1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/pmbus.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include "pmbus.h" 23 24 /* 25 * Number of additional attribute pointers to allocate 26 * with each call to krealloc 27 */ 28 #define PMBUS_ATTR_ALLOC_SIZE 32 29 #define PMBUS_NAME_SIZE 24 30 31 struct pmbus_sensor { 32 struct pmbus_sensor *next; 33 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 34 struct device_attribute attribute; 35 u8 page; /* page number */ 36 u8 phase; /* phase number, 0xff for all phases */ 37 u16 reg; /* register */ 38 enum pmbus_sensor_classes class; /* sensor class */ 39 bool update; /* runtime sensor update needed */ 40 bool convert; /* Whether or not to apply linear/vid/direct */ 41 int data; /* Sensor data. 42 Negative if there was a read error */ 43 }; 44 #define to_pmbus_sensor(_attr) \ 45 container_of(_attr, struct pmbus_sensor, attribute) 46 47 struct pmbus_boolean { 48 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 49 struct sensor_device_attribute attribute; 50 struct pmbus_sensor *s1; 51 struct pmbus_sensor *s2; 52 }; 53 #define to_pmbus_boolean(_attr) \ 54 container_of(_attr, struct pmbus_boolean, attribute) 55 56 struct pmbus_label { 57 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 58 struct device_attribute attribute; 59 char label[PMBUS_NAME_SIZE]; /* label */ 60 }; 61 #define to_pmbus_label(_attr) \ 62 container_of(_attr, struct pmbus_label, attribute) 63 64 /* Macros for converting between sensor index and register/page/status mask */ 65 66 #define PB_STATUS_MASK 0xffff 67 #define PB_REG_SHIFT 16 68 #define PB_REG_MASK 0x3ff 69 #define PB_PAGE_SHIFT 26 70 #define PB_PAGE_MASK 0x3f 71 72 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ 73 ((reg) << PB_REG_SHIFT) | (mask)) 74 75 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) 76 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) 77 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) 78 79 struct pmbus_data { 80 struct device *dev; 81 struct device *hwmon_dev; 82 83 u32 flags; /* from platform data */ 84 85 int exponent[PMBUS_PAGES]; 86 /* linear mode: exponent for output voltages */ 87 88 const struct pmbus_driver_info *info; 89 90 int max_attributes; 91 int num_attributes; 92 struct attribute_group group; 93 const struct attribute_group **groups; 94 struct dentry *debugfs; /* debugfs device directory */ 95 96 struct pmbus_sensor *sensors; 97 98 struct mutex update_lock; 99 100 bool has_status_word; /* device uses STATUS_WORD register */ 101 int (*read_status)(struct i2c_client *client, int page); 102 103 s16 currpage; /* current page, -1 for unknown/unset */ 104 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 105 }; 106 107 struct pmbus_debugfs_entry { 108 struct i2c_client *client; 109 u8 page; 110 u8 reg; 111 }; 112 113 static const int pmbus_fan_rpm_mask[] = { 114 PB_FAN_1_RPM, 115 PB_FAN_2_RPM, 116 PB_FAN_1_RPM, 117 PB_FAN_2_RPM, 118 }; 119 120 static const int pmbus_fan_config_registers[] = { 121 PMBUS_FAN_CONFIG_12, 122 PMBUS_FAN_CONFIG_12, 123 PMBUS_FAN_CONFIG_34, 124 PMBUS_FAN_CONFIG_34 125 }; 126 127 static const int pmbus_fan_command_registers[] = { 128 PMBUS_FAN_COMMAND_1, 129 PMBUS_FAN_COMMAND_2, 130 PMBUS_FAN_COMMAND_3, 131 PMBUS_FAN_COMMAND_4, 132 }; 133 134 void pmbus_clear_cache(struct i2c_client *client) 135 { 136 struct pmbus_data *data = i2c_get_clientdata(client); 137 struct pmbus_sensor *sensor; 138 139 for (sensor = data->sensors; sensor; sensor = sensor->next) 140 sensor->data = -ENODATA; 141 } 142 EXPORT_SYMBOL_GPL(pmbus_clear_cache); 143 144 int pmbus_set_page(struct i2c_client *client, int page, int phase) 145 { 146 struct pmbus_data *data = i2c_get_clientdata(client); 147 int rv; 148 149 if (page < 0) 150 return 0; 151 152 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 153 data->info->pages > 1 && page != data->currpage) { 154 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 155 if (rv < 0) 156 return rv; 157 158 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 159 if (rv < 0) 160 return rv; 161 162 if (rv != page) 163 return -EIO; 164 } 165 data->currpage = page; 166 167 if (data->info->phases[page] && data->currphase != phase && 168 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 169 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 170 phase); 171 if (rv) 172 return rv; 173 } 174 data->currphase = phase; 175 176 return 0; 177 } 178 EXPORT_SYMBOL_GPL(pmbus_set_page); 179 180 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 181 { 182 int rv; 183 184 rv = pmbus_set_page(client, page, 0xff); 185 if (rv < 0) 186 return rv; 187 188 return i2c_smbus_write_byte(client, value); 189 } 190 EXPORT_SYMBOL_GPL(pmbus_write_byte); 191 192 /* 193 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 194 * a device specific mapping function exists and calls it if necessary. 195 */ 196 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 197 { 198 struct pmbus_data *data = i2c_get_clientdata(client); 199 const struct pmbus_driver_info *info = data->info; 200 int status; 201 202 if (info->write_byte) { 203 status = info->write_byte(client, page, value); 204 if (status != -ENODATA) 205 return status; 206 } 207 return pmbus_write_byte(client, page, value); 208 } 209 210 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 211 u16 word) 212 { 213 int rv; 214 215 rv = pmbus_set_page(client, page, 0xff); 216 if (rv < 0) 217 return rv; 218 219 return i2c_smbus_write_word_data(client, reg, word); 220 } 221 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 222 223 224 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 225 u16 word) 226 { 227 int bit; 228 int id; 229 int rv; 230 231 switch (reg) { 232 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 233 id = reg - PMBUS_VIRT_FAN_TARGET_1; 234 bit = pmbus_fan_rpm_mask[id]; 235 rv = pmbus_update_fan(client, page, id, bit, bit, word); 236 break; 237 default: 238 rv = -ENXIO; 239 break; 240 } 241 242 return rv; 243 } 244 245 /* 246 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 247 * a device specific mapping function exists and calls it if necessary. 