1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/jiffies.h> 20 #include <linux/pmbus.h> 21 #include <linux/regulator/driver.h> 22 #include <linux/regulator/machine.h> 23 #include "pmbus.h" 24 25 /* 26 * Number of additional attribute pointers to allocate 27 * with each call to krealloc 28 */ 29 #define PMBUS_ATTR_ALLOC_SIZE 32 30 31 /* 32 * Index into status register array, per status register group 33 */ 34 #define PB_STATUS_BASE 0 35 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) 36 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) 37 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) 38 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) 39 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) 40 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES) 41 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1) 42 43 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1) 44 45 #define PMBUS_NAME_SIZE 24 46 47 struct pmbus_sensor { 48 struct pmbus_sensor *next; 49 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 50 struct device_attribute attribute; 51 u8 page; /* page number */ 52 u8 phase; /* phase number, 0xff for all phases */ 53 u16 reg; /* register */ 54 enum pmbus_sensor_classes class; /* sensor class */ 55 bool update; /* runtime sensor update needed */ 56 bool convert; /* Whether or not to apply linear/vid/direct */ 57 int data; /* Sensor data. 58 Negative if there was a read error */ 59 }; 60 #define to_pmbus_sensor(_attr) \ 61 container_of(_attr, struct pmbus_sensor, attribute) 62 63 struct pmbus_boolean { 64 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 65 struct sensor_device_attribute attribute; 66 struct pmbus_sensor *s1; 67 struct pmbus_sensor *s2; 68 }; 69 #define to_pmbus_boolean(_attr) \ 70 container_of(_attr, struct pmbus_boolean, attribute) 71 72 struct pmbus_label { 73 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 74 struct device_attribute attribute; 75 char label[PMBUS_NAME_SIZE]; /* label */ 76 }; 77 #define to_pmbus_label(_attr) \ 78 container_of(_attr, struct pmbus_label, attribute) 79 80 struct pmbus_data { 81 struct device *dev; 82 struct device *hwmon_dev; 83 84 u32 flags; /* from platform data */ 85 86 int exponent[PMBUS_PAGES]; 87 /* linear mode: exponent for output voltages */ 88 89 const struct pmbus_driver_info *info; 90 91 int max_attributes; 92 int num_attributes; 93 struct attribute_group group; 94 const struct attribute_group **groups; 95 struct dentry *debugfs; /* debugfs device directory */ 96 97 struct pmbus_sensor *sensors; 98 99 struct mutex update_lock; 100 bool valid; 101 unsigned long last_updated; /* in jiffies */ 102 103 /* 104 * A single status register covers multiple attributes, 105 * so we keep them all together. 106 */ 107 u16 status[PB_NUM_STATUS_REG]; 108 109 bool has_status_word; /* device uses STATUS_WORD register */ 110 int (*read_status)(struct i2c_client *client, int page); 111 112 s16 currpage; /* current page, -1 for unknown/unset */ 113 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 114 }; 115 116 struct pmbus_debugfs_entry { 117 struct i2c_client *client; 118 u8 page; 119 u8 reg; 120 }; 121 122 static const int pmbus_fan_rpm_mask[] = { 123 PB_FAN_1_RPM, 124 PB_FAN_2_RPM, 125 PB_FAN_1_RPM, 126 PB_FAN_2_RPM, 127 }; 128 129 static const int pmbus_fan_config_registers[] = { 130 PMBUS_FAN_CONFIG_12, 131 PMBUS_FAN_CONFIG_12, 132 PMBUS_FAN_CONFIG_34, 133 PMBUS_FAN_CONFIG_34 134 }; 135 136 static const int pmbus_fan_command_registers[] = { 137 PMBUS_FAN_COMMAND_1, 138 PMBUS_FAN_COMMAND_2, 139 PMBUS_FAN_COMMAND_3, 140 PMBUS_FAN_COMMAND_4, 141 }; 142 143 void pmbus_clear_cache(struct i2c_client *client) 144 { 145 struct pmbus_data *data = i2c_get_clientdata(client); 146 147 data->valid = false; 148 } 149 EXPORT_SYMBOL_GPL(pmbus_clear_cache); 150 151 int pmbus_set_page(struct i2c_client *client, int page, int phase) 152 { 153 struct pmbus_data *data = i2c_get_clientdata(client); 154 int rv; 155 156 if (page < 0) 157 return 0; 158 159 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 160 data->info->pages > 1 && page != data->currpage) { 161 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 162 if (rv < 0) 163 return rv; 164 165 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 166 if (rv < 0) 167 return rv; 168 169 if (rv != page) 170 return -EIO; 171 } 172 data->currpage = page; 173 174 if (data->info->phases[page] && data->currphase != phase && 175 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 176 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 177 phase); 178 if (rv) 179 return rv; 180 } 181 data->currphase = phase; 182 183 return 0; 184 } 185 EXPORT_SYMBOL_GPL(pmbus_set_page); 186 187 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 188 { 189 int rv; 190 191 rv = pmbus_set_page(client, page, 0xff); 192 if (rv < 0) 193 return rv; 194 195 return i2c_smbus_write_byte(client, value); 196 } 197 EXPORT_SYMBOL_GPL(pmbus_write_byte); 198 199 /* 200 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 201 * a device specific mapping function exists and calls it if necessary. 202 */ 203 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 204 { 205 struct pmbus_data *data = i2c_get_clientdata(client); 206 const struct pmbus_driver_info *info = data->info; 207 int status; 208 209 if (info->write_byte) { 210 status = info->write_byte(client, page, value); 211 if (status != -ENODATA) 212 return status; 213 } 214 return pmbus_write_byte(client, page, value); 215 } 216 217 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 218 u16 word) 219 { 220 int rv; 221 222 rv = pmbus_set_page(client, page, 0xff); 223 if (rv < 0) 224 return rv; 225 226 return i2c_smbus_write_word_data(client, reg, word); 227 } 228 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 229 230 231 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 232 u16 word) 233 { 234 int bit; 235 int id; 236 int rv; 237 238 switch (reg) { 239 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 240 id = reg - PMBUS_VIRT_FAN_TARGET_1; 241 bit = pmbus_fan_rpm_mask[id]; 242 rv = pmbus_update_fan(client, page, id, bit, bit, word); 243 break; 244 default: 245 rv = -ENXIO; 246 break; 247 } 248 249 return rv; 250 } 251 252 /* 253 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 254 * a device specific mapping function exists and calls it if necessary. 255 */ 256 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 257 u16 word) 258 { 259 struct pmbus_data *data = i2c_get_clientdata(client); 260 const struct pmbus_driver_info *info = data->info; 261 int status; 262 263 if (info->write_word_data) { 264 status = info->write_word_data(client, page, reg, word); 265 if (status != -ENODATA) 266 return status; 267 } 268 269 if (reg >= PMBUS_VIRT_BASE) 270 return pmbus_write_virt_reg(client, page, reg, word); 271 272 return pmbus_write_word_data(client, page, reg, word); 273 } 274 275 int pmbus_update_fan(struct i2c_client *client, int page, int id, 276 u8 config, u8 mask, u16 command) 277 { 278 int from; 279 int rv; 280 u8 to; 281 282 from = pmbus_read_byte_data(client, page, 283 pmbus_fan_config_registers[id]); 284 if (from < 0) 285 return from; 286 287 to = (from & ~mask) | (config & mask); 288 if (to != from) { 289 rv = pmbus_write_byte_data(client, page, 290 pmbus_fan_config_registers[id], to); 291 if (rv < 0) 292 return rv; 293 } 294 295 return _pmbus_write_word_data(client, page, 296 pmbus_fan_command_registers[id], command); 297 } 298 EXPORT_SYMBOL_GPL(pmbus_update_fan); 299 300 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 301 { 302 int rv; 303 304 rv = pmbus_set_page(client, page, phase); 305 if (rv < 0) 306 return rv; 307 308 return i2c_smbus_read_word_data(client, reg); 309 } 310 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 311 312 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 313 { 314 int rv; 315 int id; 316 317 switch (reg) { 318 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 319 id = reg - PMBUS_VIRT_FAN_TARGET_1; 320 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 321 break; 322 default: 323 rv = -ENXIO; 324 break; 325 } 326 327 return rv; 328 } 329 330 /* 331 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 332 * a device specific mapping function exists and calls it if necessary. 