1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/pmbus.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include "pmbus.h" 23 24 /* 25 * Number of additional attribute pointers to allocate 26 * with each call to krealloc 27 */ 28 #define PMBUS_ATTR_ALLOC_SIZE 32 29 #define PMBUS_NAME_SIZE 24 30 31 struct pmbus_sensor { 32 struct pmbus_sensor *next; 33 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 34 struct device_attribute attribute; 35 u8 page; /* page number */ 36 u8 phase; /* phase number, 0xff for all phases */ 37 u16 reg; /* register */ 38 enum pmbus_sensor_classes class; /* sensor class */ 39 bool update; /* runtime sensor update needed */ 40 bool convert; /* Whether or not to apply linear/vid/direct */ 41 int data; /* Sensor data. 42 Negative if there was a read error */ 43 }; 44 #define to_pmbus_sensor(_attr) \ 45 container_of(_attr, struct pmbus_sensor, attribute) 46 47 struct pmbus_boolean { 48 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 49 struct sensor_device_attribute attribute; 50 struct pmbus_sensor *s1; 51 struct pmbus_sensor *s2; 52 }; 53 #define to_pmbus_boolean(_attr) \ 54 container_of(_attr, struct pmbus_boolean, attribute) 55 56 struct pmbus_label { 57 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 58 struct device_attribute attribute; 59 char label[PMBUS_NAME_SIZE]; /* label */ 60 }; 61 #define to_pmbus_label(_attr) \ 62 container_of(_attr, struct pmbus_label, attribute) 63 64 /* Macros for converting between sensor index and register/page/status mask */ 65 66 #define PB_STATUS_MASK 0xffff 67 #define PB_REG_SHIFT 16 68 #define PB_REG_MASK 0x3ff 69 #define PB_PAGE_SHIFT 26 70 #define PB_PAGE_MASK 0x3f 71 72 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ 73 ((reg) << PB_REG_SHIFT) | (mask)) 74 75 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) 76 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) 77 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) 78 79 struct pmbus_data { 80 struct device *dev; 81 struct device *hwmon_dev; 82 83 u32 flags; /* from platform data */ 84 85 int exponent[PMBUS_PAGES]; 86 /* linear mode: exponent for output voltages */ 87 88 const struct pmbus_driver_info *info; 89 90 int max_attributes; 91 int num_attributes; 92 struct attribute_group group; 93 const struct attribute_group **groups; 94 struct dentry *debugfs; /* debugfs device directory */ 95 96 struct pmbus_sensor *sensors; 97 98 struct mutex update_lock; 99 100 bool has_status_word; /* device uses STATUS_WORD register */ 101 int (*read_status)(struct i2c_client *client, int page); 102 103 s16 currpage; /* current page, -1 for unknown/unset */ 104 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 105 }; 106 107 struct pmbus_debugfs_entry { 108 struct i2c_client *client; 109 u8 page; 110 u8 reg; 111 }; 112 113 static const int pmbus_fan_rpm_mask[] = { 114 PB_FAN_1_RPM, 115 PB_FAN_2_RPM, 116 PB_FAN_1_RPM, 117 PB_FAN_2_RPM, 118 }; 119 120 static const int pmbus_fan_config_registers[] = { 121 PMBUS_FAN_CONFIG_12, 122 PMBUS_FAN_CONFIG_12, 123 PMBUS_FAN_CONFIG_34, 124 PMBUS_FAN_CONFIG_34 125 }; 126 127 static const int pmbus_fan_command_registers[] = { 128 PMBUS_FAN_COMMAND_1, 129 PMBUS_FAN_COMMAND_2, 130 PMBUS_FAN_COMMAND_3, 131 PMBUS_FAN_COMMAND_4, 132 }; 133 134 void pmbus_clear_cache(struct i2c_client *client) 135 { 136 struct pmbus_data *data = i2c_get_clientdata(client); 137 struct pmbus_sensor *sensor; 138 139 for (sensor = data->sensors; sensor; sensor = sensor->next) 140 sensor->data = -ENODATA; 141 } 142 EXPORT_SYMBOL_GPL(pmbus_clear_cache); 143 144 int pmbus_set_page(struct i2c_client *client, int page, int phase) 145 { 146 struct pmbus_data *data = i2c_get_clientdata(client); 147 int rv; 148 149 if (page < 0) 150 return 0; 151 152 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 153 data->info->pages > 1 && page != data->currpage) { 154 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 155 if (rv < 0) 156 return rv; 157 158 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 159 if (rv < 0) 160 return rv; 161 162 if (rv != page) 163 return -EIO; 164 } 165 data->currpage = page; 166 167 if (data->info->phases[page] && data->currphase != phase && 168 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 169 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 170 phase); 171 if (rv) 172 return rv; 173 } 174 data->currphase = phase; 175 176 return 0; 177 } 178 EXPORT_SYMBOL_GPL(pmbus_set_page); 179 180 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 181 { 182 int rv; 183 184 rv = pmbus_set_page(client, page, 0xff); 185 if (rv < 0) 186 return rv; 187 188 return i2c_smbus_write_byte(client, value); 189 } 190 EXPORT_SYMBOL_GPL(pmbus_write_byte); 191 192 /* 193 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 194 * a device specific mapping function exists and calls it if necessary. 195 */ 196 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 197 { 198 struct pmbus_data *data = i2c_get_clientdata(client); 199 const struct pmbus_driver_info *info = data->info; 200 int status; 201 202 if (info->write_byte) { 203 status = info->write_byte(client, page, value); 204 if (status != -ENODATA) 205 return status; 206 } 207 return pmbus_write_byte(client, page, value); 208 } 209 210 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 211 u16 word) 212 { 213 int rv; 214 215 rv = pmbus_set_page(client, page, 0xff); 216 if (rv < 0) 217 return rv; 218 219 return i2c_smbus_write_word_data(client, reg, word); 220 } 221 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 222 223 224 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 225 u16 word) 226 { 227 int bit; 228 int id; 229 int rv; 230 231 switch (reg) { 232 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 233 id = reg - PMBUS_VIRT_FAN_TARGET_1; 234 bit = pmbus_fan_rpm_mask[id]; 235 rv = pmbus_update_fan(client, page, id, bit, bit, word); 236 break; 237 default: 238 rv = -ENXIO; 239 break; 240 } 241 242 return rv; 243 } 244 245 /* 246 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 247 * a device specific mapping function exists and calls it if necessary. 248 */ 249 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 250 u16 word) 251 { 252 struct pmbus_data *data = i2c_get_clientdata(client); 253 const struct pmbus_driver_info *info = data->info; 254 int status; 255 256 if (info->write_word_data) { 257 status = info->write_word_data(client, page, reg, word); 258 if (status != -ENODATA) 259 return status; 260 } 261 262 if (reg >= PMBUS_VIRT_BASE) 263 return pmbus_write_virt_reg(client, page, reg, word); 264 265 return pmbus_write_word_data(client, page, reg, word); 266 } 267 268 int pmbus_update_fan(struct i2c_client *client, int page, int id, 269 u8 config, u8 mask, u16 command) 270 { 271 int from; 272 int rv; 273 u8 to; 274 275 from = pmbus_read_byte_data(client, page, 276 pmbus_fan_config_registers[id]); 277 if (from < 0) 278 return from; 279 280 to = (from & ~mask) | (config & mask); 281 if (to != from) { 282 rv = pmbus_write_byte_data(client, page, 283 pmbus_fan_config_registers[id], to); 284 if (rv < 0) 285 return rv; 286 } 287 288 return _pmbus_write_word_data(client, page, 289 pmbus_fan_command_registers[id], command); 290 } 291 EXPORT_SYMBOL_GPL(pmbus_update_fan); 292 293 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 294 { 295 int rv; 296 297 rv = pmbus_set_page(client, page, phase); 298 if (rv < 0) 299 return rv; 300 301 return i2c_smbus_read_word_data(client, reg); 302 } 303 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 304 305 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 306 { 307 int rv; 308 int id; 309 310 switch (reg) { 311 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 312 id = reg - PMBUS_VIRT_FAN_TARGET_1; 313 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 314 break; 315 default: 316 rv = -ENXIO; 317 break; 318 } 319 320 return rv; 321 } 322 323 /* 324 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 325 * a device specific mapping function exists and calls it if necessary. 326 */ 327 static int _pmbus_read_word_data(struct i2c_client *client, int page, 328 int phase, int reg) 329 { 330 struct pmbus_data *data = i2c_get_clientdata(client); 331 const struct pmbus_driver_info *info = data->info; 332 int status; 333 334 if (info->read_word_data) { 335 status = info->read_word_data(client, page, phase, reg); 336 if (status != -ENODATA) 337 return status; 338 } 339 340 if (reg >= PMBUS_VIRT_BASE) 341 return pmbus_read_virt_reg(client, page, reg); 342 343 return pmbus_read_word_data(client, page, phase, reg); 344 } 345 346 /* Same as above, but without phase parameter, for use in check functions */ 347 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 348 { 349 return _pmbus_read_word_data(client, page, 0xff, reg); 350 } 351 352 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 353 { 354 int rv; 355 356 rv = pmbus_set_page(client, page, 0xff); 357 if (rv < 0) 358 return rv; 359 360 return i2c_smbus_read_byte_data(client, reg); 361 } 362 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 363 364 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 365 { 366 int rv; 367 368 rv = pmbus_set_page(client, page, 0xff); 369 if (rv < 0) 370 return rv; 371 372 return i2c_smbus_write_byte_data(client, reg, value); 373 } 374 EXPORT_SYMBOL_GPL(pmbus_write_byte_data); 375 376 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 377 u8 mask, u8 value) 378 { 379 unsigned int tmp; 380 int rv; 381 382 rv = pmbus_read_byte_data(client, page, reg); 383 if (rv < 0) 384 return rv; 385 386 tmp = (rv & ~mask) | (value & mask); 387 388 if (tmp != rv) 389 rv = pmbus_write_byte_data(client, page, reg, tmp); 390 391 return rv; 392 } 393 EXPORT_SYMBOL_GPL(pmbus_update_byte_data); 394 395 /* 396 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 397 * a device specific mapping function exists and calls it if necessary. 