1 /* 2 * Hardware monitoring driver for PMBus devices 3 * 4 * Copyright (c) 2010, 2011 Ericsson AB. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 #include <linux/i2c.h> 27 #include <linux/hwmon.h> 28 #include <linux/hwmon-sysfs.h> 29 #include <linux/delay.h> 30 #include <linux/i2c/pmbus.h> 31 #include "pmbus.h" 32 33 /* 34 * Constants needed to determine number of sensors, booleans, and labels. 35 */ 36 #define PMBUS_MAX_INPUT_SENSORS 22 /* 10*volt, 7*curr, 5*power */ 37 #define PMBUS_VOUT_SENSORS_PER_PAGE 9 /* input, min, max, lcrit, 38 crit, lowest, highest, avg, 39 reset */ 40 #define PMBUS_IOUT_SENSORS_PER_PAGE 8 /* input, min, max, crit, 41 lowest, highest, avg, 42 reset */ 43 #define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */ 44 #define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */ 45 #define PMBUS_MAX_SENSORS_PER_TEMP 8 /* input, min, max, lcrit, 46 crit, lowest, highest, 47 reset */ 48 49 #define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm, 50 lcrit_alarm, crit_alarm; 51 c: alarm, crit_alarm; 52 p: crit_alarm */ 53 #define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm, 54 lcrit_alarm, crit_alarm */ 55 #define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm, 56 crit_alarm */ 57 #define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */ 58 #define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */ 59 #define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm, 60 lcrit_alarm, crit_alarm */ 61 62 #define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */ 63 64 /* 65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp 66 * are paged. status_input is unpaged. 67 */ 68 #define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1) 69 70 /* 71 * Index into status register array, per status register group 72 */ 73 #define PB_STATUS_BASE 0 74 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) 75 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) 76 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) 77 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) 78 #define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) 79 #define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1) 80 81 #define PMBUS_NAME_SIZE 24 82 83 struct pmbus_sensor { 84 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 85 struct sensor_device_attribute attribute; 86 u8 page; /* page number */ 87 u16 reg; /* register */ 88 enum pmbus_sensor_classes class; /* sensor class */ 89 bool update; /* runtime sensor update needed */ 90 int data; /* Sensor data. 91 Negative if there was a read error */ 92 }; 93 94 struct pmbus_boolean { 95 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 96 struct sensor_device_attribute attribute; 97 }; 98 99 struct pmbus_label { 100 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 101 struct sensor_device_attribute attribute; 102 char label[PMBUS_NAME_SIZE]; /* label */ 103 }; 104 105 struct pmbus_data { 106 struct device *hwmon_dev; 107 108 u32 flags; /* from platform data */ 109 110 int exponent; /* linear mode: exponent for output voltages */ 111 112 const struct pmbus_driver_info *info; 113 114 int max_attributes; 115 int num_attributes; 116 struct attribute **attributes; 117 struct attribute_group group; 118 119 /* 120 * Sensors cover both sensor and limit registers. 121 */ 122 int max_sensors; 123 int num_sensors; 124 struct pmbus_sensor *sensors; 125 /* 126 * Booleans are used for alarms. 127 * Values are determined from status registers. 128 */ 129 int max_booleans; 130 int num_booleans; 131 struct pmbus_boolean *booleans; 132 /* 133 * Labels are used to map generic names (e.g., "in1") 134 * to PMBus specific names (e.g., "vin" or "vout1"). 135 */ 136 int max_labels; 137 int num_labels; 138 struct pmbus_label *labels; 139 140 struct mutex update_lock; 141 bool valid; 142 unsigned long last_updated; /* in jiffies */ 143 144 /* 145 * A single status register covers multiple attributes, 146 * so we keep them all together. 147 */ 148 u8 status[PB_NUM_STATUS_REG]; 149 150 u8 currpage; 151 }; 152 153 int pmbus_set_page(struct i2c_client *client, u8 page) 154 { 155 struct pmbus_data *data = i2c_get_clientdata(client); 156 int rv = 0; 157 int newpage; 158 159 if (page != data->currpage) { 160 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 161 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 162 if (newpage != page) 163 rv = -EINVAL; 164 else 165 data->currpage = page; 166 } 167 return rv; 168 } 169 EXPORT_SYMBOL_GPL(pmbus_set_page); 170 171 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 172 { 173 int rv; 174 175 if (page >= 0) { 176 rv = pmbus_set_page(client, page); 177 if (rv < 0) 178 return rv; 179 } 180 181 return i2c_smbus_write_byte(client, value); 182 } 183 EXPORT_SYMBOL_GPL(pmbus_write_byte); 184 185 /* 186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 187 * a device specific mapping funcion exists and calls it if necessary. 188 */ 189 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 190 { 191 struct pmbus_data *data = i2c_get_clientdata(client); 192 const struct pmbus_driver_info *info = data->info; 193 int status; 194 195 if (info->write_byte) { 196 status = info->write_byte(client, page, value); 197 if (status != -ENODATA) 198 return status; 199 } 200 return pmbus_write_byte(client, page, value); 201 } 202 203 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word) 204 { 205 int rv; 206 207 rv = pmbus_set_page(client, page); 208 if (rv < 0) 209 return rv; 210 211 return i2c_smbus_write_word_data(client, reg, word); 212 } 213 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 214 215 /* 216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 217 * a device specific mapping function exists and calls it if necessary. 218 */ 219 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 220 u16 word) 221 { 222 struct pmbus_data *data = i2c_get_clientdata(client); 223 const struct pmbus_driver_info *info = data->info; 224 int status; 225 226 if (info->write_word_data) { 227 status = info->write_word_data(client, page, reg, word); 228 if (status != -ENODATA) 229 return status; 230 } 231 if (reg >= PMBUS_VIRT_BASE) 232 return -EINVAL; 233 return pmbus_write_word_data(client, page, reg, word); 234 } 235 236 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg) 237 { 238 int rv; 239 240 rv = pmbus_set_page(client, page); 241 if (rv < 0) 242 return rv; 243 244 return i2c_smbus_read_word_data(client, reg); 245 } 246 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 247 248 /* 249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 250 * a device specific mapping function exists and calls it if necessary. 