333 */ 334 static int _pmbus_read_word_data(struct i2c_client *client, int page, 335 int phase, int reg) 336 { 337 struct pmbus_data *data = i2c_get_clientdata(client); 338 const struct pmbus_driver_info *info = data->info; 339 int status; 340 341 if (info->read_word_data) { 342 status = info->read_word_data(client, page, phase, reg); 343 if (status != -ENODATA) 344 return status; 345 } 346 347 if (reg >= PMBUS_VIRT_BASE) 348 return pmbus_read_virt_reg(client, page, reg); 349 350 return pmbus_read_word_data(client, page, phase, reg); 351 } 352 353 /* Same as above, but without phase parameter, for use in check functions */ 354 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 355 { 356 return _pmbus_read_word_data(client, page, 0xff, reg); 357 } 358 359 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 360 { 361 int rv; 362 363 rv = pmbus_set_page(client, page, 0xff); 364 if (rv < 0) 365 return rv; 366 367 return i2c_smbus_read_byte_data(client, reg); 368 } 369 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 370 371 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 372 { 373 int rv; 374 375 rv = pmbus_set_page(client, page, 0xff); 376 if (rv < 0) 377 return rv; 378 379 return i2c_smbus_write_byte_data(client, reg, value); 380 } 381 EXPORT_SYMBOL_GPL(pmbus_write_byte_data); 382 383 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 384 u8 mask, u8 value) 385 { 386 unsigned int tmp; 387 int rv; 388 389 rv = pmbus_read_byte_data(client, page, reg); 390 if (rv < 0) 391 return rv; 392 393 tmp = (rv & ~mask) | (value & mask); 394 395 if (tmp != rv) 396 rv = pmbus_write_byte_data(client, page, reg, tmp); 397 398 return rv; 399 } 400 EXPORT_SYMBOL_GPL(pmbus_update_byte_data); 401 402 /* 403 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 404 * a device specific mapping function exists and calls it if necessary. 405 */ 406 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 407 { 408 struct pmbus_data *data = i2c_get_clientdata(client); 409 const struct pmbus_driver_info *info = data->info; 410 int status; 411 412 if (info->read_byte_data) { 413 status = info->read_byte_data(client, page, reg); 414 if (status != -ENODATA) 415 return status; 416 } 417 return pmbus_read_byte_data(client, page, reg); 418 } 419 420 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 421 int reg) 422 { 423 struct pmbus_sensor *sensor; 424 425 for (sensor = data->sensors; sensor; sensor = sensor->next) { 426 if (sensor->page == page && sensor->reg == reg) 427 return sensor; 428 } 429 430 return ERR_PTR(-EINVAL); 431 } 432 433 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 434 enum pmbus_fan_mode mode, 435 bool from_cache) 436 { 437 struct pmbus_data *data = i2c_get_clientdata(client); 438 bool want_rpm, have_rpm; 439 struct pmbus_sensor *s; 440 int config; 441 int reg; 442 443 want_rpm = (mode == rpm); 444 445 if (from_cache) { 446 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 447 s = pmbus_find_sensor(data, page, reg + id); 448 if (IS_ERR(s)) 449 return PTR_ERR(s); 450 451 return s->data; 452 } 453 454 config = pmbus_read_byte_data(client, page, 455 pmbus_fan_config_registers[id]); 456 if (config < 0) 457 return config; 458 459 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 460 if (want_rpm == have_rpm) 461 return pmbus_read_word_data(client, page, 0xff, 462 pmbus_fan_command_registers[id]); 463 464 /* Can't sensibly map between RPM and PWM, just return zero */ 465 return 0; 466 } 467 468 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 469 enum pmbus_fan_mode mode) 470 { 471 return pmbus_get_fan_rate(client, page, id, mode, false); 472 } 473 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device); 474 475 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 476 enum pmbus_fan_mode mode) 477 { 478 return pmbus_get_fan_rate(client, page, id, mode, true); 479 } 480 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached); 481 482 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 483 { 484 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 485 } 486 487 void pmbus_clear_faults(struct i2c_client *client) 488 { 489 struct pmbus_data *data = i2c_get_clientdata(client); 490 int i; 491 492 for (i = 0; i < data->info->pages; i++) 493 pmbus_clear_fault_page(client, i); 494 } 495 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 496 497 static int pmbus_check_status_cml(struct i2c_client *client) 498 { 499 struct pmbus_data *data = i2c_get_clientdata(client); 500 int status, status2; 501 502 status = data->read_status(client, -1); 503 if (status < 0 || (status & PB_STATUS_CML)) { 504 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 505 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 506 return -EIO; 507 } 508 return 0; 509 } 510 511 static bool pmbus_check_register(struct i2c_client *client, 512 int (*func)(struct i2c_client *client, 513 int page, int reg), 514 int page, int reg) 515 { 516 int rv; 517 struct pmbus_data *data = i2c_get_clientdata(client); 518 519 rv = func(client, page, reg); 520 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 521 rv = pmbus_check_status_cml(client); 522 pmbus_clear_fault_page(client, -1); 523 return rv >= 0; 524 } 525 526 static bool pmbus_check_status_register(struct i2c_client *client, int page) 527 { 528 int status; 529 struct pmbus_data *data = i2c_get_clientdata(client); 530 531 status = data->read_status(client, page); 532 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 533 (status & PB_STATUS_CML)) { 534 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 535 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 536 status = -EIO; 537 } 538 539 pmbus_clear_fault_page(client, -1); 540 return status >= 0; 541 } 542 543 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 544 { 545 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 546 } 547 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 548 549 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 550 { 551 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 552 } 553 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 554 555 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 556 { 557 struct pmbus_data *data = i2c_get_clientdata(client); 558 559 return data->info; 560 } 561 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 562 563 static struct _pmbus_status { 564 u32 func; 565 u16 base; 566 u16 reg; 567 } pmbus_status[] = { 568 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT }, 569 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT }, 570 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE, 571 PMBUS_STATUS_TEMPERATURE }, 572 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 }, 573 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 }, 574 }; 575 576 static struct pmbus_data *pmbus_update_device(struct device *dev) 577 { 578 struct i2c_client *client = to_i2c_client(dev->parent); 579 struct pmbus_data *data = i2c_get_clientdata(client); 580 const struct pmbus_driver_info *info = data->info; 581 struct pmbus_sensor *sensor; 582 583 mutex_lock(&data->update_lock); 584 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 585 int i, j; 586 587 for (i = 0; i < info->pages; i++) { 588 data->status[PB_STATUS_BASE + i] 589 = data->read_status(client, i); 590 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) { 591 struct _pmbus_status *s = &pmbus_status[j]; 592 593 if (!(info->func[i] & s->func)) 594 continue; 595 data->status[s->base + i] 596 = _pmbus_read_byte_data(client, i, 597 s->reg); 598 } 599 } 600 601 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) 602 data->status[PB_STATUS_INPUT_BASE] 603 = _pmbus_read_byte_data(client, 0, 604 PMBUS_STATUS_INPUT); 605 606 if (info->func[0] & PMBUS_HAVE_STATUS_VMON) 607 data->status[PB_STATUS_VMON_BASE] 608 = _pmbus_read_byte_data(client, 0, 609 PMBUS_VIRT_STATUS_VMON); 610 611 for (sensor = data->sensors; sensor; sensor = sensor->next) { 612 if (!data->valid || sensor->update) 613 sensor->data 614 = _pmbus_read_word_data(client, 615 sensor->page, 616 sensor->phase, 617 sensor->reg); 618 } 619 pmbus_clear_faults(client); 620 data->last_updated = jiffies; 621 data->valid = 1; 622 } 623 mutex_unlock(&data->update_lock); 624 return data; 625 } 626 627 /* 628 * Convert linear sensor values to milli- or micro-units 629 * depending on sensor type. 630 */ 631 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 632 struct pmbus_sensor *sensor) 633 { 634 s16 exponent; 635 s32 mantissa; 636 s64 val; 637 638 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 639 exponent = data->exponent[sensor->page]; 640 mantissa = (u16) sensor->data; 641 } else { /* LINEAR11 */ 642 exponent = ((s16)sensor->data) >> 11; 643 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 644 } 645 646 val = mantissa; 647 648 /* scale result to milli-units for all sensors except fans */ 649 if (sensor->class != PSC_FAN) 650 val = val * 1000LL; 651 652 /* scale result to micro-units for power sensors */ 653 if (sensor->class == PSC_POWER) 654 val = val * 1000LL; 655 656 if (exponent >= 0) 657 val <<= exponent; 658 else 659 val >>= -exponent; 660 661 return val; 662 } 663 664 /* 665 * Convert direct sensor values to milli- or micro-units 666 * depending on sensor type. 667 */ 668 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 669 struct pmbus_sensor *sensor) 670 { 671 s64 b, val = (s16)sensor->data; 672 s32 m, R; 673 674 m = data->info->m[sensor->class]; 675 b = data->info->b[sensor->class]; 676 R = data->info->R[sensor->class]; 677 678 if (m == 