398 */ 399 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 400 { 401 struct pmbus_data *data = i2c_get_clientdata(client); 402 const struct pmbus_driver_info *info = data->info; 403 int status; 404 405 if (info->read_byte_data) { 406 status = info->read_byte_data(client, page, reg); 407 if (status != -ENODATA) 408 return status; 409 } 410 return pmbus_read_byte_data(client, page, reg); 411 } 412 413 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 414 int reg) 415 { 416 struct pmbus_sensor *sensor; 417 418 for (sensor = data->sensors; sensor; sensor = sensor->next) { 419 if (sensor->page == page && sensor->reg == reg) 420 return sensor; 421 } 422 423 return ERR_PTR(-EINVAL); 424 } 425 426 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 427 enum pmbus_fan_mode mode, 428 bool from_cache) 429 { 430 struct pmbus_data *data = i2c_get_clientdata(client); 431 bool want_rpm, have_rpm; 432 struct pmbus_sensor *s; 433 int config; 434 int reg; 435 436 want_rpm = (mode == rpm); 437 438 if (from_cache) { 439 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 440 s = pmbus_find_sensor(data, page, reg + id); 441 if (IS_ERR(s)) 442 return PTR_ERR(s); 443 444 return s->data; 445 } 446 447 config = pmbus_read_byte_data(client, page, 448 pmbus_fan_config_registers[id]); 449 if (config < 0) 450 return config; 451 452 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 453 if (want_rpm == have_rpm) 454 return pmbus_read_word_data(client, page, 0xff, 455 pmbus_fan_command_registers[id]); 456 457 /* Can't sensibly map between RPM and PWM, just return zero */ 458 return 0; 459 } 460 461 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 462 enum pmbus_fan_mode mode) 463 { 464 return pmbus_get_fan_rate(client, page, id, mode, false); 465 } 466 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device); 467 468 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 469 enum pmbus_fan_mode mode) 470 { 471 return pmbus_get_fan_rate(client, page, id, mode, true); 472 } 473 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached); 474 475 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 476 { 477 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 478 } 479 480 void pmbus_clear_faults(struct i2c_client *client) 481 { 482 struct pmbus_data *data = i2c_get_clientdata(client); 483 int i; 484 485 for (i = 0; i < data->info->pages; i++) 486 pmbus_clear_fault_page(client, i); 487 } 488 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 489 490 static int pmbus_check_status_cml(struct i2c_client *client) 491 { 492 struct pmbus_data *data = i2c_get_clientdata(client); 493 int status, status2; 494 495 status = data->read_status(client, -1); 496 if (status < 0 || (status & PB_STATUS_CML)) { 497 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 498 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 499 return -EIO; 500 } 501 return 0; 502 } 503 504 static bool pmbus_check_register(struct i2c_client *client, 505 int (*func)(struct i2c_client *client, 506 int page, int reg), 507 int page, int reg) 508 { 509 int rv; 510 struct pmbus_data *data = i2c_get_clientdata(client); 511 512 rv = func(client, page, reg); 513 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 514 rv = pmbus_check_status_cml(client); 515 pmbus_clear_fault_page(client, -1); 516 return rv >= 0; 517 } 518 519 static bool pmbus_check_status_register(struct i2c_client *client, int page) 520 { 521 int status; 522 struct pmbus_data *data = i2c_get_clientdata(client); 523 524 status = data->read_status(client, page); 525 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 526 (status & PB_STATUS_CML)) { 527 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 528 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 529 status = -EIO; 530 } 531 532 pmbus_clear_fault_page(client, -1); 533 return status >= 0; 534 } 535 536 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 537 { 538 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 539 } 540 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 541 542 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 543 { 544 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 545 } 546 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 547 548 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 549 { 550 struct pmbus_data *data = i2c_get_clientdata(client); 551 552 return data->info; 553 } 554 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 555 556 static int pmbus_get_status(struct i2c_client *client, int page, int reg) 557 { 558 struct pmbus_data *data = i2c_get_clientdata(client); 559 int status; 560 561 switch (reg) { 562 case PMBUS_STATUS_WORD: 563 status = data->read_status(client, page); 564 break; 565 default: 566 status = _pmbus_read_byte_data(client, page, reg); 567 break; 568 } 569 if (status < 0) 570 pmbus_clear_faults(client); 571 return status; 572 } 573 574 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) 575 { 576 if (sensor->data < 0 || sensor->update) 577 sensor->data = _pmbus_read_word_data(client, sensor->page, 578 sensor->phase, sensor->reg); 579 } 580 581 /* 582 * Convert linear sensor values to milli- or micro-units 583 * depending on sensor type. 584 */ 585 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 586 struct pmbus_sensor *sensor) 587 { 588 s16 exponent; 589 s32 mantissa; 590 s64 val; 591 592 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 593 exponent = data->exponent[sensor->page]; 594 mantissa = (u16) sensor->data; 595 } else { /* LINEAR11 */ 596 exponent = ((s16)sensor->data) >> 11; 597 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 598 } 599 600 val = mantissa; 601 602 /* scale result to milli-units for all sensors except fans */ 603 if (sensor->class != PSC_FAN) 604 val = val * 1000LL; 605 606 /* scale result to micro-units for power sensors */ 607 if (sensor->class == PSC_POWER) 608 val = val * 1000LL; 609 610 if (exponent >= 0) 611 val <<= exponent; 612 else 613 val >>= -exponent; 614 615 return val; 616 } 617 618 /* 619 * Convert direct sensor values to milli- or micro-units 620 * depending on sensor type. 621 */ 622 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 623 struct pmbus_sensor *sensor) 624 { 625 s64 b, val = (s16)sensor->data; 626 s32 m, R; 627 628 m = data->info->m[sensor->class]; 629 b = data->info->b[sensor->class]; 630 R = data->info->R[sensor->class]; 631 632 if (m == 0) 633 return 0; 634 635 /* X = 1/m * (Y * 10^-R - b) */ 636 R = -R; 637 /* scale result to milli-units for everything but fans */ 638 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 639 R += 3; 640 b *= 1000; 641 } 642 643 /* scale result to micro-units for power sensors */ 644 if (sensor->class == PSC_POWER) { 645 R += 3; 646 b *= 1000; 647 } 648 649 while (R > 0) { 650 val *= 10; 651 R--; 652 } 653 while (R < 0) { 654 val = div_s64(val + 5LL, 10L); /* round closest */ 655 R++; 656 } 657 658 val = div_s64(val - b, m); 659 return val; 660 } 661 662 /* 663 * Convert VID sensor values to milli- or micro-units 664 * depending on sensor type. 665 */ 666 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 667 struct pmbus_sensor *sensor) 668 { 669 long val = sensor->data; 670 long rv = 0; 671 672 switch (data->info->vrm_version[sensor->page]) { 673 case vr11: 674 if (val >= 0x02 && val <= 0xb2) 675 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 676 break; 677 case vr12: 678 if (val >= 0x01) 679 rv = 250 + (val - 1) * 5; 680 break; 681 case vr13: 682 if (val >= 0x01) 683 rv = 500 + (val - 1) * 10; 684 break; 685 case imvp9: 686 if (val >= 0x01) 687 rv = 200 + (val - 1) * 10; 688 break; 689 case amd625mv: 690 if (val >= 0x0 && val <= 0xd8) 691 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 692 break; 693 } 694 return rv; 695 } 696 697 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 698 { 699 s64 val; 700 701 if (!sensor->convert) 702 return sensor->data; 703 704 switch (data->info->format[sensor->class]) { 705 case direct: 706 val = pmbus_reg2data_direct(data, sensor); 707 break; 708 case vid: 709 val = pmbus_reg2data_vid(data, sensor); 710 break; 711 case linear: 712 default: 713 val = pmbus_reg2data_linear(data, sensor); 714 break; 715 } 716 return val; 717 } 718 719 #define MAX_MANTISSA (1023 * 1000) 720 #define MIN_MANTISSA (511 * 1000) 721 722 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 723 struct pmbus_sensor *sensor, s64 val) 724 { 725 s16 exponent = 0, mantissa; 726 bool negative = false; 727 728 /* simple case */ 729 if (val == 0) 730 return 0; 731 732 if (sensor->class == PSC_VOLTAGE_OUT) { 733 /* LINEAR16 does not support negative voltages */ 734 if (val < 0) 735 return 0; 736 737 /* 738 * For a static exponents, we don't have a choice 739 * but to adjust the value to it. 740 */ 741 if (data->exponent[sensor->page] < 0) 742 val <<= -data->exponent[sensor->page]; 743 else 744 val >>= data->exponent[sensor->page]; 745 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 746 return clamp_val(val, 0, 0xffff); 747 } 748 749 if (val < 0) { 750 negative = true; 751 val = -val; 752 } 753 754 /* Power is in uW. Convert to mW before converting. */ 755 if (sensor->class == PSC_POWER) 756 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 757 758 /* 759 * For simplicity, convert fan data to milli-units 760 * before calculating the exponent. 