xref: /openbmc/linux/drivers/hwmon/pmbus/pmbus_core.c (revision 92614ad5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include "pmbus.h"
23 
24 /*
25  * Number of additional attribute pointers to allocate
26  * with each call to krealloc
27  */
28 #define PMBUS_ATTR_ALLOC_SIZE	32
29 #define PMBUS_NAME_SIZE		24
30 
31 struct pmbus_sensor {
32 	struct pmbus_sensor *next;
33 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
34 	struct device_attribute attribute;
35 	u8 page;		/* page number */
36 	u8 phase;		/* phase number, 0xff for all phases */
37 	u16 reg;		/* register */
38 	enum pmbus_sensor_classes class;	/* sensor class */
39 	bool update;		/* runtime sensor update needed */
40 	bool convert;		/* Whether or not to apply linear/vid/direct */
41 	int data;		/* Sensor data.
42 				   Negative if there was a read error */
43 };
44 #define to_pmbus_sensor(_attr) \
45 	container_of(_attr, struct pmbus_sensor, attribute)
46 
47 struct pmbus_boolean {
48 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
49 	struct sensor_device_attribute attribute;
50 	struct pmbus_sensor *s1;
51 	struct pmbus_sensor *s2;
52 };
53 #define to_pmbus_boolean(_attr) \
54 	container_of(_attr, struct pmbus_boolean, attribute)
55 
56 struct pmbus_label {
57 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
58 	struct device_attribute attribute;
59 	char label[PMBUS_NAME_SIZE];	/* label */
60 };
61 #define to_pmbus_label(_attr) \
62 	container_of(_attr, struct pmbus_label, attribute)
63 
64 /* Macros for converting between sensor index and register/page/status mask */
65 
66 #define PB_STATUS_MASK	0xffff
67 #define PB_REG_SHIFT	16
68 #define PB_REG_MASK	0x3ff
69 #define PB_PAGE_SHIFT	26
70 #define PB_PAGE_MASK	0x3f
71 
72 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
73 						 ((reg) << PB_REG_SHIFT) | (mask))
74 
75 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
76 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
77 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
78 
79 struct pmbus_data {
80 	struct device *dev;
81 	struct device *hwmon_dev;
82 
83 	u32 flags;		/* from platform data */
84 
85 	int exponent[PMBUS_PAGES];
86 				/* linear mode: exponent for output voltages */
87 
88 	const struct pmbus_driver_info *info;
89 
90 	int max_attributes;
91 	int num_attributes;
92 	struct attribute_group group;
93 	const struct attribute_group **groups;
94 	struct dentry *debugfs;		/* debugfs device directory */
95 
96 	struct pmbus_sensor *sensors;
97 
98 	struct mutex update_lock;
99 
100 	bool has_status_word;		/* device uses STATUS_WORD register */
101 	int (*read_status)(struct i2c_client *client, int page);
102 
103 	s16 currpage;	/* current page, -1 for unknown/unset */
104 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
105 };
106 
107 struct pmbus_debugfs_entry {
108 	struct i2c_client *client;
109 	u8 page;
110 	u8 reg;
111 };
112 
113 static const int pmbus_fan_rpm_mask[] = {
114 	PB_FAN_1_RPM,
115 	PB_FAN_2_RPM,
116 	PB_FAN_1_RPM,
117 	PB_FAN_2_RPM,
118 };
119 
120 static const int pmbus_fan_config_registers[] = {
121 	PMBUS_FAN_CONFIG_12,
122 	PMBUS_FAN_CONFIG_12,
123 	PMBUS_FAN_CONFIG_34,
124 	PMBUS_FAN_CONFIG_34
125 };
126 
127 static const int pmbus_fan_command_registers[] = {
128 	PMBUS_FAN_COMMAND_1,
129 	PMBUS_FAN_COMMAND_2,
130 	PMBUS_FAN_COMMAND_3,
131 	PMBUS_FAN_COMMAND_4,
132 };
133 
134 void pmbus_clear_cache(struct i2c_client *client)
135 {
136 	struct pmbus_data *data = i2c_get_clientdata(client);
137 	struct pmbus_sensor *sensor;
138 
139 	for (sensor = data->sensors; sensor; sensor = sensor->next)
140 		sensor->data = -ENODATA;
141 }
142 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
143 
144 int pmbus_set_page(struct i2c_client *client, int page, int phase)
145 {
146 	struct pmbus_data *data = i2c_get_clientdata(client);
147 	int rv;
148 
149 	if (page < 0)
150 		return 0;
151 
152 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
153 	    data->info->pages > 1 && page != data->currpage) {
154 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
155 		if (rv < 0)
156 			return rv;
157 
158 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
159 		if (rv < 0)
160 			return rv;
161 
162 		if (rv != page)
163 			return -EIO;
164 	}
165 	data->currpage = page;
166 
167 	if (data->info->phases[page] && data->currphase != phase &&
168 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
169 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
170 					       phase);
171 		if (rv)
172 			return rv;
173 	}
174 	data->currphase = phase;
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(pmbus_set_page);
179 
180 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
181 {
182 	int rv;
183 
184 	rv = pmbus_set_page(client, page, 0xff);
185 	if (rv < 0)
186 		return rv;
187 
188 	return i2c_smbus_write_byte(client, value);
189 }
190 EXPORT_SYMBOL_GPL(pmbus_write_byte);
191 
192 /*
193  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
194  * a device specific mapping function exists and calls it if necessary.
195  */
196 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
197 {
198 	struct pmbus_data *data = i2c_get_clientdata(client);
199 	const struct pmbus_driver_info *info = data->info;
200 	int status;
201 
202 	if (info->write_byte) {
203 		status = info->write_byte(client, page, value);
204 		if (status != -ENODATA)
205 			return status;
206 	}
207 	return pmbus_write_byte(client, page, value);
208 }
209 
210 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
211 			  u16 word)
212 {
213 	int rv;
214 
215 	rv = pmbus_set_page(client, page, 0xff);
216 	if (rv < 0)
217 		return rv;
218 
219 	return i2c_smbus_write_word_data(client, reg, word);
220 }
221 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
222 
223 
224 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
225 				u16 word)
226 {
227 	int bit;
228 	int id;
229 	int rv;
230 
231 	switch (reg) {
232 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
233 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
234 		bit = pmbus_fan_rpm_mask[id];
235 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
236 		break;
237 	default:
238 		rv = -ENXIO;
239 		break;
240 	}
241 
242 	return rv;
243 }
244 
245 /*
246  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
247  * a device specific mapping function exists and calls it if necessary.
248  */
249 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
250 				  u16 word)
251 {
252 	struct pmbus_data *data = i2c_get_clientdata(client);
253 	const struct pmbus_driver_info *info = data->info;
254 	int status;
255 
256 	if (info->write_word_data) {
257 		status = info->write_word_data(client, page, reg, word);
258 		if (status != -ENODATA)
259 			return status;
260 	}
261 
262 	if (reg >= PMBUS_VIRT_BASE)
263 		return pmbus_write_virt_reg(client, page, reg, word);
264 
265 	return pmbus_write_word_data(client, page, reg, word);
266 }
267 
268 int pmbus_update_fan(struct i2c_client *client, int page, int id,
269 		     u8 config, u8 mask, u16 command)
270 {
271 	int from;
272 	int rv;
273 	u8 to;
274 
275 	from = pmbus_read_byte_data(client, page,
276 				    pmbus_fan_config_registers[id]);
277 	if (from < 0)
278 		return from;
279 
280 	to = (from & ~mask) | (config & mask);
281 	if (to != from) {
282 		rv = pmbus_write_byte_data(client, page,
283 					   pmbus_fan_config_registers[id], to);
284 		if (rv < 0)
285 			return rv;
286 	}
287 
288 	return _pmbus_write_word_data(client, page,
289 				      pmbus_fan_command_registers[id], command);
290 }
291 EXPORT_SYMBOL_GPL(pmbus_update_fan);
292 
293 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
294 {
295 	int rv;
296 
297 	rv = pmbus_set_page(client, page, phase);
298 	if (rv < 0)
299 		return rv;
300 
301 	return i2c_smbus_read_word_data(client, reg);
302 }
303 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
304 
305 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
306 {
307 	int rv;
308 	int id;
309 
310 	switch (reg) {
311 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
312 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
313 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
314 		break;
315 	default:
316 		rv = -ENXIO;
317 		break;
318 	}
319 
320 	return rv;
321 }
322 
323 /*
324  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
325  * a device specific mapping function exists and calls it if necessary.
326  */
327 static int _pmbus_read_word_data(struct i2c_client *client, int page,
328 				 int phase, int reg)
329 {
330 	struct pmbus_data *data = i2c_get_clientdata(client);
331 	const struct pmbus_driver_info *info = data->info;
332 	int status;
333 
334 	if (info->read_word_data) {
335 		status = info->read_word_data(client, page, phase, reg);
336 		if (status != -ENODATA)
337 			return status;
338 	}
339 
340 	if (reg >= PMBUS_VIRT_BASE)
341 		return pmbus_read_virt_reg(client, page, reg);
342 
343 	return pmbus_read_word_data(client, page, phase, reg);
344 }
345 
346 /* Same as above, but without phase parameter, for use in check functions */
347 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
348 {
349 	return _pmbus_read_word_data(client, page, 0xff, reg);
350 }
351 
352 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
353 {
354 	int rv;
355 
356 	rv = pmbus_set_page(client, page, 0xff);
357 	if (rv < 0)
358 		return rv;
359 
360 	return i2c_smbus_read_byte_data(client, reg);
361 }
362 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
363 
364 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
365 {
366 	int rv;
367 
368 	rv = pmbus_set_page(client, page, 0xff);
369 	if (rv < 0)
370 		return rv;
371 
372 	return i2c_smbus_write_byte_data(client, reg, value);
373 }
374 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
375 
376 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
377 			   u8 mask, u8 value)
378 {
379 	unsigned int tmp;
380 	int rv;
381 
382 	rv = pmbus_read_byte_data(client, page, reg);
383 	if (rv < 0)
384 		return rv;
385 
386 	tmp = (rv & ~mask) | (value & mask);
387 
388 	if (tmp != rv)
389 		rv = pmbus_write_byte_data(client, page, reg, tmp);
390 
391 	return rv;
392 }
393 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
394 
395 /*
396  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
397  * a device specific mapping function exists and calls it if necessary.
