & mask) is true.
877  *
878  * If sensor attribute pointers are provided, a comparison against a specified
879  * limit has to be performed to determine the boolean result.
880  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
881  * sensor values referenced by sensor attribute pointers s1 and s2).
882  *
883  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
884  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
885  *
886  * If a negative value is stored in any of the referenced registers, this value
887  * reflects an error code which will be returned.
888  */
889 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
890 			     int index)
891 {
892 	struct pmbus_data *data = i2c_get_clientdata(client);
893 	struct pmbus_sensor *s1 = b->s1;
894 	struct pmbus_sensor *s2 = b->s2;
895 	u16 mask = pb_index_to_mask(index);
896 	u8 page = pb_index_to_page(index);
897 	u16 reg = pb_index_to_reg(index);
898 	int ret, status;
899 	u16 regval;
900 
901 	mutex_lock(&data->update_lock);
902 	status = pmbus_get_status(client, page, reg);
903 	if (status < 0) {
904 		ret = status;
905 		goto unlock;
906 	}
907 
908 	if (s1)
909 		pmbus_update_sensor_data(client, s1);
910 	if (s2)
911 		pmbus_update_sensor_data(client, s2);
912 
913 	regval = status & mask;
914 	if (regval) {
915 		ret = pmbus_write_byte_data(client, page, reg, regval);
916 		if (ret)
917 			goto unlock;
918 	}
919 	if (s1 && s2) {
920 		s64 v1, v2;
921 
922 		if (s1->data < 0) {
923 			ret = s1->data;
924 			goto unlock;
925 		}
926 		if (s2->data < 0) {
927 			ret = s2->data;
928 			goto unlock;
929 		}
930 
931 		v1 = pmbus_reg2data(data, s1);
932 		v2 = pmbus_reg2data(data, s2);
933 		ret = !!(regval && v1 >= v2);
934 	} else {
935 		ret = !!regval;
936 	}
937 unlock:
938 	mutex_unlock(&data->update_lock);
939 	return ret;
940 }
941 
942 static ssize_t pmbus_show_boolean(struct device *dev,
943 				  struct device_attribute *da, char *buf)
944 {
945 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
946 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
947 	struct i2c_client *client = to_i2c_client(dev->parent);
948 	int val;
949 
950 	val = pmbus_get_boolean(client, boolean, attr->index);
951 	if (val < 0)
952 		return val;
953 	return sysfs_emit(buf, "%d\n", val);
954 }
955 
956 static ssize_t pmbus_show_sensor(struct device *dev,
957 				 struct device_attribute *devattr, char *buf)
958 {
959 	struct i2c_client *client = to_i2c_client(dev->parent);
960 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
961 	struct pmbus_data *data = i2c_get_clientdata(client);
962 	ssize_t ret;
963 
964 	mutex_lock(&data->update_lock);
965 	pmbus_update_sensor_data(client, sensor);
966 	if (sensor->data < 0)
967 		ret = sensor->data;
968 	else
969 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
970 	mutex_unlock(&data->update_lock);
971 	return ret;
972 }
973 
974 static ssize_t pmbus_set_sensor(struct device *dev,
975 				struct device_attribute *devattr,
976 				const char *buf, size_t count)
977 {
978 	struct i2c_client *client = to_i2c_client(dev->parent);
979 	struct pmbus_data *data = i2c_get_clientdata(client);
980 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
981 	ssize_t rv = count;
982 	s64 val;
983 	int ret;
984 	u16 regval;
985 
986 	if (kstrtos64(buf, 10, &val) < 0)
987 		return -EINVAL;
988 
989 	mutex_lock(&data->update_lock);
990 	regval = pmbus_data2reg(data, sensor, val);
991 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
992 	if (ret < 0)
993 		rv = ret;
994 	else
995 		sensor->data = -ENODATA;
996 	mutex_unlock(&data->update_lock);
997 	return rv;
998 }
999 
1000 static ssize_t pmbus_show_label(struct device *dev,
1001 				struct device_attribute *da, char *buf)
1002 {
1003 	struct pmbus_label *label = to_pmbus_label(da);
1004 
1005 	return sysfs_emit(buf, "%s\n", label->label);
1006 }
1007 
1008 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1009 {
1010 	if (data->num_attributes >= data->max_attributes - 1) {
1011 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1012 		void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1013 						new_max_attrs * sizeof(void *),
1014 						GFP_KERNEL);
1015 		if (!new_attrs)
1016 			return -ENOMEM;
1017 		data->group.attrs = new_attrs;
1018 		data->max_attributes = new_max_attrs;
1019 	}
1020 
1021 	data->group.attrs[data->num_attributes++] = attr;
1022 	data->group.attrs[data->num_attributes] = NULL;
1023 	return 0;
1024 }
1025 
1026 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1027 				const char *name,
1028 				umode_t mode,
1029 				ssize_t (*show)(struct device *dev,
1030 						struct device_attribute *attr,
1031 						char *buf),
1032 				ssize_t (*store)(struct device *dev,
1033 						 struct device_attribute *attr,
1034 						 const char *buf, size_t count))
1035 {
1036 	sysfs_attr_init(&dev_attr->attr);
1037 	dev_attr->attr.name = name;
1038 	dev_attr->attr.mode = mode;
1039 	dev_attr->show = show;
1040 	dev_attr->store = store;
1041 }
1042 
1043 static void pmbus_attr_init(struct sensor_device_attribute *a,
1044 			    const char *name,
1045 			    umode_t mode,
1046 			    ssize_t (*show)(struct device *dev,
1047 					    struct device_attribute *attr,
1048 					    char *buf),
1049 			    ssize_t (*store)(struct device *dev,
1050 					     struct device_attribute *attr,
1051 					     const char *buf, size_t count),
1052 			    int idx)
1053 {
1054 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1055 	a->index = idx;
1056 }
1057 
1058 static int pmbus_add_boolean(struct pmbus_data *data,
1059 			     const char *name, const char *type, int seq,
1060 			     struct pmbus_sensor *s1,
1061 			     struct pmbus_sensor *s2,
1062 			     u8 page, u16 reg, u16 mask)
1063 {
1064 	struct pmbus_boolean *boolean;
1065 	struct sensor_device_attribute *a;
1066 
1067 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1068 		return -EINVAL;
1069 
1070 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1071 	if (!boolean)
1072 		return -ENOMEM;
1073 
1074 	a = &boolean->attribute;
1075 
1076 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1077 		 name, seq, type);
1078 	boolean->s1 = s1;
1079 	boolean->s2 = s2;
1080 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1081 			pb_reg_to_index(page, reg, mask));
1082 
1083 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1084 }
1085 
1086 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1087 					     const char *name, const char *type,
1088 					     int seq, int page, int phase,
1089 					     int reg,
1090 					     enum pmbus_sensor_classes class,
1091 					     bool update, bool readonly,
1092 					     bool convert)
1093 {
1094 	struct pmbus_sensor *sensor;
1095 	struct device_attribute *a;
1096 
1097 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1098 	if (!sensor)
1099 		return NULL;
1100 	a = &sensor->attribute;
1101 
1102 	if (type)
1103 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1104 			 name, seq, type);
1105 	else
1106 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1107 			 name, seq);
1108 
1109 	if (data->flags & PMBUS_WRITE_PROTECTED)
1110 		readonly = true;
1111 
1112 	sensor->page = page;
1113 	sensor->phase = phase;
1114 	sensor->reg = reg;
1115 	sensor->class = class;
1116 	sensor->update = update;
1117 	sensor->convert = convert;
1118 	sensor->data = -ENODATA;
1119 	pmbus_dev_attr_init(a, sensor->name,
1120 			    readonly ? 0444 : 0644,
1121 			    pmbus_show_sensor, pmbus_set_sensor);
1122 
1123 	if (pmbus_add_attribute(data, &a->attr))
1124 		return NULL;
1125 
1126 	sensor->next = data->sensors;
1127 	data->sensors = sensor;
1128 
1129 	return sensor;
1130 }
1131 
1132 static int pmbus_add_label(struct pmbus_data *data,
1133 			   const char *name, int seq,
1134 			   const char *lstring, int index, int phase)
1135 {
1136 	struct pmbus_label *label;
1137 	struct device_attribute *a;
1138 
1139 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1140 	if (!label)
1141 		return -ENOMEM;
1142 
1143 	a = &label->attribute;
1144 
1145 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1146 	if (!index) {
1147 		if (phase == 0xff)
1148 			strncpy(label->label, lstring,
1149 				sizeof(label->label) - 1);
1150 		else
1151 			snprintf(label->label, sizeof(label->label), "%s.%d",
1152 				 lstring, phase);
1153 	} else {
1154 		if (phase == 0xff)
1155 			snprintf(label->label, sizeof(label->label), "%s%d",
1156 				 lstring, index);
1157 		else
1158 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1159 				 lstring, index, phase);
1160 	}
1161 
1162 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1163 	return pmbus_add_attribute(data, &a->attr);
1164 }
1165 
1166 /*
1167  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1168  */
1169 
1170 /*
1171  * The pmbus_limit_attr structure describes a single limit attribute
1172  * and its associated alarm attribute.