761 */ 762 if (sensor->class == PSC_FAN) 763 val = val * 1000LL; 764 765 /* Reduce large mantissa until it fits into 10 bit */ 766 while (val >= MAX_MANTISSA && exponent < 15) { 767 exponent++; 768 val >>= 1; 769 } 770 /* Increase small mantissa to improve precision */ 771 while (val < MIN_MANTISSA && exponent > -15) { 772 exponent--; 773 val <<= 1; 774 } 775 776 /* Convert mantissa from milli-units to units */ 777 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 778 779 /* restore sign */ 780 if (negative) 781 mantissa = -mantissa; 782 783 /* Convert to 5 bit exponent, 11 bit mantissa */ 784 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 785 } 786 787 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 788 struct pmbus_sensor *sensor, s64 val) 789 { 790 s64 b; 791 s32 m, R; 792 793 m = data->info->m[sensor->class]; 794 b = data->info->b[sensor->class]; 795 R = data->info->R[sensor->class]; 796 797 /* Power is in uW. Adjust R and b. */ 798 if (sensor->class == PSC_POWER) { 799 R -= 3; 800 b *= 1000; 801 } 802 803 /* Calculate Y = (m * X + b) * 10^R */ 804 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 805 R -= 3; /* Adjust R and b for data in milli-units */ 806 b *= 1000; 807 } 808 val = val * m + b; 809 810 while (R > 0) { 811 val *= 10; 812 R--; 813 } 814 while (R < 0) { 815 val = div_s64(val + 5LL, 10L); /* round closest */ 816 R++; 817 } 818 819 return (u16)clamp_val(val, S16_MIN, S16_MAX); 820 } 821 822 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 823 struct pmbus_sensor *sensor, s64 val) 824 { 825 val = clamp_val(val, 500, 1600); 826 827 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 828 } 829 830 static u16 pmbus_data2reg(struct pmbus_data *data, 831 struct pmbus_sensor *sensor, s64 val) 832 { 833 u16 regval; 834 835 if (!sensor->convert) 836 return val; 837 838 switch (data->info->format[sensor->class]) { 839 case direct: 840 regval = pmbus_data2reg_direct(data, sensor, val); 841 break; 842 case vid: 843 regval = pmbus_data2reg_vid(data, sensor, val); 844 break; 845 case linear: 846 default: 847 regval = pmbus_data2reg_linear(data, sensor, val); 848 break; 849 } 850 return regval; 851 } 852 853 /* 854 * Return boolean calculated from converted data. 855 * <index> defines a status register index and mask. 856 * The mask is in the lower 8 bits, the register index is in bits 8..23. 857 * 858 * The associated pmbus_boolean structure contains optional pointers to two 859 * sensor attributes. If specified, those attributes are compared against each 860 * other to determine if a limit has been exceeded. 861 * 862 * If the sensor attribute pointers are NULL, the function returns true if 863 * (status[reg] & mask) is true. 864 * 865 * If sensor attribute pointers are provided, a comparison against a specified 866 * limit has to be performed to determine the boolean result. 867 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 868 * sensor values referenced by sensor attribute pointers s1 and s2). 869 * 870 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 871 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 872 * 873 * If a negative value is stored in any of the referenced registers, this value 874 * reflects an error code which will be returned. 875 */ 876 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, 877 int index) 878 { 879 struct pmbus_data *data = i2c_get_clientdata(client); 880 struct pmbus_sensor *s1 = b->s1; 881 struct pmbus_sensor *s2 = b->s2; 882 u16 mask = pb_index_to_mask(index); 883 u8 page = pb_index_to_page(index); 884 u16 reg = pb_index_to_reg(index); 885 int ret, status; 886 u16 regval; 887 888 mutex_lock(&data->update_lock); 889 status = pmbus_get_status(client, page, reg); 890 if (status < 0) { 891 ret = status; 892 goto unlock; 893 } 894 895 if (s1) 896 pmbus_update_sensor_data(client, s1); 897 if (s2) 898 pmbus_update_sensor_data(client, s2); 899 900 regval = status & mask; 901 if (s1 && s2) { 902 s64 v1, v2; 903 904 if (s1->data < 0) { 905 ret = s1->data; 906 goto unlock; 907 } 908 if (s2->data < 0) { 909 ret = s2->data; 910 goto unlock; 911 } 912 913 v1 = pmbus_reg2data(data, s1); 914 v2 = pmbus_reg2data(data, s2); 915 ret = !!(regval && v1 >= v2); 916 } else { 917 ret = !!regval; 918 } 919 unlock: 920 mutex_unlock(&data->update_lock); 921 return ret; 922 } 923 924 static ssize_t pmbus_show_boolean(struct device *dev, 925 struct device_attribute *da, char *buf) 926 { 927 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 928 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 929 struct i2c_client *client = to_i2c_client(dev->parent); 930 int val; 931 932 val = pmbus_get_boolean(client, boolean, attr->index); 933 if (val < 0) 934 return val; 935 return snprintf(buf, PAGE_SIZE, "%d\n", val); 936 } 937 938 static ssize_t pmbus_show_sensor(struct device *dev, 939 struct device_attribute *devattr, char *buf) 940 { 941 struct i2c_client *client = to_i2c_client(dev->parent); 942 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 943 struct pmbus_data *data = i2c_get_clientdata(client); 944 ssize_t ret; 945 946 mutex_lock(&data->update_lock); 947 pmbus_update_sensor_data(client, sensor); 948 if (sensor->data < 0) 949 ret = sensor->data; 950 else 951 ret = snprintf(buf, PAGE_SIZE, "%lld\n", pmbus_reg2data(data, sensor)); 952 mutex_unlock(&data->update_lock); 953 return ret; 954 } 955 956 static ssize_t pmbus_set_sensor(struct device *dev, 957 struct device_attribute *devattr, 958 const char *buf, size_t count) 959 { 960 struct i2c_client *client = to_i2c_client(dev->parent); 961 struct pmbus_data *data = i2c_get_clientdata(client); 962 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 963 ssize_t rv = count; 964 s64 val; 965 int ret; 966 u16 regval; 967 968 if (kstrtos64(buf, 10, &val) < 0) 969 return -EINVAL; 970 971 mutex_lock(&data->update_lock); 972 regval = pmbus_data2reg(data, sensor, val); 973 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 974 if (ret < 0) 975 rv = ret; 976 else 977 sensor->data = -ENODATA; 978 mutex_unlock(&data->update_lock); 979 return rv; 980 } 981 982 static ssize_t pmbus_show_label(struct device *dev, 983 struct device_attribute *da, char *buf) 984 { 985 struct pmbus_label *label = to_pmbus_label(da); 986 987 return snprintf(buf, PAGE_SIZE, "%s\n", label->label); 988 } 989 990 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 991 { 992 if (data->num_attributes >= data->max_attributes - 1) { 993 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 994 void *new_attrs = devm_krealloc(data->dev, data->group.attrs, 995 new_max_attrs * sizeof(void *), 996 GFP_KERNEL); 997 if (!new_attrs) 998 return -ENOMEM; 999 data->group.attrs = new_attrs; 1000 data->max_attributes = new_max_attrs; 1001 } 1002 1003 data->group.attrs[data->num_attributes++] = attr; 1004 data->group.attrs[data->num_attributes] = NULL; 1005 return 0; 1006 } 1007 1008 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1009 const char *name, 1010 umode_t mode, 1011 ssize_t (*show)(struct device *dev, 1012 struct device_attribute *attr, 1013 char *buf), 1014 ssize_t (*store)(struct device *dev, 1015 struct device_attribute *attr, 1016 const char *buf, size_t count)) 1017 { 1018 sysfs_attr_init(&dev_attr->attr); 1019 dev_attr->attr.name = name; 1020 dev_attr->attr.mode = mode; 1021 dev_attr->show = show; 1022 dev_attr->store = store; 1023 } 1024 1025 static void pmbus_attr_init(struct sensor_device_attribute *a, 1026 const char *name, 1027 umode_t mode, 1028 ssize_t (*show)(struct device *dev, 1029 struct device_attribute *attr, 1030 char *buf), 1031 ssize_t (*store)(struct device *dev, 1032 struct device_attribute *attr, 1033 const char *buf, size_t count), 1034 int idx) 1035 { 1036 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1037 