1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/jiffies.h> 20 #include <linux/pmbus.h> 21 #include <linux/regulator/driver.h> 22 #include <linux/regulator/machine.h> 23 #include "pmbus.h" 24 25 /* 26 * Number of additional attribute pointers to allocate 27 * with each call to krealloc 28 */ 29 #define PMBUS_ATTR_ALLOC_SIZE 32 30 31 /* 32 * Index into status register array, per status register group 33 */ 34 #define PB_STATUS_BASE 0 35 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) 36 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) 37 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) 38 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) 39 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) 40 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES) 41 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1) 42 43 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1) 44 45 #define PMBUS_NAME_SIZE 24 46 47 struct pmbus_sensor { 48 struct pmbus_sensor *next; 49 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 50 struct device_attribute attribute; 51 u8 page; /* page number */ 52 u8 phase; /* phase number, 0xff for all phases */ 53 u16 reg; /* register */ 54 enum pmbus_sensor_classes class; /* sensor class */ 55 bool update; /* runtime sensor update needed */ 56 bool convert; /* Whether or not to apply linear/vid/direct */ 57 int data; /* Sensor data. 58 Negative if there was a read error */ 59 }; 60 #define to_pmbus_sensor(_attr) \ 61 container_of(_attr, struct pmbus_sensor, attribute) 62 63 struct pmbus_boolean { 64 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 65 struct sensor_device_attribute attribute; 66 struct pmbus_sensor *s1; 67 struct pmbus_sensor *s2; 68 }; 69 #define to_pmbus_boolean(_attr) \ 70 container_of(_attr, struct pmbus_boolean, attribute) 71 72 struct pmbus_label { 73 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 74 struct device_attribute attribute; 75 char label[PMBUS_NAME_SIZE]; /* label */ 76 }; 77 #define to_pmbus_label(_attr) \ 78 container_of(_attr, struct pmbus_label, attribute) 79 80 struct pmbus_data { 81 struct device *dev; 82 struct device *hwmon_dev; 83 84 u32 flags; /* from platform data */ 85 86 int exponent[PMBUS_PAGES]; 87 /* linear mode: exponent for output voltages */ 88 89 const struct pmbus_driver_info *info; 90 91 int max_attributes; 92 int num_attributes; 93 struct attribute_group group; 94 const struct attribute_group **groups; 95 struct dentry *debugfs; /* debugfs device directory */ 96 97 struct pmbus_sensor *sensors; 98 99 struct mutex update_lock; 100 bool valid; 101 unsigned long last_updated; /* in jiffies */ 102 103 /* 104 * A single status register covers multiple attributes, 105 * so we keep them all together. 106 */ 107 u16 status[PB_NUM_STATUS_REG]; 108 109 bool has_status_word; /* device uses STATUS_WORD register */ 110 int (*read_status)(struct i2c_client *client, int page); 111 112 s16 currpage; /* current page, -1 for unknown/unset */ 113 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 114 }; 115 116 struct pmbus_debugfs_entry { 117 struct i2c_client *client; 118 u8 page; 119 u8 reg; 120 }; 121 122 static const int pmbus_fan_rpm_mask[] = { 123 PB_FAN_1_RPM, 124 PB_FAN_2_RPM, 125 PB_FAN_1_RPM, 126 PB_FAN_2_RPM, 127 }; 128 129 static const int pmbus_fan_config_registers[] = { 130 PMBUS_FAN_CONFIG_12, 131 PMBUS_FAN_CONFIG_12, 132 PMBUS_FAN_CONFIG_34, 133 PMBUS_FAN_CONFIG_34 134 }; 135 136 static const int pmbus_fan_command_registers[] = { 137 PMBUS_FAN_COMMAND_1, 138 PMBUS_FAN_COMMAND_2, 139 PMBUS_FAN_COMMAND_3, 140 PMBUS_FAN_COMMAND_4, 141 }; 142 143 void pmbus_clear_cache(struct i2c_client *client) 144 { 145 struct pmbus_data *data = i2c_get_clientdata(client); 146 147 data->valid = false; 148 } 149 EXPORT_SYMBOL_GPL(pmbus_clear_cache); 150 151 int pmbus_set_page(struct i2c_client *client, int page, int phase) 152 { 153 struct pmbus_data *data = i2c_get_clientdata(client); 154 int rv; 155 156 if (page < 0) 157 return 0; 158 159 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 160 data->info->pages > 1 && page != data->currpage) { 161 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 162 if (rv < 0) 163 return rv; 164 165 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 166 if (rv < 0) 167 return rv; 168 169 if (rv != page) 170 return -EIO; 171 } 172 data->currpage = page; 173 174 if (data->info->phases[page] && data->currphase != phase && 175 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 176 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 177 phase); 178 if (rv) 179 return rv; 180 } 181 data->currphase = phase; 182 183 return 0; 184 } 185 EXPORT_SYMBOL_GPL(pmbus_set_page); 186 187 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 188 { 189 int rv; 190 191 rv = pmbus_set_page(client, page, 0xff); 192 if (rv < 0) 193 return rv; 194 195 return i2c_smbus_write_byte(client, value); 196 } 197 EXPORT_SYMBOL_GPL(pmbus_write_byte); 198 199 /* 200 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 201 * a device specific mapping function exists and calls it if necessary. 202 */ 203 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 204 { 205 struct pmbus_data *data = i2c_get_clientdata(client); 206 const struct pmbus_driver_info *info = data->info; 207 int status; 208 209 if (info->write_byte) { 210 status = info->write_byte(client, page, value); 211 if (status != -ENODATA) 212 return status; 213 } 214 return pmbus_write_byte(client, page, value); 215 } 216 217 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 218 u16 word) 219 { 220 int rv; 221 222 rv = pmbus_set_page(client, page, 0xff); 223 if (rv < 0) 224 return rv; 225 226 return i2c_smbus_write_word_data(client, reg, word); 227 } 228 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 229 230 231 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 232 u16 word) 233 { 234 int bit; 235 int id; 236 int rv; 237 238 switch (reg) { 239 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 240 id = reg - PMBUS_VIRT_FAN_TARGET_1; 241 bit = pmbus_fan_rpm_mask[id]; 242 rv = pmbus_update_fan(client, page, id, bit, bit, word); 243 break; 244 default: 245 rv = -ENXIO; 246 break; 247 } 248 249 return rv; 250 } 251 252 /* 253 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 254 * a device specific mapping function exists and calls it if necessary. 255 */ 256 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 257 u16 word) 258 { 259 struct pmbus_data *data = i2c_get_clientdata(client); 260 const struct pmbus_driver_info *info = data->info; 261 int status; 262 263 if (info->write_word_data) { 264 status = info->write_word_data(client, page, reg, word); 265 if (status != -ENODATA) 266 return status; 267 } 268 269 if (reg >= PMBUS_VIRT_BASE) 270 return pmbus_write_virt_reg(client, page, reg, word); 271 272 return pmbus_write_word_data(client, page, reg, word); 273 } 274 275 int pmbus_update_fan(struct i2c_client *client, int page, int id, 276 u8 config, u8 mask, u16 command) 277 { 278 int from; 279 int rv; 280 u8 to; 281 282 from = pmbus_read_byte_data(client, page, 283 pmbus_fan_config_registers[id]); 284 if (from < 0) 285 return from; 286 287 to = (from & ~mask) | (config & mask); 288 if (to != from) { 289 rv = pmbus_write_byte_data(client, page, 290 pmbus_fan_config_registers[id], to); 291 if (rv < 0) 292 return rv; 293 } 294 295 return _pmbus_write_word_data(client, page, 296 pmbus_fan_command_registers[id], command); 297 } 298 EXPORT_SYMBOL_GPL(pmbus_update_fan); 299 300 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 301 { 302 int rv; 303 304 rv = pmbus_set_page(client, page, phase); 305 if (rv < 0) 306 return rv; 307 308 return i2c_smbus_read_word_data(client, reg); 309 } 310 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 311 312 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 313 { 314 int rv; 315 int id; 316 317 switch (reg) { 318 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 319 id = reg - PMBUS_VIRT_FAN_TARGET_1; 320 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 321 break; 322 default: 323 rv = -ENXIO; 324 break; 325 } 326 327 return rv; 328 } 329 330 /* 331 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 332 * a device specific mapping function exists and calls it if necessary. 