251 */ 252 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg) 253 { 254 struct pmbus_data *data = i2c_get_clientdata(client); 255 const struct pmbus_driver_info *info = data->info; 256 int status; 257 258 if (info->read_word_data) { 259 status = info->read_word_data(client, page, reg); 260 if (status != -ENODATA) 261 return status; 262 } 263 if (reg >= PMBUS_VIRT_BASE) 264 return -EINVAL; 265 return pmbus_read_word_data(client, page, reg); 266 } 267 268 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 269 { 270 int rv; 271 272 if (page >= 0) { 273 rv = pmbus_set_page(client, page); 274 if (rv < 0) 275 return rv; 276 } 277 278 return i2c_smbus_read_byte_data(client, reg); 279 } 280 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 281 282 /* 283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 284 * a device specific mapping function exists and calls it if necessary. 285 */ 286 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 287 { 288 struct pmbus_data *data = i2c_get_clientdata(client); 289 const struct pmbus_driver_info *info = data->info; 290 int status; 291 292 if (info->read_byte_data) { 293 status = info->read_byte_data(client, page, reg); 294 if (status != -ENODATA) 295 return status; 296 } 297 return pmbus_read_byte_data(client, page, reg); 298 } 299 300 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 301 { 302 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 303 } 304 305 void pmbus_clear_faults(struct i2c_client *client) 306 { 307 struct pmbus_data *data = i2c_get_clientdata(client); 308 int i; 309 310 for (i = 0; i < data->info->pages; i++) 311 pmbus_clear_fault_page(client, i); 312 } 313 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 314 315 static int pmbus_check_status_cml(struct i2c_client *client) 316 { 317 int status, status2; 318 319 status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE); 320 if (status < 0 || (status & PB_STATUS_CML)) { 321 status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 322 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 323 return -EINVAL; 324 } 325 return 0; 326 } 327 328 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 329 { 330 int rv; 331 struct pmbus_data *data = i2c_get_clientdata(client); 332 333 rv = _pmbus_read_byte_data(client, page, reg); 334 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 335 rv = pmbus_check_status_cml(client); 336 pmbus_clear_fault_page(client, -1); 337 return rv >= 0; 338 } 339 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 340 341 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 342 { 343 int rv; 344 struct pmbus_data *data = i2c_get_clientdata(client); 345 346 rv = _pmbus_read_word_data(client, page, reg); 347 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 348 rv = pmbus_check_status_cml(client); 349 pmbus_clear_fault_page(client, -1); 350 return rv >= 0; 351 } 352 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 353 354 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 355 { 356 struct pmbus_data *data = i2c_get_clientdata(client); 357 358 return data->info; 359 } 360 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 361 362 static struct pmbus_data *pmbus_update_device(struct device *dev) 363 { 364 struct i2c_client *client = to_i2c_client(dev); 365 struct pmbus_data *data = i2c_get_clientdata(client); 366 const struct pmbus_driver_info *info = data->info; 367 368 mutex_lock(&data->update_lock); 369 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 370 int i; 371 372 for (i = 0; i < info->pages; i++) 373 data->status[PB_STATUS_BASE + i] 374 = pmbus_read_byte_data(client, i, 375 PMBUS_STATUS_BYTE); 376 for (i = 0; i < info->pages; i++) { 377 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT)) 378 continue; 379 data->status[PB_STATUS_VOUT_BASE + i] 380 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT); 381 } 382 for (i = 0; i < info->pages; i++) { 383 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT)) 384 continue; 385 data->status[PB_STATUS_IOUT_BASE + i] 386 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT); 387 } 388 for (i = 0; i < info->pages; i++) { 389 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP)) 390 continue; 391 data->status[PB_STATUS_TEMP_BASE + i] 392 = _pmbus_read_byte_data(client, i, 393 PMBUS_STATUS_TEMPERATURE); 394 } 395 for (i = 0; i < info->pages; i++) { 396 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12)) 397 continue; 398 data->status[PB_STATUS_FAN_BASE + i] 399 = _pmbus_read_byte_data(client, i, 400 PMBUS_STATUS_FAN_12); 401 } 402 403 for (i = 0; i < info->pages; i++) { 404 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34)) 405 continue; 406 data->status[PB_STATUS_FAN34_BASE + i] 407 = _pmbus_read_byte_data(client, i, 408 PMBUS_STATUS_FAN_34); 409 } 410 411 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) 412 data->status[PB_STATUS_INPUT_BASE] 413 = _pmbus_read_byte_data(client, 0, 414 PMBUS_STATUS_INPUT); 415 416 for (i = 0; i < data->num_sensors; i++) { 417 struct pmbus_sensor *sensor = &data->sensors[i]; 418 419 if (!data->valid || sensor->update) 420 sensor->data 421 = _pmbus_read_word_data(client, 422 sensor->page, 423 sensor->reg); 424 } 425 pmbus_clear_faults(client); 426 data->last_updated = jiffies; 427 data->valid = 1; 428 } 429 mutex_unlock(&data->update_lock); 430 return data; 431 } 432 433 /* 434 * Convert linear sensor values to milli- or micro-units 435 * depending on sensor type. 436 */ 437 static long pmbus_reg2data_linear(struct pmbus_data *data, 438 struct pmbus_sensor *sensor) 439 { 440 s16 exponent; 441 s32 mantissa; 442 long val; 443 444 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 445 exponent = data->exponent; 446 mantissa = (u16) sensor->data; 447 } else { /* LINEAR11 */ 448 exponent = (sensor->data >> 11) & 0x001f; 449 mantissa = sensor->data & 0x07ff; 450 451 if (exponent > 0x0f) 452 exponent |= 0xffe0; /* sign