a->index = idx; 1038 } 1039 1040 static int pmbus_add_boolean(struct pmbus_data *data, 1041 const char *name, const char *type, int seq, 1042 struct pmbus_sensor *s1, 1043 struct pmbus_sensor *s2, 1044 u8 page, u16 reg, u16 mask) 1045 { 1046 struct pmbus_boolean *boolean; 1047 struct sensor_device_attribute *a; 1048 1049 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) 1050 return -EINVAL; 1051 1052 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1053 if (!boolean) 1054 return -ENOMEM; 1055 1056 a = &boolean->attribute; 1057 1058 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1059 name, seq, type); 1060 boolean->s1 = s1; 1061 boolean->s2 = s2; 1062 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1063 pb_reg_to_index(page, reg, mask)); 1064 1065 return pmbus_add_attribute(data, &a->dev_attr.attr); 1066 } 1067 1068 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1069 const char *name, const char *type, 1070 int seq, int page, int phase, 1071 int reg, 1072 enum pmbus_sensor_classes class, 1073 bool update, bool readonly, 1074 bool convert) 1075 { 1076 struct pmbus_sensor *sensor; 1077 struct device_attribute *a; 1078 1079 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1080 if (!sensor) 1081 return NULL; 1082 a = &sensor->attribute; 1083 1084 if (type) 1085 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1086 name, seq, type); 1087 else 1088 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1089 name, seq); 1090 1091 if (data->flags & PMBUS_WRITE_PROTECTED) 1092 readonly = true; 1093 1094 sensor->page = page; 1095 sensor->phase = phase; 1096 sensor->reg = reg; 1097 sensor->class = class; 1098 sensor->update = update; 1099 sensor->convert = convert; 1100 sensor->data = -ENODATA; 1101 pmbus_dev_attr_init(a, sensor->name, 1102 readonly ? 0444 : 0644, 1103 pmbus_show_sensor, pmbus_set_sensor); 1104 1105 if (pmbus_add_attribute(data, &a->attr)) 1106 return NULL; 1107 1108 sensor->next = data->sensors; 1109 data->sensors = sensor; 1110 1111 return sensor; 1112 } 1113 1114 static int pmbus_add_label(struct pmbus_data *data, 1115 const char *name, int seq, 1116 const char *lstring, int index, int phase) 1117 { 1118 struct pmbus_label *label; 1119 struct device_attribute *a; 1120 1121 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1122 if (!label) 1123 return -ENOMEM; 1124 1125 a = &label->attribute; 1126 1127 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1128 if (!index) { 1129 if (phase == 0xff) 1130 strncpy(label->label, lstring, 1131 sizeof(label->label) - 1); 1132 else 1133 snprintf(label->label, sizeof(label->label), "%s.%d", 1134 lstring, phase); 1135 } else { 1136 if (phase == 0xff) 1137 snprintf(label->label, sizeof(label->label), "%s%d", 1138 lstring, index); 1139 else 1140 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1141 lstring, index, phase); 1142 } 1143 1144 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1145 return pmbus_add_attribute(data, &a->attr); 1146 } 1147 1148 /* 1149 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1150 */ 1151 1152 /* 1153 * The pmbus_limit_attr structure describes a single limit attribute 1154 * and its associated alarm attribute. 1155 */ 1156 struct pmbus_limit_attr { 1157 u16 reg; /* Limit register */ 1158 u16 sbit; /* Alarm attribute status bit */ 1159 bool update; /* True if register needs updates */ 1160 bool low; /* True if low limit; for limits with compare 1161 functions only */ 1162 const char *attr; /* Attribute name */ 1163 const char *alarm; /* Alarm attribute name */ 1164 }; 1165 1166 /* 1167 * The pmbus_sensor_attr structure describes one sensor attribute. This 1168 * description includes a reference to the associated limit attributes. 1169 */ 1170 struct pmbus_sensor_attr { 1171 u16 reg; /* sensor register */ 1172 u16 gbit; /* generic status bit */ 1173 u8 nlimit; /* # of limit registers */ 1174 enum pmbus_sensor_classes class;/* sensor class */ 1175 const char *label; /* sensor label */ 1176 bool paged; /* true if paged sensor */ 1177 bool update; /* true if update needed */ 1178 bool compare; /* true if compare function needed */ 1179 u32 func; /* sensor mask */ 1180 u32 sfunc; /* sensor status mask */ 1181 int sreg; /* status register */ 1182 const struct pmbus_limit_attr *limit;/* limit registers */ 1183 }; 1184 1185 /* 1186 * Add a set of limit attributes and, if supported, the associated 1187 * alarm attributes. 1188 * returns 0 if no alarm register found, 1 if an alarm register was found, 1189 * < 0 on errors. 1190 */ 1191 static int pmbus_add_limit_attrs(struct i2c_client *client, 1192 struct pmbus_data *data, 1193 const struct pmbus_driver_info *info, 1194 const char *name, int index, int page, 1195 struct pmbus_sensor *base, 1196 const struct pmbus_sensor_attr *attr) 1197 { 1198 const struct pmbus_limit_attr *l = attr->limit; 1199 int nlimit = attr->nlimit; 1200 int have_alarm = 0; 1201 int i, ret; 1202 struct pmbus_sensor *curr; 1203 1204 for (i = 0; i < nlimit; i++) { 1205 if (pmbus_check_word_register(client, page, l->reg)) { 1206 curr = pmbus_add_sensor(data, name, l->attr, index, 1207 page, 0xff, l->reg, attr->class, 1208 attr->update || l->update, 1209 false, true); 1210 if (!curr) 1211 return -ENOMEM; 1212 if (l->sbit && (info->func[page] & attr->sfunc)) { 1213 ret = pmbus_add_boolean(data, name, 1214 l->alarm, index, 1215 attr->compare ? l->low ? curr : base 1216 : NULL, 1217 attr->compare ? l->low ? base : curr 1218 : NULL, 1219 page, attr->sreg, l->sbit); 1220 if (ret) 1221 return ret; 1222 have_alarm = 1; 1223 } 1224 } 1225 l++; 1226 } 1227 return have_alarm; 1228 } 1229 1230 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1231 struct pmbus_data *data, 1232 const struct pmbus_driver_info *info, 1233 const char *name, 1234 int index, int page, int phase, 1235 const struct pmbus_sensor_attr *attr, 1236 bool paged) 1237 { 1238 struct pmbus_sensor *base; 1239 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1240 int ret; 1241 1242 if (attr->label) { 1243 ret = pmbus_add_label(data, name, index, attr->label, 1244 paged ? page + 1 : 0, phase); 1245 if (ret) 1246 return ret; 1247 } 1248 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1249 attr->reg, attr->class, true, true, true); 1250 if (!base) 1251 return -ENOMEM; 1252 /* No limit and alarm attributes for phase specific sensors */ 1253 if (attr->sfunc && phase == 0xff) { 1254 ret = pmbus_add_limit_attrs(client, data, info, name, 1255 index, page, base, attr); 1256 if (ret < 0) 1257 return ret; 1258 /* 1259 * Add generic alarm attribute only if there are no individual 1260 * alarm attributes, if there is a global alarm bit, and if 1261 * the generic status register (word or byte, depending on 1262 * which global bit is set) for this page is accessible. 1263 */ 1264 if (!ret && attr->gbit && 1265 (!upper || data->has_status_word) && 1266 pmbus_check_status_register(client, page)) { 1267 ret = pmbus_add_boolean(data, name, "alarm", index, 1268 NULL, NULL, 1269 page, PMBUS_STATUS_WORD, 1270 attr->gbit); 1271 if (ret) 1272 return ret; 1273 } 1274 } 1275 return 0; 1276 } 1277 1278 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1279 const struct pmbus_sensor_attr *attr) 1280 { 1281 int p; 1282 1283 if (attr->paged) 1284 return true; 1285 1286 /* 1287 * Some attributes may be present on more than one page despite 1288 * not being marked with the paged attribute. If that is the case, 1289 * then treat the sensor as being paged and add the page suffix to the 1290 * attribute name. 1291 * We don't just add the paged attribute to all such attributes, in 1292 * order to maintain the un-suffixed labels in the case where the 1293 * attribute is only on page 0. 1294 */ 1295 for (p = 1; p < info->pages; p++) { 1296 if (info->func[p] & attr->func) 1297 return true; 1298 } 1299 return false; 1300 } 1301 1302 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1303 struct pmbus_data *data, 1304 const char *name, 1305 const struct pmbus_sensor_attr *attrs, 1306 int nattrs) 1307 { 1308 const struct pmbus_driver_info *info = data->info; 1309 int index, i; 1310 int ret; 1311 1312 index = 1; 1313 for (i = 0; i < nattrs; i++) { 1314 int page, pages; 1315 bool paged = pmbus_sensor_is_paged(info, attrs); 1316 1317 pages = paged ? info->pages : 1; 1318 for (page = 0; page < pages; page++) { 1319 if (!(info->func[page] & attrs->func)) 1320 continue; 1321 ret = pmbus_add_sensor_attrs_one(client, data, info, 1322 name, index, page, 1323 0xff, attrs, paged); 1324 if (ret) 1325 return ret; 1326 index++; 1327 if (info->phases[page]) { 1328 int phase; 1329 1330 for (phase = 0; phase < info->phases[page]; 1331 phase++) { 1332 if (!