248 */ 249 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 250 u16 word) 251 { 252 struct pmbus_data *data = i2c_get_clientdata(client); 253 const struct pmbus_driver_info *info = data->info; 254 int status; 255 256 if (info->write_word_data) { 257 status = info->write_word_data(client, page, reg, word); 258 if (status != -ENODATA) 259 return status; 260 } 261 262 if (reg >= PMBUS_VIRT_BASE) 263 return pmbus_write_virt_reg(client, page, reg, word); 264 265 return pmbus_write_word_data(client, page, reg, word); 266 } 267 268 int pmbus_update_fan(struct i2c_client *client, int page, int id, 269 u8 config, u8 mask, u16 command) 270 { 271 int from; 272 int rv; 273 u8 to; 274 275 from = pmbus_read_byte_data(client, page, 276 pmbus_fan_config_registers[id]); 277 if (from < 0) 278 return from; 279 280 to = (from & ~mask) | (config & mask); 281 if (to != from) { 282 rv = pmbus_write_byte_data(client, page, 283 pmbus_fan_config_registers[id], to); 284 if (rv < 0) 285 return rv; 286 } 287 288 return _pmbus_write_word_data(client, page, 289 pmbus_fan_command_registers[id], command); 290 } 291 EXPORT_SYMBOL_GPL(pmbus_update_fan); 292 293 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 294 { 295 int rv; 296 297 rv = pmbus_set_page(client, page, phase); 298 if (rv < 0) 299 return rv; 300 301 return i2c_smbus_read_word_data(client, reg); 302 } 303 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 304 305 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 306 { 307 int rv; 308 int id; 309 310 switch (reg) { 311 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 312 id = reg - PMBUS_VIRT_FAN_TARGET_1; 313 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 314 break; 315 default: 316 rv = -ENXIO; 317 break; 318 } 319 320 return rv; 321 } 322 323 /* 324 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 325 * a device specific mapping function exists and calls it if necessary. 326 */ 327 static int _pmbus_read_word_data(struct i2c_client *client, int page, 328 int phase, int reg) 329 { 330 struct pmbus_data *data = i2c_get_clientdata(client); 331 const struct pmbus_driver_info *info = data->info; 332 int status; 333 334 if (info->read_word_data) { 335 status = info->read_word_data(client, page, phase, reg); 336 if (status != -ENODATA) 337 return status; 338 } 339 340 if (reg >= PMBUS_VIRT_BASE) 341 return pmbus_read_virt_reg(client, page, reg); 342 343 return pmbus_read_word_data(client, page, phase, reg); 344 } 345 346 /* Same as above, but without phase parameter, for use in check functions */ 347 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 348 { 349 return _pmbus_read_word_data(client, page, 0xff, reg); 350 } 351 352 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 353 { 354 int rv; 355 356 rv = pmbus_set_page(client, page, 0xff); 357 if (rv < 0) 358 return rv; 359 360 return i2c_smbus_read_byte_data(client, reg); 361 } 362 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 363 364 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 365 { 366 int rv; 367 368 rv = pmbus_set_page(client, page, 0xff); 369 if (rv < 0) 370 return rv; 371 372 return i2c_smbus_write_byte_data(client, reg, value); 373 } 374 EXPORT_SYMBOL_GPL(pmbus_write_byte_data); 375 376 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 377 u8 mask, u8 value) 378 { 379 unsigned int tmp; 380 int rv; 381 382 rv = pmbus_read_byte_data(client, page, reg); 383 if (rv < 0) 384 return rv; 385 386 tmp = (rv & ~mask) | (value & mask); 387 388 if (tmp != rv) 389 rv = pmbus_write_byte_data(client, page, reg, tmp); 390 391 return rv; 392 } 393 EXPORT_SYMBOL_GPL(pmbus_update_byte_data); 394 395 /* 396 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 397 * a device specific mapping function exists and calls it if necessary. 398 */ 399 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 400 { 401 struct pmbus_data *data = i2c_get_clientdata(client); 402 const struct pmbus_driver_info *info = data->info; 403 int status; 404 405 if (info->read_byte_data) { 406 status = info->read_byte_data(client, page, reg); 407 if (status != -ENODATA) 408 return status; 409 } 410 return pmbus_read_byte_data(client, page, reg); 411 } 412 413 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 414 int reg) 415 { 416 struct pmbus_sensor *sensor; 417 418 for (sensor = data->sensors; sensor; sensor = sensor->next) { 419 if (sensor->page == page && sensor->reg == reg) 420 return sensor; 421 } 422 423 return ERR_PTR(-EINVAL); 424 } 425 426 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 427 enum pmbus_fan_mode mode, 428 bool from_cache) 429 { 430 struct pmbus_data *data = i2c_get_clientdata(client); 431 bool want_rpm, have_rpm; 432 struct pmbus_sensor *s; 433 int config; 434 int reg; 435 436 want_rpm = (mode == rpm); 437 438 if (from_cache) { 439 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 440 s = pmbus_find_sensor(data, page, reg + id); 441 if (IS_ERR(s)) 442 return PTR_ERR(s); 443 444 return s->data; 445 } 446 447 config = pmbus_read_byte_data(client, page, 448 pmbus_fan_config_registers[id]); 449 if (config < 0) 450 return config; 451 452 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 453 if (want_rpm == have_rpm) 454 return pmbus_read_word_data(client, page, 0xff, 455 pmbus_fan_command_registers[id]); 456 457 /* Can't sensibly map between RPM and PWM, just return zero */ 458 return 0; 459 } 460 461 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 462 enum pmbus_fan_mode mode) 463 { 464 return pmbus_get_fan_rate(client, page, id, mode, false); 465 } 466 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device); 467 468 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 469 enum pmbus_fan_mode mode) 470 { 471 return pmbus_get_fan_rate(client, page, id, mode, true); 472 } 473 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached); 474 475 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 476 { 477 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 478 } 479 480 void pmbus_clear_faults(struct i2c_client *client) 481 { 482 struct pmbus_data *data = i2c_get_clientdata(client); 483 int i; 484 485 for (i = 0; i < data->info->pages; i++) 486 pmbus_clear_fault_page(client, i); 487 } 488 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 489 490 static int pmbus_check_status_cml(struct i2c_client *client) 491 { 492 struct pmbus_data *data = i2c_get_clientdata(client); 493 int status, status2; 494 495 status = data->read_status(client, -1); 496 if (status < 0 || (status & PB_STATUS_CML)) { 497 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 498 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 499 return -EIO; 500 } 501 return 0; 502 } 503 504 static bool pmbus_check_register(struct i2c_client *client, 505 int (*func)(struct i2c_client *client, 506 int page, int reg), 507 int page, int