398  */
399 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
400 {
401 	struct pmbus_data *data = i2c_get_clientdata(client);
402 	const struct pmbus_driver_info *info = data->info;
403 	int status;
404 
405 	if (info->read_byte_data) {
406 		status = info->read_byte_data(client, page, reg);
407 		if (status != -ENODATA)
408 			return status;
409 	}
410 	return pmbus_read_byte_data(client, page, reg);
411 }
412 
413 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
414 					      int reg)
415 {
416 	struct pmbus_sensor *sensor;
417 
418 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
419 		if (sensor->page == page && sensor->reg == reg)
420 			return sensor;
421 	}
422 
423 	return ERR_PTR(-EINVAL);
424 }
425 
426 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
427 			      enum pmbus_fan_mode mode,
428 			      bool from_cache)
429 {
430 	struct pmbus_data *data = i2c_get_clientdata(client);
431 	bool want_rpm, have_rpm;
432 	struct pmbus_sensor *s;
433 	int config;
434 	int reg;
435 
436 	want_rpm = (mode == rpm);
437 
438 	if (from_cache) {
439 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
440 		s = pmbus_find_sensor(data, page, reg + id);
441 		if (IS_ERR(s))
442 			return PTR_ERR(s);
443 
444 		return s->data;
445 	}
446 
447 	config = pmbus_read_byte_data(client, page,
448 				      pmbus_fan_config_registers[id]);
449 	if (config < 0)
450 		return config;
451 
452 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
453 	if (want_rpm == have_rpm)
454 		return pmbus_read_word_data(client, page, 0xff,
455 					    pmbus_fan_command_registers[id]);
456 
457 	/* Can't sensibly map between RPM and PWM, just return zero */
458 	return 0;
459 }
460 
461 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
462 			      enum pmbus_fan_mode mode)
463 {
464 	return pmbus_get_fan_rate(client, page, id, mode, false);
465 }
466 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device);
467 
468 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
469 			      enum pmbus_fan_mode mode)
470 {
471 	return pmbus_get_fan_rate(client, page, id, mode, true);
472 }
473 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached);
474 
475 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
476 {
477 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
478 }
479 
480 void pmbus_clear_faults(struct i2c_client *client)
481 {
482 	struct pmbus_data *data = i2c_get_clientdata(client);
483 	int i;
484 
485 	for (i = 0; i < data->info->pages; i++)
486 		pmbus_clear_fault_page(client, i);
487 }
488 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
489 
490 static int pmbus_check_status_cml(struct i2c_client *client)
491 {
492 	struct pmbus_data *data = i2c_get_clientdata(client);
493 	int status, status2;
494 
495 	status = data->read_status(client, -1);
496 	if (status < 0 || (status & PB_STATUS_CML)) {
497 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
498 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
499 			return -EIO;
500 	}
501 	return 0;
502 }
503 
504 static bool pmbus_check_register(struct i2c_client *client,
505 				 int (*func)(struct i2c_client *client,
506 					     int page, int reg),
507 				 int page, int reg)
508 {
509 	int rv;
510 	struct pmbus_data *data = i2c_get_clientdata(client);
511 
512 	rv = func(client, page, reg);
513 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
514 		rv = pmbus_check_status_cml(client);
515 	pmbus_clear_fault_page(client, -1);
516 	return rv >= 0;
517 }
518 
519 static bool pmbus_check_status_register(struct i2c_client *client, int page)
520 {
521 	int status;
522 	struct pmbus_data *data = i2c_get_clientdata(client);
523 
524 	status = data->read_status(client, page);
525 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
526 	    (status & PB_STATUS_CML)) {
527 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
528 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
529 			status = -EIO;
530 	}
531 
532 	pmbus_clear_fault_page(client, -1);
533 	return status >= 0;
534 }
535 
536 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
537 {
538 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
539 }
540 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
541 
542 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
543 {
544 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
545 }
546 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
547 
548 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
549 {
550 	struct pmbus_data *data = i2c_get_clientdata(client);
551 
552 	return data->info;
553 }
554 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
555 
556 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
557 {
558 	struct pmbus_data *data = i2c_get_clientdata(client);
559 	int status;
560 
561 	switch (reg) {
562 	case PMBUS_STATUS_WORD:
563 		status = data->read_status(client, page);
564 		break;
565 	default:
566 		status = _pmbus_read_byte_data(client, page, reg);
567 		break;
568 	}
569 	if (status < 0)
570 		pmbus_clear_faults(client);
571 	return status;
572 }
573 
574 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
575 {
576 	if (sensor->data < 0 || sensor->update)
577 		sensor->data = _pmbus_read_word_data(client, sensor->page,
578 						     sensor->phase, sensor->reg);
579 }
580 
581 /*
582  * Convert linear sensor values to milli- or micro-units
583  * depending on sensor type.
584  */
585 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
586 				 struct pmbus_sensor *sensor)
587 {
588 	s16 exponent;
589 	s32 mantissa;
590 	s64 val;
591 
592 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
593 		exponent = data->exponent[sensor->page];
594 		mantissa = (u16) sensor->data;
595 	} else {				/* LINEAR11 */
596 		exponent = ((s16)sensor->data) >> 11;
597 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
598 	}
599 
600 	val = mantissa;
601 
602 	/* scale result to milli-units for all sensors except fans */
603 	if (sensor->class != PSC_FAN)
604 		val = val * 1000LL;
605 
606 	/* scale result to micro-units for power sensors */
607 	if (sensor->class == PSC_POWER)
608 		val = val * 1000LL;
609 
610 	if (exponent >= 0)
611 		val <<= exponent;
612 	else
613 		val >>= -exponent;
614 
615 	return val;
616 }
617 
618 /*
619  * Convert direct sensor values to milli- or micro-units
620  * depending on sensor type.
621  */
622 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
623 				 struct pmbus_sensor *sensor)
624 {
625 	s64 b, val = (s16)sensor->data;
626 	s32 m, R;
627 
628 	m = data->info->m[sensor->class];
629 	b = data->info->b[sensor->class];
630 	R = data->info->R[sensor->class];
631 
632 	if (m == 0)
633 		return 0;
634 
635 	/* X = 1/m * (Y * 10^-R - b) */
636 	R = -R;
637 	/* scale result to milli-units for everything but fans */
638 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
639 		R += 3;
640 		b *= 1000;
641 	}
642 
643 	/* scale result to micro-units for power sensors */
644 	if (sensor->class == PSC_POWER) {
645 		R += 3;
646 		b *= 1000;
647 	}
648 
649 	while (R > 0) {
650 		val *= 10;
651 		R--;
652 	}
653 	while (R < 0) {
654 		val = div_s64(val + 5LL, 10L);  /* round closest */
655 		R++;
656 	}
657 
658 	val = div_s64(val - b, m);
659 	return val;
660 }
661 
662 /*
663  * Convert VID sensor values to milli- or micro-units
664  * depending on sensor type.
665  */
666 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
667 			      struct pmbus_sensor *sensor)
668 {
669 	long val = sensor->data;
670 	long rv = 0;
671 
672 	switch (data->info->vrm_version[sensor->page]) {
673 	case vr11:
674 		if (val >= 0x02 && val <= 0xb2)
675 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
676 		break;
677 	case vr12:
678 		if (val >= 0x01)
679 			rv = 250 + (val - 1) * 5;
680 		break;
681 	case vr13:
682 		if (val >= 0x01)
683 			rv = 500 + (val - 1) * 10;
684 		break;
685 	case imvp9:
686 		if (val >= 0x01)
687 			rv = 200 + (val - 1) * 10;
688 		break;
689 	case amd625mv:
690 		if (val >= 0x0 && val <= 0xd8)
691 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
692 		break;
693 	}
694 	return rv;
695 }
696 
697 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
698 {
699 	s64 val;
700 
701 	if (!sensor->convert)
702 		return sensor->data;
703 
704 	switch (data->info->format[sensor->class]) {
705 	case direct:
706 		val = pmbus_reg2data_direct(data, sensor);
707 		break;
708 	case vid:
709 		val = pmbus_reg2data_vid(data, sensor);
710 		break;
711 	case linear:
712 	default:
713 		val = pmbus_reg2data_linear(data, sensor);
714 		break;
715 	}
716 	return val;
717 }
718 
719 #define MAX_MANTISSA	(1023 * 1000)
720 #define MIN_MANTISSA	(511 * 1000)
721 
722 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
723 				 struct pmbus_sensor *sensor, s64 val)
724 {
725 	s16 exponent = 0, mantissa;
726 	bool negative = false;
727 
728 	/* simple case */
729 	if (val == 0)
730 		return 0;
731 
732 	if (sensor->class == PSC_VOLTAGE_OUT) {
733 		/* LINEAR16 does not support negative voltages */
734 		if (val < 0)
735 			return 0;
736 
737 		/*
738 		 * For a static exponents, we don't have a choice
739 		 * but to adjust the value to it.
740 		 */
741 		if (data->exponent[sensor->page] < 0)
742 			val <<= -data->exponent[sensor->page];
743 		else
744 			val >>= data->exponent[sensor->page];
745 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
746 		return clamp_val(val, 0, 0xffff);
747 	}
748 
749 	if (val < 0) {
750 		negative = true;
751 		val = -val;
752 	}
753 
754 	/* Power is in uW. Convert to mW before converting. */
755 	if (sensor->class == PSC_POWER)
756 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
757 
758 	/*
759 	 * For simplicity, convert fan data to milli-units
760 	 * before calculating the exponent.