0) 679 return 0; 680 681 /* X = 1/m * (Y * 10^-R - b) */ 682 R = -R; 683 /* scale result to milli-units for everything but fans */ 684 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 685 R += 3; 686 b *= 1000; 687 } 688 689 /* scale result to micro-units for power sensors */ 690 if (sensor->class == PSC_POWER) { 691 R += 3; 692 b *= 1000; 693 } 694 695 while (R > 0) { 696 val *= 10; 697 R--; 698 } 699 while (R < 0) { 700 val = div_s64(val + 5LL, 10L); /* round closest */ 701 R++; 702 } 703 704 val = div_s64(val - b, m); 705 return val; 706 } 707 708 /* 709 * Convert VID sensor values to milli- or micro-units 710 * depending on sensor type. 711 */ 712 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 713 struct pmbus_sensor *sensor) 714 { 715 long val = sensor->data; 716 long rv = 0; 717 718 switch (data->info->vrm_version[sensor->page]) { 719 case vr11: 720 if (val >= 0x02 && val <= 0xb2) 721 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 722 break; 723 case vr12: 724 if (val >= 0x01) 725 rv = 250 + (val - 1) * 5; 726 break; 727 case vr13: 728 if (val >= 0x01) 729 rv = 500 + (val - 1) * 10; 730 break; 731 case imvp9: 732 if (val >= 0x01) 733 rv = 200 + (val - 1) * 10; 734 break; 735 case amd625mv: 736 if (val >= 0x0 && val <= 0xd8) 737 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 738 break; 739 } 740 return rv; 741 } 742 743 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 744 { 745 s64 val; 746 747 if (!sensor->convert) 748 return sensor->data; 749 750 switch (data->info->format[sensor->class]) { 751 case direct: 752 val = pmbus_reg2data_direct(data, sensor); 753 break; 754 case vid: 755 val = pmbus_reg2data_vid(data, sensor); 756 break; 757 case linear: 758 default: 759 val = pmbus_reg2data_linear(data, sensor); 760 break; 761 } 762 return val; 763 } 764 765 #define MAX_MANTISSA (1023 * 1000) 766 #define MIN_MANTISSA (511 * 1000) 767 768 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 769 struct pmbus_sensor *sensor, s64 val) 770 { 771 s16 exponent = 0, mantissa; 772 bool negative = false; 773 774 /* simple case */ 775 if (val == 0) 776 return 0; 777 778 if (sensor->class == PSC_VOLTAGE_OUT) { 779 /* LINEAR16 does not support negative voltages */ 780 if (val < 0) 781 return 0; 782 783 /* 784 * For a static exponents, we don't have a choice 785 * but to adjust the value to it. 786 */ 787 if (data->exponent[sensor->page] < 0) 788 val <<= -data->exponent[sensor->page]; 789 else 790 val >>= data->exponent[sensor->page]; 791 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 792 return clamp_val(val, 0, 0xffff); 793 } 794 795 if (val < 0) { 796 negative = true; 797 val = -val; 798 } 799 800 /* Power is in uW. Convert to mW before converting. */ 801 if (sensor->class == PSC_POWER) 802 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 803 804 /* 805 * For simplicity, convert fan data to milli-units 806 * before calculating the exponent. 807 */ 808 if (sensor->class == PSC_FAN) 809 val = val * 1000LL; 810 811 /* Reduce large mantissa until it fits into 10 bit */ 812 while (val >= MAX_MANTISSA && exponent < 15) { 813 exponent++; 814 val >>= 1; 815 } 816 /* Increase small mantissa to improve precision */ 817 while (val < MIN_MANTISSA && exponent > -15) { 818 exponent--; 819 val <<= 1; 820 } 821 822 /* Convert mantissa from milli-units to units */ 823 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 824 825 /* restore sign */ 826 if (negative) 827 mantissa = -mantissa; 828 829 /* Convert to 5 bit exponent, 11 bit mantissa */ 830 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 831 } 832 833 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 834 struct pmbus_sensor *sensor, s64 val) 835 { 836 s64 b; 837 s32 m, R; 838 839 m = data->info->m[sensor->class]; 840 b = data->info->b[sensor->class]; 841 R = data->info->R[sensor->class]; 842 843 /* Power is in uW. Adjust R and b. */ 844 if (sensor->class == PSC_POWER) { 845 R -= 3; 846 b *= 1000; 847 } 848 849 /* Calculate Y = (m * X + b) * 10^R */ 850 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 851 R -= 3; /* Adjust R and b for data in milli-units */ 852 b *= 1000; 853 } 854 val = val * m + b; 855 856 while (R > 0) { 857 val *= 10; 858 R--; 859 } 860 while (R < 0) { 861 val = div_s64(val + 5LL, 10L); /* round closest */ 862 R++; 863 } 864 865 return (u16)clamp_val(val, S16_MIN, S16_MAX); 866 } 867 868 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 869 struct pmbus_sensor *sensor, s64 val) 870 { 871 val = clamp_val(val, 500, 1600); 872 873 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 874 } 875 876 static u16 pmbus_data2reg(struct pmbus_data *data, 877 struct pmbus_sensor *sensor, s64 val) 878 { 879 u16 regval; 880 881 if (!sensor->convert) 882 return val; 883 884 switch (data->info->format[sensor->class]) { 885 case direct: 886 regval = pmbus_data2reg_direct(data, sensor, val); 887 break; 888 case vid: 889 regval = pmbus_data2reg_vid(data, sensor, val); 890 break; 891 case linear: 892 default: 893 regval = pmbus_data2reg_linear(data, sensor, val); 894 break; 895 } 896 return regval; 897 } 898 899 /* 900 * Return boolean calculated from converted data. 901 * <index> defines a status register index and mask. 902 * The mask is in the lower 8 bits, the register index is in bits 8..23. 903 * 904 * The associated pmbus_boolean structure contains optional pointers to two 905 * sensor attributes. If specified, those attributes are compared against each 906 * other to determine if a limit has been exceeded. 907 * 908 * If the sensor attribute pointers are NULL, the function returns true if 909 * (status[reg] & mask) is true. 910 * 911 * If sensor attribute pointers are provided, a comparison against a specified 912 * limit has to be performed to determine the boolean result. 913 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 914 * sensor values referenced by sensor attribute pointers s1 and s2). 915 * 916 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 917 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 918 * 919 * If a negative value is stored in any of the referenced registers, this value 920 * reflects an error code which will be returned. 921 */ 922 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b, 923 int index) 924 { 925 struct pmbus_sensor *s1 = b->s1; 926 struct pmbus_sensor *s2 = b->s2; 927 u16 reg = (index >> 16) & 0xffff; 928 u16 mask = index & 0xffff; 929 int ret, status; 930 u16 regval; 931 932 status = data->status[reg]; 933 if (status < 0) 934 return status; 935 936 regval = status & mask; 937 if (!s1 && !s2) { 938 ret = !!regval; 939 } else if (!s1 || !s2) { 940 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2); 941 return 0; 942 } else { 943 s64 v1, v2; 944 945 if (s1->data < 0) 946 return s1->data; 947 if (s2->data < 0) 948 return s2->data; 949 950 v1 = pmbus_reg2data(data, s1); 951 v2 = pmbus_reg2data(data, s2); 952 ret = !!(regval && v1 >= v2); 953 } 954 return ret; 955 } 956 957 static ssize_t pmbus_show_boolean(struct device *dev, 958 struct device_attribute *da, char *buf) 959 { 960 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 961 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 962 struct pmbus_data *data = pmbus_update_device(dev); 963 int val; 964 965 val = pmbus_get_boolean(data, boolean, attr->index); 966 if (val < 0) 967 return val; 968 return snprintf(buf, PAGE_SIZE, "%d\n", val); 969 } 970 971 static ssize_t pmbus_show_sensor(struct device *dev, 972 struct device_attribute *devattr, char *buf) 973 { 974 struct pmbus_data *data = pmbus_update_device(dev); 975 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 976 977 if (sensor->data < 0) 978 return sensor->data; 979 980 return snprintf(buf, PAGE_SIZE, "%lld\n", pmbus_reg2data(data, sensor)); 981 } 982 983 static ssize_t pmbus_set_sensor(struct device *dev, 984 struct device_attribute *devattr, 985 const char *buf, size_t count) 986 { 987 struct i2c_client *client = to_i2c_client(dev->parent); 988 struct pmbus_data *data = i2c_get_clientdata(client); 989 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 990 ssize_t rv = count; 991 s64 val; 992 int ret; 993 u16 regval; 994 995 if (kstrtos64(buf, 10, &val) < 0) 996 return -EINVAL; 997 998 mutex_lock(&data->update_lock); 999 regval = pmbus_data2reg(data, sensor, val); 1000 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 1001 if (ret < 0) 1002 rv = ret; 1003 else 1004 sensor->data = regval; 1005 mutex_unlock(&data->update_lock); 1006 return rv; 1007 } 1008 1009 static ssize_t pmbus_show_label(struct device *dev, 1010 struct device_attribute *da, char *buf) 1011 { 1012 struct pmbus_label *label = to_pmbus_label(da); 1013 1014 return snprintf(buf, PAGE_SIZE, "%s\n", label->label); 1015 } 1016 1017 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 1018 { 1019 if (data->num_attributes >= data->max_attributes - 1) { 1020 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 