333 */ 334 static int _pmbus_read_word_data(struct i2c_client *client, int page, 335 int phase, int reg) 336 { 337 struct pmbus_data *data = i2c_get_clientdata(client); 338 const struct pmbus_driver_info *info = data->info; 339 int status; 340 341 if (info->read_word_data) { 342 status = info->read_word_data(client, page, phase, reg); 343 if (status != -ENODATA) 344 return status; 345 } 346 347 if (reg >= PMBUS_VIRT_BASE) 348 return pmbus_read_virt_reg(client, page, reg); 349 350 return pmbus_read_word_data(client, page, phase, reg); 351 } 352 353 /* Same as above, but without phase parameter, for use in check functions */ 354 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 355 { 356 return _pmbus_read_word_data(client, page, 0xff, reg); 357 } 358 359 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 360 { 361 int rv; 362 363 rv = pmbus_set_page(client, page, 0xff); 364 if (rv < 0) 365 return rv; 366 367 return i2c_smbus_read_byte_data(client, reg); 368 } 369 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 370 371 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 372 { 373 int rv; 374 375 rv = pmbus_set_page(client, page, 0xff); 376 if (rv < 0) 377 return rv; 378 379 return i2c_smbus_write_byte_data(client, reg, value); 380 } 381 EXPORT_SYMBOL_GPL(pmbus_write_byte_data); 382 383 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 384 u8 mask, u8 value) 385 { 386 unsigned int tmp; 387 int rv; 388 389 rv = pmbus_read_byte_data(client, page, reg); 390 if (rv < 0) 391 return rv; 392 393 tmp = (rv & ~mask) | (value & mask); 394 395 if (tmp != rv) 396 rv = pmbus_write_byte_data(client, page, reg, tmp); 397 398 return rv; 399 } 400 EXPORT_SYMBOL_GPL(pmbus_update_byte_data); 401 402 /* 403 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 404 * a device specific mapping function exists and calls it if necessary. 405 */ 406 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 407 { 408 struct pmbus_data *data = i2c_get_clientdata(client); 409 const struct pmbus_driver_info *info = data->info; 410 int status; 411 412 if (info->read_byte_data) { 413 status = info->read_byte_data(client, page, reg); 414 if (status != -ENODATA) 415 return status; 416 } 417 return pmbus_read_byte_data(client, page, reg); 418 } 419 420 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 421 int reg) 422 { 423 struct pmbus_sensor *sensor; 424 425 for (sensor = data->sensors; sensor; sensor = sensor->next) { 426 if (sensor->page == page && sensor->reg == reg) 427 return sensor; 428 } 429 430 return ERR_PTR(-EINVAL); 431 } 432 433 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 434 enum pmbus_fan_mode mode, 435 bool from_cache) 436 { 437 struct pmbus_data *data = i2c_get_clientdata(client); 438 bool want_rpm, have_rpm; 439 struct pmbus_sensor *s; 440 int config; 441 int reg; 442 443 want_rpm = (mode == rpm); 444 445 if (from_cache) { 446 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 447 s = pmbus_find_sensor(data, page, reg + id); 448 if (IS_ERR(s)) 449 return PTR_ERR(s); 450 451 return s->data; 452 } 453 454 config = pmbus_read_byte_data(client, page, 455 pmbus_fan_config_registers[id]); 456 if (config < 0) 457 return config; 458 459 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 460 if (want_rpm == have_rpm) 461 return pmbus_read_word_data(client, page, 0xff, 462 pmbus_fan_command_registers[id]); 463 464 /* Can't sensibly map between RPM and PWM, just return zero */ 465 return 0; 466 } 467 468 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 469 enum pmbus_fan_mode mode) 470 { 471 return pmbus_get_fan_rate(client, page, id, mode, false); 472 } 473 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device); 474 475 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 476 enum pmbus_fan_mode mode) 477 { 478 return pmbus_get_fan_rate(client, page, id, mode, true); 479 } 480 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached); 481 482 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 483 { 484 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 485 } 486 487 void pmbus_clear_faults(struct i2c_client *client) 488 { 489 struct pmbus_data *data = i2c_get_clientdata(client); 490 int i; 491 492 for (i = 0; i < data->info->pages; i++) 493 pmbus_clear_fault_page(client, i); 494 } 495 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 496 497 static int pmbus_check_status_cml(struct i2c_client *client) 498 { 499 struct pmbus_data *data = i2c_get_clientdata(client); 500 int status, status2; 501 502 status = data->read_status(client, -1); 503 if (status < 0 || (status & PB_STATUS_CML)) { 504 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 505 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 506 return -EIO; 507 } 508 return 0; 509 } 510 511 static bool pmbus_check_register(struct i2c_client *client, 512 int (*func)(struct i2c_client *client, 513 int page, int reg), 514 int page, int reg) 515 { 516 int rv; 517 struct pmbus_data *data = i2c_get_clientdata(client); 518 519 rv = func(client, page, reg); 520 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 521 rv = pmbus_check_status_cml(client); 522 pmbus_clear_fault_page(client, -1); 523 return rv >= 0; 524 } 525 526 static bool pmbus_check_status_register(struct i2c_client *client, int page) 527 { 528 int status; 529 struct pmbus_data *data = i2c_get_clientdata(client); 530 531 status = data->read_status(client, page); 532 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 533 (status & PB_STATUS_CML)) { 534 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 535 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 536 status = -EIO; 537 } 538 539 pmbus_clear_fault_page(client, -1); 540 return status >= 0; 541 } 542 543 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 544 { 545 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 546 } 547 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 548 549 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 550 { 551 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 552 } 553 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 554 555 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 556 { 557 struct pmbus_data *data = i2c_get_clientdata(client); 558 559 return data->info; 560 } 561 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 562 563 static struct _pmbus_status { 564 u32 func; 565 u16 base; 566 u16 reg; 567 } pmbus_status[] = { 568 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT }, 569 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT }, 570 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE, 571 PMBUS_STATUS_TEMPERATURE }, 572 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 }, 573 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 }, 574 }; 575 576 static struct pmbus_data *pmbus_update_device(struct device *dev) 577 { 578 struct i2c_client *client = to_i2c_client(dev->parent); 579 struct pmbus_data *data = i2c_get_clientdata(client); 580 const struct pmbus_driver_info *info = data->info; 581 struct pmbus_sensor *sensor; 582 583 mutex_lock(&data->update_lock); 584 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 585 int i, j; 586 587 for (i = 0; i < info->pages; i++) { 588 data->status[PB_STATUS_BASE + i] 589 = data->read_status(client, i); 590 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) { 591 struct _pmbus_status *s = &pmbus_status[j]; 592 593 if (!(info->func[i] & s->func)) 594 continue; 595 data->status[s->base + i] 596 = _pmbus_read_byte_data(client, i, 597 s->reg); 598 } 599 } 600 601 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) 602 data->status[PB_STATUS_INPUT_BASE] 603 = _pmbus_read_byte_data(client, 0, 604 PMBUS_STATUS_INPUT); 605 606 if (info->func[0] & PMBUS_HAVE_STATUS_VMON) 607 data->status[PB_STATUS_VMON_BASE] 608 = _pmbus_read_byte_data(client, 0, 609 PMBUS_VIRT_STATUS_VMON); 610 611 for (sensor = data->sensors; sensor; sensor = sensor->next) { 612 if (!data->valid || sensor->update) 613 sensor->data 614 = _pmbus_read_word_data(client, 615 sensor->page, 616 sensor->phase, 617 sensor->reg); 618 } 619 pmbus_clear_faults(client); 620 data->last_updated = jiffies; 621 data->valid = 1; 622 } 623 mutex_unlock(&data->update_lock); 624 return data; 625 } 626 627 /* 628 * Convert linear sensor values to milli- or micro-units 629 * depending on sensor type. 630 */ 631 static long pmbus_reg2data_linear(struct pmbus_data *data, 632 struct pmbus_sensor *sensor) 633 { 634 s16 exponent; 635 s32 mantissa; 636 long val; 637 638 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 639 exponent = data->exponent[sensor->page]; 640 mantissa = (u16) sensor->data; 641 } else { /* LINEAR11 */ 642 exponent = ((s16)sensor->data) >> 11; 643 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 644 } 645 646 val = mantissa; 647 648 /* scale result to milli-units for all sensors except fans */ 649 if (sensor->class != PSC_FAN) 650 val = val * 1000L; 651 652 /* scale result to micro-units for power sensors */ 653 if (sensor->class == PSC_POWER) 654 val = val * 1000L; 655 656 if (exponent >= 0) 657 val <<= exponent; 658 else 659 val >>= -exponent; 660 661 return val; 662 } 663 664 /* 665 * Convert direct sensor values to milli- or micro-units 666 * depending on sensor type. 667 */ 668 static long pmbus_reg2data_direct(struct pmbus_data *data, 669 struct pmbus_sensor *sensor) 670 { 671 s64 b, val = (s16)sensor->data; 672 s32 m, R; 673 674 m = data->info->m[sensor->class]; 675 b = data->info->b[sensor->class]; 676 R = data->info->R[sensor->class]; 677 678 if (m == 0) 679 return 0; 