761 	 */
762 	if (sensor->class == PSC_FAN)
763 		val = val * 1000LL;
764 
765 	/* Reduce large mantissa until it fits into 10 bit */
766 	while (val >= MAX_MANTISSA && exponent < 15) {
767 		exponent++;
768 		val >>= 1;
769 	}
770 	/* Increase small mantissa to improve precision */
771 	while (val < MIN_MANTISSA && exponent > -15) {
772 		exponent--;
773 		val <<= 1;
774 	}
775 
776 	/* Convert mantissa from milli-units to units */
777 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
778 
779 	/* restore sign */
780 	if (negative)
781 		mantissa = -mantissa;
782 
783 	/* Convert to 5 bit exponent, 11 bit mantissa */
784 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
785 }
786 
787 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
788 				 struct pmbus_sensor *sensor, s64 val)
789 {
790 	s64 b;
791 	s32 m, R;
792 
793 	m = data->info->m[sensor->class];
794 	b = data->info->b[sensor->class];
795 	R = data->info->R[sensor->class];
796 
797 	/* Power is in uW. Adjust R and b. */
798 	if (sensor->class == PSC_POWER) {
799 		R -= 3;
800 		b *= 1000;
801 	}
802 
803 	/* Calculate Y = (m * X + b) * 10^R */
804 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
805 		R -= 3;		/* Adjust R and b for data in milli-units */
806 		b *= 1000;
807 	}
808 	val = val * m + b;
809 
810 	while (R > 0) {
811 		val *= 10;
812 		R--;
813 	}
814 	while (R < 0) {
815 		val = div_s64(val + 5LL, 10L);  /* round closest */
816 		R++;
817 	}
818 
819 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
820 }
821 
822 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
823 			      struct pmbus_sensor *sensor, s64 val)
824 {
825 	val = clamp_val(val, 500, 1600);
826 
827 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
828 }
829 
830 static u16 pmbus_data2reg(struct pmbus_data *data,
831 			  struct pmbus_sensor *sensor, s64 val)
832 {
833 	u16 regval;
834 
835 	if (!sensor->convert)
836 		return val;
837 
838 	switch (data->info->format[sensor->class]) {
839 	case direct:
840 		regval = pmbus_data2reg_direct(data, sensor, val);
841 		break;
842 	case vid:
843 		regval = pmbus_data2reg_vid(data, sensor, val);
844 		break;
845 	case linear:
846 	default:
847 		regval = pmbus_data2reg_linear(data, sensor, val);
848 		break;
849 	}
850 	return regval;
851 }
852 
853 /*
854  * Return boolean calculated from converted data.
855  * <index> defines a status register index and mask.
856  * The mask is in the lower 8 bits, the register index is in bits 8..23.
857  *
858  * The associated pmbus_boolean structure contains optional pointers to two
859  * sensor attributes. If specified, those attributes are compared against each
860  * other to determine if a limit has been exceeded.
861  *
862  * If the sensor attribute pointers are NULL, the function returns true if
863  * (status[reg] & mask) is true.
864  *
865  * If sensor attribute pointers are provided, a comparison against a specified
866  * limit has to be performed to determine the boolean result.
867  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
868  * sensor values referenced by sensor attribute pointers s1 and s2).
869  *
870  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
871  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
872  *
873  * If a negative value is stored in any of the referenced registers, this value
874  * reflects an error code which will be returned.
875  */
876 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
877 			     int index)
878 {
879 	struct pmbus_data *data = i2c_get_clientdata(client);
880 	struct pmbus_sensor *s1 = b->s1;
881 	struct pmbus_sensor *s2 = b->s2;
882 	u16 mask = pb_index_to_mask(index);
883 	u8 page = pb_index_to_page(index);
884 	u16 reg = pb_index_to_reg(index);
885 	int ret, status;
886 	u16 regval;
887 
888 	mutex_lock(&data->update_lock);
889 	status = pmbus_get_status(client, page, reg);
890 	if (status < 0) {
891 		ret = status;
892 		goto unlock;
893 	}
894 
895 	if (s1)
896 		pmbus_update_sensor_data(client, s1);
897 	if (s2)
898 		pmbus_update_sensor_data(client, s2);
899 
900 	regval = status & mask;
901 	if (s1 && s2) {
902 		s64 v1, v2;
903 
904 		if (s1->data < 0) {
905 			ret = s1->data;
906 			goto unlock;
907 		}
908 		if (s2->data < 0) {
909 			ret = s2->data;
910 			goto unlock;
911 		}
912 
913 		v1 = pmbus_reg2data(data, s1);
914 		v2 = pmbus_reg2data(data, s2);
915 		ret = !!(regval && v1 >= v2);
916 	} else {
917 		ret = !!regval;
918 	}
919 unlock:
920 	mutex_unlock(&data->update_lock);
921 	return ret;
922 }
923 
924 static ssize_t pmbus_show_boolean(struct device *dev,
925 				  struct device_attribute *da, char *buf)
926 {
927 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
928 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
929 	struct i2c_client *client = to_i2c_client(dev->parent);
930 	int val;
931 
932 	val = pmbus_get_boolean(client, boolean, attr->index);
933 	if (val < 0)
934 		return val;
935 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
936 }
937 
938 static ssize_t pmbus_show_sensor(struct device *dev,
939 				 struct device_attribute *devattr, char *buf)
940 {
941 	struct i2c_client *client = to_i2c_client(dev->parent);
942 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
943 	struct pmbus_data *data = i2c_get_clientdata(client);
944 	ssize_t ret;
945 
946 	mutex_lock(&data->update_lock);
947 	pmbus_update_sensor_data(client, sensor);
948 	if (sensor->data < 0)
949 		ret = sensor->data;
950 	else
951 		ret = snprintf(buf, PAGE_SIZE, "%lld\n", pmbus_reg2data(data, sensor));
952 	mutex_unlock(&data->update_lock);
953 	return ret;
954 }
955 
956 static ssize_t pmbus_set_sensor(struct device *dev,
957 				struct device_attribute *devattr,
958 				const char *buf, size_t count)
959 {
960 	struct i2c_client *client = to_i2c_client(dev->parent);
961 	struct pmbus_data *data = i2c_get_clientdata(client);
962 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
963 	ssize_t rv = count;
964 	s64 val;
965 	int ret;
966 	u16 regval;
967 
968 	if (kstrtos64(buf, 10, &val) < 0)
969 		return -EINVAL;
970 
971 	mutex_lock(&data->update_lock);
972 	regval = pmbus_data2reg(data, sensor, val);
973 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
974 	if (ret < 0)
975 		rv = ret;
976 	else
977 		sensor->data = regval;
978 	mutex_unlock(&data->update_lock);
979 	return rv;
980 }
981 
982 static ssize_t pmbus_show_label(struct device *dev,
983 				struct device_attribute *da, char *buf)
984 {
985 	struct pmbus_label *label = to_pmbus_label(da);
986 
987 	return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
988 }
989 
990 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
991 {
992 	if (data->num_attributes >= data->max_attributes - 1) {
993 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
994 		void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
995 						new_max_attrs * sizeof(void *),
996 						GFP_KERNEL);
997 		if (!new_attrs)
998 			return -ENOMEM;
999 		data->group.attrs = new_attrs;
1000 		data->max_attributes = new_max_attrs;
1001 	}
1002 
1003 	data->group.attrs[data->num_attributes++] = attr;
1004 	data->group.attrs[data->num_attributes] = NULL;
1005 	return 0;
1006 }
1007 
1008 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1009 				const char *name,
1010 				umode_t mode,
1011 				ssize_t (*show)(struct device *dev,
1012 						struct device_attribute *attr,
1013 						char *buf),
1014 				ssize_t (*store)(struct device *dev,
1015 						 struct device_attribute *attr,
1016 						 const char *buf, size_t count))
1017 {
1018 	sysfs_attr_init(&dev_attr->attr);
1019 	dev_attr->attr.name = name;
1020 	dev_attr->attr.mode = mode;
1021 	dev_attr->show = show;
1022 	dev_attr->store = store;
1023 }
1024 
1025 static void pmbus_attr_init(struct sensor_device_attribute *a,
1026 			    const char *name,
1027 			    umode_t mode,
1028 			    ssize_t (*show)(struct device *dev,
1029 					    struct device_attribute *attr,
1030 					    char *buf),
1031 			    ssize_t (*store)(struct device *dev,
1032 					     struct device_attribute *attr,
1033 					     const char *buf, size_t count),
1034 			    int idx)
1035 {
1036 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1037 	a->index = idx;
1038 }
1039 
1040 static int pmbus_add_boolean(struct pmbus_data *data,
1041 			     const char *name, const char *type, int seq,
1042 			     struct pmbus_sensor *s1,
1043 			     struct pmbus_sensor *s2,
1044 			     u8 page, u16 reg, u16 mask)
1045 {
1046 	struct pmbus_boolean *boolean;
1047 	struct sensor_device_attribute *a;
1048 
1049 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1050 		return -EINVAL;
1051 
1052 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1053 	if (!boolean)
1054 		return -ENOMEM;
1055 
1056 	a = &boolean->attribute;
1057 
1058 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1059 		 name, seq, type);
1060 	boolean->s1 = s1;
1061 	boolean->s2 = s2;
1062 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1063 			pb_reg_to_index(page, reg, mask));
1064 
1065 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1066 }
1067 
1068 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1069 					     const char *name, const char *type,
1070 					     int seq, int page, int phase,
1071 					     int reg,
1072 					     enum pmbus_sensor_classes class,
1073 					     bool update, bool readonly,
1074 					     bool convert)
1075 {
1076 	struct pmbus_sensor *sensor;
1077 	struct device_attribute *a;
1078 
1079 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1080 	if (!sensor)
1081 		return NULL;
1082 	a = &sensor->attribute;
1083 
1084 	if (type)
1085 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1086 			 name, seq, type);
1087 	else
1088 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1089 			 name, seq);
1090 
1091 	if (data->flags & PMBUS_WRITE_PROTECTED)
1092 		readonly = true;
1093 
1094 	sensor->page = page;
1095 	sensor->phase = phase;
1096 	sensor->reg = reg;
1097 	sensor->class = class;
1098 	sensor->update = update;
1099 	sensor->convert = convert;
1100 	sensor->data = -ENODATA;
1101 	pmbus_dev_attr_init(a, sensor->name,
1102 			    readonly ? 0444 : 0644,
1103 			    pmbus_show_sensor, pmbus_set_sensor);
1104 
1105 	if (pmbus_add_attribute(data, &a->attr))
1106 		return NULL;
1107 
1108 	sensor->next = data->sensors;
1109 	data->sensors = sensor;
1110 
1111 	return sensor;
1112 }
1113 
1114 static int pmbus_add_label(struct pmbus_data *data,
1115 			   const char *name, int seq,
1116 			   const char *lstring, int index, int phase)
1117 {
1118 	struct pmbus_label *label;
1119 	struct device_attribute *a;
1120 
1121 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1122 	if (!label)
1123 		return -ENOMEM;
1124 
1125 	a = &label->attribute;
1126 
1127 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1128 	if (!index) {
1129 		if (phase == 0xff)
1130 			strncpy(label->label, lstring,
1131 				sizeof(label->label) - 1);
1132 		else
1133 			snprintf(label->label, sizeof(label->label), "%s.%d",
1134 				 lstring, phase);
1135 	} else {
1136 		if (phase == 0xff)
1137 			snprintf(label->label, sizeof(label->label), "%s%d",
1138 				 lstring, index);
1139 		else
1140 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1141 				 lstring, index, phase);
1142 	}
1143 
1144 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1145 	return pmbus_add_attribute(data, &a->attr);
1146 }
1147 
1148 /*
1149  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1150  */
1151 
1152 /*
1153  * The pmbus_limit_attr structure describes a single limit attribute
1154  * and its associated alarm attribute.