1021 void *new_attrs = krealloc(data->group.attrs, 1022 new_max_attrs * sizeof(void *), 1023 GFP_KERNEL); 1024 if (!new_attrs) 1025 return -ENOMEM; 1026 data->group.attrs = new_attrs; 1027 data->max_attributes = new_max_attrs; 1028 } 1029 1030 data->group.attrs[data->num_attributes++] = attr; 1031 data->group.attrs[data->num_attributes] = NULL; 1032 return 0; 1033 } 1034 1035 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1036 const char *name, 1037 umode_t mode, 1038 ssize_t (*show)(struct device *dev, 1039 struct device_attribute *attr, 1040 char *buf), 1041 ssize_t (*store)(struct device *dev, 1042 struct device_attribute *attr, 1043 const char *buf, size_t count)) 1044 { 1045 sysfs_attr_init(&dev_attr->attr); 1046 dev_attr->attr.name = name; 1047 dev_attr->attr.mode = mode; 1048 dev_attr->show = show; 1049 dev_attr->store = store; 1050 } 1051 1052 static void pmbus_attr_init(struct sensor_device_attribute *a, 1053 const char *name, 1054 umode_t mode, 1055 ssize_t (*show)(struct device *dev, 1056 struct device_attribute *attr, 1057 char *buf), 1058 ssize_t (*store)(struct device *dev, 1059 struct device_attribute *attr, 1060 const char *buf, size_t count), 1061 int idx) 1062 { 1063 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1064 a->index = idx; 1065 } 1066 1067 static int pmbus_add_boolean(struct pmbus_data *data, 1068 const char *name, const char *type, int seq, 1069 struct pmbus_sensor *s1, 1070 struct pmbus_sensor *s2, 1071 u16 reg, u16 mask) 1072 { 1073 struct pmbus_boolean *boolean; 1074 struct sensor_device_attribute *a; 1075 1076 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1077 if (!boolean) 1078 return -ENOMEM; 1079 1080 a = &boolean->attribute; 1081 1082 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1083 name, seq, type); 1084 boolean->s1 = s1; 1085 boolean->s2 = s2; 1086 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1087 (reg << 16) | mask); 1088 1089 return pmbus_add_attribute(data, &a->dev_attr.attr); 1090 } 1091 1092 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1093 const char *name, const char *type, 1094 int seq, int page, int phase, 1095 int reg, 1096 enum pmbus_sensor_classes class, 1097 bool update, bool readonly, 1098 bool convert) 1099 { 1100 struct pmbus_sensor *sensor; 1101 struct device_attribute *a; 1102 1103 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1104 if (!sensor) 1105 return NULL; 1106 a = &sensor->attribute; 1107 1108 if (type) 1109 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1110 name, seq, type); 1111 else 1112 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1113 name, seq); 1114 1115 if (data->flags & PMBUS_WRITE_PROTECTED) 1116 readonly = true; 1117 1118 sensor->page = page; 1119 sensor->phase = phase; 1120 sensor->reg = reg; 1121 sensor->class = class; 1122 sensor->update = update; 1123 sensor->convert = convert; 1124 pmbus_dev_attr_init(a, sensor->name, 1125 readonly ? 0444 : 0644, 1126 pmbus_show_sensor, pmbus_set_sensor); 1127 1128 if (pmbus_add_attribute(data, &a->attr)) 1129 return NULL; 1130 1131 sensor->next = data->sensors; 1132 data->sensors = sensor; 1133 1134 return sensor; 1135 } 1136 1137 static int pmbus_add_label(struct pmbus_data *data, 1138 const char *name, int seq, 1139 const char *lstring, int index, int phase) 1140 { 1141 struct pmbus_label *label; 1142 struct device_attribute *a; 1143 1144 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1145 if (!label) 1146 return -ENOMEM; 1147 1148 a = &label->attribute; 1149 1150 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1151 if (!index) { 1152 if (phase == 0xff) 1153 strncpy(label->label, lstring, 1154 sizeof(label->label) - 1); 1155 else 1156 snprintf(label->label, sizeof(label->label), "%s.%d", 1157 lstring, phase); 1158 } else { 1159 if (phase == 0xff) 1160 snprintf(label->label, sizeof(label->label), "%s%d", 1161 lstring, index); 1162 else 1163 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1164 lstring, index, phase); 1165 } 1166 1167 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1168 return pmbus_add_attribute(data, &a->attr); 1169 } 1170 1171 /* 1172 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1173 */ 1174 1175 /* 1176 * The pmbus_limit_attr structure describes a single limit attribute 1177 * and its associated alarm attribute. 1178 */ 1179 struct pmbus_limit_attr { 1180 u16 reg; /* Limit register */ 1181 u16 sbit; /* Alarm attribute status bit */ 1182 bool update; /* True if register needs updates */ 1183 bool low; /* True if low limit; for limits with compare 1184 functions only */ 1185 const char *attr; /* Attribute name */ 1186 const char *alarm; /* Alarm attribute name */ 1187 }; 1188 1189 /* 1190 * The pmbus_sensor_attr structure describes one sensor attribute. This 1191 * description includes a reference to the associated limit attributes. 1192 */ 1193 struct pmbus_sensor_attr { 1194 u16 reg; /* sensor register */ 1195 u16 gbit; /* generic status bit */ 1196 u8 nlimit; /* # of limit registers */ 1197 enum pmbus_sensor_classes class;/* sensor class */ 1198 const char *label; /* sensor label */ 1199 bool paged; /* true if paged sensor */ 1200 bool update; /* true if update needed */ 1201 bool compare; /* true if compare function needed */ 1202 u32 func; /* sensor mask */ 1203 u32 sfunc; /* sensor status mask */ 1204 int sbase; /* status base register */ 1205 const struct pmbus_limit_attr *limit;/* limit registers */ 1206 }; 1207 1208 /* 1209 * Add a set of limit attributes and, if supported, the associated 1210 * alarm attributes. 1211 * returns 0 if no alarm register found, 1 if an alarm register was found, 1212 * < 0 on errors. 1213 */ 1214 static int pmbus_add_limit_attrs(struct i2c_client *client, 1215 struct pmbus_data *data, 1216 const struct pmbus_driver_info *info, 1217 const char *name, int index, int page, 1218 struct pmbus_sensor *base, 1219 const struct pmbus_sensor_attr *attr) 1220 { 1221 const struct pmbus_limit_attr *l = attr->limit; 1222 int nlimit = attr->nlimit; 1223 int have_alarm = 0; 1224 int i, ret; 1225 struct pmbus_sensor *curr; 1226 1227 for (i = 0; i < nlimit; i++) { 1228 if (pmbus_check_word_register(client, page, l->reg)) { 1229 curr = pmbus_add_sensor(data, name, l->attr, index, 1230 page, 0xff, l->reg, attr->class, 1231 attr->update || l->update, 1232 false, true); 1233 if (!curr) 1234 return -ENOMEM; 1235 if (l->sbit && (info->func[page] & attr->sfunc)) { 1236 ret = pmbus_add_boolean(data, name, 1237 l->alarm, index, 1238 attr->compare ? l->low ? curr : base 1239 : NULL, 1240 attr->compare ? l->low ? base : curr 1241 : NULL, 1242 attr->sbase + page, l->sbit); 1243 if (ret) 1244 return ret; 1245 have_alarm = 1; 1246 } 1247 } 1248 l++; 1249 } 1250 return have_alarm; 1251 } 1252 1253 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1254 struct pmbus_data *data, 1255 const struct pmbus_driver_info *info, 1256 const char *name, 1257 int index, int page, int phase, 1258 const struct pmbus_sensor_attr *attr, 1259 bool paged) 1260 { 1261 struct pmbus_sensor *base; 1262 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1263 int ret; 1264 1265 if (attr->label) { 1266 ret = pmbus_add_label(data, name, index, attr->label, 1267 paged ? page + 1 : 0, phase); 1268 if (ret) 1269 return ret; 1270 } 1271 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1272 attr->reg, attr->class, true, true, true); 1273 if (!base) 1274 return -ENOMEM; 1275 /* No limit and alarm attributes for phase specific sensors */ 1276 if (attr->sfunc && phase == 0xff) { 1277 ret = pmbus_add_limit_attrs(client, data, info, name, 1278 index, page, base, attr); 1279 if (ret < 0) 1280 return ret; 1281 /* 1282 * Add generic alarm attribute only if there are no individual 1283 * alarm attributes, if there is a global alarm bit, and if 1284 * the generic status register (word or byte, depending on 1285 * which global bit is set) for this page is accessible. 1286 */ 1287 if (!ret && attr->gbit && 1288 (!upper || (upper && data->has_status_word)) && 1289 pmbus_check_status_register(client, page)) { 1290 ret = pmbus_add_boolean(data, name, "alarm", index, 1291 NULL, NULL, 1292 PB_STATUS_BASE + page, 1293 attr->gbit); 1294 if (ret) 1295 return ret; 1296 } 1297 } 1298 return 0; 1299 } 1300 1301 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1302 const struct pmbus_sensor_attr *attr) 1303 { 1304 int p; 1305 1306 if (attr->paged) 1307 return true; 1308 1309 /* 1310 * Some attributes may be present on more than one page despite 1311 * not being marked with the paged attribute. If that is the case, 1312 * then treat the sensor as being paged and add the page suffix to the 1313 * attribute name. 1314 * We don't just add the paged attribute to all such attributes, in 1315 * order to maintain the un-suffixed labels in the case where the 1316 * attribute is only on page 0. 