(info->pfunc[phase] & attrs->func)) 1333 continue; 1334 ret = pmbus_add_sensor_attrs_one(client, 1335 data, info, name, index, page, 1336 phase, attrs, paged); 1337 if (ret) 1338 return ret; 1339 index++; 1340 } 1341 } 1342 } 1343 attrs++; 1344 } 1345 return 0; 1346 } 1347 1348 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1349 { 1350 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1351 .attr = "min", 1352 .alarm = "min_alarm", 1353 .sbit = PB_VOLTAGE_UV_WARNING, 1354 }, { 1355 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1356 .attr = "lcrit", 1357 .alarm = "lcrit_alarm", 1358 .sbit = PB_VOLTAGE_UV_FAULT, 1359 }, { 1360 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1361 .attr = "max", 1362 .alarm = "max_alarm", 1363 .sbit = PB_VOLTAGE_OV_WARNING, 1364 }, { 1365 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1366 .attr = "crit", 1367 .alarm = "crit_alarm", 1368 .sbit = PB_VOLTAGE_OV_FAULT, 1369 }, { 1370 .reg = PMBUS_VIRT_READ_VIN_AVG, 1371 .update = true, 1372 .attr = "average", 1373 }, { 1374 .reg = PMBUS_VIRT_READ_VIN_MIN, 1375 .update = true, 1376 .attr = "lowest", 1377 }, { 1378 .reg = PMBUS_VIRT_READ_VIN_MAX, 1379 .update = true, 1380 .attr = "highest", 1381 }, { 1382 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1383 .attr = "reset_history", 1384 }, { 1385 .reg = PMBUS_MFR_VIN_MIN, 1386 .attr = "rated_min", 1387 }, { 1388 .reg = PMBUS_MFR_VIN_MAX, 1389 .attr = "rated_max", 1390 }, 1391 }; 1392 1393 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1394 { 1395 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1396 .attr = "min", 1397 .alarm = "min_alarm", 1398 .sbit = PB_VOLTAGE_UV_WARNING, 1399 }, { 1400 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1401 .attr = "lcrit", 1402 .alarm = "lcrit_alarm", 1403 .sbit = PB_VOLTAGE_UV_FAULT, 1404 }, { 1405 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1406 .attr = "max", 1407 .alarm = "max_alarm", 1408 .sbit = PB_VOLTAGE_OV_WARNING, 1409 }, { 1410 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1411 .attr = "crit", 1412 .alarm = "crit_alarm", 1413 .sbit = PB_VOLTAGE_OV_FAULT, 1414 } 1415 }; 1416 1417 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1418 { 1419 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1420 .attr = "min", 1421 .alarm = "min_alarm", 1422 .sbit = PB_VOLTAGE_UV_WARNING, 1423 }, { 1424 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1425 .attr = "lcrit", 1426 .alarm = "lcrit_alarm", 1427 .sbit = PB_VOLTAGE_UV_FAULT, 1428 }, { 1429 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1430 .attr = "max", 1431 .alarm = "max_alarm", 1432 .sbit = PB_VOLTAGE_OV_WARNING, 1433 }, { 1434 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1435 .attr = "crit", 1436 .alarm = "crit_alarm", 1437 .sbit = PB_VOLTAGE_OV_FAULT, 1438 }, { 1439 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1440 .update = true, 1441 .attr = "average", 1442 }, { 1443 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1444 .update = true, 1445 .attr = "lowest", 1446 }, { 1447 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1448 .update = true, 1449 .attr = "highest", 1450 }, { 1451 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1452 .attr = "reset_history", 1453 }, { 1454 .reg = PMBUS_MFR_VOUT_MIN, 1455 .attr = "rated_min", 1456 }, { 1457 .reg = PMBUS_MFR_VOUT_MAX, 1458 .attr = "rated_max", 1459 }, 1460 }; 1461 1462 static const struct pmbus_sensor_attr voltage_attributes[] = { 1463 { 1464 .reg = PMBUS_READ_VIN, 1465 .class = PSC_VOLTAGE_IN, 1466 .label = "vin", 1467 .func = PMBUS_HAVE_VIN, 1468 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1469 .sreg = PMBUS_STATUS_INPUT, 1470 .gbit = PB_STATUS_VIN_UV, 1471 .limit = vin_limit_attrs, 1472 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1473 }, { 1474 .reg = PMBUS_VIRT_READ_VMON, 1475 .class = PSC_VOLTAGE_IN, 1476 .label = "vmon", 1477 .func = PMBUS_HAVE_VMON, 1478 .sfunc = PMBUS_HAVE_STATUS_VMON, 1479 .sreg = PMBUS_VIRT_STATUS_VMON, 1480 .limit = vmon_limit_attrs, 1481 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1482 }, { 1483 .reg = PMBUS_READ_VCAP, 1484 .class = PSC_VOLTAGE_IN, 1485 .label = "vcap", 1486 .func = PMBUS_HAVE_VCAP, 1487 }, { 1488 .reg = PMBUS_READ_VOUT, 1489 .class = PSC_VOLTAGE_OUT, 1490 .label = "vout", 1491 .paged = true, 1492 .func = PMBUS_HAVE_VOUT, 1493 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1494 .sreg = PMBUS_STATUS_VOUT, 1495 .gbit = PB_STATUS_VOUT_OV, 1496 .limit = vout_limit_attrs, 1497 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1498 } 1499 }; 1500 1501 /* Current attributes */ 1502 1503 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1504 { 1505 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1506 .attr = "max", 1507 .alarm = "max_alarm", 1508 .sbit = PB_IIN_OC_WARNING, 1509 }, { 1510 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1511 .attr = "crit", 1512 .alarm = "crit_alarm", 1513 .sbit = PB_IIN_OC_FAULT, 1514 }, { 1515 .reg = PMBUS_VIRT_READ_IIN_AVG, 1516 .update = true, 1517 .attr = "average", 1518 }, { 1519 .reg = PMBUS_VIRT_READ_IIN_MIN, 1520 .update = true, 1521 .attr = "lowest", 1522 }, { 1523 .reg = PMBUS_VIRT_READ_IIN_MAX, 1524 .update = true, 1525 .attr = "highest", 1526 }, { 1527 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1528 .attr = "reset_history", 1529 }, { 1530 .reg = PMBUS_MFR_IIN_MAX, 1531 .attr = "rated_max", 1532 }, 1533 }; 1534 1535 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1536 { 1537 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1538 .attr = "max", 1539 .alarm = "max_alarm", 1540 .sbit = PB_IOUT_OC_WARNING, 1541 }, { 1542 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1543 .attr = "lcrit", 1544 .alarm = "lcrit_alarm", 1545 .sbit = PB_IOUT_UC_FAULT, 1546 }, { 1547 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1548 .attr = "crit", 1549 .alarm = "crit_alarm", 1550 .sbit = PB_IOUT_OC_FAULT, 1551 }, { 1552 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1553 .update = true, 1554 .attr = "average", 1555 }, { 1556 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1557 .update = true, 1558 .attr = "lowest", 1559 }, { 1560 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1561 .update = true, 1562 .attr = "highest", 1563 }, { 1564 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1565 .attr = "reset_history", 1566 }, { 1567 .reg = PMBUS_MFR_IOUT_MAX, 1568 .attr = "rated_max", 1569 }, 1570 }; 1571 1572 static const struct pmbus_sensor_attr current_attributes[] = { 1573 { 1574 .reg = PMBUS_READ_IIN, 1575 .class = PSC_CURRENT_IN, 1576 .label = "iin", 1577 .func = PMBUS_HAVE_IIN, 1578 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1579 .sreg = PMBUS_STATUS_INPUT, 1580 .gbit = PB_STATUS_INPUT, 1581 .limit = iin_limit_attrs, 1582 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1583 }, { 1584 .reg = PMBUS_READ_IOUT, 1585 .class = PSC_CURRENT_OUT, 1586 .label = "iout", 1587 .paged = true, 1588 .func = PMBUS_HAVE_IOUT, 1589 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1590 .sreg = PMBUS_STATUS_IOUT, 1591 .gbit = PB_STATUS_IOUT_OC, 1592 .limit = iout_limit_attrs, 1593 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1594 } 1595 }; 1596 1597 /* Power attributes */ 1598 1599 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1600 { 1601 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1602 .attr = "max", 1603 .alarm = "alarm", 1604 .sbit = PB_PIN_OP_WARNING, 1605 }, { 1606 .reg = PMBUS_VIRT_READ_PIN_AVG, 1607 .update = true, 1608 .attr = "average", 1609 }, { 1610 .reg = PMBUS_VIRT_READ_PIN_MIN, 1611 .update = true, 1612 .attr = "input_lowest", 1613 }, { 1614 .reg = PMBUS_VIRT_READ_PIN_MAX, 1615 .update = true, 1616 .attr = "input_highest", 1617 }, { 1618 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1619 .attr = "reset_history", 1620 }, { 1621 .reg = PMBUS_MFR_PIN_MAX, 1622 .attr = "rated_max", 1623 }, 1624 }; 1625 1626 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1627 { 1628 .reg = PMBUS_POUT_MAX, 1629 .attr = "cap", 1630 .alarm = "cap_alarm", 1631 .sbit = PB_POWER_LIMITING, 1632 }, { 1633 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1634 .attr = "max", 1635 .alarm = "max_alarm", 1636 .sbit = PB_POUT_OP_WARNING, 1637 }, { 1638 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1639 .attr = "crit", 1640 .alarm = "crit_alarm", 1641 .sbit = PB_POUT_OP_FAULT, 1642 }, { 1643 .reg = PMBUS_VIRT_READ_POUT_AVG, 1644 .update = true, 1645 .attr = "average", 1646 }, { 1647 .reg = PMBUS_VIRT_READ_POUT_MIN, 1648 .update = true, 1649 .attr = "input_lowest", 1650 }, { 1651 .reg = PMBUS_VIRT_READ_POUT_MAX, 1652 .update = true, 1653 .attr = "input_highest", 1654 }, { 1655 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1656 .attr = "reset_history", 1657 }, { 1658 .reg = PMBUS_MFR_POUT_MAX, 1659 .attr = "rated_max", 1660 }, 1661 }; 1662 1663 static const struct pmbus_sensor_attr power_attributes[] = { 1664 { 1665 .reg = PMBUS_READ_PIN, 1666 .class = PSC_POWER, 1667 .label = "pin", 1668 .func = PMBUS_HAVE_PIN, 1669 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1670 .sreg = PMBUS_STATUS_INPUT, 1671 .gbit = PB_STATUS_INPUT, 1672 .limit = pin_limit_attrs, 1673 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1674 }, { 1675 .reg = PMBUS_READ_POUT, 