1155  */
1156 struct pmbus_limit_attr {
1157 	u16 reg;		/* Limit register */
1158 	u16 sbit;		/* Alarm attribute status bit */
1159 	bool update;		/* True if register needs updates */
1160 	bool low;		/* True if low limit; for limits with compare
1161 				   functions only */
1162 	const char *attr;	/* Attribute name */
1163 	const char *alarm;	/* Alarm attribute name */
1164 };
1165 
1166 /*
1167  * The pmbus_sensor_attr structure describes one sensor attribute. This
1168  * description includes a reference to the associated limit attributes.
1169  */
1170 struct pmbus_sensor_attr {
1171 	u16 reg;			/* sensor register */
1172 	u16 gbit;			/* generic status bit */
1173 	u8 nlimit;			/* # of limit registers */
1174 	enum pmbus_sensor_classes class;/* sensor class */
1175 	const char *label;		/* sensor label */
1176 	bool paged;			/* true if paged sensor */
1177 	bool update;			/* true if update needed */
1178 	bool compare;			/* true if compare function needed */
1179 	u32 func;			/* sensor mask */
1180 	u32 sfunc;			/* sensor status mask */
1181 	int sreg;			/* status register */
1182 	const struct pmbus_limit_attr *limit;/* limit registers */
1183 };
1184 
1185 /*
1186  * Add a set of limit attributes and, if supported, the associated
1187  * alarm attributes.
1188  * returns 0 if no alarm register found, 1 if an alarm register was found,
1189  * < 0 on errors.
1190  */
1191 static int pmbus_add_limit_attrs(struct i2c_client *client,
1192 				 struct pmbus_data *data,
1193 				 const struct pmbus_driver_info *info,
1194 				 const char *name, int index, int page,
1195 				 struct pmbus_sensor *base,
1196 				 const struct pmbus_sensor_attr *attr)
1197 {
1198 	const struct pmbus_limit_attr *l = attr->limit;
1199 	int nlimit = attr->nlimit;
1200 	int have_alarm = 0;
1201 	int i, ret;
1202 	struct pmbus_sensor *curr;
1203 
1204 	for (i = 0; i < nlimit; i++) {
1205 		if (pmbus_check_word_register(client, page, l->reg)) {
1206 			curr = pmbus_add_sensor(data, name, l->attr, index,
1207 						page, 0xff, l->reg, attr->class,
1208 						attr->update || l->update,
1209 						false, true);
1210 			if (!curr)
1211 				return -ENOMEM;
1212 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1213 				ret = pmbus_add_boolean(data, name,
1214 					l->alarm, index,
1215 					attr->compare ?  l->low ? curr : base
1216 						      : NULL,
1217 					attr->compare ? l->low ? base : curr
1218 						      : NULL,
1219 					page, attr->sreg, l->sbit);
1220 				if (ret)
1221 					return ret;
1222 				have_alarm = 1;
1223 			}
1224 		}
1225 		l++;
1226 	}
1227 	return have_alarm;
1228 }
1229 
1230 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1231 				      struct pmbus_data *data,
1232 				      const struct pmbus_driver_info *info,
1233 				      const char *name,
1234 				      int index, int page, int phase,
1235 				      const struct pmbus_sensor_attr *attr,
1236 				      bool paged)
1237 {
1238 	struct pmbus_sensor *base;
1239 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1240 	int ret;
1241 
1242 	if (attr->label) {
1243 		ret = pmbus_add_label(data, name, index, attr->label,
1244 				      paged ? page + 1 : 0, phase);
1245 		if (ret)
1246 			return ret;
1247 	}
1248 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1249 				attr->reg, attr->class, true, true, true);
1250 	if (!base)
1251 		return -ENOMEM;
1252 	/* No limit and alarm attributes for phase specific sensors */
1253 	if (attr->sfunc && phase == 0xff) {
1254 		ret = pmbus_add_limit_attrs(client, data, info, name,
1255 					    index, page, base, attr);
1256 		if (ret < 0)
1257 			return ret;
1258 		/*
1259 		 * Add generic alarm attribute only if there are no individual
1260 		 * alarm attributes, if there is a global alarm bit, and if
1261 		 * the generic status register (word or byte, depending on
1262 		 * which global bit is set) for this page is accessible.
1263 		 */
1264 		if (!ret && attr->gbit &&
1265 		    (!upper || (upper && data->has_status_word)) &&
1266 		    pmbus_check_status_register(client, page)) {
1267 			ret = pmbus_add_boolean(data, name, "alarm", index,
1268 						NULL, NULL,
1269 						page, PMBUS_STATUS_WORD,
1270 						attr->gbit);
1271 			if (ret)
1272 				return ret;
1273 		}
1274 	}
1275 	return 0;
1276 }
1277 
1278 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1279 				  const struct pmbus_sensor_attr *attr)
1280 {
1281 	int p;
1282 
1283 	if (attr->paged)
1284 		return true;
1285 
1286 	/*
1287 	 * Some attributes may be present on more than one page despite
1288 	 * not being marked with the paged attribute. If that is the case,
1289 	 * then treat the sensor as being paged and add the page suffix to the
1290 	 * attribute name.
1291 	 * We don't just add the paged attribute to all such attributes, in
1292 	 * order to maintain the un-suffixed labels in the case where the
1293 	 * attribute is only on page 0.