1317 */ 1318 for (p = 1; p < info->pages; p++) { 1319 if (info->func[p] & attr->func) 1320 return true; 1321 } 1322 return false; 1323 } 1324 1325 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1326 struct pmbus_data *data, 1327 const char *name, 1328 const struct pmbus_sensor_attr *attrs, 1329 int nattrs) 1330 { 1331 const struct pmbus_driver_info *info = data->info; 1332 int index, i; 1333 int ret; 1334 1335 index = 1; 1336 for (i = 0; i < nattrs; i++) { 1337 int page, pages; 1338 bool paged = pmbus_sensor_is_paged(info, attrs); 1339 1340 pages = paged ? info->pages : 1; 1341 for (page = 0; page < pages; page++) { 1342 if (!(info->func[page] & attrs->func)) 1343 continue; 1344 ret = pmbus_add_sensor_attrs_one(client, data, info, 1345 name, index, page, 1346 0xff, attrs, paged); 1347 if (ret) 1348 return ret; 1349 index++; 1350 if (info->phases[page]) { 1351 int phase; 1352 1353 for (phase = 0; phase < info->phases[page]; 1354 phase++) { 1355 if (!(info->pfunc[phase] & attrs->func)) 1356 continue; 1357 ret = pmbus_add_sensor_attrs_one(client, 1358 data, info, name, index, page, 1359 phase, attrs, paged); 1360 if (ret) 1361 return ret; 1362 index++; 1363 } 1364 } 1365 } 1366 attrs++; 1367 } 1368 return 0; 1369 } 1370 1371 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1372 { 1373 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1374 .attr = "min", 1375 .alarm = "min_alarm", 1376 .sbit = PB_VOLTAGE_UV_WARNING, 1377 }, { 1378 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1379 .attr = "lcrit", 1380 .alarm = "lcrit_alarm", 1381 .sbit = PB_VOLTAGE_UV_FAULT, 1382 }, { 1383 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1384 .attr = "max", 1385 .alarm = "max_alarm", 1386 .sbit = PB_VOLTAGE_OV_WARNING, 1387 }, { 1388 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1389 .attr = "crit", 1390 .alarm = "crit_alarm", 1391 .sbit = PB_VOLTAGE_OV_FAULT, 1392 }, { 1393 .reg = PMBUS_VIRT_READ_VIN_AVG, 1394 .update = true, 1395 .attr = "average", 1396 }, { 1397 .reg = PMBUS_VIRT_READ_VIN_MIN, 1398 .update = true, 1399 .attr = "lowest", 1400 }, { 1401 .reg = PMBUS_VIRT_READ_VIN_MAX, 1402 .update = true, 1403 .attr = "highest", 1404 }, { 1405 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1406 .attr = "reset_history", 1407 }, 1408 }; 1409 1410 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1411 { 1412 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1413 .attr = "min", 1414 .alarm = "min_alarm", 1415 .sbit = PB_VOLTAGE_UV_WARNING, 1416 }, { 1417 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1418 .attr = "lcrit", 1419 .alarm = "lcrit_alarm", 1420 .sbit = PB_VOLTAGE_UV_FAULT, 1421 }, { 1422 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1423 .attr = "max", 1424 .alarm = "max_alarm", 1425 .sbit = PB_VOLTAGE_OV_WARNING, 1426 }, { 1427 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1428 .attr = "crit", 1429 .alarm = "crit_alarm", 1430 .sbit = PB_VOLTAGE_OV_FAULT, 1431 } 1432 }; 1433 1434 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1435 { 1436 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1437 .attr = "min", 1438 .alarm = "min_alarm", 1439 .sbit = PB_VOLTAGE_UV_WARNING, 1440 }, { 1441 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1442 .attr = "lcrit", 1443 .alarm = "lcrit_alarm", 1444 .sbit = PB_VOLTAGE_UV_FAULT, 1445 }, { 1446 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1447 .attr = "max", 1448 .alarm = "max_alarm", 1449 .sbit = PB_VOLTAGE_OV_WARNING, 1450 }, { 1451 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1452 .attr = "crit", 1453 .alarm = "crit_alarm", 1454 .sbit = PB_VOLTAGE_OV_FAULT, 1455 }, { 1456 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1457 .update = true, 1458 .attr = "average", 1459 }, { 1460 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1461 .update = true, 1462 .attr = "lowest", 1463 }, { 1464 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1465 .update = true, 1466 .attr = "highest", 1467 }, { 1468 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1469 .attr = "reset_history", 1470 } 1471 }; 1472 1473 static const struct pmbus_sensor_attr voltage_attributes[] = { 1474 { 1475 .reg = PMBUS_READ_VIN, 1476 .class = PSC_VOLTAGE_IN, 1477 .label = "vin", 1478 .func = PMBUS_HAVE_VIN, 1479 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1480 .sbase = PB_STATUS_INPUT_BASE, 1481 .gbit = PB_STATUS_VIN_UV, 1482 .limit = vin_limit_attrs, 1483 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1484 }, { 1485 .reg = PMBUS_VIRT_READ_VMON, 1486 .class = PSC_VOLTAGE_IN, 1487 .label = "vmon", 1488 .func = PMBUS_HAVE_VMON, 1489 .sfunc = PMBUS_HAVE_STATUS_VMON, 1490 .sbase = PB_STATUS_VMON_BASE, 1491 .limit = vmon_limit_attrs, 1492 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1493 }, { 1494 .reg = PMBUS_READ_VCAP, 1495 .class = PSC_VOLTAGE_IN, 1496 .label = "vcap", 1497 .func = PMBUS_HAVE_VCAP, 1498 }, { 1499 .reg = PMBUS_READ_VOUT, 1500 .class = PSC_VOLTAGE_OUT, 1501 .label = "vout", 1502 .paged = true, 1503 .func = PMBUS_HAVE_VOUT, 1504 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1505 .sbase = PB_STATUS_VOUT_BASE, 1506 .gbit = PB_STATUS_VOUT_OV, 1507 .limit = vout_limit_attrs, 1508 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1509 } 1510 }; 1511 1512 /* Current attributes */ 1513 1514 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1515 { 1516 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1517 .attr = "max", 1518 .alarm = "max_alarm", 1519 .sbit = PB_IIN_OC_WARNING, 1520 }, { 1521 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1522 .attr = "crit", 1523 .alarm = "crit_alarm", 1524 .sbit = PB_IIN_OC_FAULT, 1525 }, { 1526 .reg = PMBUS_VIRT_READ_IIN_AVG, 1527 .update = true, 1528 .attr = "average", 1529 }, { 1530 .reg = PMBUS_VIRT_READ_IIN_MIN, 1531 .update = true, 1532 .attr = "lowest", 1533 }, { 1534 .reg = PMBUS_VIRT_READ_IIN_MAX, 1535 .update = true, 1536 .attr = "highest", 1537 }, { 1538 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1539 .attr = "reset_history", 1540 } 1541 }; 1542 1543 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1544 { 1545 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1546 .attr = "max", 1547 .alarm = "max_alarm", 1548 .sbit = PB_IOUT_OC_WARNING, 1549 }, { 1550 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1551 .attr = "lcrit", 1552 .alarm = "lcrit_alarm", 1553 .sbit = PB_IOUT_UC_FAULT, 1554 }, { 1555 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1556 .attr = "crit", 1557 .alarm = "crit_alarm", 1558 .sbit = PB_IOUT_OC_FAULT, 1559 }, { 1560 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1561 .update = true, 1562 .attr = "average", 1563 }, { 1564 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1565 .update = true, 1566 .attr = "lowest", 1567 }, { 1568 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1569 .update = true, 1570 .attr = "highest", 1571 }, { 1572 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1573 .attr = "reset_history", 1574 } 1575 }; 1576 1577 static const struct pmbus_sensor_attr current_attributes[] = { 1578 { 1579 .reg = PMBUS_READ_IIN, 1580 .class = PSC_CURRENT_IN, 1581 .label = "iin", 1582 .func = PMBUS_HAVE_IIN, 1583 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1584 .sbase = PB_STATUS_INPUT_BASE, 1585 .gbit = PB_STATUS_INPUT, 1586 .limit = iin_limit_attrs, 1587 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1588 }, { 1589 .reg = PMBUS_READ_IOUT, 1590 .class = PSC_CURRENT_OUT, 1591 .label = "iout", 1592 .paged = true, 1593 .func = PMBUS_HAVE_IOUT, 1594 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1595 .sbase = PB_STATUS_IOUT_BASE, 1596 .gbit = PB_STATUS_IOUT_OC, 1597 .limit = iout_limit_attrs, 1598 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1599 } 1600 }; 1601 1602 /* Power attributes */ 1603 1604 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1605 { 1606 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1607 .attr = "max", 1608 .alarm = "alarm", 1609 .sbit = PB_PIN_OP_WARNING, 1610 }, { 1611 .reg = PMBUS_VIRT_READ_PIN_AVG, 1612 .update = true, 1613 .attr = "average", 1614 }, { 1615 .reg = PMBUS_VIRT_READ_PIN_MIN, 1616 .update = true, 1617 .attr = "input_lowest", 1618 }, { 1619 .reg = PMBUS_VIRT_READ_PIN_MAX, 1620 .update = true, 1621 .attr = "input_highest", 1622 }, { 1623 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1624 .attr = "reset_history", 1625 } 1626 }; 1627 1628 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1629 { 1630 .reg = PMBUS_POUT_MAX, 1631 .attr = "cap", 1632 .alarm = "cap_alarm", 1633 .sbit = PB_POWER_LIMITING, 1634 }, { 1635 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1636 .attr = "max", 1637 .alarm = "max_alarm", 1638 .sbit = PB_POUT_OP_WARNING, 1639 }, { 1640 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1641 .attr = "crit", 1642 .alarm = "crit_alarm", 1643 .sbit = PB_POUT_OP_FAULT, 1644 }, { 1645 .reg = PMBUS_VIRT_READ_POUT_AVG, 1646 .update = true, 1647 .attr = "average", 1648 }, { 1649 .reg = PMBUS_VIRT_READ_POUT_MIN, 1650 .update = true, 1651 .attr = "input_lowest", 1652 }, { 1653 .reg = PMBUS_VIRT_READ_POUT_MAX, 1654 .update = true, 1655 .attr = "input_highest", 1656 }, { 1657 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1658 .attr = "reset_history", 1659 } 1660 }; 1661 1662 static const struct pmbus_sensor_attr power_attributes[] = { 1663 { 1664 .reg = PMBUS_READ_PIN, 1665 .class = PSC_POWER, 1666 .label = "pin", 1667 .func = PMBUS_HAVE_PIN, 1668 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1669 .sbase = PB_STATUS_INPUT_BASE, 1670 .gbit = PB_STATUS_INPUT, 1671 .limit = pin_limit_attrs, 1672 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1673 }, { 1674 .reg = PMBUS_READ_POUT, 1675 .class = PSC_POWER, 1676 .label = "pout", 1677 .paged = true, 1678 .func = PMBUS_HAVE_POUT, 1679 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1680 .sbase = PB_STATUS_IOUT_BASE, 1681 .limit = pout_limit_attrs, 1682 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1683 } 1684 }; 1685 1686 /* Temperature atributes */ 1687 1688 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1689 { 1690 .reg = PMBUS_UT_WARN_LIMIT, 1691 .low = true, 1692 .attr = "min", 1693 .alarm = "min_alarm", 1694 .sbit = PB_TEMP_UT_WARNING, 1695 }, { 1696 .reg = PMBUS_UT_FAULT_LIMIT, 1697 .low = true, 1698 .attr = "lcrit", 1699 .alarm = "lcrit_alarm", 1700 .sbit = PB_TEMP_UT_FAULT, 1701 }, { 1702 .reg = PMBUS_OT_WARN_LIMIT, 1703 .attr = "max", 1704 .alarm = "max_alarm", 1705 .sbit = PB_TEMP_OT_WARNING, 1706 }, { 1707 .reg = PMBUS_OT_FAULT_LIMIT, 1708 .attr = "crit", 1709 .alarm = "crit_alarm", 1710 .sbit = PB_TEMP_OT_FAULT, 1711 }, { 1712 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1713 .attr = "lowest", 1714 }, { 1715 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1716 .attr = "average", 1717 }, { 1718 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1719 .attr = "highest", 1720 }, { 1721 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1722 .attr = "reset_history", 1723 } 1724 }; 1725 1726 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1727 { 1728 .reg = PMBUS_UT_WARN_LIMIT, 1729 .low = true, 1730 .attr = "min", 1731 .alarm = "min_alarm", 1732 .sbit = PB_TEMP_UT_WARNING, 1733 }, { 1734 .reg = PMBUS_UT_FAULT_LIMIT, 1735 .low = true, 1736 .attr = "lcrit", 1737 .alarm = "lcrit_alarm", 1738 .sbit = PB_TEMP_UT_FAULT, 1739 }, { 1740 .reg = PMBUS_OT_WARN_LIMIT, 1741 .attr = "max", 1742 .alarm = "max_alarm", 1743 .sbit = PB_TEMP_OT_WARNING, 1744 }, { 1745 .reg = PMBUS_OT_FAULT_LIMIT, 1746 .attr = "crit", 1747 .alarm = "crit_alarm", 1748 .sbit = PB_TEMP_OT_FAULT, 1749 }, { 1750 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1751 .attr = "lowest", 1752 }, { 1753 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1754 .attr = "average", 1755 }, { 1756 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1757 .attr = "highest", 1758 }, { 1759 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1760 .attr = "reset_history", 1761 } 1762 }; 1763 1764 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1765 { 1766 .reg = PMBUS_UT_WARN_LIMIT, 1767 .low = true, 1768 .attr = "min", 1769 .alarm = "min_alarm", 1770 .sbit = PB_TEMP_UT_WARNING, 1771 }, { 1772 .reg = PMBUS_UT_FAULT_LIMIT, 1773 .low = true, 1774 .attr = "lcrit", 1775 .alarm = "lcrit_alarm", 1776 .sbit = PB_TEMP_UT_FAULT, 1777 }, { 1778 .reg = PMBUS_OT_WARN_LIMIT, 1779 .attr = "max", 1780 .alarm = "max_alarm", 1781 .sbit = PB_TEMP_OT_WARNING, 1782 }, { 1783 .reg = PMBUS_OT_FAULT_LIMIT, 1784 .attr = "crit", 1785 .alarm = "crit_alarm", 1786 .sbit = PB_TEMP_OT_FAULT, 1787 } 1788 }; 1789 1790 static const struct pmbus_sensor_attr temp_attributes[] = { 1791 { 1792 .reg = PMBUS_READ_TEMPERATURE_1, 1793 .class = PSC_TEMPERATURE, 1794 .paged = true, 1795 .update = true, 1796 .compare = true, 1797 .func = PMBUS_HAVE_TEMP, 1798 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1799 .sbase = PB_STATUS_TEMP_BASE, 1800 .gbit = PB_STATUS_TEMPERATURE, 1801 .limit = temp_limit_attrs, 1802 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1803 }, { 1804 .reg = PMBUS_READ_TEMPERATURE_2, 1805 .class = PSC_TEMPERATURE, 1806 .paged = true, 1807 .update = true, 1808 .compare = true, 1809 .func = PMBUS_HAVE_TEMP2, 1810 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1811 .sbase = PB_STATUS_TEMP_BASE, 1812 .gbit = PB_STATUS_TEMPERATURE, 1813 .limit = temp_limit_attrs2, 1814 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1815 }, { 1816 .reg = PMBUS_READ_TEMPERATURE_3, 1817 .class = PSC_TEMPERATURE, 1818 .paged = true, 1819 .update = true, 1820 .compare = true, 1821 .func = PMBUS_HAVE_TEMP3, 1822 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1823 .sbase = PB_STATUS_TEMP_BASE, 1824 .gbit = PB_STATUS_TEMPERATURE, 1825 .limit = temp_limit_attrs3, 1826 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1827 } 1828 }; 1829 1830 static const int pmbus_fan_registers[] = { 1831 PMBUS_READ_FAN_SPEED_1, 1832 PMBUS_READ_FAN_SPEED_2, 1833 PMBUS_READ_FAN_SPEED_3, 1834 PMBUS_READ_FAN_SPEED_4 1835 }; 1836 1837 static const int pmbus_fan_status_registers[] = { 1838 PMBUS_STATUS_FAN_12, 1839 PMBUS_STATUS_FAN_12, 1840 PMBUS_STATUS_FAN_34, 1841 PMBUS_STATUS_FAN_34 1842 }; 1843 1844 static const u32 pmbus_fan_flags[] = { 1845 PMBUS_HAVE_FAN12, 1846 PMBUS_HAVE_FAN12, 1847 PMBUS_HAVE_FAN34, 1848 PMBUS_HAVE_FAN34 1849 }; 1850 1851 static const u32 pmbus_fan_status_flags[] = { 1852 PMBUS_HAVE_STATUS_FAN12, 1853 PMBUS_HAVE_STATUS_FAN12, 1854 PMBUS_HAVE_STATUS_FAN34, 1855 PMBUS_HAVE_STATUS_FAN34 1856 }; 1857 1858 /* Fans */ 1859 1860 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 1861 static int pmbus_add_fan_ctrl(struct i2c_client *client, 1862 struct pmbus_data *data, int index, int page, int id, 1863 u8 config) 1864 { 1865 struct pmbus_sensor *sensor; 1866 1867 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 1868 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 1869 false, false, true); 1870 1871 if (!sensor) 1872 return -ENOMEM; 1873 1874 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 1875 (data->info->func[page] & PMBUS_HAVE_PWM34))) 1876 return 0; 1877 1878 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 1879 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 1880 false, false, true); 1881 1882 if (!sensor) 1883 return -ENOMEM; 1884 1885 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 1886 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 1887 true, false, false); 1888 1889 if (!sensor) 1890 return -ENOMEM; 1891 1892 return 0; 1893 } 1894 1895 static int pmbus_add_fan_attributes(struct i2c_client *client, 1896 struct pmbus_data *data) 1897 { 1898 const struct pmbus_driver_info *info = data->info; 1899 int index = 1; 1900 int page; 1901 int ret; 1902 1903 for (page = 0; page < info->pages; page++) { 1904 int f; 1905 1906 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1907 int regval; 1908 1909 if (!(info->func[page] & pmbus_fan_flags[f])) 1910 break; 1911 1912 if (!pmbus_check_word_register(client, page, 1913 pmbus_fan_registers[f])) 1914 break; 1915 1916 /* 1917 * Skip fan if not installed. 1918 * Each fan configuration register covers multiple fans, 1919 * so we have to do some magic. 1920 */ 1921 regval = _pmbus_read_byte_data(client, page, 1922 pmbus_fan_config_registers[f]); 1923 if (regval < 0 || 1924 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1925 continue; 1926 1927 if (pmbus_add_sensor(data, "fan", "input", index, 1928 page, 0xff, pmbus_fan_registers[f], 1929 PSC_FAN, true, true, true) == NULL) 1930 return -ENOMEM; 1931 1932 /* Fan control */ 1933 if (pmbus_check_word_register(client, page, 1934 pmbus_fan_command_registers[f])) { 1935 ret = pmbus_add_fan_ctrl(client, data, index, 1936 page, f, regval); 1937 if (ret < 0) 1938 return ret; 1939 } 1940 1941 /* 1942 * Each fan status register covers multiple fans, 1943 * so we have to do some magic. 