reg) 508 { 509 int rv; 510 struct pmbus_data *data = i2c_get_clientdata(client); 511 512 rv = func(client, page, reg); 513 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 514 rv = pmbus_check_status_cml(client); 515 pmbus_clear_fault_page(client, -1); 516 return rv >= 0; 517 } 518 519 static bool pmbus_check_status_register(struct i2c_client *client, int page) 520 { 521 int status; 522 struct pmbus_data *data = i2c_get_clientdata(client); 523 524 status = data->read_status(client, page); 525 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 526 (status & PB_STATUS_CML)) { 527 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 528 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 529 status = -EIO; 530 } 531 532 pmbus_clear_fault_page(client, -1); 533 return status >= 0; 534 } 535 536 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 537 { 538 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 539 } 540 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 541 542 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 543 { 544 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 545 } 546 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 547 548 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 549 { 550 struct pmbus_data *data = i2c_get_clientdata(client); 551 552 return data->info; 553 } 554 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 555 556 static int pmbus_get_status(struct i2c_client *client, int page, int reg) 557 { 558 struct pmbus_data *data = i2c_get_clientdata(client); 559 int status; 560 561 switch (reg) { 562 case PMBUS_STATUS_WORD: 563 status = data->read_status(client, page); 564 break; 565 default: 566 status = _pmbus_read_byte_data(client, page, reg); 567 break; 568 } 569 if (status < 0) 570 pmbus_clear_faults(client); 571 return status; 572 } 573 574 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) 575 { 576 if (sensor->data < 0 || sensor->update) 577 sensor->data = _pmbus_read_word_data(client, sensor->page, 578 sensor->phase, sensor->reg); 579 } 580 581 /* 582 * Convert linear sensor values to milli- or micro-units 583 * depending on sensor type. 584 */ 585 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 586 struct pmbus_sensor *sensor) 587 { 588 s16 exponent; 589 s32 mantissa; 590 s64 val; 591 592 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 593 exponent = data->exponent[sensor->page]; 594 mantissa = (u16) sensor->data; 595 } else { /* LINEAR11 */ 596 exponent = ((s16)sensor->data) >> 11; 597 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 598 } 599 600 val = mantissa; 601 602 /* scale result to milli-units for all sensors except fans */ 603 if (sensor->class != PSC_FAN) 604 val = val * 1000LL; 605 606 /* scale result to micro-units for power sensors */ 607 if (sensor->class == PSC_POWER) 608 val = val * 1000LL; 609 610 if (exponent >= 0) 611 val <<= exponent; 612 else 613 val >>= -exponent; 614 615 return val; 616 } 617 618 /* 619 * Convert direct sensor values to milli- or micro-units 620 * depending on sensor type. 621 */ 622 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 623 struct pmbus_sensor *sensor) 624 { 625 s64 b, val = (s16)sensor->data; 626 s32 m, R; 627 628 m = data->info->m[sensor->class]; 629 b = data->info->b[sensor->class]; 630 R = data->info->R[sensor->class]; 631 632 if (m == 0) 633 return 0; 634 635 /* X = 1/m * (Y * 10^-R - b) */ 636 R = -R; 637 /* scale result to milli-units for everything but fans */ 638 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 639 R += 3; 640 b *= 1000; 641 } 642 643 /* scale result to micro-units for power sensors */ 644 if (sensor->class == PSC_POWER) { 645 R += 3; 646 b *= 1000; 647 } 648 649 while (R > 0) { 650 val *= 10; 651 R--; 652 } 653 while (R < 0) { 654 val = div_s64(val + 5LL, 10L); /* round closest */ 655 R++; 656 } 657 658 val = div_s64(val - b, m); 659 return val; 660 } 661 662 /* 663 * Convert VID sensor values to milli- or micro-units 664 * depending on sensor type. 665 */ 666 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 667 struct pmbus_sensor *sensor) 668 { 669 long val = sensor->data; 670 long rv = 0; 671 672 switch (data->info->vrm_version[sensor->page]) { 673 case vr11: 674 if (val >= 0x02 && val <= 0xb2) 675 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 676 break; 677 case vr12: 678 if (val >= 0x01) 679 rv = 250 + (val - 1) * 5; 680 break; 681 case vr13: 682 if (val >= 0x01) 683 rv = 500 + (val - 1) * 10; 684 break; 685 case imvp9: 686 if (val >= 0x01) 687 rv = 200 + (val - 1) * 10; 688 break; 689 case amd625mv: 690 if (val >= 0x0 && val <= 0xd8) 691 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 692 break; 693 } 694 return rv; 695 } 696 697 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 698 { 699 s64 val; 700 701 if (!sensor->convert) 702 return sensor->data; 703 704 switch (data->info->format[sensor->class]) { 705 case direct: 706 val = pmbus_reg2data_direct(data, sensor); 707 break; 708 case vid: 709 val = pmbus_reg2data_vid(data, sensor); 710 break; 711 case linear: 712 default: 713 val = pmbus_reg2data_linear(data, sensor); 714 break; 715 } 716 return val; 717 } 718 719 #define MAX_MANTISSA (1023 * 1000) 720 #define MIN_MANTISSA (511 * 1000) 721 722 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 723 struct pmbus_sensor *sensor, s64 val) 724 { 725 s16 exponent = 0, mantissa; 726 bool negative = false; 727 728 /* simple case */ 729 if (val == 0) 730 return 0; 731 732 if (sensor->class == PSC_VOLTAGE_OUT) { 733 /* LINEAR16 does not support negative voltages */ 734 if (val < 0) 735 return 0; 736 737 /* 738 * For a static exponents, we don't have a choice 739 * but to adjust the value to it. 740 */ 741 if (data->exponent[sensor->page] < 0) 742 val <<= -data->exponent[sensor->page]; 743 else 744 val >>= data->exponent[sensor->page]; 745 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 746 return clamp_val(val, 0, 0xffff); 747 } 748 749 if (val < 0) { 750 negative = true; 751 val = -val; 752 } 753 754 /* Power is in uW. Convert to mW before converting. */ 755 if (sensor->class == PSC_POWER) 756 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 757 758 /* 759 * For simplicity, convert fan data to milli-units 760 * before calculating the exponent. 