1294 	 */
1295 	for (p = 1; p < info->pages; p++) {
1296 		if (info->func[p] & attr->func)
1297 			return true;
1298 	}
1299 	return false;
1300 }
1301 
1302 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1303 				  struct pmbus_data *data,
1304 				  const char *name,
1305 				  const struct pmbus_sensor_attr *attrs,
1306 				  int nattrs)
1307 {
1308 	const struct pmbus_driver_info *info = data->info;
1309 	int index, i;
1310 	int ret;
1311 
1312 	index = 1;
1313 	for (i = 0; i < nattrs; i++) {
1314 		int page, pages;
1315 		bool paged = pmbus_sensor_is_paged(info, attrs);
1316 
1317 		pages = paged ? info->pages : 1;
1318 		for (page = 0; page < pages; page++) {
1319 			if (!(info->func[page] & attrs->func))
1320 				continue;
1321 			ret = pmbus_add_sensor_attrs_one(client, data, info,
1322 							 name, index, page,
1323 							 0xff, attrs, paged);
1324 			if (ret)
1325 				return ret;
1326 			index++;
1327 			if (info->phases[page]) {
1328 				int phase;
1329 
1330 				for (phase = 0; phase < info->phases[page];
1331 				     phase++) {
1332 					if (!(info->pfunc[phase] & attrs->func))
1333 						continue;
1334 					ret = pmbus_add_sensor_attrs_one(client,
1335 						data, info, name, index, page,
1336 						phase, attrs, paged);
1337 					if (ret)
1338 						return ret;
1339 					index++;
1340 				}
1341 			}
1342 		}
1343 		attrs++;
1344 	}
1345 	return 0;
1346 }
1347 
1348 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1349 	{
1350 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1351 		.attr = "min",
1352 		.alarm = "min_alarm",
1353 		.sbit = PB_VOLTAGE_UV_WARNING,
1354 	}, {
1355 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1356 		.attr = "lcrit",
1357 		.alarm = "lcrit_alarm",
1358 		.sbit = PB_VOLTAGE_UV_FAULT,
1359 	}, {
1360 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1361 		.attr = "max",
1362 		.alarm = "max_alarm",
1363 		.sbit = PB_VOLTAGE_OV_WARNING,
1364 	}, {
1365 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1366 		.attr = "crit",
1367 		.alarm = "crit_alarm",
1368 		.sbit = PB_VOLTAGE_OV_FAULT,
1369 	}, {
1370 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1371 		.update = true,
1372 		.attr = "average",
1373 	}, {
1374 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1375 		.update = true,
1376 		.attr = "lowest",
1377 	}, {
1378 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1379 		.update = true,
1380 		.attr = "highest",
1381 	}, {
1382 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1383 		.attr = "reset_history",
1384 	}, {
1385 		.reg = PMBUS_MFR_VIN_MIN,
1386 		.attr = "rated_min",
1387 	}, {
1388 		.reg = PMBUS_MFR_VIN_MAX,
1389 		.attr = "rated_max",
1390 	},
1391 };
1392 
1393 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1394 	{
1395 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1396 		.attr = "min",
1397 		.alarm = "min_alarm",
1398 		.sbit = PB_VOLTAGE_UV_WARNING,
1399 	}, {
1400 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1401 		.attr = "lcrit",
1402 		.alarm = "lcrit_alarm",
1403 		.sbit = PB_VOLTAGE_UV_FAULT,
1404 	}, {
1405 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1406 		.attr = "max",
1407 		.alarm = "max_alarm",
1408 		.sbit = PB_VOLTAGE_OV_WARNING,
1409 	}, {
1410 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1411 		.attr = "crit",
1412 		.alarm = "crit_alarm",
1413 		.sbit = PB_VOLTAGE_OV_FAULT,
1414 	}
1415 };
1416 
1417 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1418 	{
1419 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1420 		.attr = "min",
1421 		.alarm = "min_alarm",
1422 		.sbit = PB_VOLTAGE_UV_WARNING,
1423 	}, {
1424 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1425 		.attr = "lcrit",
1426 		.alarm = "lcrit_alarm",
1427 		.sbit = PB_VOLTAGE_UV_FAULT,
1428 	}, {
1429 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1430 		.attr = "max",
1431 		.alarm = "max_alarm",
1432 		.sbit = PB_VOLTAGE_OV_WARNING,
1433 	}, {
1434 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1435 		.attr = "crit",
1436 		.alarm = "crit_alarm",
1437 		.sbit = PB_VOLTAGE_OV_FAULT,
1438 	}, {
1439 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1440 		.update = true,
1441 		.attr = "average",
1442 	}, {
1443 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1444 		.update = true,
1445 		.attr = "lowest",
1446 	}, {
1447 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1448 		.update = true,
1449 		.attr = "highest",
1450 	}, {
1451 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1452 		.attr = "reset_history",
1453 	}, {
1454 		.reg = PMBUS_MFR_VOUT_MIN,
1455 		.attr = "rated_min",
1456 	}, {
1457 		.reg = PMBUS_MFR_VOUT_MAX,
1458 		.attr = "rated_max",
1459 	},
1460 };
1461 
1462 static const struct pmbus_sensor_attr voltage_attributes[] = {
1463 	{
1464 		.reg = PMBUS_READ_VIN,
1465 		.class = PSC_VOLTAGE_IN,
1466 		.label = "vin",
1467 		.func = PMBUS_HAVE_VIN,
1468 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1469 		.sreg = PMBUS_STATUS_INPUT,
1470 		.gbit = PB_STATUS_VIN_UV,
1471 		.limit = vin_limit_attrs,
1472 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1473 	}, {
1474 		.reg = PMBUS_VIRT_READ_VMON,
1475 		.class = PSC_VOLTAGE_IN,
1476 		.label = "vmon",
1477 		.func = PMBUS_HAVE_VMON,
1478 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1479 		.sreg = PMBUS_VIRT_STATUS_VMON,
1480 		.limit = vmon_limit_attrs,
1481 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1482 	}, {
1483 		.reg = PMBUS_READ_VCAP,
1484 		.class = PSC_VOLTAGE_IN,
1485 		.label = "vcap",
1486 		.func = PMBUS_HAVE_VCAP,
1487 	}, {
1488 		.reg = PMBUS_READ_VOUT,
1489 		.class = PSC_VOLTAGE_OUT,
1490 		.label = "vout",
1491 		.paged = true,
1492 		.func = PMBUS_HAVE_VOUT,
1493 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1494 		.sreg = PMBUS_STATUS_VOUT,
1495 		.gbit = PB_STATUS_VOUT_OV,
1496 		.limit = vout_limit_attrs,
1497 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1498 	}
1499 };
1500 
1501 /* Current attributes */
1502 
1503 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1504 	{
1505 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1506 		.attr = "max",
1507 		.alarm = "max_alarm",
1508 		.sbit = PB_IIN_OC_WARNING,
1509 	}, {
1510 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1511 		.attr = "crit",
1512 		.alarm = "crit_alarm",
1513 		.sbit = PB_IIN_OC_FAULT,
1514 	}, {
1515 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1516 		.update = true,
1517 		.attr = "average",
1518 	}, {
1519 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1520 		.update = true,
1521 		.attr = "lowest",
1522 	}, {
1523 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1524 		.update = true,
1525 		.attr = "highest",
1526 	}, {
1527 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1528 		.attr = "reset_history",
1529 	}, {
1530 		.reg = PMBUS_MFR_IIN_MAX,
1531 		.attr = "rated_max",
1532 	},
1533 };
1534 
1535 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1536 	{
1537 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1538 		.attr = "max",
1539 		.alarm = "max_alarm",
1540 		.sbit = PB_IOUT_OC_WARNING,
1541 	}, {
1542 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1543 		.attr = "lcrit",
1544 		.alarm = "lcrit_alarm",
1545 		.sbit = PB_IOUT_UC_FAULT,
1546 	}, {
1547 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1548 		.attr = "crit",
1549 		.alarm = "crit_alarm",
1550 		.sbit = PB_IOUT_OC_FAULT,
1551 	}, {
1552 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1553 		.update = true,
1554 		.attr = "average",
1555 	}, {
1556 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1557 		.update = true,
1558 		.attr = "lowest",
1559 	}, {
1560 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1561 		.update = true,
1562 		.attr = "highest",
1563 	}, {
1564 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1565 		.attr = "reset_history",
1566 	}, {
1567 		.reg = PMBUS_MFR_IOUT_MAX,
1568 		.attr = "rated_max",
1569 	},
1570 };
1571 
1572 static const struct pmbus_sensor_attr current_attributes[] = {
1573 	{
1574 		.reg = PMBUS_READ_IIN,
1575 		.class = PSC_CURRENT_IN,
1576 		.label = "iin",
1577 		.func = PMBUS_HAVE_IIN,
1578 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1579 		.sreg = PMBUS_STATUS_INPUT,
1580 		.gbit = PB_STATUS_INPUT,
1581 		.limit = iin_limit_attrs,
1582 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1583 	}, {
1584 		.reg = PMBUS_READ_IOUT,
1585 		.class = PSC_CURRENT_OUT,
1586 		.label = "iout",
1587 		.paged = true,
1588 		.func = PMBUS_HAVE_IOUT,
1589 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1590 		.sreg = PMBUS_STATUS_IOUT,
1591 		.gbit = PB_STATUS_IOUT_OC,
1592 		.limit = iout_limit_attrs,
1593 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1594 	}
1595 };
1596 
1597 /* Power attributes */
1598 
1599 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1600 	{
1601 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1602 		.attr = "max",
1603 		.alarm = "alarm",
1604 		.sbit = PB_PIN_OP_WARNING,
1605 	}, {
1606 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1607 		.update = true,
1608 		.attr = "average",
1609 	}, {
1610 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1611 		.update = true,
1612 		.attr = "input_lowest",
1613 	}, {
1614 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1615 		.update = true,
1616 		.attr = "input_highest",
1617 	}, {
1618 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1619 		.attr = "reset_history",