extend exponent */ 453 if (mantissa > 0x03ff) 454 mantissa |= 0xfffff800; /* sign extend mantissa */ 455 } 456 457 val = mantissa; 458 459 /* scale result to milli-units for all sensors except fans */ 460 if (sensor->class != PSC_FAN) 461 val = val * 1000L; 462 463 /* scale result to micro-units for power sensors */ 464 if (sensor->class == PSC_POWER) 465 val = val * 1000L; 466 467 if (exponent >= 0) 468 val <<= exponent; 469 else 470 val >>= -exponent; 471 472 return val; 473 } 474 475 /* 476 * Convert direct sensor values to milli- or micro-units 477 * depending on sensor type. 478 */ 479 static long pmbus_reg2data_direct(struct pmbus_data *data, 480 struct pmbus_sensor *sensor) 481 { 482 long val = (s16) sensor->data; 483 long m, b, R; 484 485 m = data->info->m[sensor->class]; 486 b = data->info->b[sensor->class]; 487 R = data->info->R[sensor->class]; 488 489 if (m == 0) 490 return 0; 491 492 /* X = 1/m * (Y * 10^-R - b) */ 493 R = -R; 494 /* scale result to milli-units for everything but fans */ 495 if (sensor->class != PSC_FAN) { 496 R += 3; 497 b *= 1000; 498 } 499 500 /* scale result to micro-units for power sensors */ 501 if (sensor->class == PSC_POWER) { 502 R += 3; 503 b *= 1000; 504 } 505 506 while (R > 0) { 507 val *= 10; 508 R--; 509 } 510 while (R < 0) { 511 val = DIV_ROUND_CLOSEST(val, 10); 512 R++; 513 } 514 515 return (val - b) / m; 516 } 517 518 /* 519 * Convert VID sensor values to milli- or micro-units 520 * depending on sensor type. 521 * We currently only support VR11. 522 */ 523 static long pmbus_reg2data_vid(struct pmbus_data *data, 524 struct pmbus_sensor *sensor) 525 { 526 long val = sensor->data; 527 528 if (val < 0x02 || val > 0xb2) 529 return 0; 530 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 531 } 532 533 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 534 { 535 long val; 536 537 switch (data->info->format[sensor->class]) { 538 case direct: 539 val = pmbus_reg2data_direct(data, sensor); 540 break; 541 case vid: 542 val = pmbus_reg2data_vid(data, sensor); 543 break; 544 case linear: 545 default: 546 val = pmbus_reg2data_linear(data, sensor); 547 break; 548 } 549 return val; 550 } 551 552 #define MAX_MANTISSA (1023 * 1000) 553 #define MIN_MANTISSA (511 * 1000) 554 555 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 556 enum pmbus_sensor_classes class, long val) 557 { 558 s16 exponent = 0, mantissa; 559 bool negative = false; 560 561 /* simple case */ 562 if (val == 0) 563 return 0; 564 565 if (class == PSC_VOLTAGE_OUT) { 566 /* LINEAR16 does not support negative voltages */ 567 if (val < 0) 568 return 0; 569 570 /* 571 * For a static exponents, we don't have a choice 572 * but to adjust the value to it. 573 */ 574 if (data->exponent < 0) 575 val <<= -data->exponent; 576 else 577 val >>= data->exponent; 578 val = DIV_ROUND_CLOSEST(val, 1000); 579 return val & 0xffff; 580 } 581 582 if (val < 0) { 583 negative = true; 584 val = -val; 585 } 586 587 /* Power is in uW. Convert to mW before converting. */ 588 if (class == PSC_POWER) 589 val = DIV_ROUND_CLOSEST(val, 1000L); 590 591 /* 592 * For simplicity, convert fan data to milli-units 593 * before calculating the exponent. 594 */ 595 if (class == PSC_FAN) 596 val = val * 1000; 597 598 /* Reduce large mantissa until it fits into 10 bit */ 599 while (val >= MAX_MANTISSA && exponent < 15) { 600 exponent++; 601 val >>= 1; 602 } 603 /* Increase small mantissa to improve precision */ 604 while (val < MIN_MANTISSA && exponent > -15) { 605 exponent--; 606 val <<= 1; 607 } 608 609 /* Convert mantissa from milli-units to units */ 610 mantissa = DIV_ROUND_CLOSEST(val, 1000); 611 612 /* Ensure that resulting number is within range */ 613 if (mantissa > 0x3ff) 614 mantissa = 0x3ff; 615 616 /* restore sign */ 617 if (negative) 618 mantissa = -mantissa; 619 620 /* Convert to 5 bit exponent, 11 bit mantissa */ 621 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 622 } 623 624 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 625 enum pmbus_sensor_classes class, long val) 626 { 627 long m, b, R; 628 629 m = data->info->m[class]; 630 b = data->info->b[class]; 631 R = data->info->R[class]; 632 633 /* Power is in uW. Adjust R and b. */ 634 if (class == PSC_POWER) { 635 R -= 3; 636 b *= 1000; 637 } 638 639 /* Calculate Y = (m * X + b) * 10^R */ 640 if (class != PSC_FAN) { 641 R -= 3; /* Adjust R and b for data in milli-units */ 642 b *= 1000; 643 } 644 val = val * m + b; 645 646 while (R > 0) { 647 val *= 10; 648 R--; 649 } 650 while (R < 0) { 651 val = DIV_ROUND_CLOSEST(val, 10); 652 R++; 653 } 654 655 return val; 656 } 657 658 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 659 enum pmbus_sensor_classes class, long val) 660 { 661 val = SENSORS_LIMIT(val, 500, 1600); 662 663 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625); 664 } 665 666 static u16 pmbus_data2reg(struct pmbus_data *data, 667 enum pmbus_sensor_classes class, long val) 668 { 669 u16 regval; 670 671 switch (data->info->format[class]) { 672 case direct: 673 regval = pmbus_data2reg_direct(data, class, val); 674 break; 675 case vid: 676 regval = pmbus_data2reg_vid(data, class, val); 677 break; 678 case linear: 679 default: 680 regval = pmbus_data2reg_linear(data, class, val); 681 break; 682 } 683 return regval; 684 } 685 686 /* 687 * Return boolean calculated from converted data. 688 * <index> defines a status register index and mask, and optionally 689 * two sensor indexes. 690 * The upper half-word references the two sensors, 691 * two sensor indices. 692 * The upper half-word references the two optional sensors, 693 * the lower half word references status register and mask. 694 * The function returns true if (status[reg] & mask) is true and, 695 * if specified, if v1 >= v2. 696 * To determine if an object exceeds upper limits, specify <v, limit>. 697 * To determine if an object exceeds lower limits, specify <limit, v>. 698 * 699 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of 700 * index are set. s1 and s2 (the sensor index values) are zero in this case. 701 * The function returns true if (status[reg] & mask) is true. 702 * 703 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against 704 * a specified limit has to be performed to determine the boolean result. 