1173  */
1174 struct pmbus_limit_attr {
1175 	u16 reg;		/* Limit register */
1176 	u16 sbit;		/* Alarm attribute status bit */
1177 	bool update;		/* True if register needs updates */
1178 	bool low;		/* True if low limit; for limits with compare
1179 				   functions only */
1180 	const char *attr;	/* Attribute name */
1181 	const char *alarm;	/* Alarm attribute name */
1182 };
1183 
1184 /*
1185  * The pmbus_sensor_attr structure describes one sensor attribute. This
1186  * description includes a reference to the associated limit attributes.
1187  */
1188 struct pmbus_sensor_attr {
1189 	u16 reg;			/* sensor register */
1190 	u16 gbit;			/* generic status bit */
1191 	u8 nlimit;			/* # of limit registers */
1192 	enum pmbus_sensor_classes class;/* sensor class */
1193 	const char *label;		/* sensor label */
1194 	bool paged;			/* true if paged sensor */
1195 	bool update;			/* true if update needed */
1196 	bool compare;			/* true if compare function needed */
1197 	u32 func;			/* sensor mask */
1198 	u32 sfunc;			/* sensor status mask */
1199 	int sreg;			/* status register */
1200 	const struct pmbus_limit_attr *limit;/* limit registers */
1201 };
1202 
1203 /*
1204  * Add a set of limit attributes and, if supported, the associated
1205  * alarm attributes.
1206  * returns 0 if no alarm register found, 1 if an alarm register was found,
1207  * < 0 on errors.
1208  */
1209 static int pmbus_add_limit_attrs(struct i2c_client *client,
1210 				 struct pmbus_data *data,
1211 				 const struct pmbus_driver_info *info,
1212 				 const char *name, int index, int page,
1213 				 struct pmbus_sensor *base,
1214 				 const struct pmbus_sensor_attr *attr)
1215 {
1216 	const struct pmbus_limit_attr *l = attr->limit;
1217 	int nlimit = attr->nlimit;
1218 	int have_alarm = 0;
1219 	int i, ret;
1220 	struct pmbus_sensor *curr;
1221 
1222 	for (i = 0; i < nlimit; i++) {
1223 		if (pmbus_check_word_register(client, page, l->reg)) {
1224 			curr = pmbus_add_sensor(data, name, l->attr, index,
1225 						page, 0xff, l->reg, attr->class,
1226 						attr->update || l->update,
1227 						false, true);
1228 			if (!curr)
1229 				return -ENOMEM;
1230 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1231 				ret = pmbus_add_boolean(data, name,
1232 					l->alarm, index,
1233 					attr->compare ?  l->low ? curr : base
1234 						      : NULL,
1235 					attr->compare ? l->low ? base : curr
1236 						      : NULL,
1237 					page, attr->sreg, l->sbit);
1238 				if (ret)
1239 					return ret;
1240 				have_alarm = 1;
1241 			}
1242 		}
1243 		l++;
1244 	}
1245 	return have_alarm;
1246 }
1247 
1248 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1249 				      struct pmbus_data *data,
1250 				      const struct pmbus_driver_info *info,
1251 				      const char *name,
1252 				      int index, int page, int phase,
1253 				      const struct pmbus_sensor_attr *attr,
1254 				      bool paged)
1255 {
1256 	struct pmbus_sensor *base;
1257 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1258 	int ret;
1259 
1260 	if (attr->label) {
1261 		ret = pmbus_add_label(data, name, index, attr->label,
1262 				      paged ? page + 1 : 0, phase);
1263 		if (ret)
1264 			return ret;
1265 	}
1266 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1267 				attr->reg, attr->class, true, true, true);
1268 	if (!base)
1269 		return -ENOMEM;
1270 	/* No limit and alarm attributes for phase specific sensors */
1271 	if (attr->sfunc && phase == 0xff) {
1272 		ret = pmbus_add_limit_attrs(client, data, info, name,
1273 					    index, page, base, attr);
1274 		if (ret < 0)
1275 			return ret;
1276 		/*
1277 		 * Add generic alarm attribute only if there are no individual
1278 		 * alarm attributes, if there is a global alarm bit, and if
1279 		 * the generic status register (word or byte, depending on
1280 		 * which global bit is set) for this page is accessible.
1281 		 */
1282 		if (!ret && attr->gbit &&
1283 		    (!upper || data->has_status_word) &&
1284 		    pmbus_check_status_register(client, page)) {
1285 			ret = pmbus_add_boolean(data, name, "alarm", index,
1286 						NULL, NULL,
1287 						page, PMBUS_STATUS_WORD,
1288 						attr->gbit);
1289 			if (ret)
1290 				return ret;
1291 		}
1292 	}
1293 	return 0;
1294 }
1295 
1296 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1297 				  const struct pmbus_sensor_attr *attr)
1298 {
1299 	int p;
1300 
1301 	if (attr->paged)
1302 		return true;
1303 
1304 	/*
1305 	 * Some attributes may be present on more than one page despite
1306 	 * not being marked with the paged attribute. If that is the case,
1307 	 * then treat the sensor as being paged and add the page suffix to the
1308 	 * attribute name.
1309 	 * We don't just add the paged attribute to all such attributes, in
1310 	 * order to maintain the un-suffixed labels in the case where the
1311 	 * attribute is only on page 0.