680 681 /* X = 1/m * (Y * 10^-R - b) */ 682 R = -R; 683 /* scale result to milli-units for everything but fans */ 684 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 685 R += 3; 686 b *= 1000; 687 } 688 689 /* scale result to micro-units for power sensors */ 690 if (sensor->class == PSC_POWER) { 691 R += 3; 692 b *= 1000; 693 } 694 695 while (R > 0) { 696 val *= 10; 697 R--; 698 } 699 while (R < 0) { 700 val = div_s64(val + 5LL, 10L); /* round closest */ 701 R++; 702 } 703 704 val = div_s64(val - b, m); 705 return clamp_val(val, LONG_MIN, LONG_MAX); 706 } 707 708 /* 709 * Convert VID sensor values to milli- or micro-units 710 * depending on sensor type. 711 */ 712 static long pmbus_reg2data_vid(struct pmbus_data *data, 713 struct pmbus_sensor *sensor) 714 { 715 long val = sensor->data; 716 long rv = 0; 717 718 switch (data->info->vrm_version[sensor->page]) { 719 case vr11: 720 if (val >= 0x02 && val <= 0xb2) 721 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 722 break; 723 case vr12: 724 if (val >= 0x01) 725 rv = 250 + (val - 1) * 5; 726 break; 727 case vr13: 728 if (val >= 0x01) 729 rv = 500 + (val - 1) * 10; 730 break; 731 case imvp9: 732 if (val >= 0x01) 733 rv = 200 + (val - 1) * 10; 734 break; 735 case amd625mv: 736 if (val >= 0x0 && val <= 0xd8) 737 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 738 break; 739 } 740 return rv; 741 } 742 743 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 744 { 745 long val; 746 747 if (!sensor->convert) 748 return sensor->data; 749 750 switch (data->info->format[sensor->class]) { 751 case direct: 752 val = pmbus_reg2data_direct(data, sensor); 753 break; 754 case vid: 755 val = pmbus_reg2data_vid(data, sensor); 756 break; 757 case linear: 758 default: 759 val = pmbus_reg2data_linear(data, sensor); 760 break; 761 } 762 return val; 763 } 764 765 #define MAX_MANTISSA (1023 * 1000) 766 #define MIN_MANTISSA (511 * 1000) 767 768 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 769 struct pmbus_sensor *sensor, long val) 770 { 771 s16 exponent = 0, mantissa; 772 bool negative = false; 773 774 /* simple case */ 775 if (val == 0) 776 return 0; 777 778 if (sensor->class == PSC_VOLTAGE_OUT) { 779 /* LINEAR16 does not support negative voltages */ 780 if (val < 0) 781 return 0; 782 783 /* 784 * For a static exponents, we don't have a choice 785 * but to adjust the value to it. 786 */ 787 if (data->exponent[sensor->page] < 0) 788 val <<= -data->exponent[sensor->page]; 789 else 790 val >>= data->exponent[sensor->page]; 791 val = DIV_ROUND_CLOSEST(val, 1000); 792 return val & 0xffff; 793 } 794 795 if (val < 0) { 796 negative = true; 797 val = -val; 798 } 799 800 /* Power is in uW. Convert to mW before converting. */ 801 if (sensor->class == PSC_POWER) 802 val = DIV_ROUND_CLOSEST(val, 1000L); 803 804 /* 805 * For simplicity, convert fan data to milli-units 806 * before calculating the exponent. 807 */ 808 if (sensor->class == PSC_FAN) 809 val = val * 1000; 810 811 /* Reduce large mantissa until it fits into 10 bit */ 812 while (val >= MAX_MANTISSA && exponent < 15) { 813 exponent++; 814 val >>= 1; 815 } 816 /* Increase small mantissa to improve precision */ 817 while (val < MIN_MANTISSA && exponent > -15) { 818 exponent--; 819 val <<= 1; 820 } 821 822 /* Convert mantissa from milli-units to units */ 823 mantissa = DIV_ROUND_CLOSEST(val, 1000); 824 825 /* Ensure that resulting number is within range */ 826 if (mantissa > 0x3ff) 827 mantissa = 0x3ff; 828 829 /* restore sign */ 830 if (negative) 831 mantissa = -mantissa; 832 833 /* Convert to 5 bit exponent, 11 bit mantissa */ 834 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 835 } 836 837 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 838 struct pmbus_sensor *sensor, long val) 839 { 840 s64 b, val64 = val; 841 s32 m, R; 842 843 m = data->info->m[sensor->class]; 844 b = data->info->b[sensor->class]; 845 R = data->info->R[sensor->class]; 846 847 /* Power is in uW. Adjust R and b. */ 848 if (sensor->class == PSC_POWER) { 849 R -= 3; 850 b *= 1000; 851 } 852 853 /* Calculate Y = (m * X + b) * 10^R */ 854 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 855 R -= 3; /* Adjust R and b for data in milli-units */ 856 b *= 1000; 857 } 858 val64 = val64 * m + b; 859 860 while (R > 0) { 861 val64 *= 10; 862 R--; 863 } 864 while (R < 0) { 865 val64 = div_s64(val64 + 5LL, 10L); /* round closest */ 866 R++; 867 } 868 869 return (u16)clamp_val(val64, S16_MIN, S16_MAX); 870 } 871 872 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 873 struct pmbus_sensor *sensor, long val) 874 { 875 val = clamp_val(val, 500, 1600); 876 877 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625); 878 } 879 880 static u16 pmbus_data2reg(struct pmbus_data *data, 881 struct pmbus_sensor *sensor, long val) 882 { 883 u16 regval; 884 885 if (!sensor->convert) 886 return val; 887 888 switch (data->info->format[sensor->class]) { 889 case direct: 890 regval = pmbus_data2reg_direct(data, sensor, val); 891 break; 892 case vid: 893 regval = pmbus_data2reg_vid(data, sensor, val); 894 break; 895 case linear: 896 default: 897 regval = pmbus_data2reg_linear(data, sensor, val); 898 break; 899 } 900 return regval; 901 } 902 903 /* 904 * Return boolean calculated from converted data. 905 * <index> defines a status register index and mask. 906 * The mask is in the lower 8 bits, the register index is in bits 8..23. 907 * 908 * The associated pmbus_boolean structure contains optional pointers to two 909 * sensor attributes. If specified, those attributes are compared against each 910 * other to determine if a limit has been exceeded. 911 * 912 * If the sensor attribute pointers are NULL, the function returns true if 913 * (status[reg] & mask) is true. 914 * 915 * If sensor attribute pointers are provided, a comparison against a specified 916 * limit has to be performed to determine the boolean result. 917 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 918 * sensor values referenced by sensor attribute pointers s1 and s2). 919 * 920 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 921 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 922 * 923 * If a negative value is stored in any of the referenced registers, this value 924 * reflects an error code which will be returned. 925 */ 926 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b, 927 int index) 928 { 929 struct pmbus_sensor *s1 = b->s1; 930 struct pmbus_sensor *s2 = b->s2; 931 u16 reg = (index >> 16) & 0xffff; 932 u16 mask = index & 0xffff; 933 int ret, status; 934 u16 regval; 935 936 status = data->status[reg]; 937 if (status < 0) 938 return status; 939 940 regval = status & mask; 941 if (!s1 && !s2) { 942 ret = !!regval; 943 } else if (!s1 || !s2) { 944 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2); 945 return 0; 946 } else { 947 long v1, v2; 948 949 if (s1->data < 0) 950 return s1->data; 951 if (s2->data < 0) 952 return s2->data; 953 954 v1 = pmbus_reg2data(data, s1); 955 v2 = pmbus_reg2data(data, s2); 956 ret = !!(regval && v1 >= v2); 957 } 958 return ret; 959 } 960 961 static ssize_t pmbus_show_boolean(struct device *dev, 962 struct device_attribute *da, char *buf) 963 { 964 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 965 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 966 struct pmbus_data *data = pmbus_update_device(dev); 967 int val; 968 969 val = pmbus_get_boolean(data, boolean, attr->index); 970 if (val < 0) 971 return val; 972 return snprintf(buf, PAGE_SIZE, "%d\n", val); 973 } 974 975 static ssize_t pmbus_show_sensor(struct device *dev, 976 struct device_attribute *devattr, char *buf) 977 { 978 struct pmbus_data *data = pmbus_update_device(dev); 979 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 980 981 if (sensor->data < 0) 982 return sensor->data; 983 984 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor)); 985 } 986 987 static ssize_t pmbus_set_sensor(struct device *dev, 988 struct device_attribute *devattr, 989 const char *buf, size_t count) 990 { 991 struct i2c_client *client = to_i2c_client(dev->parent); 992 struct pmbus_data *data = i2c_get_clientdata(client); 993 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 994 ssize_t rv = count; 995 long val = 0; 996 int ret; 997 u16 regval; 998 999 if (kstrtol(buf, 10, &val) < 0) 1000 return -EINVAL; 1001 1002 mutex_lock(&data->update_lock); 1003 regval = pmbus_data2reg(data, sensor, val); 1004 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 1005 if (ret < 0) 1006 rv = ret; 1007 else 1008 sensor->data = regval; 1009 mutex_unlock(&data->update_lock); 1010 return rv; 1011 } 1012 1013 static ssize_t pmbus_show_label(struct device *dev, 1014 struct device_attribute *da, char *buf) 1015 { 1016 struct pmbus_label *label = to_pmbus_label(da); 1017 1018 return snprintf(buf, PAGE_SIZE, "%s\n", label->label); 1019 } 1020 1021 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 1022 { 1023 if (data->num_attributes >= data->max_attributes - 1) { 1024 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 1025 void *new_attrs = krealloc(data->group.attrs, 1026 new_max_attrs * sizeof(void *), 1027 GFP_KERNEL); 1028 if (!new_attrs) 1029 return -ENOMEM; 1030 data->group.attrs = new_attrs; 1031 data->max_attributes = new_max_attrs; 1032 } 1033 1034 data->group.attrs[data->num_attributes++] = attr; 1035 data->group.attrs[data->num_attributes] = NULL; 1036 return 0; 1037 } 1038 1039 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1040 const char *name, 1041 umode_t mode, 1042 ssize_t (*show)(struct device *dev, 1043 struct device_attribute *attr, 1044 char *buf), 1045 ssize_t (*store)(struct device *dev, 1046 struct device_attribute *attr, 1047 const char *buf, size_t count)) 1048 { 1049 sysfs_attr_init(&dev_attr->attr); 1050 dev_attr->attr.name = name; 1051 dev_attr->attr.mode = mode; 1052 dev_attr->show = show; 1053 dev_attr->store = store; 1054 } 1055 1056 static void pmbus_attr_init(struct sensor_device_attribute *a, 1057 const char *name, 1058 umode_t mode, 1059 ssize_t (*show)(struct device *dev, 1060 struct device_attribute *attr, 1061 char *buf), 1062 ssize_t (*store)(struct device *dev, 1063 struct device_attribute *attr, 1064 const char *buf, size_t count), 1065 int idx) 1066 { 1067 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1068 a->index = idx; 1069 } 1070 1071 static int pmbus_add_boolean(struct pmbus_data *data, 1072 const char *name, const char *type, int seq, 1073 struct pmbus_sensor *s1, 1074 struct pmbus_sensor *s2, 1075 u16 reg, u16 mask) 1076 { 1077 struct pmbus_boolean *boolean; 1078 struct sensor_device_attribute *a; 1079 1080 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1081 if (!boolean) 1082 return -ENOMEM; 1083 1084 a = &boolean->attribute; 1085 1086 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1087 name, seq, type); 1088 boolean->s1 = s1; 1089 boolean->s2 = s2; 1090 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1091 (reg << 16) | mask); 1092 1093 return pmbus_add_attribute(data, &a->dev_attr.attr); 1094 } 1095 1096 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1097 const char *name, const char *type, 1098 int seq, int page, int phase, 1099 int reg, 1100 enum pmbus_sensor_classes class, 1101 bool update, bool readonly, 1102 bool convert) 1103 { 1104 struct pmbus_sensor *sensor; 1105 struct device_attribute *a; 1106 1107 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1108 if (!sensor) 1109 return NULL; 1110 a = &sensor->attribute; 1111 1112 if (type) 1113 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1114 name, seq, type); 1115 else 1116 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1117 name, seq); 1118 1119 if (data->flags & PMBUS_WRITE_PROTECTED) 1120 readonly = true; 1121 1122 sensor->page = page; 1123 sensor->phase = phase; 1124 sensor->reg = reg; 1125 sensor->class = class; 1126 sensor->update = update; 1127 sensor->convert = convert; 1128 pmbus_dev_attr_init(a, sensor->name, 1129 readonly ? 0444 : 0644, 1130 pmbus_show_sensor, pmbus_set_sensor); 1131 1132 if (pmbus_add_attribute(data, &a->attr)) 1133 return NULL; 1134 1135 sensor->next = data->sensors; 1136 data->sensors = sensor; 1137 1138 return sensor; 1139 } 1140 1141 static int pmbus_add_label(struct pmbus_data *data, 1142 const char *name, int seq, 1143 const char *lstring, int index, int phase) 1144 { 1145 struct pmbus_label *label; 1146 struct device_attribute *a; 1147 1148 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1149 if (!label) 1150 return -ENOMEM; 1151 1152 a = &label->attribute; 1153 1154 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1155 if (!index) { 1156 if (phase == 0xff) 1157 strncpy(label->label, lstring, 1158 sizeof(label->label) - 1); 1159 else 1160 snprintf(label->label, sizeof(label->label), "%s.%d", 1161 lstring, phase); 1162 } else { 1163 if (phase == 0xff) 1164 snprintf(label->label, sizeof(label->label), "%s%d", 1165 lstring, index); 1166 else 1167 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1168 lstring, index, phase); 1169 } 1170 1171 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1172 return pmbus_add_attribute(data, &a->attr); 1173 } 1174 1175 /* 1176 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1177 */ 1178 1179 /* 1180 * The pmbus_limit_attr structure describes a single limit attribute 1181 * and its associated alarm attribute. 1182 */ 1183 struct pmbus_limit_attr { 1184 u16 reg; /* Limit register */ 1185 u16 sbit; /* Alarm attribute status bit */ 1186 bool update; /* True if register needs updates */ 1187 bool low; /* True if low limit; for limits with compare 1188 functions only */ 1189 const char *attr; /* Attribute name */ 1190 const char *alarm; /* Alarm attribute name */ 1191 }; 1192 1193 /* 1194 * The pmbus_sensor_attr structure describes one sensor attribute. This 1195 * description includes a reference to the associated limit attributes. 1196 */ 1197 struct pmbus_sensor_attr { 1198 u16 reg; /* sensor register */ 1199 u16 gbit; /* generic status bit */ 1200 u8 nlimit; /* # of limit registers */ 1201 enum pmbus_sensor_classes class;/* sensor class */ 1202 const char *label; /* sensor label */ 1203 bool paged; /* true if paged sensor */ 1204 bool update; /* true if update needed */ 1205 bool compare; /* true if compare function needed */ 1206 u32 func; /* sensor mask */ 1207 u32 sfunc; /* sensor status mask */ 1208 int sbase; /* status base register */ 1209 const struct pmbus_limit_attr *limit;/* limit registers */ 1210 }; 1211 1212 /* 1213 * Add a set of limit attributes and, if supported, the associated 1214 * alarm attributes. 1215 * returns 0 if no alarm register found, 1 if an alarm register was found, 1216 * < 0 on errors. 1217 */ 1218 static int pmbus_add_limit_attrs(struct i2c_client *client, 1219 struct pmbus_data *data, 1220 const struct pmbus_driver_info *info, 1221 const char *name, int index, int page, 1222 struct pmbus_sensor *base, 1223 const struct pmbus_sensor_attr *attr) 1224 { 1225 const struct pmbus_limit_attr *l = attr->limit; 1226 int nlimit = attr->nlimit; 1227 int have_alarm = 0; 1228 int i, ret; 1229 struct pmbus_sensor *curr; 1230 1231 for (i = 0; i < nlimit; i++) { 1232 if (pmbus_check_word_register(client, page, l->reg)) { 1233 curr = pmbus_add_sensor(data, name, l->attr, index, 1234 page, 0xff, l->reg, attr->class, 1235 attr->update || l->update, 1236 false, true); 1237 if (!curr) 1238 return -ENOMEM; 1239 if (l->sbit && (info->func[page] & attr->sfunc)) { 1240 ret = pmbus_add_boolean(data, name, 1241 l->alarm, index, 1242 attr->compare ? l->low ? curr : base 1243 : NULL, 1244 attr->compare ? l->low ? base : curr 1245 : NULL, 1246 attr->sbase + page, l->sbit); 1247 if (ret) 1248 return ret; 1249 have_alarm = 1; 1250 } 1251 } 1252 l++; 1253 } 1254 return have_alarm; 1255 } 1256 1257 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1258 struct pmbus_data *data, 1259 const struct pmbus_driver_info *info, 1260 const char *name, 1261 int index, int page, int phase, 1262 const struct pmbus_sensor_attr *attr, 1263 bool paged) 1264 { 1265 struct pmbus_sensor *base; 1266 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1267 int ret; 1268 1269 if (attr->label) { 1270 ret = pmbus_add_label(data, name, index, attr->label, 1271 paged ? page + 1 : 0, phase); 1272 if (ret) 1273 return ret; 1274 } 1275 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1276 attr->reg, attr->class, true, true, true); 1277 if (!base) 1278 return -ENOMEM; 1279 /* No limit and alarm attributes for phase specific sensors */ 1280 if (attr->sfunc && phase == 0xff) { 1281 ret = pmbus_add_limit_attrs(client, data, info, name, 1282 index, page, base, attr); 1283 if (ret < 0) 1284 return ret; 1285 /* 1286 * Add generic alarm attribute only if there are no individual 1287 * alarm attributes, if there is a global alarm bit, and if 1288 * the generic status register (word or byte, depending on 1289 * which global bit is set) for this page is accessible. 1290 */ 1291 if (!ret && attr->gbit && 1292 (!upper || (upper && data->has_status_word)) && 1293 pmbus_check_status_register(client, page)) { 1294 ret = pmbus_add_boolean(data, name, "alarm", index, 1295 NULL, NULL, 1296 PB_STATUS_BASE + page, 1297 attr->gbit); 1298 if (ret) 1299 return ret; 1300 } 1301 } 1302 return 0; 1303 } 1304 1305 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1306 const struct pmbus_sensor_attr *attr) 1307 { 1308 int p; 1309 1310 if (attr->paged) 1311 return true; 1312 1313 /* 1314 * Some attributes may be present on more than one page despite 1315 * not being marked with the paged attribute. If that is the case, 1316 * then treat the sensor as being paged and add the page suffix to the 1317 * attribute name. 1318 * We don't just add the paged attribute to all such attributes, in 1319 * order to maintain the un-suffixed labels in the case where the 1320 * attribute is only on page 0. 