705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 706 * sensor values referenced by sensor indices s1 and s2). 707 * 708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 710 * 711 * If a negative value is stored in any of the referenced registers, this value 712 * reflects an error code which will be returned. 713 */ 714 static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val) 715 { 716 u8 s1 = (index >> 24) & 0xff; 717 u8 s2 = (index >> 16) & 0xff; 718 u8 reg = (index >> 8) & 0xff; 719 u8 mask = index & 0xff; 720 int status; 721 u8 regval; 722 723 status = data->status[reg]; 724 if (status < 0) 725 return status; 726 727 regval = status & mask; 728 if (!s1 && !s2) 729 *val = !!regval; 730 else { 731 long v1, v2; 732 struct pmbus_sensor *sensor1, *sensor2; 733 734 sensor1 = &data->sensors[s1]; 735 if (sensor1->data < 0) 736 return sensor1->data; 737 sensor2 = &data->sensors[s2]; 738 if (sensor2->data < 0) 739 return sensor2->data; 740 741 v1 = pmbus_reg2data(data, sensor1); 742 v2 = pmbus_reg2data(data, sensor2); 743 *val = !!(regval && v1 >= v2); 744 } 745 return 0; 746 } 747 748 static ssize_t pmbus_show_boolean(struct device *dev, 749 struct device_attribute *da, char *buf) 750 { 751 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 752 struct pmbus_data *data = pmbus_update_device(dev); 753 int val; 754 int err; 755 756 err = pmbus_get_boolean(data, attr->index, &val); 757 if (err) 758 return err; 759 return snprintf(buf, PAGE_SIZE, "%d\n", val); 760 } 761 762 static ssize_t pmbus_show_sensor(struct device *dev, 763 struct device_attribute *da, char *buf) 764 { 765 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 766 struct pmbus_data *data = pmbus_update_device(dev); 767 struct pmbus_sensor *sensor; 768 769 sensor = &data->sensors[attr->index]; 770 if (sensor->data < 0) 771 return sensor->data; 772 773 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor)); 774 } 775 776 static ssize_t pmbus_set_sensor(struct device *dev, 777 struct device_attribute *devattr, 778 const char *buf, size_t count) 779 { 780 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 781 struct i2c_client *client = to_i2c_client(dev); 782 struct pmbus_data *data = i2c_get_clientdata(client); 783 struct pmbus_sensor *sensor = &data->sensors[attr->index]; 784 ssize_t rv = count; 785 long val = 0; 786 int ret; 787 u16 regval; 788 789 if (strict_strtol(buf, 10, &val) < 0) 790 return -EINVAL; 791 792 mutex_lock(&data->update_lock); 793 regval = pmbus_data2reg(data, sensor->class, val); 794 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 795 if (ret < 0) 796 rv = ret; 797 else 798 data->sensors[attr->index].data = regval; 799 mutex_unlock(&data->update_lock); 800 return rv; 801 } 802 803 static ssize_t pmbus_show_label(struct device *dev, 804 struct device_attribute *da, char *buf) 805 { 806 struct i2c_client *client = to_i2c_client(dev); 807 struct pmbus_data *data = i2c_get_clientdata(client); 808 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 809 810 return snprintf(buf, PAGE_SIZE, "%s\n", 811 data->labels[attr->index].label); 812 } 813 814 #define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \ 815 do { \ 816 struct sensor_device_attribute *a \ 817 = &data->_type##s[data->num_##_type##s].attribute; \ 818 BUG_ON(data->num_attributes >= data->max_attributes); \ 819 sysfs_attr_init(&a->dev_attr.attr); \ 820 a->dev_attr.attr.name = _name; \ 821 a->dev_attr.attr.mode = _mode; \ 822 a->dev_attr.show = _show; \ 823 a->dev_attr.store = _set; \ 824 a->index = _idx; \ 825 data->attributes[data->num_attributes] = &a->dev_attr.attr; \ 826 data->num_attributes++; \ 827 } while (0) 828 829 #define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \ 830 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \ 831 pmbus_show_##_type, NULL) 832 833 #define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \ 834 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \ 835 pmbus_show_##_type, pmbus_set_##_type) 836 837 static void pmbus_add_boolean(struct pmbus_data *data, 838 const char *name, const char *type, int seq, 839 int idx) 840 { 841 struct pmbus_boolean *boolean; 842 843 BUG_ON(data->num_booleans >= data->max_booleans); 844 845 boolean = &data->booleans[data->num_booleans]; 846 847 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 848 name, seq, type); 849 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx); 850 data->num_booleans++; 851 } 852 853 static void pmbus_add_boolean_reg(struct pmbus_data *data, 854 const char *name, const char *type, 855 int seq, int reg, int bit) 856 { 857 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit); 858 } 859 860 static void pmbus_add_boolean_cmp(struct pmbus_data *data, 861 const char *name, const char *type, 862 int seq, int i1, int i2, int reg, int mask) 863 { 864 pmbus_add_boolean(data, name, type, seq, 865 (i1 << 24) | (i2 << 16) | (reg << 8) | mask); 866 } 867 868 static void pmbus_add_sensor(struct pmbus_data *data, 869 const char *name, const char *type, int seq, 870 int page, int reg, enum pmbus_sensor_classes class, 871 bool update, bool readonly) 872 { 873 struct pmbus_sensor *sensor; 874 875 BUG_ON(data->num_sensors >= data->max_sensors); 876 877 sensor = &data->sensors[data->num_sensors]; 878 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 879 name, seq, type); 880 sensor->page = page; 881 sensor->reg = reg; 882 sensor->class = class; 883 sensor->update = update; 884 if (readonly) 885 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor, 886 data->num_sensors); 887 else 888 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor, 889 data->num_sensors); 890 data->num_sensors++; 891 } 892 893 static void pmbus_add_label(struct pmbus_data *data, 894 const char *name, int seq, 895 const char *lstring, int index) 896 { 897 struct pmbus_label *label; 898 899 BUG_ON(data->num_labels >= data->max_labels); 900 901 label = &data->labels[data->num_labels]; 902 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 903 if (!index) 904 strncpy(label->label, lstring, sizeof(label->label) - 1); 905 else 906 snprintf(label->label, sizeof(label->label), "%s%d", lstring, 907 index); 908 909 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels); 910 data->num_labels++; 911 } 912 913 /* 914 * Determine maximum number of sensors, booleans, and labels. 