1312 	 */
1313 	for (p = 1; p < info->pages; p++) {
1314 		if (info->func[p] & attr->func)
1315 			return true;
1316 	}
1317 	return false;
1318 }
1319 
1320 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1321 				  struct pmbus_data *data,
1322 				  const char *name,
1323 				  const struct pmbus_sensor_attr *attrs,
1324 				  int nattrs)
1325 {
1326 	const struct pmbus_driver_info *info = data->info;
1327 	int index, i;
1328 	int ret;
1329 
1330 	index = 1;
1331 	for (i = 0; i < nattrs; i++) {
1332 		int page, pages;
1333 		bool paged = pmbus_sensor_is_paged(info, attrs);
1334 
1335 		pages = paged ? info->pages : 1;
1336 		for (page = 0; page < pages; page++) {
1337 			if (info->func[page] & attrs->func) {
1338 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1339 								 name, index, page,
1340 								 0xff, attrs, paged);
1341 				if (ret)
1342 					return ret;
1343 				index++;
1344 			}
1345 			if (info->phases[page]) {
1346 				int phase;
1347 
1348 				for (phase = 0; phase < info->phases[page];
1349 				     phase++) {
1350 					if (!(info->pfunc[phase] & attrs->func))
1351 						continue;
1352 					ret = pmbus_add_sensor_attrs_one(client,
1353 						data, info, name, index, page,
1354 						phase, attrs, paged);
1355 					if (ret)
1356 						return ret;
1357 					index++;
1358 				}
1359 			}
1360 		}
1361 		attrs++;
1362 	}
1363 	return 0;
1364 }
1365 
1366 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1367 	{
1368 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1369 		.attr = "min",
1370 		.alarm = "min_alarm",
1371 		.sbit = PB_VOLTAGE_UV_WARNING,
1372 	}, {
1373 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1374 		.attr = "lcrit",
1375 		.alarm = "lcrit_alarm",
1376 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1377 	}, {
1378 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1379 		.attr = "max",
1380 		.alarm = "max_alarm",
1381 		.sbit = PB_VOLTAGE_OV_WARNING,
1382 	}, {
1383 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1384 		.attr = "crit",
1385 		.alarm = "crit_alarm",
1386 		.sbit = PB_VOLTAGE_OV_FAULT,
1387 	}, {
1388 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1389 		.update = true,
1390 		.attr = "average",
1391 	}, {
1392 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1393 		.update = true,
1394 		.attr = "lowest",
1395 	}, {
1396 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1397 		.update = true,
1398 		.attr = "highest",
1399 	}, {
1400 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1401 		.attr = "reset_history",
1402 	}, {
1403 		.reg = PMBUS_MFR_VIN_MIN,
1404 		.attr = "rated_min",
1405 	}, {
1406 		.reg = PMBUS_MFR_VIN_MAX,
1407 		.attr = "rated_max",
1408 	},
1409 };
1410 
1411 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1412 	{
1413 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1414 		.attr = "min",
1415 		.alarm = "min_alarm",
1416 		.sbit = PB_VOLTAGE_UV_WARNING,
1417 	}, {
1418 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1419 		.attr = "lcrit",
1420 		.alarm = "lcrit_alarm",
1421 		.sbit = PB_VOLTAGE_UV_FAULT,
1422 	}, {
1423 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1424 		.attr = "max",
1425 		.alarm = "max_alarm",
1426 		.sbit = PB_VOLTAGE_OV_WARNING,
1427 	}, {
1428 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1429 		.attr = "crit",
1430 		.alarm = "crit_alarm",
1431 		.sbit = PB_VOLTAGE_OV_FAULT,
1432 	}
1433 };
1434 
1435 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1436 	{
1437 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1438 		.attr = "min",
1439 		.alarm = "min_alarm",
1440 		.sbit = PB_VOLTAGE_UV_WARNING,
1441 	}, {
1442 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1443 		.attr = "lcrit",
1444 		.alarm = "lcrit_alarm",
1445 		.sbit = PB_VOLTAGE_UV_FAULT,
1446 	}, {
1447 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1448 		.attr = "max",
1449 		.alarm = "max_alarm",
1450 		.sbit = PB_VOLTAGE_OV_WARNING,
1451 	}, {
1452 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1453 		.attr = "crit",
1454 		.alarm = "crit_alarm",
1455 		.sbit = PB_VOLTAGE_OV_FAULT,
1456 	}, {
1457 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1458 		.update = true,
1459 		.attr = "average",
1460 	}, {
1461 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1462 		.update = true,
1463 		.attr = "lowest",
1464 	}, {
1465 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1466 		.update = true,
1467 		.attr = "highest",
1468 	}, {
1469 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1470 		.attr = "reset_history",
1471 	}, {
1472 		.reg = PMBUS_MFR_VOUT_MIN,
1473 		.attr = "rated_min",
1474 	}, {
1475 		.reg = PMBUS_MFR_VOUT_MAX,
1476 		.attr = "rated_max",
1477 	},
1478 };
1479 
1480 static const struct pmbus_sensor_attr voltage_attributes[] = {
1481 	{
1482 		.reg = PMBUS_READ_VIN,
1483 		.class = PSC_VOLTAGE_IN,
1484 		.label = "vin",
1485 		.func = PMBUS_HAVE_VIN,
1486 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1487 		.sreg = PMBUS_STATUS_INPUT,
1488 		.gbit = PB_STATUS_VIN_UV,
1489 		.limit = vin_limit_attrs,
1490 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1491 	}, {
1492 		.reg = PMBUS_VIRT_READ_VMON,
1493 		.class = PSC_VOLTAGE_IN,
1494 		.label = "vmon",
1495 		.func = PMBUS_HAVE_VMON,
1496 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1497 		.sreg = PMBUS_VIRT_STATUS_VMON,
1498 		.limit = vmon_limit_attrs,
1499 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1500 	}, {
1501 		.reg = PMBUS_READ_VCAP,
1502 		.class = PSC_VOLTAGE_IN,
1503 		.label = "vcap",
1504 		.func = PMBUS_HAVE_VCAP,
1505 	}, {
1506 		.reg = PMBUS_READ_VOUT,
1507 		.class = PSC_VOLTAGE_OUT,
1508 		.label = "vout",
1509 		.paged = true,
1510 		.func = PMBUS_HAVE_VOUT,
1511 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1512 		.sreg = PMBUS_STATUS_VOUT,
1513 		.gbit = PB_STATUS_VOUT_OV,
1514 		.limit = vout_limit_attrs,
1515 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1516 	}
1517 };
1518 
1519 /* Current attributes */
1520 
1521 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1522 	{
1523 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1524 		.attr = "max",
1525 		.alarm = "max_alarm",
1526 		.sbit = PB_IIN_OC_WARNING,
1527 	}, {
1528 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1529 		.attr = "crit",
1530 		.alarm = "crit_alarm",
1531 		.sbit = PB_IIN_OC_FAULT,
1532 	}, {
1533 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1534 		.update = true,
1535 		.attr = "average",
1536 	}, {
1537 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1538 		.update = true,
1539 		.attr = "lowest",
1540 	}, {
1541 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1542 		.update = true,
1543 		.attr = "highest",
1544 	}, {
1545 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1546 		.attr = "reset_history",
1547 	}, {
1548 		.reg = PMBUS_MFR_IIN_MAX,
1549 		.attr = "rated_max",
1550 	},
1551 };
1552 
1553 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1554 	{
1555 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1556 		.attr = "max",
1557 		.alarm = "max_alarm",
1558 		.sbit = PB_IOUT_OC_WARNING,
1559 	}, {
1560 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1561 		.attr = "lcrit",
1562 		.alarm = "lcrit_alarm",
1563 		.sbit = PB_IOUT_UC_FAULT,
1564 	}, {
1565 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1566 		.attr = "crit",
1567 		.alarm = "crit_alarm",
1568 		.sbit = PB_IOUT_OC_FAULT,
1569 	}, {
1570 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1571 		.update = true,
1572 		.attr = "average",
1573 	}, {
1574 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1575 		.update = true,
1576 		.attr = "lowest",
1577 	}, {
1578 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1579 		.update = true,
1580 		.attr = "highest",
1581 	}, {
1582 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1583 		.attr = "reset_history",
1584 	}, {
1585 		.reg = PMBUS_MFR_IOUT_MAX,
1586 		.attr = "rated_max",
1587 	},
1588 };
1589 
1590 static const struct pmbus_sensor_attr current_attributes[] = {
1591 	{
1592 		.reg = PMBUS_READ_IIN,
1593 		.class = PSC_CURRENT_IN,
1594 		.label = "iin",
1595 		.func = PMBUS_HAVE_IIN,
1596 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1597 		.sreg = PMBUS_STATUS_INPUT,
1598 		.gbit = PB_STATUS_INPUT,
1599 		.limit = iin_limit_attrs,
1600 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1601 	}, {
1602 		.reg = PMBUS_READ_IOUT,
1603 		.class = PSC_CURRENT_OUT,
1604 		.label = "iout",
1605 		.paged = true,
1606 		.func = PMBUS_HAVE_IOUT,
1607 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1608 		.sreg = PMBUS_STATUS_IOUT,
1609 		.gbit = PB_STATUS_IOUT_OC,
1610 		.limit = iout_limit_attrs,
1611 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1612 	}
1613 };
1614 
1615 /* Power attributes */
1616 
1617 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1618 	{
1619 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1620 		.attr = "max",
1621 		.alarm = "alarm",
1622 		.sbit = PB_PIN_OP_WARNING,