1321 */ 1322 for (p = 1; p < info->pages; p++) { 1323 if (info->func[p] & attr->func) 1324 return true; 1325 } 1326 return false; 1327 } 1328 1329 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1330 struct pmbus_data *data, 1331 const char *name, 1332 const struct pmbus_sensor_attr *attrs, 1333 int nattrs) 1334 { 1335 const struct pmbus_driver_info *info = data->info; 1336 int index, i; 1337 int ret; 1338 1339 index = 1; 1340 for (i = 0; i < nattrs; i++) { 1341 int page, pages; 1342 bool paged = pmbus_sensor_is_paged(info, attrs); 1343 1344 pages = paged ? info->pages : 1; 1345 for (page = 0; page < pages; page++) { 1346 if (!(info->func[page] & attrs->func)) 1347 continue; 1348 ret = pmbus_add_sensor_attrs_one(client, data, info, 1349 name, index, page, 1350 0xff, attrs, paged); 1351 if (ret) 1352 return ret; 1353 index++; 1354 if (info->phases[page]) { 1355 int phase; 1356 1357 for (phase = 0; phase < info->phases[page]; 1358 phase++) { 1359 if (!(info->pfunc[phase] & attrs->func)) 1360 continue; 1361 ret = pmbus_add_sensor_attrs_one(client, 1362 data, info, name, index, page, 1363 phase, attrs, paged); 1364 if (ret) 1365 return ret; 1366 index++; 1367 } 1368 } 1369 } 1370 attrs++; 1371 } 1372 return 0; 1373 } 1374 1375 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1376 { 1377 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1378 .attr = "min", 1379 .alarm = "min_alarm", 1380 .sbit = PB_VOLTAGE_UV_WARNING, 1381 }, { 1382 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1383 .attr = "lcrit", 1384 .alarm = "lcrit_alarm", 1385 .sbit = PB_VOLTAGE_UV_FAULT, 1386 }, { 1387 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1388 .attr = "max", 1389 .alarm = "max_alarm", 1390 .sbit = PB_VOLTAGE_OV_WARNING, 1391 }, { 1392 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1393 .attr = "crit", 1394 .alarm = "crit_alarm", 1395 .sbit = PB_VOLTAGE_OV_FAULT, 1396 }, { 1397 .reg = PMBUS_VIRT_READ_VIN_AVG, 1398 .update = true, 1399 .attr = "average", 1400 }, { 1401 .reg = PMBUS_VIRT_READ_VIN_MIN, 1402 .update = true, 1403 .attr = "lowest", 1404 }, { 1405 .reg = PMBUS_VIRT_READ_VIN_MAX, 1406 .update = true, 1407 .attr = "highest", 1408 }, { 1409 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1410 .attr = "reset_history", 1411 }, 1412 }; 1413 1414 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1415 { 1416 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1417 .attr = "min", 1418 .alarm = "min_alarm", 1419 .sbit = PB_VOLTAGE_UV_WARNING, 1420 }, { 1421 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1422 .attr = "lcrit", 1423 .alarm = "lcrit_alarm", 1424 .sbit = PB_VOLTAGE_UV_FAULT, 1425 }, { 1426 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1427 .attr = "max", 1428 .alarm = "max_alarm", 1429 .sbit = PB_VOLTAGE_OV_WARNING, 1430 }, { 1431 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1432 .attr = "crit", 1433 .alarm = "crit_alarm", 1434 .sbit = PB_VOLTAGE_OV_FAULT, 1435 } 1436 }; 1437 1438 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1439 { 1440 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1441 .attr = "min", 1442 .alarm = "min_alarm", 1443 .sbit = PB_VOLTAGE_UV_WARNING, 1444 }, { 1445 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1446 .attr = "lcrit", 1447 .alarm = "lcrit_alarm", 1448 .sbit = PB_VOLTAGE_UV_FAULT, 1449 }, { 1450 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1451 .attr = "max", 1452 .alarm = "max_alarm", 1453 .sbit = PB_VOLTAGE_OV_WARNING, 1454 }, { 1455 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1456 .attr = "crit", 1457 .alarm = "crit_alarm", 1458 .sbit = PB_VOLTAGE_OV_FAULT, 1459 }, { 1460 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1461 .update = true, 1462 .attr = "average", 1463 }, { 1464 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1465 .update = true, 1466 .attr = "lowest", 1467 }, { 1468 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1469 .update = true, 1470 .attr = "highest", 1471 }, { 1472 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1473 .attr = "reset_history", 1474 } 1475 }; 1476 1477 static const struct pmbus_sensor_attr voltage_attributes[] = { 1478 { 1479 .reg = PMBUS_READ_VIN, 1480 .class = PSC_VOLTAGE_IN, 1481 .label = "vin", 1482 .func = PMBUS_HAVE_VIN, 1483 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1484 .sbase = PB_STATUS_INPUT_BASE, 1485 .gbit = PB_STATUS_VIN_UV, 1486 .limit = vin_limit_attrs, 1487 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1488 }, { 1489 .reg = PMBUS_VIRT_READ_VMON, 1490 .class = PSC_VOLTAGE_IN, 1491 .label = "vmon", 1492 .func = PMBUS_HAVE_VMON, 1493 .sfunc = PMBUS_HAVE_STATUS_VMON, 1494 .sbase = PB_STATUS_VMON_BASE, 1495 .limit = vmon_limit_attrs, 1496 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1497 }, { 1498 .reg = PMBUS_READ_VCAP, 1499 .class = PSC_VOLTAGE_IN, 1500 .label = "vcap", 1501 .func = PMBUS_HAVE_VCAP, 1502 }, { 1503 .reg = PMBUS_READ_VOUT, 1504 .class = PSC_VOLTAGE_OUT, 1505 .label = "vout", 1506 .paged = true, 1507 .func = PMBUS_HAVE_VOUT, 1508 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1509 .sbase = PB_STATUS_VOUT_BASE, 1510 .gbit = PB_STATUS_VOUT_OV, 1511 .limit = vout_limit_attrs, 1512 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1513 } 1514 }; 1515 1516 /* Current attributes */ 1517 1518 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1519 { 1520 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1521 .attr = "max", 1522 .alarm = "max_alarm", 1523 .sbit = PB_IIN_OC_WARNING, 1524 }, { 1525 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1526 .attr = "crit", 1527 .alarm = "crit_alarm", 1528 .sbit = PB_IIN_OC_FAULT, 1529 }, { 1530 .reg = PMBUS_VIRT_READ_IIN_AVG, 1531 .update = true, 1532 .attr = "average", 1533 }, { 1534 .reg = PMBUS_VIRT_READ_IIN_MIN, 1535 .update = true, 1536 .attr = "lowest", 1537 }, { 1538 .reg = PMBUS_VIRT_READ_IIN_MAX, 1539 .update = true, 1540 .attr = "highest", 1541 }, { 1542 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1543 .attr = "reset_history", 1544 } 1545 }; 1546 1547 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1548 { 1549 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1550 .attr = "max", 1551 .alarm = "max_alarm", 1552 .sbit = PB_IOUT_OC_WARNING, 1553 }, { 1554 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1555 .attr = "lcrit", 1556 .alarm = "lcrit_alarm", 1557 .sbit = PB_IOUT_UC_FAULT, 1558 }, { 1559 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1560 .attr = "crit", 1561 .alarm = "crit_alarm", 1562 .sbit = PB_IOUT_OC_FAULT, 1563 }, { 1564 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1565 .update = true, 1566 .attr = "average", 1567 }, { 1568 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1569 .update = true, 1570 .attr = "lowest", 1571 }, { 1572 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1573 .update = true, 1574 .attr = "highest", 1575 }, { 1576 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1577 .attr = "reset_history", 1578 } 1579 }; 1580 1581 static const struct pmbus_sensor_attr current_attributes[] = { 1582 { 1583 .reg = PMBUS_READ_IIN, 1584 .class = PSC_CURRENT_IN, 1585 .label = "iin", 1586 .func = PMBUS_HAVE_IIN, 1587 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1588 .sbase = PB_STATUS_INPUT_BASE, 1589 .gbit = PB_STATUS_INPUT, 1590 .limit = iin_limit_attrs, 1591 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1592 }, { 1593 .reg = PMBUS_READ_IOUT, 1594 .class = PSC_CURRENT_OUT, 1595 .label = "iout", 1596 .paged = true, 1597 .func = PMBUS_HAVE_IOUT, 1598 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1599 .sbase = PB_STATUS_IOUT_BASE, 1600 .gbit = PB_STATUS_IOUT_OC, 1601 .limit = iout_limit_attrs, 1602 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1603 } 1604 }; 1605 1606 /* Power attributes */ 1607 1608 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1609 { 1610 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1611 .attr = "max", 1612 .alarm = "alarm", 1613 .sbit = PB_PIN_OP_WARNING, 1614 }, { 1615 .reg = PMBUS_VIRT_READ_PIN_AVG, 1616 .update = true, 1617 .attr = "average", 1618 }, { 1619 .reg = PMBUS_VIRT_READ_PIN_MIN, 1620 .update = true, 1621 .attr = "input_lowest", 1622 }, { 1623 .reg = PMBUS_VIRT_READ_PIN_MAX, 1624 .update = true, 1625 .attr = "input_highest", 1626 }, { 1627 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1628 .attr = "reset_history", 1629 } 1630 }; 1631 1632 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1633 { 1634 .reg = PMBUS_POUT_MAX, 1635 .attr = "cap", 1636 .alarm = "cap_alarm", 1637 .sbit = PB_POWER_LIMITING, 1638 }, { 1639 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1640 .attr = "max", 1641 .alarm = "max_alarm", 1642 .sbit = PB_POUT_OP_WARNING, 1643 }, { 1644 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1645 .attr = "crit", 1646 .alarm = "crit_alarm", 1647 .sbit = PB_POUT_OP_FAULT, 1648 }, { 1649 .reg = PMBUS_VIRT_READ_POUT_AVG, 1650 .update = true, 1651 .attr = "average", 1652 }, { 1653 .reg = PMBUS_VIRT_READ_POUT_MIN, 1654 .update = true, 1655 .attr = "input_lowest", 1656 }, { 1657 .reg = PMBUS_VIRT_READ_POUT_MAX, 1658 .update = true, 1659 .attr = "input_highest", 1660 }, { 1661 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1662 .attr = "reset_history", 1663 } 1664 }; 1665 1666 static const struct pmbus_sensor_attr power_attributes[] = { 1667 { 1668 .reg = PMBUS_READ_PIN, 1669 .class = PSC_POWER, 1670 .label = "pin", 1671 .func = PMBUS_HAVE_PIN, 1672 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1673 .sbase = PB_STATUS_INPUT_BASE, 1674 .gbit = PB_STATUS_INPUT, 1675 .limit = pin_limit_attrs, 1676 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1677 }, { 1678 .reg = PMBUS_READ_POUT, 1679 .class = PSC_POWER, 1680 .label = "pout", 1681 .paged = true, 1682 .func = PMBUS_HAVE_POUT, 1683 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1684 .sbase = PB_STATUS_IOUT_BASE, 1685 .limit = pout_limit_attrs, 1686 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1687 } 1688 }; 1689 1690 /* Temperature atributes */ 1691 1692 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1693 { 1694 .reg = PMBUS_UT_WARN_LIMIT, 1695 .low = true, 1696 .attr = "min", 1697 .alarm = "min_alarm", 1698 .sbit = PB_TEMP_UT_WARNING, 1699 }, { 1700 .reg = PMBUS_UT_FAULT_LIMIT, 1701 .low = true, 1702 .attr = "lcrit", 1703 .alarm = "lcrit_alarm", 1704 .sbit = PB_TEMP_UT_FAULT, 1705 }, { 1706 .reg = PMBUS_OT_WARN_LIMIT, 1707 .attr = "max", 1708 .alarm = "max_alarm", 1709 .sbit = PB_TEMP_OT_WARNING, 1710 }, { 1711 .reg = PMBUS_OT_FAULT_LIMIT, 1712 .attr = "crit", 1713 .alarm = "crit_alarm", 1714 .sbit = PB_TEMP_OT_FAULT, 1715 }, { 1716 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1717 .attr = "lowest", 1718 }, { 1719 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1720 .attr = "average", 1721 }, { 1722 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1723 .attr = "highest", 1724 }, { 1725 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1726 .attr = "reset_history", 1727 } 1728 }; 1729 1730 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1731 { 1732 .reg = PMBUS_UT_WARN_LIMIT, 1733 .low = true, 1734 .attr = "min", 1735 .alarm = "min_alarm", 1736 .sbit = PB_TEMP_UT_WARNING, 1737 }, { 1738 .reg = PMBUS_UT_FAULT_LIMIT, 1739 .low = true, 1740 .attr = "lcrit", 1741 .alarm = "lcrit_alarm", 1742 .sbit = PB_TEMP_UT_FAULT, 1743 }, { 1744 .reg = PMBUS_OT_WARN_LIMIT, 1745 .attr = "max", 1746 .alarm = "max_alarm", 1747 .sbit = PB_TEMP_OT_WARNING, 1748 }, { 1749 .reg = PMBUS_OT_FAULT_LIMIT, 1750 .attr = "crit", 1751 .alarm = "crit_alarm", 1752 .sbit = PB_TEMP_OT_FAULT, 1753 }, { 1754 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1755 .attr = "lowest", 1756 }, { 1757 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1758 .attr = "average", 1759 }, { 1760 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1761 .attr = "highest", 1762 }, { 1763 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1764 .attr = "reset_history", 1765 } 1766 }; 1767 1768 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1769 { 1770 .reg = PMBUS_UT_WARN_LIMIT, 1771 .low = true, 1772 .attr = "min", 1773 .alarm = "min_alarm", 1774 .sbit = PB_TEMP_UT_WARNING, 1775 }, { 1776 .reg = PMBUS_UT_FAULT_LIMIT, 1777 .low = true, 1778 .attr = "lcrit", 1779 .alarm = "lcrit_alarm", 1780 .sbit = PB_TEMP_UT_FAULT, 1781 }, { 1782 .reg = PMBUS_OT_WARN_LIMIT, 1783 .attr = "max", 1784 .alarm = "max_alarm", 1785 .sbit = PB_TEMP_OT_WARNING, 1786 }, { 1787 .reg = PMBUS_OT_FAULT_LIMIT, 1788 .attr = "crit", 1789 .alarm = "crit_alarm", 1790 .sbit = PB_TEMP_OT_FAULT, 1791 } 1792 }; 1793 1794 static const struct pmbus_sensor_attr temp_attributes[] = { 1795 { 1796 .reg = PMBUS_READ_TEMPERATURE_1, 1797 .class = PSC_TEMPERATURE, 1798 .paged = true, 1799 .update = true, 1800 .compare = true, 1801 .func = PMBUS_HAVE_TEMP, 1802 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1803 .sbase = PB_STATUS_TEMP_BASE, 1804 .gbit = PB_STATUS_TEMPERATURE, 1805 .limit = temp_limit_attrs, 1806 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1807 }, { 1808 .reg = PMBUS_READ_TEMPERATURE_2, 1809 .class = PSC_TEMPERATURE, 1810 .paged = true, 1811 .update = true, 1812 .compare = true, 1813 .func = PMBUS_HAVE_TEMP2, 1814 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1815 .sbase = PB_STATUS_TEMP_BASE, 1816 .gbit = PB_STATUS_TEMPERATURE, 1817 .limit = temp_limit_attrs2, 1818 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1819 }, { 1820 .reg = PMBUS_READ_TEMPERATURE_3, 1821 .class = PSC_TEMPERATURE, 1822 .paged = true, 1823 .update = true, 1824 .compare = true, 1825 .func = PMBUS_HAVE_TEMP3, 1826 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1827 .sbase = PB_STATUS_TEMP_BASE, 1828 .gbit = PB_STATUS_TEMPERATURE, 1829 .limit = temp_limit_attrs3, 1830 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1831 } 1832 }; 1833 1834 static const int pmbus_fan_registers[] = { 1835 PMBUS_READ_FAN_SPEED_1, 1836 PMBUS_READ_FAN_SPEED_2, 1837 PMBUS_READ_FAN_SPEED_3, 1838 PMBUS_READ_FAN_SPEED_4 1839 }; 1840 1841 static const int pmbus_fan_status_registers[] = { 1842 PMBUS_STATUS_FAN_12, 1843 PMBUS_STATUS_FAN_12, 1844 PMBUS_STATUS_FAN_34, 1845 PMBUS_STATUS_FAN_34 1846 }; 1847 1848 static const u32 pmbus_fan_flags[] = { 1849 PMBUS_HAVE_FAN12, 1850 PMBUS_HAVE_FAN12, 1851 PMBUS_HAVE_FAN34, 1852 PMBUS_HAVE_FAN34 1853 }; 1854 1855 static const u32 pmbus_fan_status_flags[] = { 1856 PMBUS_HAVE_STATUS_FAN12, 1857 PMBUS_HAVE_STATUS_FAN12, 1858 PMBUS_HAVE_STATUS_FAN34, 1859 PMBUS_HAVE_STATUS_FAN34 1860 }; 1861 1862 /* Fans */ 1863 1864 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 1865 static int pmbus_add_fan_ctrl(struct i2c_client *client, 1866 struct pmbus_data *data, int index, int page, int id, 1867 u8 config) 1868 { 1869 struct pmbus_sensor *sensor; 1870 1871 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 1872 PMBUS_VIRT_FAN_TARGET_1 + id, 0xff, PSC_FAN, 1873 false, false, true); 1874 1875 if (!sensor) 1876 return -ENOMEM; 1877 1878 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 1879 (data->info->func[page] & PMBUS_HAVE_PWM34))) 1880 return 0; 1881 1882 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 1883 PMBUS_VIRT_PWM_1 + id, 0xff, PSC_PWM, 1884 false, false, true); 1885 1886 if (!sensor) 1887 return -ENOMEM; 1888 1889 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 1890 PMBUS_VIRT_PWM_ENABLE_1 + id, 0xff, PSC_PWM, 1891 true, false, false); 1892 1893 if (!sensor) 1894 return -ENOMEM; 1895 1896 return 0; 1897 } 1898 1899 static int pmbus_add_fan_attributes(struct i2c_client *client, 1900 struct pmbus_data *data) 1901 { 1902 const struct pmbus_driver_info *info = data->info; 1903 int index = 1; 1904 int page; 1905 int ret; 1906 1907 for (page = 0; page < info->pages; page++) { 1908 int f; 1909 1910 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1911 int regval; 1912 1913 if (!(info->func[page] & pmbus_fan_flags[f])) 1914 break; 1915 1916 if (!pmbus_check_word_register(client, page, 1917 pmbus_fan_registers[f])) 1918 break; 1919 1920 /* 1921 * Skip fan if not installed. 1922 * Each fan configuration register covers multiple fans, 1923 * so we have to do some magic. 1924 */ 1925 regval = _pmbus_read_byte_data(client, page, 1926 pmbus_fan_config_registers[f]); 1927 if (regval < 0 || 1928 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1929 continue; 1930 1931 if (pmbus_add_sensor(data, "fan", "input", index, 1932 page, pmbus_fan_registers[f], 0xff, 1933 PSC_FAN, true, true, true) == NULL) 1934 return -ENOMEM; 1935 1936 /* Fan control */ 1937 if (pmbus_check_word_register(client, page, 1938 pmbus_fan_command_registers[f])) { 1939 ret = pmbus_add_fan_ctrl(client, data, index, 1940 page, f, regval); 1941 if (ret < 0) 1942 return ret; 1943 } 1944 1945 /* 1946 * Each fan status register covers multiple fans, 1947 * so we have to do some magic. 