915 * To keep things simple, only make a rough high estimate. 916 */ 917 static void pmbus_find_max_attr(struct i2c_client *client, 918 struct pmbus_data *data) 919 { 920 const struct pmbus_driver_info *info = data->info; 921 int page, max_sensors, max_booleans, max_labels; 922 923 max_sensors = PMBUS_MAX_INPUT_SENSORS; 924 max_booleans = PMBUS_MAX_INPUT_BOOLEANS; 925 max_labels = PMBUS_MAX_INPUT_LABELS; 926 927 for (page = 0; page < info->pages; page++) { 928 if (info->func[page] & PMBUS_HAVE_VOUT) { 929 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE; 930 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE; 931 max_labels++; 932 } 933 if (info->func[page] & PMBUS_HAVE_IOUT) { 934 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE; 935 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE; 936 max_labels++; 937 } 938 if (info->func[page] & PMBUS_HAVE_POUT) { 939 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE; 940 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE; 941 max_labels++; 942 } 943 if (info->func[page] & PMBUS_HAVE_FAN12) { 944 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN; 945 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN; 946 } 947 if (info->func[page] & PMBUS_HAVE_FAN34) { 948 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN; 949 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN; 950 } 951 if (info->func[page] & PMBUS_HAVE_TEMP) { 952 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; 953 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; 954 } 955 if (info->func[page] & PMBUS_HAVE_TEMP2) { 956 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; 957 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; 958 } 959 if (info->func[page] & PMBUS_HAVE_TEMP3) { 960 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; 961 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; 962 } 963 } 964 data->max_sensors = max_sensors; 965 data->max_booleans = max_booleans; 966 data->max_labels = max_labels; 967 data->max_attributes = max_sensors + max_booleans + max_labels; 968 } 969 970 /* 971 * Search for attributes. Allocate sensors, booleans, and labels as needed. 972 */ 973 974 /* 975 * The pmbus_limit_attr structure describes a single limit attribute 976 * and its associated alarm attribute. 977 */ 978 struct pmbus_limit_attr { 979 u16 reg; /* Limit register */ 980 bool update; /* True if register needs updates */ 981 bool low; /* True if low limit; for limits with compare 982 functions only */ 983 const char *attr; /* Attribute name */ 984 const char *alarm; /* Alarm attribute name */ 985 u32 sbit; /* Alarm attribute status bit */ 986 }; 987 988 /* 989 * The pmbus_sensor_attr structure describes one sensor attribute. This 990 * description includes a reference to the associated limit attributes. 991 */ 992 struct pmbus_sensor_attr { 993 u8 reg; /* sensor register */ 994 enum pmbus_sensor_classes class;/* sensor class */ 995 const char *label; /* sensor label */ 996 bool paged; /* true if paged sensor */ 997 bool update; /* true if update needed */ 998 bool compare; /* true if compare function needed */ 999 u32 func; /* sensor mask */ 1000 u32 sfunc; /* sensor status mask */ 1001 int sbase; /* status base register */ 1002 u32 gbit; /* generic status bit */ 1003 const struct pmbus_limit_attr *limit;/* limit registers */ 1004 int nlimit; /* # of limit registers */ 1005 }; 1006 1007 /* 1008 * Add a set of limit attributes and, if supported, the associated 1009 * alarm attributes. 1010 */ 1011 static bool pmbus_add_limit_attrs(struct i2c_client *client, 1012 struct pmbus_data *data, 1013 const struct pmbus_driver_info *info, 1014 const char *name, int index, int page, 1015 int cbase, 1016 const struct pmbus_sensor_attr *attr) 1017 { 1018 const struct pmbus_limit_attr *l = attr->limit; 1019 int nlimit = attr->nlimit; 1020 bool have_alarm = false; 1021 int i, cindex; 1022 1023 for (i = 0; i < nlimit; i++) { 1024 if (pmbus_check_word_register(client, page, l->reg)) { 1025 cindex = data->num_sensors; 1026 pmbus_add_sensor(data, name, l->attr, index, page, 1027 l->reg, attr->class, 1028 attr->update || l->update, 1029 false); 1030 if (l->sbit && (info->func[page] & attr->sfunc)) { 1031 if (attr->compare) { 1032 pmbus_add_boolean_cmp(data, name, 1033 l->alarm, index, 1034 l->low ? cindex : cbase, 1035 l->low ? cbase : cindex, 1036 attr->sbase + page, l->sbit); 1037 } else { 1038 pmbus_add_boolean_reg(data, name, 1039 l->alarm, index, 1040 attr->sbase + page, l->sbit); 1041 } 1042 have_alarm = true; 1043 } 1044 } 1045 l++; 1046 } 1047 return have_alarm; 1048 } 1049 1050 static void pmbus_add_sensor_attrs_one(struct i2c_client *client, 1051 struct pmbus_data *data, 1052 const struct pmbus_driver_info *info, 1053 const char *name, 1054 int index, int page, 1055 const struct pmbus_sensor_attr *attr) 1056 { 1057 bool have_alarm; 1058 int cbase = data->num_sensors; 1059 1060 if (attr->label) 1061 pmbus_add_label(data, name, index, attr->label, 1062 attr->paged ? page + 1 : 0); 1063 pmbus_add_sensor(data, name, "input", index, page, attr->reg, 1064 attr->class, true, true); 1065 if (attr->sfunc) { 1066 have_alarm = pmbus_add_limit_attrs(client, data, info, name, 1067 index, page, cbase, attr); 1068 /* 1069 * Add generic alarm attribute only if there are no individual 1070 * alarm attributes, if there is a global alarm bit, and if 1071 * the generic status register for this page is accessible. 1072 */ 1073 if (!have_alarm && attr->gbit && 1074 pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE)) 1075 pmbus_add_boolean_reg(data, name, "alarm", index, 1076 PB_STATUS_BASE + page, 1077 attr->gbit); 1078 } 1079 } 1080 1081 static void pmbus_add_sensor_attrs(struct i2c_client *client, 1082 struct pmbus_data *data, 1083 const char *name, 1084 const struct pmbus_sensor_attr *attrs, 1085 int nattrs) 1086 { 1087 const struct pmbus_driver_info *info = data->info; 1088 int index, i; 1089 1090 index = 1; 1091 for (i = 0; i < nattrs; i++) { 1092 int page, pages; 1093 1094 pages = attrs->paged ? info->pages : 1; 1095 for (page = 0; page < pages; page++) { 1096 if (!