1623 	}, {
1624 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1625 		.update = true,
1626 		.attr = "average",
1627 	}, {
1628 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1629 		.update = true,
1630 		.attr = "input_lowest",
1631 	}, {
1632 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1633 		.update = true,
1634 		.attr = "input_highest",
1635 	}, {
1636 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1637 		.attr = "reset_history",
1638 	}, {
1639 		.reg = PMBUS_MFR_PIN_MAX,
1640 		.attr = "rated_max",
1641 	},
1642 };
1643 
1644 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1645 	{
1646 		.reg = PMBUS_POUT_MAX,
1647 		.attr = "cap",
1648 		.alarm = "cap_alarm",
1649 		.sbit = PB_POWER_LIMITING,
1650 	}, {
1651 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1652 		.attr = "max",
1653 		.alarm = "max_alarm",
1654 		.sbit = PB_POUT_OP_WARNING,
1655 	}, {
1656 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1657 		.attr = "crit",
1658 		.alarm = "crit_alarm",
1659 		.sbit = PB_POUT_OP_FAULT,
1660 	}, {
1661 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1662 		.update = true,
1663 		.attr = "average",
1664 	}, {
1665 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1666 		.update = true,
1667 		.attr = "input_lowest",
1668 	}, {
1669 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1670 		.update = true,
1671 		.attr = "input_highest",
1672 	}, {
1673 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1674 		.attr = "reset_history",
1675 	}, {
1676 		.reg = PMBUS_MFR_POUT_MAX,
1677 		.attr = "rated_max",
1678 	},
1679 };
1680 
1681 static const struct pmbus_sensor_attr power_attributes[] = {
1682 	{
1683 		.reg = PMBUS_READ_PIN,
1684 		.class = PSC_POWER,
1685 		.label = "pin",
1686 		.func = PMBUS_HAVE_PIN,
1687 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1688 		.sreg = PMBUS_STATUS_INPUT,
1689 		.gbit = PB_STATUS_INPUT,
1690 		.limit = pin_limit_attrs,
1691 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1692 	}, {
1693 		.reg = PMBUS_READ_POUT,
1694 		.class = PSC_POWER,
1695 		.label = "pout",
1696 		.paged = true,
1697 		.func = PMBUS_HAVE_POUT,
1698 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1699 		.sreg = PMBUS_STATUS_IOUT,
1700 		.limit = pout_limit_attrs,
1701 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1702 	}
1703 };
1704 
1705 /* Temperature atributes */
1706 
1707 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1708 	{
1709 		.reg = PMBUS_UT_WARN_LIMIT,
1710 		.low = true,
1711 		.attr = "min",
1712 		.alarm = "min_alarm",
1713 		.sbit = PB_TEMP_UT_WARNING,
1714 	}, {
1715 		.reg = PMBUS_UT_FAULT_LIMIT,
1716 		.low = true,
1717 		.attr = "lcrit",
1718 		.alarm = "lcrit_alarm",
1719 		.sbit = PB_TEMP_UT_FAULT,
1720 	}, {
1721 		.reg = PMBUS_OT_WARN_LIMIT,
1722 		.attr = "max",
1723 		.alarm = "max_alarm",
1724 		.sbit = PB_TEMP_OT_WARNING,
1725 	}, {
1726 		.reg = PMBUS_OT_FAULT_LIMIT,
1727 		.attr = "crit",
1728 		.alarm = "crit_alarm",
1729 		.sbit = PB_TEMP_OT_FAULT,
1730 	}, {
1731 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1732 		.attr = "lowest",
1733 	}, {
1734 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1735 		.attr = "average",
1736 	}, {
1737 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1738 		.attr = "highest",
1739 	}, {
1740 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1741 		.attr = "reset_history",
1742 	}, {
1743 		.reg = PMBUS_MFR_MAX_TEMP_1,
1744 		.attr = "rated_max",
1745 	},
1746 };
1747 
1748 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1749 	{
1750 		.reg = PMBUS_UT_WARN_LIMIT,
1751 		.low = true,
1752 		.attr = "min",
1753 		.alarm = "min_alarm",
1754 		.sbit = PB_TEMP_UT_WARNING,
1755 	}, {
1756 		.reg = PMBUS_UT_FAULT_LIMIT,
1757 		.low = true,
1758 		.attr = "lcrit",
1759 		.alarm = "lcrit_alarm",
1760 		.sbit = PB_TEMP_UT_FAULT,
1761 	}, {
1762 		.reg = PMBUS_OT_WARN_LIMIT,
1763 		.attr = "max",
1764 		.alarm = "max_alarm",
1765 		.sbit = PB_TEMP_OT_WARNING,
1766 	}, {
1767 		.reg = PMBUS_OT_FAULT_LIMIT,
1768 		.attr = "crit",
1769 		.alarm = "crit_alarm",
1770 		.sbit = PB_TEMP_OT_FAULT,
1771 	}, {
1772 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1773 		.attr = "lowest",
1774 	}, {
1775 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1776 		.attr = "average",
1777 	}, {
1778 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1779 		.attr = "highest",
1780 	}, {
1781 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1782 		.attr = "reset_history",
1783 	}, {
1784 		.reg = PMBUS_MFR_MAX_TEMP_2,
1785 		.attr = "rated_max",
1786 	},
1787 };
1788 
1789 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1790 	{
1791 		.reg = PMBUS_UT_WARN_LIMIT,
1792 		.low = true,
1793 		.attr = "min",
1794 		.alarm = "min_alarm",
1795 		.sbit = PB_TEMP_UT_WARNING,
1796 	}, {
1797 		.reg = PMBUS_UT_FAULT_LIMIT,
1798 		.low = true,
1799 		.attr = "lcrit",
1800 		.alarm = "lcrit_alarm",
1801 		.sbit = PB_TEMP_UT_FAULT,
1802 	}, {
1803 		.reg = PMBUS_OT_WARN_LIMIT,
1804 		.attr = "max",
1805 		.alarm = "max_alarm",
1806 		.sbit = PB_TEMP_OT_WARNING,
1807 	}, {
1808 		.reg = PMBUS_OT_FAULT_LIMIT,
1809 		.attr = "crit",
1810 		.alarm = "crit_alarm",
1811 		.sbit = PB_TEMP_OT_FAULT,
1812 	}, {
1813 		.reg = PMBUS_MFR_MAX_TEMP_3,
1814 		.attr = "rated_max",
1815 	},
1816 };
1817 
1818 static const struct pmbus_sensor_attr temp_attributes[] = {
1819 	{
1820 		.reg = PMBUS_READ_TEMPERATURE_1,
1821 		.class = PSC_TEMPERATURE,
1822 		.paged = true,
1823 		.update = true,
1824 		.compare = true,
1825 		.func = PMBUS_HAVE_TEMP,
1826 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1827 		.sreg = PMBUS_STATUS_TEMPERATURE,
1828 		.gbit = PB_STATUS_TEMPERATURE,
1829 		.limit = temp_limit_attrs,
1830 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1831 	}, {
1832 		.reg = PMBUS_READ_TEMPERATURE_2,
1833 		.class = PSC_TEMPERATURE,
1834 		.paged = true,
1835 		.update = true,
1836 		.compare = true,
1837 		.func = PMBUS_HAVE_TEMP2,
1838 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1839 		.sreg = PMBUS_STATUS_TEMPERATURE,
1840 		.gbit = PB_STATUS_TEMPERATURE,
1841 		.limit = temp_limit_attrs2,
1842 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1843 	}, {
1844 		.reg = PMBUS_READ_TEMPERATURE_3,
1845 		.class = PSC_TEMPERATURE,
1846 		.paged = true,
1847 		.update = true,
1848 		.compare = true,
1849 		.func = PMBUS_HAVE_TEMP3,
1850 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1851 		.sreg = PMBUS_STATUS_TEMPERATURE,
1852 		.gbit = PB_STATUS_TEMPERATURE,
1853 		.limit = temp_limit_attrs3,
1854 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1855 	}
1856 };
1857 
1858 static const int pmbus_fan_registers[] = {
1859 	PMBUS_READ_FAN_SPEED_1,
1860 	PMBUS_READ_FAN_SPEED_2,
1861 	PMBUS_READ_FAN_SPEED_3,
1862 	PMBUS_READ_FAN_SPEED_4
1863 };
1864 
1865 static const int pmbus_fan_status_registers[] = {
1866 	PMBUS_STATUS_FAN_12,
1867 	PMBUS_STATUS_FAN_12,
1868 	PMBUS_STATUS_FAN_34,
1869 	PMBUS_STATUS_FAN_34
1870 };
1871 
1872 static const u32 pmbus_fan_flags[] = {
1873 	PMBUS_HAVE_FAN12,
1874 	PMBUS_HAVE_FAN12,
1875 	PMBUS_HAVE_FAN34,
1876 	PMBUS_HAVE_FAN34
1877 };
1878 
1879 static const u32 pmbus_fan_status_flags[] = {
1880 	PMBUS_HAVE_STATUS_FAN12,
1881 	PMBUS_HAVE_STATUS_FAN12,
1882 	PMBUS_HAVE_STATUS_FAN34,
1883 	PMBUS_HAVE_STATUS_FAN34
1884 };
1885 
1886 /* Fans */
1887 
1888 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
1889 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1890 		struct pmbus_data *data, int index, int page, int id,
1891 		u8 config)
1892 {
1893 	struct pmbus_sensor *sensor;
1894 
1895 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1896 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1897 				  false, false, true);
1898 
1899 	if (!sensor)
1900 		return -ENOMEM;
1901 
1902 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1903 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
1904 		return 0;
1905 
1906 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1907 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1908 				  false, false, true);
1909 
1910 	if (!sensor)
1911 		return -ENOMEM;
1912 
1913 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1914 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1915 				  true, false, false);
1916 
1917 	if (!sensor)
1918 		return -ENOMEM;
1919 
1920 	return 0;
1921 }
1922 
1923 static int pmbus_add_fan_attributes(struct i2c_client *client,
1924 				    struct pmbus_data *data)
1925 {
1926 	const struct pmbus_driver_info *info = data->info;
1927 	int index = 1;
1928 	int page;
1929 	int ret;
1930 
1931 	for (page = 0; page < info->pages; page++) {
1932 		int f;
1933 
1934 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1935 			int regval;
1936 
1937 			if (!(info->func[page] & pmbus_fan_flags[f]))
1938 				break;
1939 
1940 			if (!pmbus_check_word_register(client, page,
1941 						       pmbus_fan_registers[f]))
1942 				break;
1943 
1944 			/*
1945 			 * Skip fan if not installed.