761 */ 762 if (sensor->class == PSC_FAN) 763 val = val * 1000LL; 764 765 /* Reduce large mantissa until it fits into 10 bit */ 766 while (val >= MAX_MANTISSA && exponent < 15) { 767 exponent++; 768 val >>= 1; 769 } 770 /* Increase small mantissa to improve precision */ 771 while (val < MIN_MANTISSA && exponent > -15) { 772 exponent--; 773 val <<= 1; 774 } 775 776 /* Convert mantissa from milli-units to units */ 777 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 778 779 /* restore sign */ 780 if (negative) 781 mantissa = -mantissa; 782 783 /* Convert to 5 bit exponent, 11 bit mantissa */ 784 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 785 } 786 787 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 788 struct pmbus_sensor *sensor, s64 val) 789 { 790 s64 b; 791 s32 m, R; 792 793 m = data->info->m[sensor->class]; 794 b = data->info->b[sensor->class]; 795 R = data->info->R[sensor->class]; 796 797 /* Power is in uW. Adjust R and b. */ 798 if (sensor->class == PSC_POWER) { 799 R -= 3; 800 b *= 1000; 801 } 802 803 /* Calculate Y = (m * X + b) * 10^R */ 804 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 805 R -= 3; /* Adjust R and b for data in milli-units */ 806 b *= 1000; 807 } 808 val = val * m + b; 809 810 while (R > 0) { 811 val *= 10; 812 R--; 813 } 814 while (R < 0) { 815 val = div_s64(val + 5LL, 10L); /* round closest */ 816 R++; 817 } 818 819 return (u16)clamp_val(val, S16_MIN, S16_MAX); 820 } 821 822 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 823 struct pmbus_sensor *sensor, s64 val) 824 { 825 val = clamp_val(val, 500, 1600); 826 827 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 828 } 829 830 static u16 pmbus_data2reg(struct pmbus_data *data, 831 struct pmbus_sensor *sensor, s64 val) 832 { 833 u16 regval; 834 835 if (!sensor->convert) 836 return val; 837 838 switch (data->info->format[sensor->class]) { 839 case direct: 840 regval = pmbus_data2reg_direct(data, sensor, val); 841 break; 842 case vid: 843 regval = pmbus_data2reg_vid(data, sensor, val); 844 break; 845 case linear: 846 default: 847 regval = pmbus_data2reg_linear(data, sensor, val); 848 break; 849 } 850 return regval; 851 } 852 853 /* 854 * Return boolean calculated from converted data. 855 * <index> defines a status register index and mask. 856 * The mask is in the lower 8 bits, the register index is in bits 8..23. 857 * 858 * The associated pmbus_boolean structure contains optional pointers to two 859 * sensor attributes. If specified, those attributes are compared against each 860 * other to determine if a limit has been exceeded. 861 * 862 * If the sensor attribute pointers are NULL, the function returns true if 863 * (status[reg] & mask) is true. 864 * 865 * If sensor attribute pointers are provided, a comparison against a specified 866 * limit has to be performed to determine the boolean result. 867 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 868 * sensor values referenced by sensor attribute pointers s1 and s2). 869 * 870 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 871 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 872 * 873 * If a negative value is stored in any of the referenced registers, this value 874 * reflects an error code which will be returned. 875 */ 876 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, 877 int index) 878 { 879 struct pmbus_data *data = i2c_get_clientdata(client); 880 struct pmbus_sensor *s1 = b->s1; 881 struct pmbus_sensor *s2 = b->s2; 882 u16 mask = pb_index_to_mask(index); 883 u8 page = pb_index_to_page(index); 884 u16 reg = pb_index_to_reg(index); 885 int ret, status; 886 u16 regval; 887 888 mutex_lock(&data->update_lock); 889 status = pmbus_get_status(client, page, reg); 890 if (status < 0) { 891 ret = status; 892 goto unlock; 893 } 894 895 if (s1) 896 pmbus_update_sensor_data(client, s1); 897 if (s2) 898 pmbus_update_sensor_data(client, s2); 899 900 regval = status & mask; 901 if (s1 && s2) { 902 s64 v1, v2; 903 904 if (s1->data < 0) { 905 ret = s1->data; 906 goto unlock; 907 } 908 if (s2->data < 0) { 909 ret = s2->data; 910 goto unlock; 911 } 912 913 v1 = pmbus_reg2data(data, s1); 914 v2 = pmbus_reg2data(data, s2); 915 ret = !!(regval && v1 >= v2); 916 } else { 917 ret = !!regval; 918 } 919 unlock: 920 mutex_unlock(&data->update_lock); 921 return ret; 922 } 923 924 static ssize_t pmbus_show_boolean(struct device *dev, 925 struct device_attribute *da, char *buf) 926 { 927 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 928 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 929 struct i2c_client *client = to_i2c_client(dev->parent); 930 int val; 931 932 val = pmbus_get_boolean(client, boolean, attr->index); 933 if (val < 0) 934 return val; 935 return snprintf(buf, PAGE_SIZE, "%d\n", val); 936 } 937 938 static ssize_t pmbus_show_sensor(struct device *dev, 939 struct device_attribute *devattr, char *buf) 940 { 941 struct i2c_client *client = to_i2c_client(dev->parent); 942 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 943 struct pmbus_data *data = i2c_get_clientdata(client); 944 945 pmbus_update_sensor_data(client, sensor); 946 if (sensor->data < 0) 947 return sensor->data; 948 949 return snprintf(buf, PAGE_SIZE, "%lld\n", pmbus_reg2data(data, sensor)); 950 } 951 952 static ssize_t pmbus_set_sensor(struct device *dev, 953 struct device_attribute *devattr, 954 const char *buf, size_t count) 955 { 956 struct i2c_client *client = to_i2c_client(dev->parent); 957 struct pmbus_data *data = i2c_get_clientdata(client); 958 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 959 ssize_t rv = count; 960 s64 val; 961 int ret; 962 u16 regval; 963 964 if (kstrtos64(buf, 10, &val) < 0) 965 return -EINVAL; 966 967 mutex_lock(&data->update_lock); 968 regval = pmbus_data2reg(data, sensor, val); 969 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 970 if (ret < 0) 971 rv = ret; 972 else 973 sensor->data = regval; 974 mutex_unlock(&data->update_lock); 975 return rv; 976 } 977 978 static ssize_t pmbus_show_label(struct device *dev, 979 struct device_attribute *da, char *buf) 980 { 981 struct pmbus_label *label = to_pmbus_label(da); 982 983 return snprintf(buf, PAGE_SIZE, "%s\n", label->label); 984 } 985 986 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 987 { 988 if (data->num_attributes >= data->max_attributes - 1) { 989 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 990 void *new_attrs = devm_krealloc(data->dev, data->group.attrs, 991 new_max_attrs * sizeof(void *), 992 GFP_KERNEL); 993 if (!new_attrs) 994 return -ENOMEM; 995 data->group.attrs = new_attrs; 996 data->max_attributes = new_max_attrs; 997 } 998 999 data->group.attrs[data->num_attributes++] = attr; 