1620 	}, {
1621 		.reg = PMBUS_MFR_PIN_MAX,
1622 		.attr = "rated_max",
1623 	},
1624 };
1625 
1626 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1627 	{
1628 		.reg = PMBUS_POUT_MAX,
1629 		.attr = "cap",
1630 		.alarm = "cap_alarm",
1631 		.sbit = PB_POWER_LIMITING,
1632 	}, {
1633 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1634 		.attr = "max",
1635 		.alarm = "max_alarm",
1636 		.sbit = PB_POUT_OP_WARNING,
1637 	}, {
1638 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1639 		.attr = "crit",
1640 		.alarm = "crit_alarm",
1641 		.sbit = PB_POUT_OP_FAULT,
1642 	}, {
1643 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1644 		.update = true,
1645 		.attr = "average",
1646 	}, {
1647 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1648 		.update = true,
1649 		.attr = "input_lowest",
1650 	}, {
1651 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1652 		.update = true,
1653 		.attr = "input_highest",
1654 	}, {
1655 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1656 		.attr = "reset_history",
1657 	}, {
1658 		.reg = PMBUS_MFR_POUT_MAX,
1659 		.attr = "rated_max",
1660 	},
1661 };
1662 
1663 static const struct pmbus_sensor_attr power_attributes[] = {
1664 	{
1665 		.reg = PMBUS_READ_PIN,
1666 		.class = PSC_POWER,
1667 		.label = "pin",
1668 		.func = PMBUS_HAVE_PIN,
1669 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1670 		.sreg = PMBUS_STATUS_INPUT,
1671 		.gbit = PB_STATUS_INPUT,
1672 		.limit = pin_limit_attrs,
1673 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1674 	}, {
1675 		.reg = PMBUS_READ_POUT,
1676 		.class = PSC_POWER,
1677 		.label = "pout",
1678 		.paged = true,
1679 		.func = PMBUS_HAVE_POUT,
1680 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1681 		.sreg = PMBUS_STATUS_IOUT,
1682 		.limit = pout_limit_attrs,
1683 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1684 	}
1685 };
1686 
1687 /* Temperature atributes */
1688 
1689 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1690 	{
1691 		.reg = PMBUS_UT_WARN_LIMIT,
1692 		.low = true,
1693 		.attr = "min",
1694 		.alarm = "min_alarm",
1695 		.sbit = PB_TEMP_UT_WARNING,
1696 	}, {
1697 		.reg = PMBUS_UT_FAULT_LIMIT,
1698 		.low = true,
1699 		.attr = "lcrit",
1700 		.alarm = "lcrit_alarm",
1701 		.sbit = PB_TEMP_UT_FAULT,
1702 	}, {
1703 		.reg = PMBUS_OT_WARN_LIMIT,
1704 		.attr = "max",
1705 		.alarm = "max_alarm",
1706 		.sbit = PB_TEMP_OT_WARNING,
1707 	}, {
1708 		.reg = PMBUS_OT_FAULT_LIMIT,
1709 		.attr = "crit",
1710 		.alarm = "crit_alarm",
1711 		.sbit = PB_TEMP_OT_FAULT,
1712 	}, {
1713 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1714 		.attr = "lowest",
1715 	}, {
1716 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1717 		.attr = "average",
1718 	}, {
1719 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1720 		.attr = "highest",
1721 	}, {
1722 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1723 		.attr = "reset_history",
1724 	}, {
1725 		.reg = PMBUS_MFR_MAX_TEMP_1,
1726 		.attr = "rated_max",
1727 	},
1728 };
1729 
1730 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1731 	{
1732 		.reg = PMBUS_UT_WARN_LIMIT,
1733 		.low = true,
1734 		.attr = "min",
1735 		.alarm = "min_alarm",
1736 		.sbit = PB_TEMP_UT_WARNING,
1737 	}, {
1738 		.reg = PMBUS_UT_FAULT_LIMIT,
1739 		.low = true,
1740 		.attr = "lcrit",
1741 		.alarm = "lcrit_alarm",
1742 		.sbit = PB_TEMP_UT_FAULT,
1743 	}, {
1744 		.reg = PMBUS_OT_WARN_LIMIT,
1745 		.attr = "max",
1746 		.alarm = "max_alarm",
1747 		.sbit = PB_TEMP_OT_WARNING,
1748 	}, {
1749 		.reg = PMBUS_OT_FAULT_LIMIT,
1750 		.attr = "crit",
1751 		.alarm = "crit_alarm",
1752 		.sbit = PB_TEMP_OT_FAULT,
1753 	}, {
1754 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1755 		.attr = "lowest",
1756 	}, {
1757 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1758 		.attr = "average",
1759 	}, {
1760 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1761 		.attr = "highest",
1762 	}, {
1763 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1764 		.attr = "reset_history",
1765 	}, {
1766 		.reg = PMBUS_MFR_MAX_TEMP_2,
1767 		.attr = "rated_max",
1768 	},
1769 };
1770 
1771 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1772 	{
1773 		.reg = PMBUS_UT_WARN_LIMIT,
1774 		.low = true,
1775 		.attr = "min",
1776 		.alarm = "min_alarm",
1777 		.sbit = PB_TEMP_UT_WARNING,
1778 	}, {
1779 		.reg = PMBUS_UT_FAULT_LIMIT,
1780 		.low = true,
1781 		.attr = "lcrit",
1782 		.alarm = "lcrit_alarm",
1783 		.sbit = PB_TEMP_UT_FAULT,
1784 	}, {
1785 		.reg = PMBUS_OT_WARN_LIMIT,
1786 		.attr = "max",
1787 		.alarm = "max_alarm",
1788 		.sbit = PB_TEMP_OT_WARNING,
1789 	}, {
1790 		.reg = PMBUS_OT_FAULT_LIMIT,
1791 		.attr = "crit",
1792 		.alarm = "crit_alarm",
1793 		.sbit = PB_TEMP_OT_FAULT,
1794 	}, {
1795 		.reg = PMBUS_MFR_MAX_TEMP_3,
1796 		.attr = "rated_max",
1797 	},
1798 };
1799 
1800 static const struct pmbus_sensor_attr temp_attributes[] = {
1801 	{
1802 		.reg = PMBUS_READ_TEMPERATURE_1,
1803 		.class = PSC_TEMPERATURE,
1804 		.paged = true,
1805 		.update = true,
1806 		.compare = true,
1807 		.func = PMBUS_HAVE_TEMP,
1808 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1809 		.sreg = PMBUS_STATUS_TEMPERATURE,
1810 		.gbit = PB_STATUS_TEMPERATURE,
1811 		.limit = temp_limit_attrs,
1812 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1813 	}, {
1814 		.reg = PMBUS_READ_TEMPERATURE_2,
1815 		.class = PSC_TEMPERATURE,
1816 		.paged = true,
1817 		.update = true,
1818 		.compare = true,
1819 		.func = PMBUS_HAVE_TEMP2,
1820 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1821 		.sreg = PMBUS_STATUS_TEMPERATURE,
1822 		.gbit = PB_STATUS_TEMPERATURE,
1823 		.limit = temp_limit_attrs2,
1824 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1825 	}, {
1826 		.reg = PMBUS_READ_TEMPERATURE_3,
1827 		.class = PSC_TEMPERATURE,
1828 		.paged = true,
1829 		.update = true,
1830 		.compare = true,
1831 		.func = PMBUS_HAVE_TEMP3,
1832 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1833 		.sreg = PMBUS_STATUS_TEMPERATURE,
1834 		.gbit = PB_STATUS_TEMPERATURE,
1835 		.limit = temp_limit_attrs3,
1836 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1837 	}
1838 };
1839 
1840 static const int pmbus_fan_registers[] = {
1841 	PMBUS_READ_FAN_SPEED_1,
1842 	PMBUS_READ_FAN_SPEED_2,
1843 	PMBUS_READ_FAN_SPEED_3,
1844 	PMBUS_READ_FAN_SPEED_4
1845 };
1846 
1847 static const int pmbus_fan_status_registers[] = {
1848 	PMBUS_STATUS_FAN_12,
1849 	PMBUS_STATUS_FAN_12,
1850 	PMBUS_STATUS_FAN_34,
1851 	PMBUS_STATUS_FAN_34
1852 };
1853 
1854 static const u32 pmbus_fan_flags[] = {
1855 	PMBUS_HAVE_FAN12,
1856 	PMBUS_HAVE_FAN12,
1857 	PMBUS_HAVE_FAN34,
1858 	PMBUS_HAVE_FAN34
1859 };
1860 
1861 static const u32 pmbus_fan_status_flags[] = {
1862 	PMBUS_HAVE_STATUS_FAN12,
1863 	PMBUS_HAVE_STATUS_FAN12,
1864 	PMBUS_HAVE_STATUS_FAN34,
1865 	PMBUS_HAVE_STATUS_FAN34
1866 };
1867 
1868 /* Fans */
1869 
1870 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
1871 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1872 		struct pmbus_data *data, int index, int page, int id,
1873 		u8 config)
1874 {
1875 	struct pmbus_sensor *sensor;
1876 
1877 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1878 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1879 				  false, false, true);
1880 
1881 	if (!sensor)
1882 		return -ENOMEM;
1883 
1884 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1885 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
1886 		return 0;
1887 
1888 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1889 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1890 				  false, false, true);
1891 
1892 	if (!sensor)
1893 		return -ENOMEM;
1894 
1895 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1896 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1897 				  true, false, false);
1898 
1899 	if (!sensor)
1900 		return -ENOMEM;
1901 
1902 	return 0;
1903 }
1904 
1905 static int pmbus_add_fan_attributes(struct i2c_client *client,
1906 				    struct pmbus_data *data)
1907 {
1908 	const struct pmbus_driver_info *info = data->info;
1909 	int index = 1;
1910 	int page;
1911 	int ret;
1912 
1913 	for (page = 0; page < info->pages; page++) {
1914 		int f;
1915 
1916 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1917 			int regval;
1918 
1919 			if (!(info->func[page] & pmbus_fan_flags[f]))
1920 				break;
1921 
1922 			if (!pmbus_check_word_register(client, page,
1923 						       pmbus_fan_registers[f]))
1924 				break;
1925 
1926 			/*
1927 			 * Skip fan if not installed.
1928 			 * Each fan configuration register covers multiple fans,
1929 			 * so we have to do some magic.
1930 			 */
1931 			regval = _pmbus_read_byte_data(client, page,
1932 				pmbus_fan_config_registers[f]);
1933 			if (regval < 0 ||
1934 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1935 				continue;
1936 
1937 			if (pmbus_add_sensor(data, "fan", "input", index,
1938 					     page, 0xff, pmbus_fan_registers[f],
1939 					     PSC_FAN, true, true, true) == NULL)
1940 				return -ENOMEM;
1941 
1942 			/* Fan control */
1943 			if (pmbus_check_word_register(client, page,
1944 					pmbus_fan_command_registers[f])) {
1945 				ret = pmbus_add_fan_ctrl(client, data, index,
1946 							 page, f, regval);
1947 				if (ret < 0)
1948 					return ret;
1949 			}
1950 
1951 			/*
1952 			 * Each fan status register covers multiple fans,
1953 			 * so we have to do some magic.