1946 			 * Each fan configuration register covers multiple fans,
1947 			 * so we have to do some magic.
1948 			 */
1949 			regval = _pmbus_read_byte_data(client, page,
1950 				pmbus_fan_config_registers[f]);
1951 			if (regval < 0 ||
1952 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1953 				continue;
1954 
1955 			if (pmbus_add_sensor(data, "fan", "input", index,
1956 					     page, 0xff, pmbus_fan_registers[f],
1957 					     PSC_FAN, true, true, true) == NULL)
1958 				return -ENOMEM;
1959 
1960 			/* Fan control */
1961 			if (pmbus_check_word_register(client, page,
1962 					pmbus_fan_command_registers[f])) {
1963 				ret = pmbus_add_fan_ctrl(client, data, index,
1964 							 page, f, regval);
1965 				if (ret < 0)
1966 					return ret;
1967 			}
1968 
1969 			/*
1970 			 * Each fan status register covers multiple fans,
1971 			 * so we have to do some magic.
1972 			 */
1973 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1974 			    pmbus_check_byte_register(client,
1975 					page, pmbus_fan_status_registers[f])) {
1976 				int reg;
1977 
1978 				if (f > 1)	/* fan 3, 4 */
1979 					reg = PMBUS_STATUS_FAN_34;
1980 				else
1981 					reg = PMBUS_STATUS_FAN_12;
1982 				ret = pmbus_add_boolean(data, "fan",
1983 					"alarm", index, NULL, NULL, page, reg,
1984 					PB_FAN_FAN1_WARNING >> (f & 1));
1985 				if (ret)
1986 					return ret;
1987 				ret = pmbus_add_boolean(data, "fan",
1988 					"fault", index, NULL, NULL, page, reg,
1989 					PB_FAN_FAN1_FAULT >> (f & 1));
1990 				if (ret)
1991 					return ret;
1992 			}
1993 			index++;
1994 		}
1995 	}
1996 	return 0;
1997 }
1998 
1999 struct pmbus_samples_attr {
2000 	int reg;
2001 	char *name;
2002 };
2003 
2004 struct pmbus_samples_reg {
2005 	int page;
2006 	struct pmbus_samples_attr *attr;
2007 	struct device_attribute dev_attr;
2008 };
2009 
2010 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2011 	{
2012 		.reg = PMBUS_VIRT_SAMPLES,
2013 		.name = "samples",
2014 	}, {
2015 		.reg = PMBUS_VIRT_IN_SAMPLES,
2016 		.name = "in_samples",
2017 	}, {
2018 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2019 		.name = "curr_samples",
2020 	}, {
2021 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2022 		.name = "power_samples",
2023 	}, {
2024 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2025 		.name = "temp_samples",
2026 	}
2027 };
2028 
2029 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2030 
2031 static ssize_t pmbus_show_samples(struct device *dev,
2032 				  struct device_attribute *devattr, char *buf)
2033 {
2034 	int val;
2035 	struct i2c_client *client = to_i2c_client(dev->parent);
2036 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2037 	struct pmbus_data *data = i2c_get_clientdata(client);
2038 
2039 	mutex_lock(&data->update_lock);
2040 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2041 	mutex_unlock(&data->update_lock);
2042 	if (val < 0)
2043 		return val;
2044 
2045 	return sysfs_emit(buf, "%d\n", val);
2046 }
2047 
2048 static ssize_t pmbus_set_samples(struct device *dev,
2049 				 struct device_attribute *devattr,
2050 				 const char *buf, size_t count)
2051 {
2052 	int ret;
2053 	long val;
2054 	struct i2c_client *client = to_i2c_client(dev->parent);
2055 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2056 	struct pmbus_data *data = i2c_get_clientdata(client);
2057 
2058 	if (kstrtol(buf, 0, &val) < 0)
2059 		return -EINVAL;
2060 
2061 	mutex_lock(&data->update_lock);
2062 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2063 	mutex_unlock(&data->update_lock);
2064 
2065 	return ret ? : count;
2066 }
2067 
2068 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2069 				  struct pmbus_samples_attr *attr)
2070 {
2071 	struct pmbus_samples_reg *reg;
2072 
2073 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2074 	if (!reg)
2075 		return -ENOMEM;
2076 
2077 	reg->attr = attr;
2078 	reg->page = page;
2079 
2080 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2081 			    pmbus_show_samples, pmbus_set_samples);
2082 
2083 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2084 }
2085 
2086 static int pmbus_add_samples_attributes(struct i2c_client *client,
2087 					struct pmbus_data *data)
2088 {
2089 	const struct pmbus_driver_info *info = data->info;
2090 	int s;
2091 
2092 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2093 		return 0;
2094 
2095 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2096 		struct pmbus_samples_attr *attr;
2097 		int ret;
2098 
2099 		attr = &pmbus_samples_registers[s];
2100 		if (!pmbus_check_word_register(client, 0, attr->reg))
2101 			continue;
2102 
2103 		ret = pmbus_add_samples_attr(data, 0, attr);
2104 		if (ret)
2105 			return ret;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static int pmbus_find_attributes(struct i2c_client *client,
2112 				 struct pmbus_data *data)
2113 {
2114 	int ret;
2115 
2116 	/* Voltage sensors */
2117 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2118 				     ARRAY_SIZE(voltage_attributes));
2119 	if (ret)
2120 		return ret;
2121 
2122 	/* Current sensors */
2123 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2124 				     ARRAY_SIZE(current_attributes));
2125 	if (ret)
2126 		return ret;
2127 
2128 	/* Power sensors */
2129 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2130 				     ARRAY_SIZE(power_attributes));
2131 	if (ret)
2132 		return ret;
2133 
2134 	/* Temperature sensors */
2135 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2136 				     ARRAY_SIZE(temp_attributes));
2137 	if (ret)
2138 		return ret;
2139 
2140 	/* Fans */
2141 	ret = pmbus_add_fan_attributes(client, data);
2142 	if (ret)
2143 		return ret;
2144 
2145 	ret = pmbus_add_samples_attributes(client, data);
2146 	return ret;
2147 }
2148 
2149 /*
2150  * The pmbus_class_attr_map structure maps one sensor class to
2151  * it's corresponding sensor attributes array.