1000 data->group.attrs[data->num_attributes] = NULL; 1001 return 0; 1002 } 1003 1004 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1005 const char *name, 1006 umode_t mode, 1007 ssize_t (*show)(struct device *dev, 1008 struct device_attribute *attr, 1009 char *buf), 1010 ssize_t (*store)(struct device *dev, 1011 struct device_attribute *attr, 1012 const char *buf, size_t count)) 1013 { 1014 sysfs_attr_init(&dev_attr->attr); 1015 dev_attr->attr.name = name; 1016 dev_attr->attr.mode = mode; 1017 dev_attr->show = show; 1018 dev_attr->store = store; 1019 } 1020 1021 static void pmbus_attr_init(struct sensor_device_attribute *a, 1022 const char *name, 1023 umode_t mode, 1024 ssize_t (*show)(struct device *dev, 1025 struct device_attribute *attr, 1026 char *buf), 1027 ssize_t (*store)(struct device *dev, 1028 struct device_attribute *attr, 1029 const char *buf, size_t count), 1030 int idx) 1031 { 1032 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1033 a->index = idx; 1034 } 1035 1036 static int pmbus_add_boolean(struct pmbus_data *data, 1037 const char *name, const char *type, int seq, 1038 struct pmbus_sensor *s1, 1039 struct pmbus_sensor *s2, 1040 u8 page, u16 reg, u16 mask) 1041 { 1042 struct pmbus_boolean *boolean; 1043 struct sensor_device_attribute *a; 1044 1045 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) 1046 return -EINVAL; 1047 1048 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1049 if (!boolean) 1050 return -ENOMEM; 1051 1052 a = &boolean->attribute; 1053 1054 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1055 name, seq, type); 1056 boolean->s1 = s1; 1057 boolean->s2 = s2; 1058 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1059 pb_reg_to_index(page, reg, mask)); 1060 1061 return pmbus_add_attribute(data, &a->dev_attr.attr); 1062 } 1063 1064 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1065 const char *name, const char *type, 1066 int seq, int page, int phase, 1067 int reg, 1068 enum pmbus_sensor_classes class, 1069 bool update, bool readonly, 1070 bool convert) 1071 { 1072 struct pmbus_sensor *sensor; 1073 struct device_attribute *a; 1074 1075 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1076 if (!sensor) 1077 return NULL; 1078 a = &sensor->attribute; 1079 1080 if (type) 1081 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1082 name, seq, type); 1083 else 1084 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1085 name, seq); 1086 1087 if (data->flags & PMBUS_WRITE_PROTECTED) 1088 readonly = true; 1089 1090 sensor->page = page; 1091 sensor->phase = phase; 1092 sensor->reg = reg; 1093 sensor->class = class; 1094 sensor->update = update; 1095 sensor->convert = convert; 1096 sensor->data = -ENODATA; 1097 pmbus_dev_attr_init(a, sensor->name, 1098 readonly ? 0444 : 0644, 1099 pmbus_show_sensor, pmbus_set_sensor); 1100 1101 if (pmbus_add_attribute(data, &a->attr)) 1102 return NULL; 1103 1104 sensor->next = data->sensors; 1105 data->sensors = sensor; 1106 1107 return sensor; 1108 } 1109 1110 static int pmbus_add_label(struct pmbus_data *data, 1111 const char *name, int seq, 1112 const char *lstring, int index, int phase) 1113 { 1114 struct pmbus_label *label; 1115 struct device_attribute *a; 1116 1117 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1118 if (!label) 1119 return -ENOMEM; 1120 1121 a = &label->attribute; 1122 1123 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1124 if (!index) { 1125 if (phase == 0xff) 1126 strncpy(label->label, lstring, 1127 sizeof(label->label) - 1); 1128 else 1129 snprintf(label->label, sizeof(label->label), "%s.%d", 1130 lstring, phase); 1131 } else { 1132 if (phase == 0xff) 1133 snprintf(label->label, sizeof(label->label), "%s%d", 1134 lstring, index); 1135 else 1136 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1137 lstring, index, phase); 1138 } 1139 1140 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1141 return pmbus_add_attribute(data, &a->attr); 1142 } 1143 1144 /* 1145 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1146 */ 1147 1148 /* 1149 * The pmbus_limit_attr structure describes a single limit attribute 1150 * and its associated alarm attribute. 1151 */ 1152 struct pmbus_limit_attr { 1153 u16 reg; /* Limit register */ 1154 u16 sbit; /* Alarm attribute status bit */ 1155 bool update; /* True if register needs updates */ 1156 bool low; /* True if low limit; for limits with compare 1157 functions only */ 1158 const char *attr; /* Attribute name */ 1159 const char *alarm; /* Alarm attribute name */ 1160 }; 1161 1162 /* 1163 * The pmbus_sensor_attr structure describes one sensor attribute. This 1164 * description includes a reference to the associated limit attributes. 1165 */ 1166 struct pmbus_sensor_attr { 1167 u16 reg; /* sensor register */ 1168 u16 gbit; /* generic status bit */ 1169 u8 nlimit; /* # of limit registers */ 1170 enum pmbus_sensor_classes class;/* sensor class */ 1171 const char *label; /* sensor label */ 1172 bool paged; /* true if paged sensor */ 1173 bool update; /* true if update needed */ 1174 bool compare; /* true if compare function needed */ 1175 u32 func; /* sensor mask */ 1176 u32 sfunc; /* sensor status mask */ 1177 int sreg; /* status register */ 1178 const struct pmbus_limit_attr *limit;/* limit registers */ 1179 }; 1180 1181 /* 1182 * Add a set of limit attributes and, if supported, the associated 1183 * alarm attributes. 1184 * returns 0 if no alarm register found, 1 if an alarm register was found, 1185 * < 0 on errors. 