1948 */ 1949 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1950 pmbus_check_byte_register(client, 1951 page, pmbus_fan_status_registers[f])) { 1952 int base; 1953 1954 if (f > 1) /* fan 3, 4 */ 1955 base = PB_STATUS_FAN34_BASE + page; 1956 else 1957 base = PB_STATUS_FAN_BASE + page; 1958 ret = pmbus_add_boolean(data, "fan", 1959 "alarm", index, NULL, NULL, base, 1960 PB_FAN_FAN1_WARNING >> (f & 1)); 1961 if (ret) 1962 return ret; 1963 ret = pmbus_add_boolean(data, "fan", 1964 "fault", index, NULL, NULL, base, 1965 PB_FAN_FAN1_FAULT >> (f & 1)); 1966 if (ret) 1967 return ret; 1968 } 1969 index++; 1970 } 1971 } 1972 return 0; 1973 } 1974 1975 struct pmbus_samples_attr { 1976 int reg; 1977 char *name; 1978 }; 1979 1980 struct pmbus_samples_reg { 1981 int page; 1982 struct pmbus_samples_attr *attr; 1983 struct device_attribute dev_attr; 1984 }; 1985 1986 static struct pmbus_samples_attr pmbus_samples_registers[] = { 1987 { 1988 .reg = PMBUS_VIRT_SAMPLES, 1989 .name = "samples", 1990 }, { 1991 .reg = PMBUS_VIRT_IN_SAMPLES, 1992 .name = "in_samples", 1993 }, { 1994 .reg = PMBUS_VIRT_CURR_SAMPLES, 1995 .name = "curr_samples", 1996 }, { 1997 .reg = PMBUS_VIRT_POWER_SAMPLES, 1998 .name = "power_samples", 1999 }, { 2000 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2001 .name = "temp_samples", 2002 } 2003 }; 2004 2005 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2006 2007 static ssize_t pmbus_show_samples(struct device *dev, 2008 struct device_attribute *devattr, char *buf) 2009 { 2010 int val; 2011 struct i2c_client *client = to_i2c_client(dev->parent); 2012 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2013 2014 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2015 if (val < 0) 2016 return val; 2017 2018 return snprintf(buf, PAGE_SIZE, "%d\n", val); 2019 } 2020 2021 static ssize_t pmbus_set_samples(struct device *dev, 2022 struct device_attribute *devattr, 2023 const char *buf, size_t count) 2024 { 2025 int ret; 2026 long val; 2027 struct i2c_client *client = to_i2c_client(dev->parent); 2028 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2029 struct pmbus_data *data = i2c_get_clientdata(client); 2030 2031 if (kstrtol(buf, 0, &val) < 0) 2032 return -EINVAL; 2033 2034 mutex_lock(&data->update_lock); 2035 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2036 mutex_unlock(&data->update_lock); 2037 2038 return ret ? : count; 2039 } 2040 2041 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2042 struct pmbus_samples_attr *attr) 2043 { 2044 struct pmbus_samples_reg *reg; 2045 2046 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2047 if (!reg) 2048 return -ENOMEM; 2049 2050 reg->attr = attr; 2051 reg->page = page; 2052 2053 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2054 pmbus_show_samples, pmbus_set_samples); 2055 2056 return pmbus_add_attribute(data, ®->dev_attr.attr); 2057 } 2058 2059 static int pmbus_add_samples_attributes(struct i2c_client *client, 2060 struct pmbus_data *data) 2061 { 2062 const struct pmbus_driver_info *info = data->info; 2063 int s; 2064 2065 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2066 return 0; 2067 2068 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2069 struct pmbus_samples_attr *attr; 2070 int ret; 2071 2072 attr = &pmbus_samples_registers[s]; 2073 if (!pmbus_check_word_register(client, 0, attr->reg)) 2074 continue; 2075 2076 ret = pmbus_add_samples_attr(data, 0, attr); 2077 if (ret) 2078 return ret; 2079 } 2080 2081 return 0; 2082 } 2083 2084 static int pmbus_find_attributes(struct i2c_client *client, 2085 struct pmbus_data *data) 2086 { 2087 int ret; 2088 2089 /* Voltage sensors */ 2090 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2091 ARRAY_SIZE(voltage_attributes)); 2092 if (ret) 2093 return ret; 2094 2095 /* Current sensors */ 2096 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2097 ARRAY_SIZE(current_attributes)); 2098 if (ret) 2099 return ret; 2100 2101 /* Power sensors */ 2102 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2103 ARRAY_SIZE(power_attributes)); 2104 if (ret) 2105 return ret; 2106 2107 /* Temperature sensors */ 2108 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2109 ARRAY_SIZE(temp_attributes)); 2110 if (ret) 2111 return ret; 2112 2113 /* Fans */ 2114 ret = pmbus_add_fan_attributes(client, data); 2115 if (ret) 2116 return ret; 2117 2118 ret = pmbus_add_samples_attributes(client, data); 2119 return ret; 2120 } 2121 2122 /* 2123 * Identify chip parameters. 2124 * This function is called for all chips. 2125 */ 2126 static int pmbus_identify_common(struct i2c_client *client, 2127 struct pmbus_data *data, int page) 2128 { 2129 int vout_mode = -1; 2130 2131 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2132 vout_mode = _pmbus_read_byte_data(client, page, 2133 PMBUS_VOUT_MODE); 2134 if (vout_mode >= 0 && vout_mode != 0xff) { 2135 /* 2136 * Not all chips support the VOUT_MODE command, 2137 * so a failure to read it is not an error. 2138 */ 2139 switch (vout_mode >> 5) { 2140 case 0: /* linear mode */ 2141 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2142 return -ENODEV; 2143 2144 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2145 break; 2146 case 1: /* VID mode */ 2147 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2148 return -ENODEV; 2149 break; 2150 case 2: /* direct mode */ 2151 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2152 return -ENODEV; 2153 break; 2154 default: 2155 return -ENODEV; 2156 } 2157 } 2158 2159 pmbus_clear_fault_page(client, page); 2160 return 0; 2161 } 2162 2163 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2164 { 2165 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2166 } 2167 2168 static int pmbus_read_status_word(struct i2c_client *client, int page) 2169 { 2170 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2171 } 2172 2173 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2174 struct pmbus_driver_info *info) 2175 { 2176 struct device *dev = &client->dev; 2177 int page, ret; 2178 2179 /* 2180 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2181 * to use PMBUS_STATUS_BYTE instead if that is the case. 2182 * Bail out if both registers are not supported. 2183 */ 2184 data->read_status = pmbus_read_status_word; 2185 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2186 if (ret < 0 || ret == 0xffff) { 2187 data->read_status = pmbus_read_status_byte; 2188 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2189 if (ret < 0 || ret == 0xff) { 2190 dev_err(dev, "PMBus status register not found\n"); 2191 return -ENODEV; 2192 } 2193 } else { 2194 data->has_status_word = true; 2195 } 2196 2197 /* Enable PEC if the controller supports it */ 2198 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2199 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) 2200 client->flags |= I2C_CLIENT_PEC; 2201 2202 /* 2203 * Check if the chip is write protected. If it is, we can not clear 2204 * faults, and we should not try it. Also, in that case, writes into 2205 * limit registers need to be disabled. 2206 */ 2207 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2208 if (ret > 0 && (ret & PB_WP_ANY)) 2209 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2210 2211 if (data->info->pages) 2212 pmbus_clear_faults(client); 2213 else 2214 pmbus_clear_fault_page(client, -1); 2215 2216 if (info->identify) { 2217 ret = (*info->identify)(client, info); 2218 if (ret < 0) { 2219 dev_err(dev, "Chip identification failed\n"); 2220 return ret; 2221 } 2222 } 2223 2224 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2225 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2226 return -ENODEV; 2227 } 2228 2229 for (page = 0; page < info->pages; page++) { 2230 ret = pmbus_identify_common(client, data, page); 2231 if (ret < 0) { 2232 dev_err(dev, "Failed to identify chip capabilities\n"); 2233 return ret; 2234 } 2235 } 2236 return 0; 2237 } 2238 2239 #if IS_ENABLED(CONFIG_REGULATOR) 2240 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2241 { 2242 struct device *dev = rdev_get_dev(rdev); 2243 struct i2c_client *client = to_i2c_client(dev->parent); 2244 u8 page = rdev_get_id(rdev); 2245 int ret; 2246 2247 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2248 if (ret < 0) 2249 return ret; 2250 2251 return !!(ret & PB_OPERATION_CONTROL_ON); 2252 } 2253 2254 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2255 { 2256 struct device *dev = rdev_get_dev(rdev); 2257 struct i2c_client *client = to_i2c_client(dev->parent); 2258 u8 page = rdev_get_id(rdev); 2259 2260 return pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2261 PB_OPERATION_CONTROL_ON, 2262 enable ? PB_OPERATION_CONTROL_ON : 0); 2263 } 2264 2265 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2266 { 2267 return _pmbus_regulator_on_off(rdev, 1); 2268 } 2269 2270 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2271 { 2272 return _pmbus_regulator_on_off(rdev, 0); 2273 } 2274 2275 const struct regulator_ops pmbus_regulator_ops = { 2276 .enable = pmbus_regulator_enable, 2277 .disable = pmbus_regulator_disable, 2278 .is_enabled = pmbus_regulator_is_enabled, 2279 }; 2280 EXPORT_SYMBOL_GPL(pmbus_regulator_ops); 2281 2282 static int pmbus_regulator_register(struct pmbus_data *data) 2283 { 2284 struct device *dev = data->dev; 2285 const struct pmbus_driver_info *info = data->info; 2286 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2287 struct regulator_dev *rdev; 2288 int i; 2289 2290 for (i = 0; i < info->num_regulators; i++) { 2291 struct regulator_config config = { }; 2292 2293 config.dev = dev; 2294 config.driver_data = data; 2295 2296 if (pdata && pdata->reg_init_data) 2297 config.init_data = &pdata->reg_init_data[i]; 2298 2299 rdev = devm_regulator_register(dev, &info->reg_desc[i], 2300 &config); 2301 if (IS_ERR(rdev)) { 2302 dev_err(dev, "Failed to register %s regulator\n", 2303 info->reg_desc[i].name); 