(info->func[page] & attrs->func)) 1097 continue; 1098 pmbus_add_sensor_attrs_one(client, data, info, name, 1099 index, page, attrs); 1100 index++; 1101 } 1102 attrs++; 1103 } 1104 } 1105 1106 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1107 { 1108 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1109 .attr = "min", 1110 .alarm = "min_alarm", 1111 .sbit = PB_VOLTAGE_UV_WARNING, 1112 }, { 1113 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1114 .attr = "lcrit", 1115 .alarm = "lcrit_alarm", 1116 .sbit = PB_VOLTAGE_UV_FAULT, 1117 }, { 1118 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1119 .attr = "max", 1120 .alarm = "max_alarm", 1121 .sbit = PB_VOLTAGE_OV_WARNING, 1122 }, { 1123 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1124 .attr = "crit", 1125 .alarm = "crit_alarm", 1126 .sbit = PB_VOLTAGE_OV_FAULT, 1127 }, { 1128 .reg = PMBUS_VIRT_READ_VIN_AVG, 1129 .update = true, 1130 .attr = "average", 1131 }, { 1132 .reg = PMBUS_VIRT_READ_VIN_MIN, 1133 .update = true, 1134 .attr = "lowest", 1135 }, { 1136 .reg = PMBUS_VIRT_READ_VIN_MAX, 1137 .update = true, 1138 .attr = "highest", 1139 }, { 1140 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1141 .attr = "reset_history", 1142 }, 1143 }; 1144 1145 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1146 { 1147 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1148 .attr = "min", 1149 .alarm = "min_alarm", 1150 .sbit = PB_VOLTAGE_UV_WARNING, 1151 }, { 1152 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1153 .attr = "lcrit", 1154 .alarm = "lcrit_alarm", 1155 .sbit = PB_VOLTAGE_UV_FAULT, 1156 }, { 1157 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1158 .attr = "max", 1159 .alarm = "max_alarm", 1160 .sbit = PB_VOLTAGE_OV_WARNING, 1161 }, { 1162 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1163 .attr = "crit", 1164 .alarm = "crit_alarm", 1165 .sbit = PB_VOLTAGE_OV_FAULT, 1166 }, { 1167 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1168 .update = true, 1169 .attr = "average", 1170 }, { 1171 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1172 .update = true, 1173 .attr = "lowest", 1174 }, { 1175 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1176 .update = true, 1177 .attr = "highest", 1178 }, { 1179 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1180 .attr = "reset_history", 1181 } 1182 }; 1183 1184 static const struct pmbus_sensor_attr voltage_attributes[] = { 1185 { 1186 .reg = PMBUS_READ_VIN, 1187 .class = PSC_VOLTAGE_IN, 1188 .label = "vin", 1189 .func = PMBUS_HAVE_VIN, 1190 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1191 .sbase = PB_STATUS_INPUT_BASE, 1192 .gbit = PB_STATUS_VIN_UV, 1193 .limit = vin_limit_attrs, 1194 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1195 }, { 1196 .reg = PMBUS_READ_VCAP, 1197 .class = PSC_VOLTAGE_IN, 1198 .label = "vcap", 1199 .func = PMBUS_HAVE_VCAP, 1200 }, { 1201 .reg = PMBUS_READ_VOUT, 1202 .class = PSC_VOLTAGE_OUT, 1203 .label = "vout", 1204 .paged = true, 1205 .func = PMBUS_HAVE_VOUT, 1206 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1207 .sbase = PB_STATUS_VOUT_BASE, 1208 .gbit = PB_STATUS_VOUT_OV, 1209 .limit = vout_limit_attrs, 1210 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1211 } 1212 }; 1213 1214 /* Current attributes */ 1215 1216 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1217 { 1218 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1219 .attr = "max", 1220 .alarm = "max_alarm", 1221 .sbit = PB_IIN_OC_WARNING, 1222 }, { 1223 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1224 .attr = "crit", 1225 .alarm = "crit_alarm", 1226 .sbit = PB_IIN_OC_FAULT, 1227 }, { 1228 .reg = PMBUS_VIRT_READ_IIN_AVG, 1229 .update = true, 1230 .attr = "average", 1231 }, { 1232 .reg = PMBUS_VIRT_READ_IIN_MIN, 1233 .update = true, 1234 .attr = "lowest", 1235 }, { 1236 .reg = PMBUS_VIRT_READ_IIN_MAX, 1237 .update = true, 1238 .attr = "highest", 1239 }, { 1240 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1241 .attr = "reset_history", 1242 } 1243 }; 1244 1245 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1246 { 1247 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1248 .attr = "max", 1249 .alarm = "max_alarm", 1250 .sbit = PB_IOUT_OC_WARNING, 1251 }, { 1252 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1253 .attr = "lcrit", 1254 .alarm = "lcrit_alarm", 1255 .sbit = PB_IOUT_UC_FAULT, 1256 }, { 1257 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1258 .attr = "crit", 1259 .alarm = "crit_alarm", 1260 .sbit = PB_IOUT_OC_FAULT, 1261 }, { 1262 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1263 .update = true, 1264 .attr = "average", 1265 }, { 1266 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1267 .update = true, 1268 .attr = "lowest", 1269 }, { 1270 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1271 .update = true, 1272 .attr = "highest", 1273 }, { 1274 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1275 .attr = "reset_history", 1276 } 1277 }; 1278 1279 static const struct pmbus_sensor_attr current_attributes[] = { 1280 { 1281 .reg = PMBUS_READ_IIN, 1282 .class = PSC_CURRENT_IN, 1283 .label = "iin", 1284 .func = PMBUS_HAVE_IIN, 1285 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1286 .sbase = PB_STATUS_INPUT_BASE, 1287 .limit = iin_limit_attrs, 1288 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1289 }, { 1290 .reg = PMBUS_READ_IOUT, 1291 .class = PSC_CURRENT_OUT, 1292 .label = "iout", 1293 .paged = true, 1294 .func = PMBUS_HAVE_IOUT, 1295 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1296 .sbase = PB_STATUS_IOUT_BASE, 1297 .gbit = PB_STATUS_IOUT_OC, 1298 .limit = iout_limit_attrs, 1299 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1300 } 1301 }; 1302 1303 /* Power attributes */ 1304 1305 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1306 { 1307 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1308 .attr = "max", 1309 .alarm = "alarm", 1310 .sbit = PB_PIN_OP_WARNING, 1311 }, { 1312 .reg = PMBUS_VIRT_READ_PIN_AVG, 1313 .update = true, 1314 .attr = "average", 1315 }, { 1316 .reg = PMBUS_VIRT_READ_PIN_MAX, 1317 .update = true, 1318 .attr = "input_highest", 1319 }, { 1320 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1321 .attr = "reset_history", 1322 } 1323 }; 1324 1325 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1326 { 1327 .reg = PMBUS_POUT_MAX, 1328 .attr = "cap", 1329 .alarm = "cap_alarm", 1330 .sbit = PB_POWER_LIMITING, 