1186 */ 1187 static int pmbus_add_limit_attrs(struct i2c_client *client, 1188 struct pmbus_data *data, 1189 const struct pmbus_driver_info *info, 1190 const char *name, int index, int page, 1191 struct pmbus_sensor *base, 1192 const struct pmbus_sensor_attr *attr) 1193 { 1194 const struct pmbus_limit_attr *l = attr->limit; 1195 int nlimit = attr->nlimit; 1196 int have_alarm = 0; 1197 int i, ret; 1198 struct pmbus_sensor *curr; 1199 1200 for (i = 0; i < nlimit; i++) { 1201 if (pmbus_check_word_register(client, page, l->reg)) { 1202 curr = pmbus_add_sensor(data, name, l->attr, index, 1203 page, 0xff, l->reg, attr->class, 1204 attr->update || l->update, 1205 false, true); 1206 if (!curr) 1207 return -ENOMEM; 1208 if (l->sbit && (info->func[page] & attr->sfunc)) { 1209 ret = pmbus_add_boolean(data, name, 1210 l->alarm, index, 1211 attr->compare ? l->low ? curr : base 1212 : NULL, 1213 attr->compare ? l->low ? base : curr 1214 : NULL, 1215 page, attr->sreg, l->sbit); 1216 if (ret) 1217 return ret; 1218 have_alarm = 1; 1219 } 1220 } 1221 l++; 1222 } 1223 return have_alarm; 1224 } 1225 1226 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1227 struct pmbus_data *data, 1228 const struct pmbus_driver_info *info, 1229 const char *name, 1230 int index, int page, int phase, 1231 const struct pmbus_sensor_attr *attr, 1232 bool paged) 1233 { 1234 struct pmbus_sensor *base; 1235 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1236 int ret; 1237 1238 if (attr->label) { 1239 ret = pmbus_add_label(data, name, index, attr->label, 1240 paged ? page + 1 : 0, phase); 1241 if (ret) 1242 return ret; 1243 } 1244 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1245 attr->reg, attr->class, true, true, true); 1246 if (!base) 1247 return -ENOMEM; 1248 /* No limit and alarm attributes for phase specific sensors */ 1249 if (attr->sfunc && phase == 0xff) { 1250 ret = pmbus_add_limit_attrs(client, data, info, name, 1251 index, page, base, attr); 1252 if (ret < 0) 1253 return ret; 1254 /* 1255 * Add generic alarm attribute only if there are no individual 1256 * alarm attributes, if there is a global alarm bit, and if 1257 * the generic status register (word or byte, depending on 1258 * which global bit is set) for this page is accessible. 1259 */ 1260 if (!ret && attr->gbit && 1261 (!upper || (upper && data->has_status_word)) && 1262 pmbus_check_status_register(client, page)) { 1263 ret = pmbus_add_boolean(data, name, "alarm", index, 1264 NULL, NULL, 1265 page, PMBUS_STATUS_WORD, 1266 attr->gbit); 1267 if (ret) 1268 return ret; 1269 } 1270 } 1271 return 0; 1272 } 1273 1274 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1275 const struct pmbus_sensor_attr *attr) 1276 { 1277 int p; 1278 1279 if (attr->paged) 1280 return true; 1281 1282 /* 1283 * Some attributes may be present on more than one page despite 1284 * not being marked with the paged attribute. If that is the case, 1285 * then treat the sensor as being paged and add the page suffix to the 1286 * attribute name. 1287 * We don't just add the paged attribute to all such attributes, in 1288 * order to maintain the un-suffixed labels in the case where the 1289 * attribute is only on page 0. 1290 */ 1291 for (p = 1; p < info->pages; p++) { 1292 if (info->func[p] & attr->func) 1293 return true; 1294 } 1295 return false; 1296 } 1297 1298 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1299 struct pmbus_data *data, 1300 const char *name, 1301 const struct pmbus_sensor_attr *attrs, 1302 int nattrs) 1303 { 1304 const struct pmbus_driver_info *info = data->info; 1305 int index, i; 1306 int ret; 1307 1308 index = 1; 1309 for (i = 0; i < nattrs; i++) { 1310 int page, pages; 1311 bool paged = pmbus_sensor_is_paged(info, attrs); 1312 1313 pages = paged ? info->pages : 1; 1314 for (page = 0; page < pages; page++) { 1315 if (!(info->func[page] & attrs->func)) 1316 continue; 1317 ret = pmbus_add_sensor_attrs_one(client, data, info, 1318 name, index, page, 1319 0xff, attrs, paged); 1320 if (ret) 1321 return ret; 1322 index++; 1323 if (info->phases[page]) { 1324 int phase; 1325 1326 for (phase = 0; phase < info->phases[page]; 1327 phase++) { 1328 if (!(info->pfunc[phase] & attrs->func)) 1329 continue; 1330 ret = pmbus_add_sensor_attrs_one(client, 1331 data, info, name, index, page, 1332 phase, attrs, paged); 1333 if (ret) 1334 return ret; 1335 index++; 1336 } 1337 } 1338 } 1339 attrs++; 1340 } 1341 return 0; 1342 } 1343 1344 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1345 { 1346 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1347 .attr = "min", 1348 .alarm = "min_alarm", 1349 .sbit = PB_VOLTAGE_UV_WARNING, 1350 }, { 1351 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1352 .attr = "lcrit", 1353 .alarm = "lcrit_alarm", 1354 .sbit = PB_VOLTAGE_UV_FAULT, 1355 }, { 1356 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1357 .attr = "max", 1358 .alarm = "max_alarm", 1359 .sbit = PB_VOLTAGE_OV_WARNING, 1360 }, { 1361 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1362 .attr = "crit", 1363 .alarm = "crit_alarm", 1364 .sbit = PB_VOLTAGE_OV_FAULT, 1365 }, { 1366 .reg = PMBUS_VIRT_READ_VIN_AVG, 1367 .update = true, 1368 .attr = "average", 1369 }, { 1370 .reg = PMBUS_VIRT_READ_VIN_MIN, 1371 .update = true, 1372 .attr = "lowest", 1373 }, { 1374 .reg = PMBUS_VIRT_READ_VIN_MAX, 1375 .update = true, 1376 .attr = "highest", 1377 }, { 1378 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1379 .attr = "reset_history", 1380 }, { 1381 .reg = PMBUS_MFR_VIN_MIN, 1382 .attr = "rated_min", 1383 }, { 1384 .reg = PMBUS_MFR_VIN_MAX, 1385 .attr = "rated_max", 1386 }, 1387 }; 1388 1389 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1390 { 1391 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1392 .attr = "min", 1393 .alarm = "min_alarm", 1394 .sbit = PB_VOLTAGE_UV_WARNING, 1395 }, { 1396 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1397 .attr = "lcrit", 1398 .alarm = "lcrit_alarm", 1399 .sbit = PB_VOLTAGE_UV_FAULT, 1400 }, { 1401 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1402 .attr = "max", 1403 .alarm = "max_alarm", 1404 .sbit = PB_VOLTAGE_OV_WARNING, 1405 }, { 1406 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1407 .attr = "crit", 1408 .alarm = "crit_alarm", 1409 .sbit = PB_VOLTAGE_OV_FAULT, 1410 } 1411 }; 1412 1413 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1414 { 1415 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1416 .attr = "min", 1417 .alarm = "min_alarm", 1418 .sbit = PB_VOLTAGE_UV_WARNING, 1419 }, { 1420 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1421 .attr = "lcrit", 1422 .alarm = "lcrit_alarm", 1423 .sbit = PB_VOLTAGE_UV_FAULT, 1424 }, { 1425 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1426 .attr = "max", 1427 .alarm = "max_alarm", 1428 .sbit = PB_VOLTAGE_OV_WARNING, 1429 }, { 1430 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1431 .attr = "crit", 1432 .alarm = "crit_alarm", 1433 .sbit = PB_VOLTAGE_OV_FAULT, 1434 }, { 1435 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1436 .update = true, 1437 .attr = "average", 1438 }, { 1439 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1440 .update = true, 1441 .attr = "lowest", 1442 }, { 1443 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1444 .update = true, 1445 .attr = "highest", 1446 }, { 1447 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1448 .attr = "reset_history", 1449 }, { 1450 .reg = PMBUS_MFR_VOUT_MIN, 1451 .attr = "rated_min", 1452 }, { 1453 .reg = PMBUS_MFR_VOUT_MAX, 1454 .attr = "rated_max", 1455 }, 1456 }; 1457 1458 static const struct pmbus_sensor_attr voltage_attributes[] = { 1459 { 1460 .reg = PMBUS_READ_VIN, 1461 .class = PSC_VOLTAGE_IN, 1462 .label = "vin", 1463 .func = PMBUS_HAVE_VIN, 1464 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1465 .sreg = PMBUS_STATUS_INPUT, 1466 .gbit = PB_STATUS_VIN_UV, 1467 .limit = vin_limit_attrs, 1468 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1469 }, { 1470 .reg = PMBUS_VIRT_READ_VMON, 1471 .class = PSC_VOLTAGE_IN, 1472 .label = "vmon", 1473 .func = PMBUS_HAVE_VMON, 1474 .sfunc = PMBUS_HAVE_STATUS_VMON, 1475 .sreg = PMBUS_VIRT_STATUS_VMON, 1476 .limit = vmon_limit_attrs, 1477 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1478 }, { 1479 .reg = PMBUS_READ_VCAP, 1480 .class = PSC_VOLTAGE_IN, 1481 .label = "vcap", 1482 .func = PMBUS_HAVE_VCAP, 1483 }, { 1484 .reg = PMBUS_READ_VOUT, 1485 .class = PSC_VOLTAGE_OUT, 1486 .label = "vout", 1487 .paged = true, 1488 .func = PMBUS_HAVE_VOUT, 1489 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1490 .sreg = PMBUS_STATUS_VOUT, 1491 .gbit = PB_STATUS_VOUT_OV, 1492 .limit = vout_limit_attrs, 1493 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1494 } 1495 }; 1496 1497 /* Current attributes */ 1498 1499 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1500 { 1501 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1502 .attr = "max", 1503 .alarm = "max_alarm", 1504 .sbit = PB_IIN_OC_WARNING, 1505 }, { 1506 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1507 .attr = "crit", 1508 .alarm = "crit_alarm", 1509 .sbit = PB_IIN_OC_FAULT, 1510 }, { 1511 .reg = PMBUS_VIRT_READ_IIN_AVG, 1512 .update = true, 1513 .attr = "average", 1514 }, { 1515 .reg = PMBUS_VIRT_READ_IIN_MIN, 1516 .update = true, 1517 .attr = "lowest", 1518 }, { 1519 .reg = PMBUS_VIRT_READ_IIN_MAX, 1520 .update = true, 1521 .attr = "highest", 1522 }, { 1523 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1524 .attr = "reset_history", 1525 }, { 1526 .reg = PMBUS_MFR_IIN_MAX, 1527 .attr = "rated_max", 1528 }, 1529 }; 1530 1531 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1532 { 1533 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1534 .attr = "max", 1535 .alarm = "max_alarm", 1536 .sbit = PB_IOUT_OC_WARNING, 1537 }, { 1538 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1539 .attr = "lcrit", 1540 .alarm = "lcrit_alarm", 1541 .sbit = PB_IOUT_UC_FAULT, 1542 }, { 1543 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1544 .attr = "crit", 1545 .alarm = "crit_alarm", 1546 .sbit = PB_IOUT_OC_FAULT, 1547 }, { 1548 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1549 .update = true, 1550 .attr = "average", 1551 }, { 1552 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1553 .update = true, 1554 .attr = "lowest", 1555 }, { 1556 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1557 .update = true, 1558 .attr = "highest", 1559 }, { 1560 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1561 .attr = "reset_history", 1562 }, { 1563 .reg = PMBUS_MFR_IOUT_MAX, 1564 .attr = "rated_max", 1565 }, 1566 }; 1567 1568 static const struct pmbus_sensor_attr current_attributes[] = { 1569 { 1570 .reg = PMBUS_READ_IIN, 1571 .class = PSC_CURRENT_IN, 1572 .label = "iin", 1573 .func = PMBUS_HAVE_IIN, 1574 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1575 .sreg = PMBUS_STATUS_INPUT, 1576 .gbit = PB_STATUS_INPUT, 1577 .limit = iin_limit_attrs, 1578 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1579 }, { 1580 .reg = PMBUS_READ_IOUT, 1581 .class = PSC_CURRENT_OUT, 1582 .label = "iout", 1583 .paged = true, 1584 .func = PMBUS_HAVE_IOUT, 1585 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1586 .sreg = PMBUS_STATUS_IOUT, 1587 .gbit = PB_STATUS_IOUT_OC, 1588 .limit = iout_limit_attrs, 1589 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1590 } 1591 }; 1592 1593 /* Power attributes */ 1594 1595 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1596 { 1597 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1598 .attr = "max", 1599 .alarm = "alarm", 1600 .sbit = PB_PIN_OP_WARNING, 1601 }, { 1602 .reg = PMBUS_VIRT_READ_PIN_AVG, 1603 .update = true, 1604 .attr = "average", 1605 }, { 1606 .reg = PMBUS_VIRT_READ_PIN_MIN, 1607 .update = true, 1608 .attr = "input_lowest", 1609 }, { 1610 .reg = PMBUS_VIRT_READ_PIN_MAX, 1611 .update = true, 1612 .attr = "input_highest", 1613 }, { 1614 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1615 .attr = "reset_history", 1616 }, { 1617 .reg = PMBUS_MFR_PIN_MAX, 1618 .attr = "rated_max", 1619 }, 1620 }; 1621 1622 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1623 { 1624 .reg = PMBUS_POUT_MAX, 1625 .attr = "cap", 1626 .alarm = "cap_alarm", 1627 .sbit = PB_POWER_LIMITING, 1628 }, { 1629 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1630 .attr = "max", 1631 .alarm = "max_alarm", 1632 .sbit = PB_POUT_OP_WARNING, 1633 }, { 1634 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1635 .attr = "crit", 1636 .alarm = "crit_alarm", 1637 .sbit = PB_POUT_OP_FAULT, 1638 }, { 1639 .reg = PMBUS_VIRT_READ_POUT_AVG, 1640 .update = true, 1641 .attr = "average", 1642 }, { 1643 .reg = PMBUS_VIRT_READ_POUT_MIN, 1644 .update = true, 1645 .attr = "input_lowest", 1646 }, { 1647 .reg = PMBUS_VIRT_READ_POUT_MAX, 1648 .update = true, 1649 .attr = "input_highest", 1650 }, { 1651 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1652 .attr = "reset_history", 1653 }, { 1654 .reg = PMBUS_MFR_POUT_MAX, 1655 .attr = "rated_max", 1656 }, 1657 }; 1658 1659 static const struct pmbus_sensor_attr power_attributes[] = { 1660 { 1661 .reg = PMBUS_READ_PIN, 1662 .class = PSC_POWER, 1663 .label = "pin", 1664 .func = PMBUS_HAVE_PIN, 1665 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1666 .sreg = PMBUS_STATUS_INPUT, 1667 .gbit = PB_STATUS_INPUT, 1668 .limit = pin_limit_attrs, 1669 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1670 }, { 1671 .reg = PMBUS_READ_POUT, 1672 .class = PSC_POWER, 1673 .label = "pout", 1674 .paged = true, 1675 .func = PMBUS_HAVE_POUT, 1676 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1677 .sreg = PMBUS_STATUS_IOUT, 1678 .limit = pout_limit_attrs, 1679 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1680 } 1681 }; 1682 1683 /* Temperature atributes */ 1684 1685 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1686 { 1687 .reg = PMBUS_UT_WARN_LIMIT, 1688 .low = true, 1689 .attr = "min", 