1944 */ 1945 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1946 pmbus_check_byte_register(client, 1947 page, pmbus_fan_status_registers[f])) { 1948 int base; 1949 1950 if (f > 1) /* fan 3, 4 */ 1951 base = PB_STATUS_FAN34_BASE + page; 1952 else 1953 base = PB_STATUS_FAN_BASE + page; 1954 ret = pmbus_add_boolean(data, "fan", 1955 "alarm", index, NULL, NULL, base, 1956 PB_FAN_FAN1_WARNING >> (f & 1)); 1957 if (ret) 1958 return ret; 1959 ret = pmbus_add_boolean(data, "fan", 1960 "fault", index, NULL, NULL, base, 1961 PB_FAN_FAN1_FAULT >> (f & 1)); 1962 if (ret) 1963 return ret; 1964 } 1965 index++; 1966 } 1967 } 1968 return 0; 1969 } 1970 1971 struct pmbus_samples_attr { 1972 int reg; 1973 char *name; 1974 }; 1975 1976 struct pmbus_samples_reg { 1977 int page; 1978 struct pmbus_samples_attr *attr; 1979 struct device_attribute dev_attr; 1980 }; 1981 1982 static struct pmbus_samples_attr pmbus_samples_registers[] = { 1983 { 1984 .reg = PMBUS_VIRT_SAMPLES, 1985 .name = "samples", 1986 }, { 1987 .reg = PMBUS_VIRT_IN_SAMPLES, 1988 .name = "in_samples", 1989 }, { 1990 .reg = PMBUS_VIRT_CURR_SAMPLES, 1991 .name = "curr_samples", 1992 }, { 1993 .reg = PMBUS_VIRT_POWER_SAMPLES, 1994 .name = "power_samples", 1995 }, { 1996 .reg = PMBUS_VIRT_TEMP_SAMPLES, 1997 .name = "temp_samples", 1998 } 1999 }; 2000 2001 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2002 2003 static ssize_t pmbus_show_samples(struct device *dev, 2004 struct device_attribute *devattr, char *buf) 2005 { 2006 int val; 2007 struct i2c_client *client = to_i2c_client(dev->parent); 2008 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2009 2010 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2011 if (val < 0) 2012 return val; 2013 2014 return snprintf(buf, PAGE_SIZE, "%d\n", val); 2015 } 2016 2017 static ssize_t pmbus_set_samples(struct device *dev, 2018 struct device_attribute *devattr, 2019 const char *buf, size_t count) 2020 { 2021 int ret; 2022 long val; 2023 struct i2c_client *client = to_i2c_client(dev->parent); 2024 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2025 struct pmbus_data *data = i2c_get_clientdata(client); 2026 2027 if (kstrtol(buf, 0, &val) < 0) 2028 return -EINVAL; 2029 2030 mutex_lock(&data->update_lock); 2031 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2032 mutex_unlock(&data->update_lock); 2033 2034 return ret ? : count; 2035 } 2036 2037 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2038 struct pmbus_samples_attr *attr) 2039 { 2040 struct pmbus_samples_reg *reg; 2041 2042 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2043 if (!reg) 2044 return -ENOMEM; 2045 2046 reg->attr = attr; 2047 reg->page = page; 2048 2049 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2050 pmbus_show_samples, pmbus_set_samples); 2051 2052 return pmbus_add_attribute(data, ®->dev_attr.attr); 2053 } 2054 2055 static int pmbus_add_samples_attributes(struct i2c_client *client, 2056 struct pmbus_data *data) 2057 { 2058 const struct pmbus_driver_info *info = data->info; 2059 int s; 2060 2061 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2062 return 0; 2063 2064 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2065 struct pmbus_samples_attr *attr; 2066 int ret; 2067 2068 attr = &pmbus_samples_registers[s]; 2069 if (!pmbus_check_word_register(client, 0, attr->reg)) 2070 continue; 2071 2072 ret = pmbus_add_samples_attr(data, 0, attr); 2073 if (ret) 2074 return ret; 2075 } 2076 2077 return 0; 2078 } 2079 2080 static int pmbus_find_attributes(struct i2c_client *client, 2081 struct pmbus_data *data) 2082 { 2083 int ret; 2084 2085 /* Voltage sensors */ 2086 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2087 ARRAY_SIZE(voltage_attributes)); 2088 if (ret) 2089 return ret; 2090 2091 /* Current sensors */ 2092 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2093 ARRAY_SIZE(current_attributes)); 2094 if (ret) 2095 return ret; 2096 2097 /* Power sensors */ 2098 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2099 ARRAY_SIZE(power_attributes)); 2100 if (ret) 2101 return ret; 2102 2103 /* Temperature sensors */ 2104 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2105 ARRAY_SIZE(temp_attributes)); 2106 if (ret) 2107 return ret; 2108 2109 /* Fans */ 2110 ret = pmbus_add_fan_attributes(client, data); 2111 if (ret) 2112 return ret; 2113 2114 ret = pmbus_add_samples_attributes(client, data); 2115 return ret; 2116 } 2117 2118 /* 2119 * Identify chip parameters. 2120 * This function is called for all chips. 2121 */ 2122 static int pmbus_identify_common(struct i2c_client *client, 2123 struct pmbus_data *data, int page) 2124 { 2125 int vout_mode = -1; 2126 2127 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2128 vout_mode = _pmbus_read_byte_data(client, page, 2129 PMBUS_VOUT_MODE); 2130 if (vout_mode >= 0 && vout_mode != 0xff) { 2131 /* 2132 * Not all chips support the VOUT_MODE command, 2133 * so a failure to read it is not an error. 2134 */ 2135 switch (vout_mode >> 5) { 2136 case 0: /* linear mode */ 2137 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2138 return -ENODEV; 2139 2140 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2141 break; 2142 case 1: /* VID mode */ 2143 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2144 return -ENODEV; 2145 break; 2146 case 2: /* direct mode */ 2147 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2148 return -ENODEV; 2149 break; 2150 default: 2151 return -ENODEV; 2152 } 2153 } 2154 2155 pmbus_clear_fault_page(client, page); 2156 return 0; 2157 } 2158 2159 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2160 { 2161 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2162 } 2163 2164 static int pmbus_read_status_word(struct i2c_client *client, int page) 2165 { 2166 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2167 } 2168 2169 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2170 struct pmbus_driver_info *info) 2171 { 2172 struct device *dev = &client->dev; 2173 int page, ret; 2174 2175 /* 2176 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2177 * to use PMBUS_STATUS_BYTE instead if that is the case. 2178 * Bail out if both registers are not supported. 2179 */ 2180 data->read_status = pmbus_read_status_word; 2181 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2182 if (ret < 0 || ret == 0xffff) { 2183 data->read_status = pmbus_read_status_byte; 2184 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2185 if (ret < 0 || ret == 0xff) { 2186 dev_err(dev, "PMBus status register not found\n"); 2187 return -ENODEV; 2188 } 2189 } else { 2190 data->has_status_word = true; 2191 } 2192 2193 /* Enable PEC if the controller supports it */ 2194 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2195 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) 2196 client->flags |= I2C_CLIENT_PEC; 2197 2198 /* 2199 * Check if the chip is write protected. If it is, we can not clear 2200 * faults, and we should not try it. Also, in that case, writes into 2201 * limit registers need to be disabled. 2202 */ 2203 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2204 if (ret > 0 && (ret & PB_WP_ANY)) 2205 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2206 2207 if (data->info->pages) 2208 pmbus_clear_faults(client); 2209 else 2210 pmbus_clear_fault_page(client, -1); 2211 2212 if (info->identify) { 2213 ret = (*info->identify)(client, info); 2214 if (ret < 0) { 2215 dev_err(dev, "Chip identification failed\n"); 2216 return ret; 2217 } 2218 } 2219 2220 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2221 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2222 return -ENODEV; 2223 } 2224 2225 for (page = 0; page < info->pages; page++) { 2226 ret = pmbus_identify_common(client, data, page); 2227 if (ret < 0) { 2228 dev_err(dev, "Failed to identify chip capabilities\n"); 2229 return ret; 2230 } 2231 } 2232 return 0; 2233 } 2234 2235 #if IS_ENABLED(CONFIG_REGULATOR) 2236 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2237 { 2238 struct device *dev = rdev_get_dev(rdev); 2239 struct i2c_client *client = to_i2c_client(dev->parent); 2240 u8 page = rdev_get_id(rdev); 2241 int ret; 2242 2243 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2244 if (ret < 0) 2245 return ret; 2246 2247 return !!(ret & PB_OPERATION_CONTROL_ON); 2248 } 2249 2250 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2251 { 2252 struct device *dev = rdev_get_dev(rdev); 2253 struct i2c_client *client = to_i2c_client(dev->parent); 2254 u8 page = rdev_get_id(rdev); 2255 2256 return pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2257 PB_OPERATION_CONTROL_ON, 2258 enable ? PB_OPERATION_CONTROL_ON : 0); 2259 } 2260 2261 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2262 { 2263 return _pmbus_regulator_on_off(rdev, 1); 2264 } 2265 2266 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2267 { 2268 return _pmbus_regulator_on_off(rdev, 0); 2269 } 2270 2271 const struct regulator_ops pmbus_regulator_ops = { 2272 .enable = pmbus_regulator_enable, 2273 .disable = pmbus_regulator_disable, 2274 .is_enabled = pmbus_regulator_is_enabled, 2275 }; 2276 EXPORT_SYMBOL_GPL(pmbus_regulator_ops); 2277 2278 static int pmbus_regulator_register(struct pmbus_data *data) 2279 { 2280 struct device *dev = data->dev; 2281 const struct pmbus_driver_info *info = data->info; 2282 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2283 struct regulator_dev *rdev; 2284 int i; 2285 2286 for (i = 0; i < info->num_regulators; i++) { 2287 struct regulator_config config = { }; 2288 2289 config.dev = dev; 2290 config.driver_data = data; 2291 2292 if (pdata && pdata->reg_init_data) 2293 config.init_data = &pdata->reg_init_data[i]; 2294 2295 rdev = devm_regulator_register(dev, &info->reg_desc[i], 2296 &config); 2297 if (IS_ERR(rdev)) { 2298 dev_err(dev, "Failed to register %s regulator\n", 2299 info->reg_desc[i].name); 2300 return