1331 }, { 1332 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1333 .attr = "max", 1334 .alarm = "max_alarm", 1335 .sbit = PB_POUT_OP_WARNING, 1336 }, { 1337 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1338 .attr = "crit", 1339 .alarm = "crit_alarm", 1340 .sbit = PB_POUT_OP_FAULT, 1341 } 1342 }; 1343 1344 static const struct pmbus_sensor_attr power_attributes[] = { 1345 { 1346 .reg = PMBUS_READ_PIN, 1347 .class = PSC_POWER, 1348 .label = "pin", 1349 .func = PMBUS_HAVE_PIN, 1350 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1351 .sbase = PB_STATUS_INPUT_BASE, 1352 .limit = pin_limit_attrs, 1353 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1354 }, { 1355 .reg = PMBUS_READ_POUT, 1356 .class = PSC_POWER, 1357 .label = "pout", 1358 .paged = true, 1359 .func = PMBUS_HAVE_POUT, 1360 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1361 .sbase = PB_STATUS_IOUT_BASE, 1362 .limit = pout_limit_attrs, 1363 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1364 } 1365 }; 1366 1367 /* Temperature atributes */ 1368 1369 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1370 { 1371 .reg = PMBUS_UT_WARN_LIMIT, 1372 .low = true, 1373 .attr = "min", 1374 .alarm = "min_alarm", 1375 .sbit = PB_TEMP_UT_WARNING, 1376 }, { 1377 .reg = PMBUS_UT_FAULT_LIMIT, 1378 .low = true, 1379 .attr = "lcrit", 1380 .alarm = "lcrit_alarm", 1381 .sbit = PB_TEMP_UT_FAULT, 1382 }, { 1383 .reg = PMBUS_OT_WARN_LIMIT, 1384 .attr = "max", 1385 .alarm = "max_alarm", 1386 .sbit = PB_TEMP_OT_WARNING, 1387 }, { 1388 .reg = PMBUS_OT_FAULT_LIMIT, 1389 .attr = "crit", 1390 .alarm = "crit_alarm", 1391 .sbit = PB_TEMP_OT_FAULT, 1392 }, { 1393 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1394 .attr = "lowest", 1395 }, { 1396 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1397 .attr = "highest", 1398 }, { 1399 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1400 .attr = "reset_history", 1401 } 1402 }; 1403 1404 static const struct pmbus_limit_attr temp_limit_attrs23[] = { 1405 { 1406 .reg = PMBUS_UT_WARN_LIMIT, 1407 .low = true, 1408 .attr = "min", 1409 .alarm = "min_alarm", 1410 .sbit = PB_TEMP_UT_WARNING, 1411 }, { 1412 .reg = PMBUS_UT_FAULT_LIMIT, 1413 .low = true, 1414 .attr = "lcrit", 1415 .alarm = "lcrit_alarm", 1416 .sbit = PB_TEMP_UT_FAULT, 1417 }, { 1418 .reg = PMBUS_OT_WARN_LIMIT, 1419 .attr = "max", 1420 .alarm = "max_alarm", 1421 .sbit = PB_TEMP_OT_WARNING, 1422 }, { 1423 .reg = PMBUS_OT_FAULT_LIMIT, 1424 .attr = "crit", 1425 .alarm = "crit_alarm", 1426 .sbit = PB_TEMP_OT_FAULT, 1427 } 1428 }; 1429 1430 static const struct pmbus_sensor_attr temp_attributes[] = { 1431 { 1432 .reg = PMBUS_READ_TEMPERATURE_1, 1433 .class = PSC_TEMPERATURE, 1434 .paged = true, 1435 .update = true, 1436 .compare = true, 1437 .func = PMBUS_HAVE_TEMP, 1438 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1439 .sbase = PB_STATUS_TEMP_BASE, 1440 .gbit = PB_STATUS_TEMPERATURE, 1441 .limit = temp_limit_attrs, 1442 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1443 }, { 1444 .reg = PMBUS_READ_TEMPERATURE_2, 1445 .class = PSC_TEMPERATURE, 1446 .paged = true, 1447 .update = true, 1448 .compare = true, 1449 .func = PMBUS_HAVE_TEMP2, 1450 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1451 .sbase = PB_STATUS_TEMP_BASE, 1452 .gbit = PB_STATUS_TEMPERATURE, 1453 .limit = temp_limit_attrs23, 1454 .nlimit = ARRAY_SIZE(temp_limit_attrs23), 1455 }, { 1456 .reg = PMBUS_READ_TEMPERATURE_3, 1457 .class = PSC_TEMPERATURE, 1458 .paged = true, 1459 .update = true, 1460 .compare = true, 1461 .func = PMBUS_HAVE_TEMP3, 1462 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1463 .sbase = PB_STATUS_TEMP_BASE, 1464 .gbit = PB_STATUS_TEMPERATURE, 1465 .limit = temp_limit_attrs23, 1466 .nlimit = ARRAY_SIZE(temp_limit_attrs23), 1467 } 1468 }; 1469 1470 static const int pmbus_fan_registers[] = { 1471 PMBUS_READ_FAN_SPEED_1, 1472 PMBUS_READ_FAN_SPEED_2, 1473 PMBUS_READ_FAN_SPEED_3, 1474 PMBUS_READ_FAN_SPEED_4 1475 }; 1476 1477 static const int pmbus_fan_config_registers[] = { 1478 PMBUS_FAN_CONFIG_12, 1479 PMBUS_FAN_CONFIG_12, 1480 PMBUS_FAN_CONFIG_34, 1481 PMBUS_FAN_CONFIG_34 1482 }; 1483 1484 static const int pmbus_fan_status_registers[] = { 1485 PMBUS_STATUS_FAN_12, 1486 PMBUS_STATUS_FAN_12, 1487 PMBUS_STATUS_FAN_34, 1488 PMBUS_STATUS_FAN_34 1489 }; 1490 1491 static const u32 pmbus_fan_flags[] = { 1492 PMBUS_HAVE_FAN12, 1493 PMBUS_HAVE_FAN12, 1494 PMBUS_HAVE_FAN34, 1495 PMBUS_HAVE_FAN34 1496 }; 1497 1498 static const u32 pmbus_fan_status_flags[] = { 1499 PMBUS_HAVE_STATUS_FAN12, 1500 PMBUS_HAVE_STATUS_FAN12, 1501 PMBUS_HAVE_STATUS_FAN34, 1502 PMBUS_HAVE_STATUS_FAN34 1503 }; 1504 1505 /* Fans */ 1506 static void pmbus_add_fan_attributes(struct i2c_client *client, 1507 struct pmbus_data *data) 1508 { 1509 const struct pmbus_driver_info *info = data->info; 1510 int index = 1; 1511 int page; 1512 1513 for (page = 0; page < info->pages; page++) { 1514 int f; 1515 1516 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1517 int regval; 1518 1519 if (!(info->func[page] & pmbus_fan_flags[f])) 1520 break; 1521 1522 if (!pmbus_check_word_register(client, page, 1523 pmbus_fan_registers[f])) 1524 break; 1525 1526 /* 1527 * Skip fan if not installed. 1528 * Each fan configuration register covers multiple fans, 1529 * so we have to do some magic. 1530 */ 1531 regval = _pmbus_read_byte_data(client, page, 1532 pmbus_fan_config_registers[f]); 1533 if (regval < 0 || 1534 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1535 continue; 1536 1537 pmbus_add_sensor(data, "fan", "input", index, page, 1538 pmbus_fan_registers[f], PSC_FAN, true, 1539 true); 1540 1541 /* 1542 * Each fan status register covers multiple fans, 1543 * so we have to do some magic. 