1954 			 */
1955 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1956 			    pmbus_check_byte_register(client,
1957 					page, pmbus_fan_status_registers[f])) {
1958 				int reg;
1959 
1960 				if (f > 1)	/* fan 3, 4 */
1961 					reg = PMBUS_STATUS_FAN_34;
1962 				else
1963 					reg = PMBUS_STATUS_FAN_12;
1964 				ret = pmbus_add_boolean(data, "fan",
1965 					"alarm", index, NULL, NULL, page, reg,
1966 					PB_FAN_FAN1_WARNING >> (f & 1));
1967 				if (ret)
1968 					return ret;
1969 				ret = pmbus_add_boolean(data, "fan",
1970 					"fault", index, NULL, NULL, page, reg,
1971 					PB_FAN_FAN1_FAULT >> (f & 1));
1972 				if (ret)
1973 					return ret;
1974 			}
1975 			index++;
1976 		}
1977 	}
1978 	return 0;
1979 }
1980 
1981 struct pmbus_samples_attr {
1982 	int reg;
1983 	char *name;
1984 };
1985 
1986 struct pmbus_samples_reg {
1987 	int page;
1988 	struct pmbus_samples_attr *attr;
1989 	struct device_attribute dev_attr;
1990 };
1991 
1992 static struct pmbus_samples_attr pmbus_samples_registers[] = {
1993 	{
1994 		.reg = PMBUS_VIRT_SAMPLES,
1995 		.name = "samples",
1996 	}, {
1997 		.reg = PMBUS_VIRT_IN_SAMPLES,
1998 		.name = "in_samples",
1999 	}, {
2000 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2001 		.name = "curr_samples",
2002 	}, {
2003 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2004 		.name = "power_samples",
2005 	}, {
2006 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2007 		.name = "temp_samples",
2008 	}
2009 };
2010 
2011 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2012 
2013 static ssize_t pmbus_show_samples(struct device *dev,
2014 				  struct device_attribute *devattr, char *buf)
2015 {
2016 	int val;
2017 	struct i2c_client *client = to_i2c_client(dev->parent);
2018 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2019 	struct pmbus_data *data = i2c_get_clientdata(client);
2020 
2021 	mutex_lock(&data->update_lock);
2022 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2023 	mutex_unlock(&data->update_lock);
2024 	if (val < 0)
2025 		return val;
2026 
2027 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
2028 }
2029 
2030 static ssize_t pmbus_set_samples(struct device *dev,
2031 				 struct device_attribute *devattr,
2032 				 const char *buf, size_t count)
2033 {
2034 	int ret;
2035 	long val;
2036 	struct i2c_client *client = to_i2c_client(dev->parent);
2037 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2038 	struct pmbus_data *data = i2c_get_clientdata(client);
2039 
2040 	if (kstrtol(buf, 0, &val) < 0)
2041 		return -EINVAL;
2042 
2043 	mutex_lock(&data->update_lock);
2044 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2045 	mutex_unlock(&data->update_lock);
2046 
2047 	return ret ? : count;
2048 }
2049 
2050 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2051 				  struct pmbus_samples_attr *attr)
2052 {
2053 	struct pmbus_samples_reg *reg;
2054 
2055 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2056 	if (!reg)
2057 		return -ENOMEM;
2058 
2059 	reg->attr = attr;
2060 	reg->page = page;
2061 
2062 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2063 			    pmbus_show_samples, pmbus_set_samples);
2064 
2065 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2066 }
2067 
2068 static int pmbus_add_samples_attributes(struct i2c_client *client,
2069 					struct pmbus_data *data)
2070 {
2071 	const struct pmbus_driver_info *info = data->info;
2072 	int s;
2073 
2074 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2075 		return 0;
2076 
2077 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2078 		struct pmbus_samples_attr *attr;
2079 		int ret;
2080 
2081 		attr = &pmbus_samples_registers[s];
2082 		if (!pmbus_check_word_register(client, 0, attr->reg))
2083 			continue;
2084 
2085 		ret = pmbus_add_samples_attr(data, 0, attr);
2086 		if (ret)
2087 			return ret;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static int pmbus_find_attributes(struct i2c_client *client,
2094 				 struct pmbus_data *data)
2095 {
2096 	int ret;
2097 
2098 	/* Voltage sensors */
2099 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2100 				     ARRAY_SIZE(voltage_attributes));
2101 	if (ret)
2102 		return ret;
2103 
2104 	/* Current sensors */
2105 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2106 				     ARRAY_SIZE(current_attributes));
2107 	if (ret)
2108 		return ret;
2109 
2110 	/* Power sensors */
2111 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2112 				     ARRAY_SIZE(power_attributes));
2113 	if (ret)
2114 		return ret;
2115 
2116 	/* Temperature sensors */
2117 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2118 				     ARRAY_SIZE(temp_attributes));
2119 	if (ret)
2120 		return ret;
2121 
2122 	/* Fans */
2123 	ret = pmbus_add_fan_attributes(client, data);
2124 	if (ret)
2125 		return ret;
2126 
2127 	ret = pmbus_add_samples_attributes(client, data);
2128 	return ret;
2129 }
2130 
2131 /*
2132  * Identify chip parameters.
2133  * This function is called for all chips.
2134  */
2135 static int pmbus_identify_common(struct i2c_client *client,
2136 				 struct pmbus_data *data, int page)
2137 {
2138 	int vout_mode = -1;
2139 
2140 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2141 		vout_mode = _pmbus_read_byte_data(client, page,
2142 						  PMBUS_VOUT_MODE);
2143 	if (vout_mode >= 0 && vout_mode != 0xff) {
2144 		/*
2145 		 * Not all chips support the VOUT_MODE command,
2146 		 * so a failure to read it is not an error.
2147 		 */
2148 		switch (vout_mode >> 5) {
2149 		case 0:	/* linear mode      */
2150 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2151 				return -ENODEV;
2152 
2153 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2154 			break;
2155 		case 1: /* VID mode         */
2156 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2157 				return -ENODEV;
2158 			break;
2159 		case 2:	/* direct mode      */
2160 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2161 				return -ENODEV;
2162 			break;
2163 		default:
2164 			return -ENODEV;
2165 		}
2166 	}
2167 
2168 	pmbus_clear_fault_page(client, page);
2169 	return 0;
2170 }
2171 
2172 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2173 {
2174 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2175 }
2176 
2177 static int pmbus_read_status_word(struct i2c_client *client, int page)
2178 {
2179 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2180 }
2181 
2182 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2183 			     struct pmbus_driver_info *info)
2184 {
2185 	struct device *dev = &client->dev;
2186 	int page, ret;
2187 
2188 	/*
2189 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2190 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2191 	 * Bail out if both registers are not supported.
2192 	 */
2193 	data->read_status = pmbus_read_status_word;
2194 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2195 	if (ret < 0 || ret == 0xffff) {
2196 		data->read_status = pmbus_read_status_byte;
2197 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2198 		if (ret < 0 || ret == 0xff) {
2199 			dev_err(dev, "PMBus status register not found\n");
2200 			return -ENODEV;
2201 		}
2202 	} else {
2203 		data->has_status_word = true;
2204 	}
2205 
2206 	/* Enable PEC if the controller supports it */
2207 	ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2208 	if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK))
2209 		client->flags |= I2C_CLIENT_PEC;
2210 
2211 	/*
2212 	 * Check if the chip is write protected. If it is, we can not clear
2213 	 * faults, and we should not try it. Also, in that case, writes into
2214 	 * limit registers need to be disabled.
2215 	 */
2216 	ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2217 	if (ret > 0 && (ret & PB_WP_ANY))
2218 		data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2219 
2220 	if (data->info->pages)
2221 		pmbus_clear_faults(client);
2222 	else
2223 		pmbus_clear_fault_page(client, -1);
2224 
2225 	if (info->identify) {
2226 		ret = (*info->identify)(client, info);
2227 		if (ret < 0) {
2228 			dev_err(dev, "Chip identification failed\n");
2229 			return ret;
2230 		}
2231 	}
2232 
2233 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2234 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2235 		return -ENODEV;
2236 	}
2237 
2238 	for (page = 0; page < info->pages; page++) {
2239 		ret = pmbus_identify_common(client, data, page);
2240 		if (ret < 0) {
2241 			dev_err(dev, "Failed to identify chip capabilities\n");
2242 			return ret;
2243 		}
2244 	}
2245 	return 0;
2246 }
2247 
2248 #if IS_ENABLED(CONFIG_REGULATOR)
2249 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2250 {
2251 	struct device *dev = rdev_get_dev(rdev);
2252 	struct i2c_client *client = to_i2c_client(dev->parent);
2253 	u8 page = rdev_get_id(rdev);
2254 	int ret;
2255 
2256 	ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2257 	if (ret < 0)
2258 		return ret;
2259 
2260 	return !!(ret & PB_OPERATION_CONTROL_ON);
2261 }
2262 
2263 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2264 {
2265 	struct device *dev = rdev_get_dev(rdev);
2266 	struct i2c_client *client = to_i2c_client(dev->parent);
2267 	u8 page = rdev_get_id(rdev);
2268 
2269 	return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2270 				      PB_OPERATION_CONTROL_ON,
2271 				      enable ? PB_OPERATION_CONTROL_ON : 0);
2272 }
2273 
2274 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2275 {
2276 	return _pmbus_regulator_on_off(rdev, 1);
2277 }
2278 
2279 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2280 {
2281 	return _pmbus_regulator_on_off(rdev, 0);
2282 }
2283 
2284 const struct regulator_ops pmbus_regulator_ops = {
2285 	.enable = pmbus_regulator_enable,
2286 	.disable = pmbus_regulator_disable,
2287 	.is_enabled = pmbus_regulator_is_enabled,
2288 };
2289 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
2290 
2291 static int pmbus_regulator_register(struct pmbus_data *data)
2292 {
2293 	struct device *dev = data->dev;
2294 	const struct pmbus_driver_info *info = data->info;
2295 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2296 	struct regulator_dev *rdev;
2297 	int i;
2298 
2299 	for (i = 0; i < info->num_regulators; i++) {
2300 		struct regulator_config config = { };
2301 
2302 		config.dev = dev;
2303 		config.driver_data = data;
2304 
2305 		if (pdata && pdata->reg_init_data)
2306 			config.init_data = &pdata->reg_init_data[i];
2307 
2308 		rdev = devm_regulator_register(dev, &info->reg_desc[i],
2309 					       &config);
2310 		if (IS_ERR(rdev)) {
2311 			dev_err(dev, "Failed to register %s regulator\n",
2312 				info->reg_desc[i].name);
2313 			return PTR_ERR(rdev);
2314 		}
2315 	}
2316 
2317 	return 0;
2318 }
2319 #else
2320 static int pmbus_regulator_register(struct pmbus_data *data)
2321 {
2322 	return 0;
2323 }
2324 #endif
2325 
2326 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
2327 
2328 #if IS_ENABLED(CONFIG_DEBUG_FS)
2329 static int pmbus_debugfs_get(void *data, u64 *val)
2330 {
2331 	int rc;
2332 	struct pmbus_debugfs_entry *entry = data;
2333 
2334 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2335 	if (rc < 0)
2336 		return rc;
2337 
2338 	*val = rc;
2339 
2340 	return 0;
2341 }
2342 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2343 			 "0x%02llx\n");
2344 
2345 static int pmbus_debugfs_get_status(void *data, u64 *val)
2346 {
2347 	int rc;
2348 	struct pmbus_debugfs_entry *entry = data;
2349 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2350 
2351 	rc = pdata->read_status(entry->client, entry->page);
2352 	if (rc < 0)
2353 		return rc;
2354 
2355 	*val = rc;
2356 
2357 	return 0;
2358 }
2359 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2360 			 NULL, "0x%04llx\n");
2361 
2362 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2363 {
2364 	struct i2c_client *client = data;
2365 
2366 	*val = !!(client->flags & I2C_CLIENT_PEC);
2367 
2368 	return 0;
2369 }
2370 
2371 static int pmbus_debugfs_set_pec(void *data, u64 val)
2372 {
2373 	int rc;
2374 	struct i2c_client *client = data;
2375 
2376 	if (!val) {
2377 		client->flags &= ~I2C_CLIENT_PEC;
2378 		return 0;
2379 	}
2380 
2381 	if (val != 1)
2382 		return -EINVAL;
2383 
2384 	rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2385 	if (rc < 0)
2386 		return rc;
2387 
2388 	if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2389 		return -EOPNOTSUPP;
2390 
2391 	client->flags |= I2C_CLIENT_PEC;
2392 
2393 	return 0;
2394 }
2395 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2396 			 pmbus_debugfs_set_pec, "%llu\n");
2397 
2398 static void pmbus_remove_debugfs(void *data)
2399 {
2400 	struct dentry *entry = data;
2401 
2402 	debugfs_remove_recursive(entry);
2403 }
2404 
2405 static int pmbus_init_debugfs(struct i2c_client *client,
2406 			      struct pmbus_data *data)
2407 {
2408 	int i, idx = 0;
2409 	char name[PMBUS_NAME_SIZE];
2410 	struct pmbus_debugfs_entry *entries;
2411 
2412 	if (!pmbus_debugfs_dir)
2413 		return -ENODEV;
2414 
2415 	/*
2416 	 * Create the debugfs directory for this device. Use the hwmon device
2417 	 * name to avoid conflicts (hwmon numbers are globally unique).