PTR_ERR(rdev); 2301 } 2302 } 2303 2304 return 0; 2305 } 2306 #else 2307 static int pmbus_regulator_register(struct pmbus_data *data) 2308 { 2309 return 0; 2310 } 2311 #endif 2312 2313 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 2314 2315 #if IS_ENABLED(CONFIG_DEBUG_FS) 2316 static int pmbus_debugfs_get(void *data, u64 *val) 2317 { 2318 int rc; 2319 struct pmbus_debugfs_entry *entry = data; 2320 2321 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 2322 if (rc < 0) 2323 return rc; 2324 2325 *val = rc; 2326 2327 return 0; 2328 } 2329 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 2330 "0x%02llx\n"); 2331 2332 static int pmbus_debugfs_get_status(void *data, u64 *val) 2333 { 2334 int rc; 2335 struct pmbus_debugfs_entry *entry = data; 2336 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 2337 2338 rc = pdata->read_status(entry->client, entry->page); 2339 if (rc < 0) 2340 return rc; 2341 2342 *val = rc; 2343 2344 return 0; 2345 } 2346 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 2347 NULL, "0x%04llx\n"); 2348 2349 static int pmbus_init_debugfs(struct i2c_client *client, 2350 struct pmbus_data *data) 2351 { 2352 int i, idx = 0; 2353 char name[PMBUS_NAME_SIZE]; 2354 struct pmbus_debugfs_entry *entries; 2355 2356 if (!pmbus_debugfs_dir) 2357 return -ENODEV; 2358 2359 /* 2360 * Create the debugfs directory for this device. Use the hwmon device 2361 * name to avoid conflicts (hwmon numbers are globally unique). 2362 */ 2363 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 2364 pmbus_debugfs_dir); 2365 if (IS_ERR_OR_NULL(data->debugfs)) { 2366 data->debugfs = NULL; 2367 return -ENODEV; 2368 } 2369 2370 /* Allocate the max possible entries we need. */ 2371 entries = devm_kcalloc(data->dev, 2372 data->info->pages * 10, sizeof(*entries), 2373 GFP_KERNEL); 2374 if (!entries) 2375 return -ENOMEM; 2376 2377 for (i = 0; i < data->info->pages; ++i) { 2378 /* Check accessibility of status register if it's not page 0 */ 2379 if (!i || pmbus_check_status_register(client, i)) { 2380 /* No need to set reg as we have special read op. */ 2381 entries[idx].client = client; 2382 entries[idx].page = i; 2383 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 2384 debugfs_create_file(name, 0444, data->debugfs, 2385 &entries[idx++], 2386 &pmbus_debugfs_ops_status); 2387 } 2388 2389 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 2390 entries[idx].client = client; 2391 entries[idx].page = i; 2392 entries[idx].reg = PMBUS_STATUS_VOUT; 2393 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 2394 debugfs_create_file(name, 0444, data->debugfs, 2395 &entries[idx++], 2396 &pmbus_debugfs_ops); 2397 } 2398 2399 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 2400 entries[idx].client = client; 2401 entries[idx].page = i; 2402 entries[idx].reg = PMBUS_STATUS_IOUT; 2403 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 2404 debugfs_create_file(name, 0444, data->debugfs, 2405 &entries[idx++], 2406 &pmbus_debugfs_ops); 2407 } 2408 2409 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 2410 entries[idx].client = client; 2411 entries[idx].page = i; 2412 entries[idx].reg = PMBUS_STATUS_INPUT; 2413 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 2414 debugfs_create_file(name, 0444, data->debugfs, 2415 &entries[idx++], 2416 &pmbus_debugfs_ops); 2417 } 2418 2419 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 2420 entries[idx].client = client; 2421 entries[idx].page = i; 2422 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 2423 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 2424 debugfs_create_file(name, 0444, data->debugfs, 2425 &entries[idx++], 2426 &pmbus_debugfs_ops); 2427 } 2428 2429 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 2430 entries[idx].client = client; 2431 entries[idx].page = i; 2432 entries[idx].reg = PMBUS_STATUS_CML; 2433 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 2434 debugfs_create_file(name, 0444, data->debugfs, 2435 &entries[idx++], 2436 &pmbus_debugfs_ops); 2437 } 2438 2439 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 2440 entries[idx].client = client; 2441 entries[idx].page = i; 2442 entries[idx].reg = PMBUS_STATUS_OTHER; 2443 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 2444 debugfs_create_file(name, 0444, data->debugfs, 2445 &entries[idx++], 2446 &pmbus_debugfs_ops); 2447 } 2448 2449 if (pmbus_check_byte_register(client, i, 2450 PMBUS_STATUS_MFR_SPECIFIC)) { 2451 entries[idx].client = client; 2452 entries[idx].page = i; 2453 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 2454 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 2455 debugfs_create_file(name, 0444, data->debugfs, 2456 &entries[idx++], 2457 &pmbus_debugfs_ops); 2458 } 2459 2460 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 2461 entries[idx].client = client; 2462 entries[idx].page = i; 2463 entries[idx].reg = PMBUS_STATUS_FAN_12; 2464 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 2465 debugfs_create_file(name, 0444, data->debugfs, 2466 &entries[idx++], 2467 &pmbus_debugfs_ops); 2468 } 2469 2470 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 2471 entries[idx].client = client; 2472 entries[idx].page = i; 2473 entries[idx].reg = PMBUS_STATUS_FAN_34; 2474 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 2475 debugfs_create_file(name, 0444, data->debugfs, 2476 &entries[idx++], 2477 &pmbus_debugfs_ops); 2478 } 2479 } 2480 2481 return 0; 2482 } 2483 #else 2484 static int pmbus_init_debugfs(struct i2c_client *client, 2485 struct pmbus_data *data) 2486 { 2487 return 0; 2488 } 2489 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 2490 2491 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, 2492 struct pmbus_driver_info *info) 2493 { 2494 struct device *dev = &client->dev; 2495 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2496 struct pmbus_data *data; 2497 size_t groups_num = 0; 2498 int ret; 2499 2500 if (!info) 2501 return -ENODEV; 2502 2503 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 2504 | I2C_FUNC_SMBUS_BYTE_DATA 2505 | I2C_FUNC_SMBUS_WORD_DATA)) 2506 return -ENODEV; 2507 2508 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 2509 if (!data) 2510 return -ENOMEM; 2511 2512 if (info->groups) 2513 while (info->groups[groups_num]) 2514 groups_num++; 2515 2516 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 2517 GFP_KERNEL); 2518 if (!data->groups) 2519 return -ENOMEM; 2520 2521 i2c_set_clientdata(client, data); 2522 mutex_init(&data->update_lock); 2523 data->dev = dev; 2524 2525 if (pdata) 2526 data->flags = pdata->flags; 2527 data->info = info; 2528 data->currpage = -1; 2529 data->currphase = -1; 2530 2531 ret = pmbus_init_common(client, data, info); 2532 if (ret < 0) 2533 return ret; 2534 2535 ret = pmbus_find_attributes(client, data); 2536 if (ret) 2537 goto out_kfree; 2538 2539 /* 2540 * If there are no attributes, something is wrong. 2541 * Bail out instead of trying to register nothing. 2542 */ 2543 if (!data->num_attributes) { 2544 dev_err(dev, "No attributes found\n"); 2545 ret = -ENODEV; 2546 goto out_kfree; 2547 } 2548 2549 data->groups[0] = &data->group; 2550 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 2551 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name, 2552 data, data->groups); 2553 if (IS_ERR(data->hwmon_dev)) { 2554 ret = PTR_ERR(data->hwmon_dev); 2555 dev_err(dev, "Failed to register hwmon device\n"); 2556 goto out_kfree; 2557 } 2558 2559 ret = pmbus_regulator_register(data); 2560 if (ret) 2561 goto out_unregister; 2562 2563 ret = pmbus_init_debugfs(client, data); 2564 if (ret) 2565 dev_warn(dev, "Failed to register debugfs\n"); 2566 2567 return 0; 2568 2569 out_unregister: 2570 hwmon_device_unregister(data->hwmon_dev); 2571 out_kfree: 2572 kfree(data->group.attrs); 2573 return ret; 2574 } 2575 EXPORT_SYMBOL_GPL(pmbus_do_probe); 2576 2577 int pmbus_do_remove(struct i2c_client *client) 2578 { 2579 struct pmbus_data *data = i2c_get_clientdata(client); 2580 2581 debugfs_remove_recursive(data->debugfs); 2582 2583 hwmon_device_unregister(data->hwmon_dev); 2584 kfree(data->group.attrs); 2585 return 0; 2586 } 2587 EXPORT_SYMBOL_GPL(pmbus_do_remove); 2588 2589 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 2590 { 2591 struct pmbus_data *data = i2c_get_clientdata(client); 2592 2593 return data->debugfs; 2594 } 2595 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir); 2596 2597 static int __init pmbus_core_init(void) 2598 { 2599 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 2600 if (IS_ERR(pmbus_debugfs_dir)) 2601 pmbus_debugfs_dir = NULL; 2602 2603 return 0; 2604 } 2605 2606 static void __exit pmbus_core_exit(void) 2607 { 2608 debugfs_remove_recursive(pmbus_debugfs_dir); 2609 } 2610 2611 module_init(pmbus_core_init); 2612 module_exit(pmbus_core_exit); 2613 2614 MODULE_AUTHOR("Guenter Roeck"); 2615 MODULE_DESCRIPTION("PMBus core driver"); 2616 MODULE_LICENSE("GPL"); 2617