1544 */ 1545 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1546 pmbus_check_byte_register(client, 1547 page, pmbus_fan_status_registers[f])) { 1548 int base; 1549 1550 if (f > 1) /* fan 3, 4 */ 1551 base = PB_STATUS_FAN34_BASE + page; 1552 else 1553 base = PB_STATUS_FAN_BASE + page; 1554 pmbus_add_boolean_reg(data, "fan", "alarm", 1555 index, base, 1556 PB_FAN_FAN1_WARNING >> (f & 1)); 1557 pmbus_add_boolean_reg(data, "fan", "fault", 1558 index, base, 1559 PB_FAN_FAN1_FAULT >> (f & 1)); 1560 } 1561 index++; 1562 } 1563 } 1564 } 1565 1566 static void pmbus_find_attributes(struct i2c_client *client, 1567 struct pmbus_data *data) 1568 { 1569 /* Voltage sensors */ 1570 pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 1571 ARRAY_SIZE(voltage_attributes)); 1572 1573 /* Current sensors */ 1574 pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 1575 ARRAY_SIZE(current_attributes)); 1576 1577 /* Power sensors */ 1578 pmbus_add_sensor_attrs(client, data, "power", power_attributes, 1579 ARRAY_SIZE(power_attributes)); 1580 1581 /* Temperature sensors */ 1582 pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 1583 ARRAY_SIZE(temp_attributes)); 1584 1585 /* Fans */ 1586 pmbus_add_fan_attributes(client, data); 1587 } 1588 1589 /* 1590 * Identify chip parameters. 1591 * This function is called for all chips. 1592 */ 1593 static int pmbus_identify_common(struct i2c_client *client, 1594 struct pmbus_data *data) 1595 { 1596 int vout_mode = -1, exponent; 1597 1598 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE)) 1599 vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE); 1600 if (vout_mode >= 0 && vout_mode != 0xff) { 1601 /* 1602 * Not all chips support the VOUT_MODE command, 1603 * so a failure to read it is not an error. 1604 */ 1605 switch (vout_mode >> 5) { 1606 case 0: /* linear mode */ 1607 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 1608 return -ENODEV; 1609 1610 exponent = vout_mode & 0x1f; 1611 /* and sign-extend it */ 1612 if (exponent & 0x10) 1613 exponent |= ~0x1f; 1614 data->exponent = exponent; 1615 break; 1616 case 1: /* VID mode */ 1617 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 1618 return -ENODEV; 1619 break; 1620 case 2: /* direct mode */ 1621 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 1622 return -ENODEV; 1623 break; 1624 default: 1625 return -ENODEV; 1626 } 1627 } 1628 1629 /* Determine maximum number of sensors, booleans, and labels */ 1630 pmbus_find_max_attr(client, data); 1631 pmbus_clear_fault_page(client, 0); 1632 return 0; 1633 } 1634 1635 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, 1636 struct pmbus_driver_info *info) 1637 { 1638 const struct pmbus_platform_data *pdata = client->dev.platform_data; 1639 struct pmbus_data *data; 1640 int ret; 1641 1642 if (!info) { 1643 dev_err(&client->dev, "Missing chip information"); 1644 return -ENODEV; 1645 } 1646 1647 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 1648 | I2C_FUNC_SMBUS_BYTE_DATA 1649 | I2C_FUNC_SMBUS_WORD_DATA)) 1650 return -ENODEV; 1651 1652 data = kzalloc(sizeof(*data), GFP_KERNEL); 1653 if (!data) { 1654 dev_err(&client->dev, "No memory to allocate driver data\n"); 1655 return -ENOMEM; 1656 } 1657 1658 i2c_set_clientdata(client, data); 1659 mutex_init(&data->update_lock); 1660 1661 /* Bail out if PMBus status register does not exist. */ 1662 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) { 1663 dev_err(&client->dev, "PMBus status register not found\n"); 1664 ret = -ENODEV; 1665 goto out_data; 1666 } 1667 1668 if (pdata) 1669 data->flags = pdata->flags; 1670 data->info = info; 1671 1672 pmbus_clear_faults(client); 1673 1674 if (info->identify) { 1675 ret = (*info->identify)(client, info); 1676 if (ret < 0) { 1677 dev_err(&client->dev, "Chip identification failed\n"); 1678 goto out_data; 1679 } 1680 } 1681 1682 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 1683 dev_err(&client->dev, "Bad number of PMBus pages: %d\n", 1684 info->pages); 1685 ret = -EINVAL; 1686 goto out_data; 1687 } 1688 1689 ret = pmbus_identify_common(client, data); 1690 if (ret < 0) { 1691 dev_err(&client->dev, "Failed to identify chip capabilities\n"); 1692 goto out_data; 1693 } 1694 1695 ret = -ENOMEM; 1696 data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors, 1697 GFP_KERNEL); 1698 if (!data->sensors) { 1699 dev_err(&client->dev, "No memory to allocate sensor data\n"); 1700 goto out_data; 1701 } 1702 1703 data->booleans = kzalloc(sizeof(struct pmbus_boolean) 1704 * data->max_booleans, GFP_KERNEL); 1705 if (!data->booleans) { 1706 dev_err(&client->dev, "No memory to allocate boolean data\n"); 1707 goto out_sensors; 1708 } 1709 1710 data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels, 1711 GFP_KERNEL); 1712 if (!data->labels) { 1713 dev_err(&client->dev, "No memory to allocate label data\n"); 1714 goto out_booleans; 1715 } 1716 1717 data->attributes = kzalloc(sizeof(struct attribute *) 1718 * data->max_attributes, GFP_KERNEL); 1719 if (!data->attributes) { 1720 dev_err(&client->dev, "No memory to allocate attribute data\n"); 1721 goto out_labels; 1722 } 1723 1724 pmbus_find_attributes(client, data); 1725 1726 /* 1727 * If there are no attributes, something is wrong. 1728 * Bail out instead of trying to register nothing. 1729 */ 1730 if (!data->num_attributes) { 1731 dev_err(&client->dev, "No attributes found\n"); 1732 ret = -ENODEV; 1733 goto out_attributes; 1734 } 1735 1736 /* Register sysfs hooks */ 1737 data->group.attrs = data->attributes; 1738 ret = sysfs_create_group(&client->dev.kobj, &data->group); 1739 if (ret) { 1740 dev_err(&client->dev, "Failed to create sysfs entries\n"); 1741 goto out_attributes; 1742 } 1743 data->hwmon_dev = hwmon_device_register(&client->dev); 1744 if (IS_ERR(data->hwmon_dev)) { 1745 ret = PTR_ERR(data->hwmon_dev); 1746 dev_err(&client->dev, "Failed to register hwmon device\n"); 1747 goto out_hwmon_device_register; 1748 } 1749 return 0; 1750 1751 out_hwmon_device_register: 1752 sysfs_remove_group(&client->dev.kobj, &data->group); 1753 out_attributes: 1754 kfree(data->attributes); 1755 out_labels: 1756 kfree(data->labels); 1757 out_booleans: 1758 kfree(data->booleans); 1759 out_sensors: 1760 kfree(data->sensors); 1761 out_data: 1762 kfree(data); 1763 return ret; 1764 } 1765 EXPORT_SYMBOL_GPL(pmbus_do_probe); 1766 1767 int pmbus_do_remove(struct i2c_client *client) 1768 { 1769 struct pmbus_data *data = i2c_get_clientdata(client); 1770 hwmon_device_unregister(data->hwmon_dev); 1771 sysfs_remove_group(&client->dev.kobj, &data->group); 1772 kfree(data->attributes); 1773 kfree(data->labels); 1774 kfree(data->booleans); 1775 kfree(data->sensors); 1776 kfree(data); 1777 return 0; 1778 } 1779 EXPORT_SYMBOL_GPL(pmbus_do_remove); 1780 1781 MODULE_AUTHOR("Guenter Roeck"); 1782 MODULE_DESCRIPTION("PMBus core driver"); 1783 MODULE_LICENSE("GPL"); 1784