2152  */
2153 struct pmbus_class_attr_map {
2154 	enum pmbus_sensor_classes class;
2155 	int nattr;
2156 	const struct pmbus_sensor_attr *attr;
2157 };
2158 
2159 static const struct pmbus_class_attr_map class_attr_map[] = {
2160 	{
2161 		.class = PSC_VOLTAGE_IN,
2162 		.attr = voltage_attributes,
2163 		.nattr = ARRAY_SIZE(voltage_attributes),
2164 	}, {
2165 		.class = PSC_VOLTAGE_OUT,
2166 		.attr = voltage_attributes,
2167 		.nattr = ARRAY_SIZE(voltage_attributes),
2168 	}, {
2169 		.class = PSC_CURRENT_IN,
2170 		.attr = current_attributes,
2171 		.nattr = ARRAY_SIZE(current_attributes),
2172 	}, {
2173 		.class = PSC_CURRENT_OUT,
2174 		.attr = current_attributes,
2175 		.nattr = ARRAY_SIZE(current_attributes),
2176 	}, {
2177 		.class = PSC_POWER,
2178 		.attr = power_attributes,
2179 		.nattr = ARRAY_SIZE(power_attributes),
2180 	}, {
2181 		.class = PSC_TEMPERATURE,
2182 		.attr = temp_attributes,
2183 		.nattr = ARRAY_SIZE(temp_attributes),
2184 	}
2185 };
2186 
2187 /*
2188  * Read the coefficients for direct mode.
2189  */
2190 static int pmbus_read_coefficients(struct i2c_client *client,
2191 				   struct pmbus_driver_info *info,
2192 				   const struct pmbus_sensor_attr *attr)
2193 {
2194 	int rv;
2195 	union i2c_smbus_data data;
2196 	enum pmbus_sensor_classes class = attr->class;
2197 	s8 R;
2198 	s16 m, b;
2199 
2200 	data.block[0] = 2;
2201 	data.block[1] = attr->reg;
2202 	data.block[2] = 0x01;
2203 
2204 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2205 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2206 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2207 
2208 	if (rv < 0)
2209 		return rv;
2210 
2211 	if (data.block[0] != 5)
2212 		return -EIO;
2213 
2214 	m = data.block[1] | (data.block[2] << 8);
2215 	b = data.block[3] | (data.block[4] << 8);
2216 	R = data.block[5];
2217 	info->m[class] = m;
2218 	info->b[class] = b;
2219 	info->R[class] = R;
2220 
2221 	return rv;
2222 }
2223 
2224 static int pmbus_init_coefficients(struct i2c_client *client,
2225 				   struct pmbus_driver_info *info)
2226 {
2227 	int i, n, ret = -EINVAL;
2228 	const struct pmbus_class_attr_map *map;
2229 	const struct pmbus_sensor_attr *attr;
2230 
2231 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2232 		map = &class_attr_map[i];
2233 		if (info->format[map->class] != direct)
2234 			continue;
2235 		for (n = 0; n < map->nattr; n++) {
2236 			attr = &map->attr[n];
2237 			if (map->class != attr->class)
2238 				continue;
2239 			ret = pmbus_read_coefficients(client, info, attr);
2240 			if (ret >= 0)
2241 				break;
2242 		}
2243 		if (ret < 0) {
2244 			dev_err(&client->dev,
2245 				"No coefficients found for sensor class %d\n",
2246 				map->class);
2247 			return -EINVAL;
2248 		}
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Identify chip parameters.
2256  * This function is called for all chips.
2257  */
2258 static int pmbus_identify_common(struct i2c_client *client,
2259 				 struct pmbus_data *data, int page)
2260 {
2261 	int vout_mode = -1;
2262 
2263 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2264 		vout_mode = _pmbus_read_byte_data(client, page,
2265 						  PMBUS_VOUT_MODE);
2266 	if (vout_mode >= 0 && vout_mode != 0xff) {
2267 		/*
2268 		 * Not all chips support the VOUT_MODE command,
2269 		 * so a failure to read it is not an error.
2270 		 */
2271 		switch (vout_mode >> 5) {
2272 		case 0:	/* linear mode      */
2273 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2274 				return -ENODEV;
2275 
2276 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2277 			break;
2278 		case 1: /* VID mode         */
2279 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2280 				return -ENODEV;
2281 			break;
2282 		case 2:	/* direct mode      */
2283 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2284 				return -ENODEV;
2285 			break;
2286 		default:
2287 			return -ENODEV;
2288 		}
2289 	}
2290 
2291 	pmbus_clear_fault_page(client, page);
2292 	return 0;
2293 }
2294 
2295 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2296 {
2297 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2298 }
2299 
2300 static int pmbus_read_status_word(struct i2c_client *client, int page)
2301 {
2302 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2303 }
2304 
2305 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2306 			     struct pmbus_driver_info *info)
2307 {
2308 	struct device *dev = &client->dev;
2309 	int page, ret;
2310 
2311 	/*
2312 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2313 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2314 	 * Bail out if both registers are not supported.
2315 	 */
2316 	data->read_status = pmbus_read_status_word;
2317 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2318 	if (ret < 0 || ret == 0xffff) {
2319 		data->read_status = pmbus_read_status_byte;
2320 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2321 		if (ret < 0 || ret == 0xff) {
2322 			dev_err(dev, "PMBus status register not found\n");
2323 			return -ENODEV;
2324 		}
2325 	} else {
2326 		data->has_status_word = true;
2327 	}
2328 
2329 	/* Make sure PEC is disabled, will be enabled later if needed */
2330 	client->flags &= ~I2C_CLIENT_PEC;
2331 
2332 	/* Enable PEC if the controller and bus supports it */
2333 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2334 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2335 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2336 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) {
2337 				client->flags |= I2C_CLIENT_PEC;
2338 			}
2339 		}
2340 	}
2341 
2342 	/*
2343 	 * Check if the chip is write protected. If it is, we can not clear
2344 	 * faults, and we should not try it. Also, in that case, writes into
2345 	 * limit registers need to be disabled.