1676 .class = PSC_POWER, 1677 .label = "pout", 1678 .paged = true, 1679 .func = PMBUS_HAVE_POUT, 1680 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1681 .sreg = PMBUS_STATUS_IOUT, 1682 .limit = pout_limit_attrs, 1683 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1684 } 1685 }; 1686 1687 /* Temperature atributes */ 1688 1689 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1690 { 1691 .reg = PMBUS_UT_WARN_LIMIT, 1692 .low = true, 1693 .attr = "min", 1694 .alarm = "min_alarm", 1695 .sbit = PB_TEMP_UT_WARNING, 1696 }, { 1697 .reg = PMBUS_UT_FAULT_LIMIT, 1698 .low = true, 1699 .attr = "lcrit", 1700 .alarm = "lcrit_alarm", 1701 .sbit = PB_TEMP_UT_FAULT, 1702 }, { 1703 .reg = PMBUS_OT_WARN_LIMIT, 1704 .attr = "max", 1705 .alarm = "max_alarm", 1706 .sbit = PB_TEMP_OT_WARNING, 1707 }, { 1708 .reg = PMBUS_OT_FAULT_LIMIT, 1709 .attr = "crit", 1710 .alarm = "crit_alarm", 1711 .sbit = PB_TEMP_OT_FAULT, 1712 }, { 1713 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1714 .attr = "lowest", 1715 }, { 1716 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1717 .attr = "average", 1718 }, { 1719 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1720 .attr = "highest", 1721 }, { 1722 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1723 .attr = "reset_history", 1724 }, { 1725 .reg = PMBUS_MFR_MAX_TEMP_1, 1726 .attr = "rated_max", 1727 }, 1728 }; 1729 1730 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1731 { 1732 .reg = PMBUS_UT_WARN_LIMIT, 1733 .low = true, 1734 .attr = "min", 1735 .alarm = "min_alarm", 1736 .sbit = PB_TEMP_UT_WARNING, 1737 }, { 1738 .reg = PMBUS_UT_FAULT_LIMIT, 1739 .low = true, 1740 .attr = "lcrit", 1741 .alarm = "lcrit_alarm", 1742 .sbit = PB_TEMP_UT_FAULT, 1743 }, { 1744 .reg = PMBUS_OT_WARN_LIMIT, 1745 .attr = "max", 1746 .alarm = "max_alarm", 1747 .sbit = PB_TEMP_OT_WARNING, 1748 }, { 1749 .reg = PMBUS_OT_FAULT_LIMIT, 1750 .attr = "crit", 1751 .alarm = "crit_alarm", 1752 .sbit = PB_TEMP_OT_FAULT, 1753 }, { 1754 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1755 .attr = "lowest", 1756 }, { 1757 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1758 .attr = "average", 1759 }, { 1760 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1761 .attr = "highest", 1762 }, { 1763 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1764 .attr = "reset_history", 1765 }, { 1766 .reg = PMBUS_MFR_MAX_TEMP_2, 1767 .attr = "rated_max", 1768 }, 1769 }; 1770 1771 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1772 { 1773 .reg = PMBUS_UT_WARN_LIMIT, 1774 .low = true, 1775 .attr = "min", 1776 .alarm = "min_alarm", 1777 .sbit = PB_TEMP_UT_WARNING, 1778 }, { 1779 .reg = PMBUS_UT_FAULT_LIMIT, 1780 .low = true, 1781 .attr = "lcrit", 1782 .alarm = "lcrit_alarm", 1783 .sbit = PB_TEMP_UT_FAULT, 1784 }, { 1785 .reg = PMBUS_OT_WARN_LIMIT, 1786 .attr = "max", 1787 .alarm = "max_alarm", 1788 .sbit = PB_TEMP_OT_WARNING, 1789 }, { 1790 .reg = PMBUS_OT_FAULT_LIMIT, 1791 .attr = "crit", 1792 .alarm = "crit_alarm", 1793 .sbit = PB_TEMP_OT_FAULT, 1794 }, { 1795 .reg = PMBUS_MFR_MAX_TEMP_3, 1796 .attr = "rated_max", 1797 }, 1798 }; 1799 1800 static const struct pmbus_sensor_attr temp_attributes[] = { 1801 { 1802 .reg = PMBUS_READ_TEMPERATURE_1, 1803 .class = PSC_TEMPERATURE, 1804 .paged = true, 1805 .update = true, 1806 .compare = true, 1807 .func = PMBUS_HAVE_TEMP, 1808 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1809 .sreg = PMBUS_STATUS_TEMPERATURE, 1810 .gbit = PB_STATUS_TEMPERATURE, 1811 .limit = temp_limit_attrs, 1812 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1813 }, { 1814 .reg = PMBUS_READ_TEMPERATURE_2, 1815 .class = PSC_TEMPERATURE, 1816 .paged = true, 1817 .update = true, 1818 .compare = true, 1819 .func = PMBUS_HAVE_TEMP2, 1820 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1821 .sreg = PMBUS_STATUS_TEMPERATURE, 1822 .gbit = PB_STATUS_TEMPERATURE, 1823 .limit = temp_limit_attrs2, 1824 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1825 }, { 1826 .reg = PMBUS_READ_TEMPERATURE_3, 1827 .class = PSC_TEMPERATURE, 1828 .paged = true, 1829 .update = true, 1830 .compare = true, 1831 .func = PMBUS_HAVE_TEMP3, 1832 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1833 .sreg = PMBUS_STATUS_TEMPERATURE, 1834 .gbit = PB_STATUS_TEMPERATURE, 1835 .limit = temp_limit_attrs3, 1836 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1837 } 1838 }; 1839 1840 static const int pmbus_fan_registers[] = { 1841 PMBUS_READ_FAN_SPEED_1, 1842 PMBUS_READ_FAN_SPEED_2, 1843 PMBUS_READ_FAN_SPEED_3, 1844 PMBUS_READ_FAN_SPEED_4 1845 }; 1846 1847 static const int pmbus_fan_status_registers[] = { 1848 PMBUS_STATUS_FAN_12, 1849 PMBUS_STATUS_FAN_12, 1850 PMBUS_STATUS_FAN_34, 1851 PMBUS_STATUS_FAN_34 1852 }; 1853 1854 static const u32 pmbus_fan_flags[] = { 1855 PMBUS_HAVE_FAN12, 1856 PMBUS_HAVE_FAN12, 1857 PMBUS_HAVE_FAN34, 1858 PMBUS_HAVE_FAN34 1859 }; 1860 1861 static const u32 pmbus_fan_status_flags[] = { 1862 PMBUS_HAVE_STATUS_FAN12, 1863 PMBUS_HAVE_STATUS_FAN12, 1864 PMBUS_HAVE_STATUS_FAN34, 1865 PMBUS_HAVE_STATUS_FAN34 1866 }; 1867 1868 /* Fans */ 1869 1870 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 1871 static int pmbus_add_fan_ctrl(struct i2c_client *client, 1872 struct pmbus_data *data, int index, int page, int id, 1873 u8 config) 1874 { 1875 struct pmbus_sensor *sensor; 1876 1877 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 1878 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 1879 false, false, true); 1880 1881 if (!sensor) 1882 return -ENOMEM; 1883 1884 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 1885 (data->info->func[page] & PMBUS_HAVE_PWM34))) 1886 return 0; 1887 1888 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 1889 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 1890 false, false, true); 1891 1892 if (!sensor) 1893 return -ENOMEM; 1894 1895 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 1896 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 1897 true, false, false); 1898 1899 if (!sensor) 1900 return -ENOMEM; 1901 1902 return 0; 1903 } 1904 1905 static int pmbus_add_fan_attributes(struct i2c_client *client, 1906 struct pmbus_data *data) 1907 { 1908 const struct pmbus_driver_info *info = data->info; 1909 int index = 1; 1910 int page; 1911 int ret; 1912 1913 for (page = 0; page < info->pages; page++) { 1914 int f; 1915 1916 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1917 int regval; 1918 1919 if (!(info->func[page] & pmbus_fan_flags[f])) 1920 break; 1921 1922 if (!pmbus_check_word_register(client, page, 1923 pmbus_fan_registers[f])) 1924 break; 1925 1926 /* 1927 * Skip fan if not installed. 1928 * Each fan configuration register covers multiple fans, 1929 * so we have to do some magic. 1930 */ 1931 regval = _pmbus_read_byte_data(client, page, 1932 pmbus_fan_config_registers[f]); 1933 if (regval < 0 || 1934 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1935 continue; 1936 1937 if (pmbus_add_sensor(data, "fan", "input", index, 1938 page, 0xff, pmbus_fan_registers[f], 1939 PSC_FAN, true, true, true) == NULL) 1940 return -ENOMEM; 1941 1942 /* Fan control */ 1943 if (pmbus_check_word_register(client, page, 1944 pmbus_fan_command_registers[f])) { 1945 ret = pmbus_add_fan_ctrl(client, data, index, 1946 page, f, regval); 1947 if (ret < 0) 1948 return ret; 1949 } 1950 1951 /* 1952 * Each fan status register covers multiple fans, 1953 * so we have to do some magic. 1954 */ 1955 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1956 pmbus_check_byte_register(client, 1957 page, pmbus_fan_status_registers[f])) { 1958 int reg; 1959 1960 if (f > 1) /* fan 3, 4 */ 1961 reg = PMBUS_STATUS_FAN_34; 1962 else 1963 reg = PMBUS_STATUS_FAN_12; 1964 ret = pmbus_add_boolean(data, "fan", 1965 "alarm", index, NULL, NULL, page, reg, 1966 PB_FAN_FAN1_WARNING >> (f & 1)); 1967 if (ret) 1968 return ret; 1969 ret = pmbus_add_boolean(data, "fan", 1970 "fault", index, NULL, NULL, page, reg, 1971 PB_FAN_FAN1_FAULT >> (f & 1)); 1972 if (ret) 1973 return ret; 1974 } 1975 index++; 1976 } 1977 } 1978 return 0; 1979 } 1980 1981 struct pmbus_samples_attr { 1982 int reg; 1983 char *name; 1984 }; 1985 1986 struct pmbus_samples_reg { 1987 int page; 1988 struct pmbus_samples_attr *attr; 1989 struct device_attribute dev_attr; 1990 }; 1991 1992 static struct pmbus_samples_attr pmbus_samples_registers[] = { 1993 { 1994 .reg = PMBUS_VIRT_SAMPLES, 1995 .name = "samples", 1996 }, { 1997 .reg = PMBUS_VIRT_IN_SAMPLES, 1998 .name = "in_samples", 1999 }, { 2000 .reg = PMBUS_VIRT_CURR_SAMPLES, 2001 .name = "curr_samples", 2002 }, { 2003 .reg = PMBUS_VIRT_POWER_SAMPLES, 2004 .name = "power_samples", 2005 }, { 2006 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2007 .name = "temp_samples", 2008 } 2009 }; 2010 2011 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2012 2013 static ssize_t pmbus_show_samples(struct device *dev, 2014 struct device_attribute *devattr, char *buf) 2015 { 2016 int val; 2017 struct i2c_client *client = to_i2c_client(dev->parent); 2018 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2019 struct pmbus_data *data = i2c_get_clientdata(client); 2020 2021 mutex_lock(&data->update_lock); 2022 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2023 mutex_unlock(&data->update_lock); 2024 if (val < 0) 2025 return val; 2026 2027 return snprintf(buf, PAGE_SIZE, "%d\n", val); 2028 } 2029 2030 static ssize_t pmbus_set_samples(struct device *dev, 2031 struct device_attribute *devattr, 2032 const char *buf, size_t count) 2033 { 2034 int ret; 2035 long val; 2036 struct i2c_client *client = to_i2c_client(dev->parent); 2037 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2038 struct pmbus_data *data = i2c_get_clientdata(client); 2039 2040 if (kstrtol(buf, 0, &val) < 0) 2041 return -EINVAL; 2042 2043 mutex_lock(&data->update_lock); 2044 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2045 mutex_unlock(&data->update_lock); 2046 2047 return ret ? : count; 2048 } 2049 2050 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2051 struct pmbus_samples_attr *attr) 2052 { 2053 struct pmbus_samples_reg *reg; 2054 2055 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2056 if (!reg) 2057 return -ENOMEM; 2058 2059 reg->attr = attr; 2060 reg->page = page; 2061 2062 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2063 pmbus_show_samples, pmbus_set_samples); 2064 2065 return pmbus_add_attribute(data, ®->dev_attr.attr); 2066 } 2067 2068 static int pmbus_add_samples_attributes(struct i2c_client *client, 2069 struct pmbus_data *data) 2070 { 2071 const struct pmbus_driver_info *info = data->info; 2072 int s; 2073 2074 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2075 return 0; 2076 2077 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2078 struct pmbus_samples_attr *attr; 2079 int ret; 2080 2081 attr = &pmbus_samples_registers[s]; 2082 if (!pmbus_check_word_register(client, 0, attr->reg)) 2083 continue; 2084 2085 ret = pmbus_add_samples_attr(data, 0, attr); 2086 if (ret) 2087 return ret; 2088 } 2089 2090 return 0; 2091 } 2092 2093 static int pmbus_find_attributes(struct i2c_client *client, 2094 struct pmbus_data *data) 2095 { 2096 int ret; 2097 2098 /* Voltage sensors */ 2099 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2100 ARRAY_SIZE(voltage_attributes)); 2101 if (ret) 2102 return ret; 2103 2104 /* Current sensors */ 2105 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2106 ARRAY_SIZE(current_attributes)); 2107 if (ret) 2108 return ret; 2109 2110 /* Power sensors */ 2111 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2112 ARRAY_SIZE(power_attributes)); 2113 if (ret) 2114 return ret; 2115 2116 /* Temperature sensors */ 2117 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2118 ARRAY_SIZE(temp_attributes)); 2119 if (ret) 2120 return ret; 2121 2122 /* Fans */ 2123 ret = pmbus_add_fan_attributes(client, data); 2124 if (ret) 2125 return ret; 2126 2127 ret = pmbus_add_samples_attributes(client, data); 2128 return ret; 2129 } 2130 2131 /* 2132 * Identify chip parameters. 2133 * This function is called for all chips. 2134 */ 2135 static int pmbus_identify_common(struct i2c_client *client, 2136 struct pmbus_data *data, int page) 2137 { 2138 int vout_mode = -1; 2139 2140 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2141 vout_mode = _pmbus_read_byte_data(client, page, 2142 PMBUS_VOUT_MODE); 2143 if (vout_mode >= 0 && vout_mode != 0xff) { 2144 /* 2145 * Not all chips support the VOUT_MODE command, 2146 * so a failure to read it is not an error. 2147 */ 2148 switch (vout_mode >> 5) { 2149 case 0: /* linear mode */ 2150 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2151 return -ENODEV; 2152 2153 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2154 break; 2155 case 1: /* VID mode */ 2156 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2157 return -ENODEV; 2158 break; 2159 case 2: /* direct mode */ 2160 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2161 return -ENODEV; 2162 break; 2163 default: 2164 return -ENODEV; 2165 } 2166 } 2167 2168 pmbus_clear_fault_page(client, page); 2169 return 0; 2170 } 2171 2172 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2173 { 2174 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2175 } 2176 2177 static int pmbus_read_status_word(struct i2c_client *client, int page) 2178 { 2179 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2180 } 2181 2182 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2183 struct pmbus_driver_info *info) 2184 { 2185 struct device *dev = &client->dev; 2186 int page, ret; 2187 2188 /* 2189 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2190 * to use PMBUS_STATUS_BYTE instead if that is the case. 2191 * Bail out if both registers are not supported. 2192 */ 2193 data->read_status = pmbus_read_status_word; 2194 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2195 if (ret < 0 || ret == 0xffff) { 2196 data->read_status = pmbus_read_status_byte; 2197 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2198 if (ret < 0 || ret == 0xff) { 2199 dev_err(dev, "PMBus status register not found\n"); 2200 return -ENODEV; 2201 } 2202 } else { 2203 data->has_status_word = true; 2204 } 2205 2206 /* Enable PEC if the controller supports it */ 2207 if (!(data->flags & PMBUS_NO_CAPABILITY)) { 2208 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2209 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) 2210 client->flags |= I2C_CLIENT_PEC; 2211 } 2212 2213 /* 2214 * Check if the chip is write protected. If it is, we can not clear 2215 * faults, and we should not try it. Also, in that case, writes into 2216 * limit registers need to be disabled. 2217 */ 2218 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2219 if (ret > 0 && (ret & PB_WP_ANY)) 2220 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2221 2222 if (data->info->pages) 2223 pmbus_clear_faults(client); 2224 else 2225 pmbus_clear_fault_page(client, -1); 2226 2227 if (info->identify) { 2228 ret = (*info->identify)(client, info); 2229 if (ret < 0) { 2230 dev_err(dev, "Chip identification failed\n"); 2231 return ret; 2232 } 2233 } 2234 2235 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2236 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2237 return -ENODEV; 2238 } 2239 2240 for (page = 0; page < info->pages; page++) { 2241 ret = pmbus_identify_common(client, data, page); 2242 if (ret < 0) { 2243 dev_err(dev, "Failed to identify chip capabilities\n"); 2244 return ret; 2245 } 2246 } 2247 return 0; 2248 } 2249 2250 #if IS_ENABLED(CONFIG_REGULATOR) 2251 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2252 { 2253 struct device *dev = rdev_get_dev(rdev); 2254 struct i2c_client *client = to_i2c_client(dev->parent); 2255 u8 page = rdev_get_id(rdev); 2256 int ret; 2257 2258 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2259 if (ret < 0) 2260 return ret; 2261 2262 return !!(ret & PB_OPERATION_CONTROL_ON); 2263 } 2264 2265 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2266 { 2267 struct device *dev = rdev_get_dev(rdev); 2268 struct i2c_client *client = to_i2c_client(dev->parent); 2269 u8 page = rdev_get_id(rdev); 2270 2271 return pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2272 PB_OPERATION_CONTROL_ON, 2273 enable ? PB_OPERATION_CONTROL_ON : 0); 2274 } 2275 2276 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2277 { 2278 return _pmbus_regulator_on_off(rdev, 1); 2279 } 2280 2281 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2282 { 2283 return _pmbus_regulator_on_off(rdev, 0); 2284 } 2285 2286 const struct regulator_ops pmbus_regulator_ops = { 2287 .enable = pmbus_regulator_enable, 2288 .disable = pmbus_regulator_disable, 2289 .is_enabled = pmbus_regulator_is_enabled, 2290 }; 2291 EXPORT_SYMBOL_GPL(pmbus_regulator_ops); 2292 2293 static int pmbus_regulator_register(struct pmbus_data *data) 2294 { 2295 struct device *dev = data->dev; 2296 const struct pmbus_driver_info *info = data->info; 2297 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2298 struct regulator_dev *rdev; 2299 int i; 2300 2301 for (i = 0; i < info->num_regulators; i++) { 2302 struct regulator_config config = { }; 2303 2304 config.dev = dev; 2305 config.driver_data = data; 2306 2307 if (pdata && pdata->reg_init_data) 2308 config.init_data = &pdata->reg_init_data[i]; 2309 2310 rdev = devm_regulator_register(dev, &info->reg_desc[i], 2311 &config); 2312 if (IS_ERR(rdev)) { 2313 dev_err(dev, "Failed to register %s regulator\n", 2314 info->reg_desc[i].name); 2315 return PTR_ERR(rdev); 2316 } 2317 } 2318 2319 return 0; 2320 } 2321 #else 2322 static int pmbus_regulator_register(struct pmbus_data *data) 2323 { 2324 return 0; 2325 } 2326 #endif 2327 2328 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 2329 2330 #if IS_ENABLED(CONFIG_DEBUG_FS) 2331 static int pmbus_debugfs_get(void *data, u64 *val) 2332 { 2333 int rc; 2334 struct pmbus_debugfs_entry *entry = data; 2335 2336 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 2337 if (rc < 0) 2338 return rc; 2339 2340 *val = rc; 2341 2342 return 0; 2343 } 2344 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 2345 "0x%02llx\n"); 2346 2347 static int pmbus_debugfs_get_status(void *data, u64 *val) 2348 { 2349 int rc; 2350 struct pmbus_debugfs_entry *entry = data; 2351 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 2352 2353 rc = pdata->read_status(entry->client, entry->page); 2354 if (rc < 0) 2355 return rc; 2356 2357 *val = rc; 2358 2359 return 0; 2360 } 2361 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 2362 NULL, "0x%04llx\n"); 2363 2364 static int pmbus_debugfs_get_pec(void *data, u64 *val) 2365 { 2366 struct i2c_client *client = data; 2367 2368 *val = !!