2304 return PTR_ERR(rdev); 2305 } 2306 } 2307 2308 return 0; 2309 } 2310 #else 2311 static int pmbus_regulator_register(struct pmbus_data *data) 2312 { 2313 return 0; 2314 } 2315 #endif 2316 2317 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 2318 2319 #if IS_ENABLED(CONFIG_DEBUG_FS) 2320 static int pmbus_debugfs_get(void *data, u64 *val) 2321 { 2322 int rc; 2323 struct pmbus_debugfs_entry *entry = data; 2324 2325 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 2326 if (rc < 0) 2327 return rc; 2328 2329 *val = rc; 2330 2331 return 0; 2332 } 2333 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 2334 "0x%02llx\n"); 2335 2336 static int pmbus_debugfs_get_status(void *data, u64 *val) 2337 { 2338 int rc; 2339 struct pmbus_debugfs_entry *entry = data; 2340 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 2341 2342 rc = pdata->read_status(entry->client, entry->page); 2343 if (rc < 0) 2344 return rc; 2345 2346 *val = rc; 2347 2348 return 0; 2349 } 2350 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 2351 NULL, "0x%04llx\n"); 2352 2353 static int pmbus_init_debugfs(struct i2c_client *client, 2354 struct pmbus_data *data) 2355 { 2356 int i, idx = 0; 2357 char name[PMBUS_NAME_SIZE]; 2358 struct pmbus_debugfs_entry *entries; 2359 2360 if (!pmbus_debugfs_dir) 2361 return -ENODEV; 2362 2363 /* 2364 * Create the debugfs directory for this device. Use the hwmon device 2365 * name to avoid conflicts (hwmon numbers are globally unique). 2366 */ 2367 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 2368 pmbus_debugfs_dir); 2369 if (IS_ERR_OR_NULL(data->debugfs)) { 2370 data->debugfs = NULL; 2371 return -ENODEV; 2372 } 2373 2374 /* Allocate the max possible entries we need. */ 2375 entries = devm_kcalloc(data->dev, 2376 data->info->pages * 10, sizeof(*entries), 2377 GFP_KERNEL); 2378 if (!entries) 2379 return -ENOMEM; 2380 2381 for (i = 0; i < data->info->pages; ++i) { 2382 /* Check accessibility of status register if it's not page 0 */ 2383 if (!i || pmbus_check_status_register(client, i)) { 2384 /* No need to set reg as we have special read op. */ 2385 entries[idx].client = client; 2386 entries[idx].page = i; 2387 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 2388 debugfs_create_file(name, 0444, data->debugfs, 2389 &entries[idx++], 2390 &pmbus_debugfs_ops_status); 2391 } 2392 2393 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 2394 entries[idx].client = client; 2395 entries[idx].page = i; 2396 entries[idx].reg = PMBUS_STATUS_VOUT; 2397 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 2398 debugfs_create_file(name, 0444, data->debugfs, 2399 &entries[idx++], 2400 &pmbus_debugfs_ops); 2401 } 2402 2403 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 2404 entries[idx].client = client; 2405 entries[idx].page = i; 2406 entries[idx].reg = PMBUS_STATUS_IOUT; 2407 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 2408 debugfs_create_file(name, 0444, data->debugfs, 2409 &entries[idx++], 2410 &pmbus_debugfs_ops); 2411 } 2412 2413 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 2414 entries[idx].client = client; 2415 entries[idx].page = i; 2416 entries[idx].reg = PMBUS_STATUS_INPUT; 2417 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 2418 debugfs_create_file(name, 0444, data->debugfs, 2419 &entries[idx++], 2420 &pmbus_debugfs_ops); 2421 } 2422 2423 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 2424 entries[idx].client = client; 2425 entries[idx].page = i; 2426 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 2427 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 2428 debugfs_create_file(name, 0444, data->debugfs, 2429 &entries[idx++], 2430 &pmbus_debugfs_ops); 2431 } 2432 2433 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 2434 entries[idx].client = client; 2435 entries[idx].page = i; 2436 entries[idx].reg = PMBUS_STATUS_CML; 2437 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 2438 debugfs_create_file(name, 0444, data->debugfs, 2439 &entries[idx++], 2440 &pmbus_debugfs_ops); 2441 } 2442 2443 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 2444 entries[idx].client = client; 2445 entries[idx].page = i; 2446 entries[idx].reg = PMBUS_STATUS_OTHER; 2447 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 2448 debugfs_create_file(name, 0444, data->debugfs, 2449 &entries[idx++], 2450 &pmbus_debugfs_ops); 2451 } 2452 2453 if (pmbus_check_byte_register(client, i, 2454 PMBUS_STATUS_MFR_SPECIFIC)) { 2455 entries[idx].client = client; 2456 entries[idx].page = i; 2457 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 2458 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 2459 debugfs_create_file(name, 0444, data->debugfs, 2460 &entries[idx++], 2461 &pmbus_debugfs_ops); 2462 } 2463 2464 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 2465 entries[idx].client = client; 2466 entries[idx].page = i; 2467 entries[idx].reg = PMBUS_STATUS_FAN_12; 2468 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 2469 debugfs_create_file(name, 0444, data->debugfs, 2470 &entries[idx++], 2471 &pmbus_debugfs_ops); 2472 } 2473 2474 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 2475 entries[idx].client = client; 2476 entries[idx].page = i; 2477 entries[idx].reg = PMBUS_STATUS_FAN_34; 2478 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 2479 debugfs_create_file(name, 0444, data->debugfs, 2480 &entries[idx++], 2481 &pmbus_debugfs_ops); 2482 } 2483 } 2484 2485 return 0; 2486 } 2487 #else 2488 static int pmbus_init_debugfs(struct i2c_client *client, 2489 struct pmbus_data *data) 2490 { 2491 return 0; 2492 } 2493 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 2494 2495 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, 2496 struct pmbus_driver_info *info) 2497 { 2498 struct device *dev = &client->dev; 2499 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2500 struct pmbus_data *data; 2501 size_t groups_num = 0; 2502 int ret; 2503 2504 if (!info) 2505 return -ENODEV; 2506 2507 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 2508 | I2C_FUNC_SMBUS_BYTE_DATA 2509 | I2C_FUNC_SMBUS_WORD_DATA)) 2510 return -ENODEV; 2511 2512 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 2513 if (!data) 2514 return -ENOMEM; 2515 2516 if (info->groups) 2517 while (info->groups[groups_num]) 2518 groups_num++; 2519 2520 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 2521 GFP_KERNEL); 2522 if (!data->groups) 2523 return -ENOMEM; 2524 2525 i2c_set_clientdata(client, data); 2526 mutex_init(&data->update_lock); 2527 data->dev = dev; 2528 2529 if (pdata) 2530 data->flags = pdata->flags; 2531 data->info = info; 2532 data->currpage = -1; 2533 data->currphase = -1; 2534 2535 ret = pmbus_init_common(client, data, info); 2536 if (ret < 0) 2537 return ret; 2538 2539 ret = pmbus_find_attributes(client, data); 2540 if (ret) 2541 goto out_kfree; 2542 2543 /* 2544 * If there are no attributes, something is wrong. 2545 * Bail out instead of trying to register nothing. 2546 */ 2547 if (!data->num_attributes) { 2548 dev_err(dev, "No attributes found\n"); 2549 ret = -ENODEV; 2550 goto out_kfree; 2551 } 2552 2553 data->groups[0] = &data->group; 2554 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 2555 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name, 2556 data, data->groups); 2557 if (IS_ERR(data->hwmon_dev)) { 2558 ret = PTR_ERR(data->hwmon_dev); 2559 dev_err(dev, "Failed to register hwmon device\n"); 2560 goto out_kfree; 2561 } 2562 2563 ret = pmbus_regulator_register(data); 2564 if (ret) 2565 goto out_unregister; 2566 2567 ret = pmbus_init_debugfs(client, data); 2568 if (ret) 2569 dev_warn(dev, "Failed to register debugfs\n"); 2570 2571 return 0; 2572 2573 out_unregister: 2574 hwmon_device_unregister(data->hwmon_dev); 2575 out_kfree: 2576 kfree(data->group.attrs); 2577 return ret; 2578 } 2579 EXPORT_SYMBOL_GPL(pmbus_do_probe); 2580 2581 int pmbus_do_remove(struct i2c_client *client) 2582 { 2583 struct pmbus_data *data = i2c_get_clientdata(client); 2584 2585 debugfs_remove_recursive(data->debugfs); 2586 2587 hwmon_device_unregister(data->hwmon_dev); 2588 kfree(data->group.attrs); 2589 return 0; 2590 } 2591 EXPORT_SYMBOL_GPL(pmbus_do_remove); 2592 2593 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 2594 { 2595 struct pmbus_data *data = i2c_get_clientdata(client); 2596 2597 return data->debugfs; 2598 } 2599 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir); 2600 2601 static int __init pmbus_core_init(void) 2602 { 2603 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 2604 if (IS_ERR(pmbus_debugfs_dir)) 2605 pmbus_debugfs_dir = NULL; 2606 2607 return 0; 2608 } 2609 2610 static void __exit pmbus_core_exit(void) 2611 { 2612 debugfs_remove_recursive(pmbus_debugfs_dir); 2613 } 2614 2615 module_init(pmbus_core_init); 2616 module_exit(pmbus_core_exit); 2617 2618 MODULE_AUTHOR("Guenter Roeck"); 2619 MODULE_DESCRIPTION("PMBus core driver"); 2620 MODULE_LICENSE("GPL"); 2621