2346 	 */
2347 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2348 		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2349 		if (ret > 0 && (ret & PB_WP_ANY))
2350 			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2351 	}
2352 
2353 	if (data->info->pages)
2354 		pmbus_clear_faults(client);
2355 	else
2356 		pmbus_clear_fault_page(client, -1);
2357 
2358 	if (info->identify) {
2359 		ret = (*info->identify)(client, info);
2360 		if (ret < 0) {
2361 			dev_err(dev, "Chip identification failed\n");
2362 			return ret;
2363 		}
2364 	}
2365 
2366 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2367 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2368 		return -ENODEV;
2369 	}
2370 
2371 	for (page = 0; page < info->pages; page++) {
2372 		ret = pmbus_identify_common(client, data, page);
2373 		if (ret < 0) {
2374 			dev_err(dev, "Failed to identify chip capabilities\n");
2375 			return ret;
2376 		}
2377 	}
2378 
2379 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2380 		if (!i2c_check_functionality(client->adapter,
2381 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2382 			return -ENODEV;
2383 
2384 		ret = pmbus_init_coefficients(client, info);
2385 		if (ret < 0)
2386 			return ret;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 #if IS_ENABLED(CONFIG_REGULATOR)
2393 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2394 {
2395 	struct device *dev = rdev_get_dev(rdev);
2396 	struct i2c_client *client = to_i2c_client(dev->parent);
2397 	struct pmbus_data *data = i2c_get_clientdata(client);
2398 	u8 page = rdev_get_id(rdev);
2399 	int ret;
2400 
2401 	mutex_lock(&data->update_lock);
2402 	ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2403 	mutex_unlock(&data->update_lock);
2404 
2405 	if (ret < 0)
2406 		return ret;
2407 
2408 	return !!(ret & PB_OPERATION_CONTROL_ON);
2409 }
2410 
2411 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2412 {
2413 	struct device *dev = rdev_get_dev(rdev);
2414 	struct i2c_client *client = to_i2c_client(dev->parent);
2415 	struct pmbus_data *data = i2c_get_clientdata(client);
2416 	u8 page = rdev_get_id(rdev);
2417 	int ret;
2418 
2419 	mutex_lock(&data->update_lock);
2420 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2421 				     PB_OPERATION_CONTROL_ON,
2422 				     enable ? PB_OPERATION_CONTROL_ON : 0);
2423 	mutex_unlock(&data->update_lock);
2424 
2425 	return ret;
2426 }
2427 
2428 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2429 {
2430 	return _pmbus_regulator_on_off(rdev, 1);
2431 }
2432 
2433 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2434 {
2435 	return _pmbus_regulator_on_off(rdev, 0);
2436 }
2437 
2438 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* flag */
2439 struct pmbus_regulator_status_assoc {
2440 	int pflag, rflag;
2441 };
2442 
2443 /* PMBus->regulator bit mappings for a PMBus status register */
2444 struct pmbus_regulator_status_category {
2445 	int func;
2446 	int reg;
2447 	const struct pmbus_regulator_status_assoc *bits; /* zero-terminated */
2448 };
2449 
2450 static const struct pmbus_regulator_status_category pmbus_regulator_flag_map[] = {
2451 	{
2452 		.func = PMBUS_HAVE_STATUS_VOUT,
2453 		.reg = PMBUS_STATUS_VOUT,
2454 		.bits = (const struct pmbus_regulator_status_assoc[]) {
2455 			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN },
2456 			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE },
2457 			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN },
2458 			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT },
2459 			{ },
2460 		},
2461 	}, {
2462 		.func = PMBUS_HAVE_STATUS_IOUT,
2463 		.reg = PMBUS_STATUS_IOUT,
2464 		.bits = (const struct pmbus_regulator_status_assoc[]) {
2465 			{ PB_IOUT_OC_WARNING,    REGULATOR_ERROR_OVER_CURRENT_WARN },
2466 			{ PB_IOUT_OC_FAULT,      REGULATOR_ERROR_OVER_CURRENT },
2467 			{ PB_IOUT_OC_LV_FAULT,   REGULATOR_ERROR_OVER_CURRENT },
2468 			{ },
2469 		},
2470 	}, {
2471 		.func = PMBUS_HAVE_STATUS_TEMP,
2472 		.reg = PMBUS_STATUS_TEMPERATURE,
2473 		.bits = (const struct pmbus_regulator_status_assoc[]) {
2474 			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN },
2475 			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP },
2476 			{ },
2477 		},
2478 	},
2479 };
2480 
2481 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2482 {
2483 	int i, status;
2484 	const struct pmbus_regulator_status_category *cat;
2485 	const struct pmbus_regulator_status_assoc *bit;
2486 	struct device *dev = rdev_get_dev(rdev);
2487 	struct i2c_client *client = to_i2c_client(dev->parent);
2488 	struct pmbus_data *data = i2c_get_clientdata(client);
2489 	u8 page = rdev_get_id(rdev);
2490 	int func = data->info->func[page];
2491 
2492 	*flags = 0;
2493 
2494 	mutex_lock(&data->update_lock);
2495 
2496 	for (i = 0; i < ARRAY_SIZE(pmbus_regulator_flag_map); i++) {
2497 		cat = &pmbus_regulator_flag_map[i];
2498 		if (!(func & cat->func))
2499 			continue;
2500 
2501 		status = pmbus_read_byte_data(client, page, cat->reg);
2502 		if (status < 0) {
2503 			mutex_unlock(&data->update_lock);
2504 			return status;
2505 		}
2506 
2507 		for (bit = cat->bits; bit->pflag; bit++) {
2508 			if (status & bit->pflag)
2509 				*flags |= bit->rflag;
2510 		}
2511 	}
2512 
2513 	/*
2514 	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2515 	 * bits.  Some of the other bits are tempting (especially for cases
2516 	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2517 	 * functionality), but there's an unfortunate ambiguity in that
2518 	 * they're defined as indicating a fault *or* a warning, so we can't
2519 	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2520 	 * REGULATOR_ERROR_<foo>_WARN.
2521 	 */
2522 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2523 	mutex_unlock(&data->update_lock);
2524 	if (status < 0)
2525 		return status;
2526 
2527 	if (pmbus_regulator_is_enabled(rdev) && (status & PB_STATUS_OFF))
2528 		*flags |= REGULATOR_ERROR_FAIL;
2529 
2530 	/*
2531 	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2532 	 * defined strictly as fault indicators (not warnings).
2533 	 */
2534 	if (status & PB_STATUS_IOUT_OC)
2535 		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2536 	if (status & PB_STATUS_VOUT_OV)
2537 		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2538 
2539 	/*
2540 	 * If we haven't discovered any thermal faults or warnings via
2541 	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2542 	 * a (conservative) best-effort interpretation.
2543 	 */
2544 	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2545 	    (status & PB_STATUS_TEMPERATURE))
2546 		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2547 
2548 	return 0;
2549 }
2550 
2551 const struct regulator_ops pmbus_regulator_ops = {
2552 	.enable = pmbus_regulator_enable,
2553 	.disable = pmbus_regulator_disable,
2554 	.is_enabled = pmbus_regulator_is_enabled,
2555 	.get_error_flags = pmbus_regulator_get_error_flags,
2556 };
2557 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
2558 
2559 static int pmbus_regulator_register(struct pmbus_data *data)
2560 {
2561 	struct device *dev = data->dev;
2562 	const struct pmbus_driver_info *info = data->info;
2563 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2564 	struct regulator_dev *rdev;
2565 	int i;
2566 
2567 	for (i = 0; i < info->num_regulators; i++) {
2568 		struct regulator_config config = { };
2569 
2570 		config.dev = dev;
2571 		config.driver_data = data;
2572 
2573 		if (pdata && pdata->reg_init_data)
2574 			config.init_data = &pdata->reg_init_data[i];
2575 
2576 		rdev = devm_regulator_register(dev, &info->reg_desc[i],
2577 					       &config);
2578 		if (IS_ERR(rdev)) {
2579 			dev_err(dev, "Failed to register %s regulator\n",
2580 				info->reg_desc[i].name);
2581 			return PTR_ERR(rdev);
2582 		}
2583 	}
2584 
2585 	return 0;
2586 }
2587 #else
2588 static int pmbus_regulator_register(struct pmbus_data *data)
2589 {
2590 	return 0;
2591 }
2592 #endif
2593 
2594 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
2595 
2596 #if IS_ENABLED(CONFIG_DEBUG_FS)
2597 static int pmbus_debugfs_get(void *data, u64 *val)
2598 {
2599 	int rc;
2600 	struct pmbus_debugfs_entry *entry = data;
2601 
2602 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2603 	if (rc < 0)
2604 		return rc;
2605 
2606 	*val = rc;
2607 
2608 	return 0;
2609 }
2610 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2611 			 "0x%02llx\n");
2612 
2613 static int pmbus_debugfs_get_status(void *data, u64 *val)
2614 {
2615 	int rc;
2616 	struct pmbus_debugfs_entry *entry = data;
2617 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2618 
2619 	rc = pdata->read_status(entry->client, entry->page);
2620 	if (rc < 0)
2621 		return rc;
2622 
2623 	*val = rc;
2624 
2625 	return 0;
2626 }
2627 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2628 			 NULL, "0x%04llx\n");
2629 
2630 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2631 {
2632 	struct i2c_client *client = data;
2633 
2634 	*val = !!(client->flags & I2C_CLIENT_PEC);
2635 
2636 	return 0;
2637 }
2638 
2639 static int pmbus_debugfs_set_pec(void *data, u64 val)
2640 {
2641 	int rc;
2642 	struct i2c_client *client = data;
2643 
2644 	if (!val) {
2645 		client->flags &= ~I2C_CLIENT_PEC;
2646 		return 0;
2647 	}
2648 
2649 	if (val != 1)
2650 		return -EINVAL;
2651 
2652 	rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2653 	if (rc < 0)
2654 		return rc;
2655 
2656 	if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2657 		return -EOPNOTSUPP;
2658 
2659 	client->flags |= I2C_CLIENT_PEC;
2660 
2661 	return 0;
2662 }
2663 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2664 			 pmbus_debugfs_set_pec, "%llu\n");
2665 
2666 static void pmbus_remove_debugfs(void *data)
2667 {
2668 	struct dentry *entry = data;
2669 
2670 	debugfs_remove_recursive(entry);
2671 }
2672 
2673 static int pmbus_init_debugfs(struct i2c_client *client,
2674 			      struct pmbus_data *data)
2675 {
2676 	int i, idx = 0;
2677 	char name[PMBUS_NAME_SIZE];
2678 	struct pmbus_debugfs_entry *entries;
2679 
2680 	if (!pmbus_debugfs_dir)
2681 		return -ENODEV;
2682 
2683 	/*
2684 	 * Create the debugfs directory for this device. Use the hwmon device
2685 	 * name to avoid conflicts (hwmon numbers are globally unique).