2418 	 */
2419 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2420 					   pmbus_debugfs_dir);
2421 	if (IS_ERR_OR_NULL(data->debugfs)) {
2422 		data->debugfs = NULL;
2423 		return -ENODEV;
2424 	}
2425 
2426 	/* Allocate the max possible entries we need. */
2427 	entries = devm_kcalloc(data->dev,
2428 			       data->info->pages * 10, sizeof(*entries),
2429 			       GFP_KERNEL);
2430 	if (!entries)
2431 		return -ENOMEM;
2432 
2433 	debugfs_create_file("pec", 0664, data->debugfs, client,
2434 			    &pmbus_debugfs_ops_pec);
2435 
2436 	for (i = 0; i < data->info->pages; ++i) {
2437 		/* Check accessibility of status register if it's not page 0 */
2438 		if (!i || pmbus_check_status_register(client, i)) {
2439 			/* No need to set reg as we have special read op. */
2440 			entries[idx].client = client;
2441 			entries[idx].page = i;
2442 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2443 			debugfs_create_file(name, 0444, data->debugfs,
2444 					    &entries[idx++],
2445 					    &pmbus_debugfs_ops_status);
2446 		}
2447 
2448 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2449 			entries[idx].client = client;
2450 			entries[idx].page = i;
2451 			entries[idx].reg = PMBUS_STATUS_VOUT;
2452 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2453 			debugfs_create_file(name, 0444, data->debugfs,
2454 					    &entries[idx++],
2455 					    &pmbus_debugfs_ops);
2456 		}
2457 
2458 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2459 			entries[idx].client = client;
2460 			entries[idx].page = i;
2461 			entries[idx].reg = PMBUS_STATUS_IOUT;
2462 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2463 			debugfs_create_file(name, 0444, data->debugfs,
2464 					    &entries[idx++],
2465 					    &pmbus_debugfs_ops);
2466 		}
2467 
2468 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2469 			entries[idx].client = client;
2470 			entries[idx].page = i;
2471 			entries[idx].reg = PMBUS_STATUS_INPUT;
2472 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2473 			debugfs_create_file(name, 0444, data->debugfs,
2474 					    &entries[idx++],
2475 					    &pmbus_debugfs_ops);
2476 		}
2477 
2478 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2479 			entries[idx].client = client;
2480 			entries[idx].page = i;
2481 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2482 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2483 			debugfs_create_file(name, 0444, data->debugfs,
2484 					    &entries[idx++],
2485 					    &pmbus_debugfs_ops);
2486 		}
2487 
2488 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2489 			entries[idx].client = client;
2490 			entries[idx].page = i;
2491 			entries[idx].reg = PMBUS_STATUS_CML;
2492 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2493 			debugfs_create_file(name, 0444, data->debugfs,
2494 					    &entries[idx++],
2495 					    &pmbus_debugfs_ops);
2496 		}
2497 
2498 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2499 			entries[idx].client = client;
2500 			entries[idx].page = i;
2501 			entries[idx].reg = PMBUS_STATUS_OTHER;
2502 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2503 			debugfs_create_file(name, 0444, data->debugfs,
2504 					    &entries[idx++],
2505 					    &pmbus_debugfs_ops);
2506 		}
2507 
2508 		if (pmbus_check_byte_register(client, i,
2509 					      PMBUS_STATUS_MFR_SPECIFIC)) {
2510 			entries[idx].client = client;
2511 			entries[idx].page = i;
2512 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2513 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2514 			debugfs_create_file(name, 0444, data->debugfs,
2515 					    &entries[idx++],
2516 					    &pmbus_debugfs_ops);
2517 		}
2518 
2519 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2520 			entries[idx].client = client;
2521 			entries[idx].page = i;
2522 			entries[idx].reg = PMBUS_STATUS_FAN_12;
2523 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2524 			debugfs_create_file(name, 0444, data->debugfs,
2525 					    &entries[idx++],
2526 					    &pmbus_debugfs_ops);
2527 		}
2528 
2529 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2530 			entries[idx].client = client;
2531 			entries[idx].page = i;
2532 			entries[idx].reg = PMBUS_STATUS_FAN_34;
2533 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2534 			debugfs_create_file(name, 0444, data->debugfs,
2535 					    &entries[idx++],
2536 					    &pmbus_debugfs_ops);
2537 		}
2538 	}
2539 
2540 	return devm_add_action_or_reset(data->dev,
2541 					pmbus_remove_debugfs, data->debugfs);
2542 }
2543 #else
2544 static int pmbus_init_debugfs(struct i2c_client *client,
2545 			      struct pmbus_data *data)
2546 {
2547 	return 0;
2548 }
2549 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
2550 
2551 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2552 {
2553 	struct device *dev = &client->dev;
2554 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2555 	struct pmbus_data *data;
2556 	size_t groups_num = 0;
2557 	int ret;
2558 
2559 	if (!info)
2560 		return -ENODEV;
2561 
2562 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2563 				     | I2C_FUNC_SMBUS_BYTE_DATA
2564 				     | I2C_FUNC_SMBUS_WORD_DATA))
2565 		return -ENODEV;
2566 
2567 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2568 	if (!data)
2569 		return -ENOMEM;
2570 
2571 	if (info->groups)
2572 		while (info->groups[groups_num])
2573 			groups_num++;
2574 
2575 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
2576 				    GFP_KERNEL);
2577 	if (!data->groups)
2578 		return -ENOMEM;
2579 
2580 	i2c_set_clientdata(client, data);
2581 	mutex_init(&data->update_lock);
2582 	data->dev = dev;
2583 
2584 	if (pdata)
2585 		data->flags = pdata->flags;
2586 	data->info = info;
2587 	data->currpage = -1;
2588 	data->currphase = -1;
2589 
2590 	ret = pmbus_init_common(client, data, info);
2591 	if (ret < 0)
2592 		return ret;
2593 
2594 	ret = pmbus_find_attributes(client, data);
2595 	if (ret)
2596 		return ret;
2597 
2598 	/*
2599 	 * If there are no attributes, something is wrong.
2600 	 * Bail out instead of trying to register nothing.
2601 	 */
2602 	if (!data->num_attributes) {
2603 		dev_err(dev, "No attributes found\n");
2604 		return -ENODEV;
2605 	}
2606 
2607 	data->groups[0] = &data->group;
2608 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
2609 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
2610 					client->name, data, data->groups);
2611 	if (IS_ERR(data->hwmon_dev)) {
2612 		dev_err(dev, "Failed to register hwmon device\n");
2613 		return PTR_ERR(data->hwmon_dev);
2614 	}
2615 
2616 	ret = pmbus_regulator_register(data);
2617 	if (ret)
2618 		return ret;
2619 
2620 	ret = pmbus_init_debugfs(client, data);
2621 	if (ret)
2622 		dev_warn(dev, "Failed to register debugfs\n");
2623 
2624 	return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(pmbus_do_probe);
2627 
2628 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2629 {
2630 	struct pmbus_data *data = i2c_get_clientdata(client);
2631 
2632 	return data->debugfs;
2633 }
2634 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir);
2635 
2636 static int __init pmbus_core_init(void)
2637 {
2638 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2639 	if (IS_ERR(pmbus_debugfs_dir))
2640 		pmbus_debugfs_dir = NULL;
2641 
2642 	return 0;
2643 }
2644 
2645 static void __exit pmbus_core_exit(void)
2646 {
2647 	debugfs_remove_recursive(pmbus_debugfs_dir);
2648 }
2649 
2650 module_init(pmbus_core_init);
2651 module_exit(pmbus_core_exit);
2652 
2653 MODULE_AUTHOR("Guenter Roeck");
2654 MODULE_DESCRIPTION("PMBus core driver");
2655 MODULE_LICENSE("GPL");
2656