(client->flags & I2C_CLIENT_PEC); 2369 2370 return 0; 2371 } 2372 2373 static int pmbus_debugfs_set_pec(void *data, u64 val) 2374 { 2375 int rc; 2376 struct i2c_client *client = data; 2377 2378 if (!val) { 2379 client->flags &= ~I2C_CLIENT_PEC; 2380 return 0; 2381 } 2382 2383 if (val != 1) 2384 return -EINVAL; 2385 2386 rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2387 if (rc < 0) 2388 return rc; 2389 2390 if (!(rc & PB_CAPABILITY_ERROR_CHECK)) 2391 return -EOPNOTSUPP; 2392 2393 client->flags |= I2C_CLIENT_PEC; 2394 2395 return 0; 2396 } 2397 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec, 2398 pmbus_debugfs_set_pec, "%llu\n"); 2399 2400 static void pmbus_remove_debugfs(void *data) 2401 { 2402 struct dentry *entry = data; 2403 2404 debugfs_remove_recursive(entry); 2405 } 2406 2407 static int pmbus_init_debugfs(struct i2c_client *client, 2408 struct pmbus_data *data) 2409 { 2410 int i, idx = 0; 2411 char name[PMBUS_NAME_SIZE]; 2412 struct pmbus_debugfs_entry *entries; 2413 2414 if (!pmbus_debugfs_dir) 2415 return -ENODEV; 2416 2417 /* 2418 * Create the debugfs directory for this device. Use the hwmon device 2419 * name to avoid conflicts (hwmon numbers are globally unique). 2420 */ 2421 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 2422 pmbus_debugfs_dir); 2423 if (IS_ERR_OR_NULL(data->debugfs)) { 2424 data->debugfs = NULL; 2425 return -ENODEV; 2426 } 2427 2428 /* Allocate the max possible entries we need. */ 2429 entries = devm_kcalloc(data->dev, 2430 data->info->pages * 10, sizeof(*entries), 2431 GFP_KERNEL); 2432 if (!entries) 2433 return -ENOMEM; 2434 2435 debugfs_create_file("pec", 0664, data->debugfs, client, 2436 &pmbus_debugfs_ops_pec); 2437 2438 for (i = 0; i < data->info->pages; ++i) { 2439 /* Check accessibility of status register if it's not page 0 */ 2440 if (!i || pmbus_check_status_register(client, i)) { 2441 /* No need to set reg as we have special read op. */ 2442 entries[idx].client = client; 2443 entries[idx].page = i; 2444 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 2445 debugfs_create_file(name, 0444, data->debugfs, 2446 &entries[idx++], 2447 &pmbus_debugfs_ops_status); 2448 } 2449 2450 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 2451 entries[idx].client = client; 2452 entries[idx].page = i; 2453 entries[idx].reg = PMBUS_STATUS_VOUT; 2454 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 2455 debugfs_create_file(name, 0444, data->debugfs, 2456 &entries[idx++], 2457 &pmbus_debugfs_ops); 2458 } 2459 2460 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 2461 entries[idx].client = client; 2462 entries[idx].page = i; 2463 entries[idx].reg = PMBUS_STATUS_IOUT; 2464 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 2465 debugfs_create_file(name, 0444, data->debugfs, 2466 &entries[idx++], 2467 &pmbus_debugfs_ops); 2468 } 2469 2470 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 2471 entries[idx].client = client; 2472 entries[idx].page = i; 2473 entries[idx].reg = PMBUS_STATUS_INPUT; 2474 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 2475 debugfs_create_file(name, 0444, data->debugfs, 2476 &entries[idx++], 2477 &pmbus_debugfs_ops); 2478 } 2479 2480 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 2481 entries[idx].client = client; 2482 entries[idx].page = i; 2483 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 2484 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 2485 debugfs_create_file(name, 0444, data->debugfs, 2486 &entries[idx++], 2487 &pmbus_debugfs_ops); 2488 } 2489 2490 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 2491 entries[idx].client = client; 2492 entries[idx].page = i; 2493 entries[idx].reg = PMBUS_STATUS_CML; 2494 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 2495 debugfs_create_file(name, 0444, data->debugfs, 2496 &entries[idx++], 2497 &pmbus_debugfs_ops); 2498 } 2499 2500 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 2501 entries[idx].client = client; 2502 entries[idx].page = i; 2503 entries[idx].reg = PMBUS_STATUS_OTHER; 2504 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 2505 debugfs_create_file(name, 0444, data->debugfs, 2506 &entries[idx++], 2507 &pmbus_debugfs_ops); 2508 } 2509 2510 if (pmbus_check_byte_register(client, i, 2511 PMBUS_STATUS_MFR_SPECIFIC)) { 2512 entries[idx].client = client; 2513 entries[idx].page = i; 2514 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 2515 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 2516 debugfs_create_file(name, 0444, data->debugfs, 2517 &entries[idx++], 2518 &pmbus_debugfs_ops); 2519 } 2520 2521 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 2522 entries[idx].client = client; 2523 entries[idx].page = i; 2524 entries[idx].reg = PMBUS_STATUS_FAN_12; 2525 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 2526 debugfs_create_file(name, 0444, data->debugfs, 2527 &entries[idx++], 2528 &pmbus_debugfs_ops); 2529 } 2530 2531 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 2532 entries[idx].client = client; 2533 entries[idx].page = i; 2534 entries[idx].reg = PMBUS_STATUS_FAN_34; 2535 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 2536 debugfs_create_file(name, 0444, data->debugfs, 2537 &entries[idx++], 2538 &pmbus_debugfs_ops); 2539 } 2540 } 2541 2542 return devm_add_action_or_reset(data->dev, 2543 pmbus_remove_debugfs, data->debugfs); 2544 } 2545 #else 2546 static int pmbus_init_debugfs(struct i2c_client *client, 2547 struct pmbus_data *data) 2548 { 2549 return 0; 2550 } 2551 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 2552 2553 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) 2554 { 2555 struct device *dev = &client->dev; 2556 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2557 struct pmbus_data *data; 2558 size_t groups_num = 0; 2559 int ret; 2560 2561 if (!info) 2562 return -ENODEV; 2563 2564 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 2565 | I2C_FUNC_SMBUS_BYTE_DATA 2566 | I2C_FUNC_SMBUS_WORD_DATA)) 2567 return -ENODEV; 2568 2569 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 2570 if (!data) 2571 return -ENOMEM; 2572 2573 if (info->groups) 2574 while (info->groups[groups_num]) 2575 groups_num++; 2576 2577 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 2578 GFP_KERNEL); 2579 if (!data->groups) 2580 return -ENOMEM; 2581 2582 i2c_set_clientdata(client, data); 2583 mutex_init(&data->update_lock); 2584 data->dev = dev; 2585 2586 if (pdata) 2587 data->flags = pdata->flags; 2588 data->info = info; 2589 data->currpage = -1; 2590 data->currphase = -1; 2591 2592 ret = pmbus_init_common(client, data, info); 2593 if (ret < 0) 2594 return ret; 2595 2596 ret = pmbus_find_attributes(client, data); 2597 if (ret) 2598 return ret; 2599 2600 /* 2601 * If there are no attributes, something is wrong. 2602 * Bail out instead of trying to register nothing. 2603 */ 2604 if (!data->num_attributes) { 2605 dev_err(dev, "No attributes found\n"); 2606 return -ENODEV; 2607 } 2608 2609 data->groups[0] = &data->group; 2610 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 2611 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, 2612 client->name, data, data->groups); 2613 if (IS_ERR(data->hwmon_dev)) { 2614 dev_err(dev, "Failed to register hwmon device\n"); 2615 return PTR_ERR(data->hwmon_dev); 2616 } 2617 2618 ret = pmbus_regulator_register(data); 2619 if (ret) 2620 return ret; 2621 2622 ret = pmbus_init_debugfs(client, data); 2623 if (ret) 2624 dev_warn(dev, "Failed to register debugfs\n"); 2625 2626 return 0; 2627 } 2628 EXPORT_SYMBOL_GPL(pmbus_do_probe); 2629 2630 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 2631 { 2632 struct pmbus_data *data = i2c_get_clientdata(client); 2633 2634 return data->debugfs; 2635 } 2636 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir); 2637 2638 static int __init pmbus_core_init(void) 2639 { 2640 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 2641 if (IS_ERR(pmbus_debugfs_dir)) 2642 pmbus_debugfs_dir = NULL; 2643 2644 return 0; 2645 } 2646 2647 static void __exit pmbus_core_exit(void) 2648 { 2649 debugfs_remove_recursive(pmbus_debugfs_dir); 2650 } 2651 2652 module_init(pmbus_core_init); 2653 module_exit(pmbus_core_exit); 2654 2655 MODULE_AUTHOR("Guenter Roeck"); 2656 MODULE_DESCRIPTION("PMBus core driver"); 2657 MODULE_LICENSE("GPL"); 2658