2686 	 */
2687 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2688 					   pmbus_debugfs_dir);
2689 	if (IS_ERR_OR_NULL(data->debugfs)) {
2690 		data->debugfs = NULL;
2691 		return -ENODEV;
2692 	}
2693 
2694 	/* Allocate the max possible entries we need. */
2695 	entries = devm_kcalloc(data->dev,
2696 			       data->info->pages * 10, sizeof(*entries),
2697 			       GFP_KERNEL);
2698 	if (!entries)
2699 		return -ENOMEM;
2700 
2701 	debugfs_create_file("pec", 0664, data->debugfs, client,
2702 			    &pmbus_debugfs_ops_pec);
2703 
2704 	for (i = 0; i < data->info->pages; ++i) {
2705 		/* Check accessibility of status register if it's not page 0 */
2706 		if (!i || pmbus_check_status_register(client, i)) {
2707 			/* No need to set reg as we have special read op. */
2708 			entries[idx].client = client;
2709 			entries[idx].page = i;
2710 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2711 			debugfs_create_file(name, 0444, data->debugfs,
2712 					    &entries[idx++],
2713 					    &pmbus_debugfs_ops_status);
2714 		}
2715 
2716 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2717 			entries[idx].client = client;
2718 			entries[idx].page = i;
2719 			entries[idx].reg = PMBUS_STATUS_VOUT;
2720 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2721 			debugfs_create_file(name, 0444, data->debugfs,
2722 					    &entries[idx++],
2723 					    &pmbus_debugfs_ops);
2724 		}
2725 
2726 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2727 			entries[idx].client = client;
2728 			entries[idx].page = i;
2729 			entries[idx].reg = PMBUS_STATUS_IOUT;
2730 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2731 			debugfs_create_file(name, 0444, data->debugfs,
2732 					    &entries[idx++],
2733 					    &pmbus_debugfs_ops);
2734 		}
2735 
2736 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2737 			entries[idx].client = client;
2738 			entries[idx].page = i;
2739 			entries[idx].reg = PMBUS_STATUS_INPUT;
2740 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2741 			debugfs_create_file(name, 0444, data->debugfs,
2742 					    &entries[idx++],
2743 					    &pmbus_debugfs_ops);
2744 		}
2745 
2746 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2747 			entries[idx].client = client;
2748 			entries[idx].page = i;
2749 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2750 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2751 			debugfs_create_file(name, 0444, data->debugfs,
2752 					    &entries[idx++],
2753 					    &pmbus_debugfs_ops);
2754 		}
2755 
2756 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2757 			entries[idx].client = client;
2758 			entries[idx].page = i;
2759 			entries[idx].reg = PMBUS_STATUS_CML;
2760 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2761 			debugfs_create_file(name, 0444, data->debugfs,
2762 					    &entries[idx++],
2763 					    &pmbus_debugfs_ops);
2764 		}
2765 
2766 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2767 			entries[idx].client = client;
2768 			entries[idx].page = i;
2769 			entries[idx].reg = PMBUS_STATUS_OTHER;
2770 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2771 			debugfs_create_file(name, 0444, data->debugfs,
2772 					    &entries[idx++],
2773 					    &pmbus_debugfs_ops);
2774 		}
2775 
2776 		if (pmbus_check_byte_register(client, i,
2777 					      PMBUS_STATUS_MFR_SPECIFIC)) {
2778 			entries[idx].client = client;
2779 			entries[idx].page = i;
2780 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2781 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2782 			debugfs_create_file(name, 0444, data->debugfs,
2783 					    &entries[idx++],
2784 					    &pmbus_debugfs_ops);
2785 		}
2786 
2787 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2788 			entries[idx].client = client;
2789 			entries[idx].page = i;
2790 			entries[idx].reg = PMBUS_STATUS_FAN_12;
2791 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2792 			debugfs_create_file(name, 0444, data->debugfs,
2793 					    &entries[idx++],
2794 					    &pmbus_debugfs_ops);
2795 		}
2796 
2797 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2798 			entries[idx].client = client;
2799 			entries[idx].page = i;
2800 			entries[idx].reg = PMBUS_STATUS_FAN_34;
2801 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2802 			debugfs_create_file(name, 0444, data->debugfs,
2803 					    &entries[idx++],
2804 					    &pmbus_debugfs_ops);
2805 		}
2806 	}
2807 
2808 	return devm_add_action_or_reset(data->dev,
2809 					pmbus_remove_debugfs, data->debugfs);
2810 }
2811 #else
2812 static int pmbus_init_debugfs(struct i2c_client *client,
2813 			      struct pmbus_data *data)
2814 {
2815 	return 0;
2816 }
2817 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
2818 
2819 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2820 {
2821 	struct device *dev = &client->dev;
2822 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2823 	struct pmbus_data *data;
2824 	size_t groups_num = 0;
2825 	int ret;
2826 	char *name;
2827 
2828 	if (!info)
2829 		return -ENODEV;
2830 
2831 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2832 				     | I2C_FUNC_SMBUS_BYTE_DATA
2833 				     | I2C_FUNC_SMBUS_WORD_DATA))
2834 		return -ENODEV;
2835 
2836 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2837 	if (!data)
2838 		return -ENOMEM;
2839 
2840 	if (info->groups)
2841 		while (info->groups[groups_num])
2842 			groups_num++;
2843 
2844 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
2845 				    GFP_KERNEL);
2846 	if (!data->groups)
2847 		return -ENOMEM;
2848 
2849 	i2c_set_clientdata(client, data);
2850 	mutex_init(&data->update_lock);
2851 	data->dev = dev;
2852 
2853 	if (pdata)
2854 		data->flags = pdata->flags;
2855 	data->info = info;
2856 	data->currpage = -1;
2857 	data->currphase = -1;
2858 
2859 	ret = pmbus_init_common(client, data, info);
2860 	if (ret < 0)
2861 		return ret;
2862 
2863 	ret = pmbus_find_attributes(client, data);
2864 	if (ret)
2865 		return ret;
2866 
2867 	/*
2868 	 * If there are no attributes, something is wrong.
2869 	 * Bail out instead of trying to register nothing.
2870 	 */
2871 	if (!data->num_attributes) {
2872 		dev_err(dev, "No attributes found\n");
2873 		return -ENODEV;
2874 	}
2875 
2876 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
2877 	if (!name)
2878 		return -ENOMEM;
2879 	strreplace(name, '-', '_');
2880 
2881 	data->groups[0] = &data->group;
2882 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
2883 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
2884 					name, data, data->groups);
2885 	if (IS_ERR(data->hwmon_dev)) {
2886 		dev_err(dev, "Failed to register hwmon device\n");
2887 		return PTR_ERR(data->hwmon_dev);
2888 	}
2889 
2890 	ret = pmbus_regulator_register(data);
2891 	if (ret)
2892 		return ret;
2893 
2894 	ret = pmbus_init_debugfs(client, data);
2895 	if (ret)
2896 		dev_warn(dev, "Failed to register debugfs\n");
2897 
2898 	return 0;
2899 }
2900 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
2901 
2902 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2903 {
2904 	struct pmbus_data *data = i2c_get_clientdata(client);
2905 
2906 	return data->debugfs;
2907 }
2908 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
2909 
2910 static int __init pmbus_core_init(void)
2911 {
2912 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2913 	if (IS_ERR(pmbus_debugfs_dir))
2914 		pmbus_debugfs_dir = NULL;
2915 
2916 	return 0;
2917 }
2918 
2919 static void __exit pmbus_core_exit(void)
2920 {
2921 	debugfs_remove_recursive(pmbus_debugfs_dir);
2922 }
2923 
2924 module_init(pmbus_core_init);
2925 module_exit(pmbus_core_exit);
2926 
2927 MODULE_AUTHOR("Guenter Roeck");
2928 MODULE_DESCRIPTION("PMBus core driver");
2929 MODULE_LICENSE("GPL");
2930