1690 .alarm = "min_alarm", 1691 .sbit = PB_TEMP_UT_WARNING, 1692 }, { 1693 .reg = PMBUS_UT_FAULT_LIMIT, 1694 .low = true, 1695 .attr = "lcrit", 1696 .alarm = "lcrit_alarm", 1697 .sbit = PB_TEMP_UT_FAULT, 1698 }, { 1699 .reg = PMBUS_OT_WARN_LIMIT, 1700 .attr = "max", 1701 .alarm = "max_alarm", 1702 .sbit = PB_TEMP_OT_WARNING, 1703 }, { 1704 .reg = PMBUS_OT_FAULT_LIMIT, 1705 .attr = "crit", 1706 .alarm = "crit_alarm", 1707 .sbit = PB_TEMP_OT_FAULT, 1708 }, { 1709 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1710 .attr = "lowest", 1711 }, { 1712 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1713 .attr = "average", 1714 }, { 1715 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1716 .attr = "highest", 1717 }, { 1718 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1719 .attr = "reset_history", 1720 }, { 1721 .reg = PMBUS_MFR_MAX_TEMP_1, 1722 .attr = "rated_max", 1723 }, 1724 }; 1725 1726 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1727 { 1728 .reg = PMBUS_UT_WARN_LIMIT, 1729 .low = true, 1730 .attr = "min", 1731 .alarm = "min_alarm", 1732 .sbit = PB_TEMP_UT_WARNING, 1733 }, { 1734 .reg = PMBUS_UT_FAULT_LIMIT, 1735 .low = true, 1736 .attr = "lcrit", 1737 .alarm = "lcrit_alarm", 1738 .sbit = PB_TEMP_UT_FAULT, 1739 }, { 1740 .reg = PMBUS_OT_WARN_LIMIT, 1741 .attr = "max", 1742 .alarm = "max_alarm", 1743 .sbit = PB_TEMP_OT_WARNING, 1744 }, { 1745 .reg = PMBUS_OT_FAULT_LIMIT, 1746 .attr = "crit", 1747 .alarm = "crit_alarm", 1748 .sbit = PB_TEMP_OT_FAULT, 1749 }, { 1750 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1751 .attr = "lowest", 1752 }, { 1753 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1754 .attr = "average", 1755 }, { 1756 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1757 .attr = "highest", 1758 }, { 1759 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1760 .attr = "reset_history", 1761 }, { 1762 .reg = PMBUS_MFR_MAX_TEMP_2, 1763 .attr = "rated_max", 1764 }, 1765 }; 1766 1767 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1768 { 1769 .reg = PMBUS_UT_WARN_LIMIT, 1770 .low = true, 1771 .attr = "min", 1772 .alarm = "min_alarm", 1773 .sbit = PB_TEMP_UT_WARNING, 1774 }, { 1775 .reg = PMBUS_UT_FAULT_LIMIT, 1776 .low = true, 1777 .attr = "lcrit", 1778 .alarm = "lcrit_alarm", 1779 .sbit = PB_TEMP_UT_FAULT, 1780 }, { 1781 .reg = PMBUS_OT_WARN_LIMIT, 1782 .attr = "max", 1783 .alarm = "max_alarm", 1784 .sbit = PB_TEMP_OT_WARNING, 1785 }, { 1786 .reg = PMBUS_OT_FAULT_LIMIT, 1787 .attr = "crit", 1788 .alarm = "crit_alarm", 1789 .sbit = PB_TEMP_OT_FAULT, 1790 }, { 1791 .reg = PMBUS_MFR_MAX_TEMP_3, 1792 .attr = "rated_max", 1793 }, 1794 }; 1795 1796 static const struct pmbus_sensor_attr temp_attributes[] = { 1797 { 1798 .reg = PMBUS_READ_TEMPERATURE_1, 1799 .class = PSC_TEMPERATURE, 1800 .paged = true, 1801 .update = true, 1802 .compare = true, 1803 .func = PMBUS_HAVE_TEMP, 1804 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1805 .sreg = PMBUS_STATUS_TEMPERATURE, 1806 .gbit = PB_STATUS_TEMPERATURE, 1807 .limit = temp_limit_attrs, 1808 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1809 }, { 1810 .reg = PMBUS_READ_TEMPERATURE_2, 1811 .class = PSC_TEMPERATURE, 1812 .paged = true, 1813 .update = true, 1814 .compare = true, 1815 .func = PMBUS_HAVE_TEMP2, 1816 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1817 .sreg = PMBUS_STATUS_TEMPERATURE, 1818 .gbit = PB_STATUS_TEMPERATURE, 1819 .limit = temp_limit_attrs2, 1820 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1821 }, { 1822 .reg = PMBUS_READ_TEMPERATURE_3, 1823 .class = PSC_TEMPERATURE, 1824 .paged = true, 1825 .update = true, 1826 .compare = true, 1827 .func = PMBUS_HAVE_TEMP3, 1828 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1829 .sreg = PMBUS_STATUS_TEMPERATURE, 1830 .gbit = PB_STATUS_TEMPERATURE, 1831 .limit = temp_limit_attrs3, 1832 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1833 } 1834 }; 1835 1836 static const int pmbus_fan_registers[] = { 1837 PMBUS_READ_FAN_SPEED_1, 1838 PMBUS_READ_FAN_SPEED_2, 1839 PMBUS_READ_FAN_SPEED_3, 1840 PMBUS_READ_FAN_SPEED_4 1841 }; 1842 1843 static const int pmbus_fan_status_registers[] = { 1844 PMBUS_STATUS_FAN_12, 1845 PMBUS_STATUS_FAN_12, 1846 PMBUS_STATUS_FAN_34, 1847 PMBUS_STATUS_FAN_34 1848 }; 1849 1850 static const u32 pmbus_fan_flags[] = { 1851 PMBUS_HAVE_FAN12, 1852 PMBUS_HAVE_FAN12, 1853 PMBUS_HAVE_FAN34, 1854 PMBUS_HAVE_FAN34 1855 }; 1856 1857 static const u32 pmbus_fan_status_flags[] = { 1858 PMBUS_HAVE_STATUS_FAN12, 1859 PMBUS_HAVE_STATUS_FAN12, 1860 PMBUS_HAVE_STATUS_FAN34, 1861 PMBUS_HAVE_STATUS_FAN34 1862 }; 1863 1864 /* Fans */ 1865 1866 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 1867 static int pmbus_add_fan_ctrl(struct i2c_client *client, 1868 struct pmbus_data *data, int index, int page, int id, 1869 u8 config) 1870 { 1871 struct pmbus_sensor *sensor; 1872 1873 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 1874 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 1875 false, false, true); 1876 1877 if (!sensor) 1878 return -ENOMEM; 1879 1880 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 1881 (data->info->func[page] & PMBUS_HAVE_PWM34))) 1882 return 0; 1883 1884 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 1885 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 1886 false, false, true); 1887 1888 if (!sensor) 1889 return -ENOMEM; 1890 1891 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 1892 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 1893 true, false, false); 1894 1895 if (!sensor) 1896 return -ENOMEM; 1897 1898 return 0; 1899 } 1900 1901 static int pmbus_add_fan_attributes(struct i2c_client *client, 1902 struct pmbus_data *data) 1903 { 1904 const struct pmbus_driver_info *info = data->info; 1905 int index = 1; 1906 int page; 1907 int ret; 1908 1909 for (page = 0; page < info->pages; page++) { 1910 int f; 1911 1912 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1913 int regval; 1914 1915 if (!(info->func[page] & pmbus_fan_flags[f])) 1916 break; 1917 1918 if (!pmbus_check_word_register(client, page, 1919 pmbus_fan_registers[f])) 1920 break; 1921 1922 /* 1923 * Skip fan if not installed. 1924 * Each fan configuration register covers multiple fans, 1925 * so we have to do some magic. 1926 */ 1927 regval = _pmbus_read_byte_data(client, page, 1928 pmbus_fan_config_registers[f]); 1929 if (regval < 0 || 1930 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1931 continue; 1932 1933 if (pmbus_add_sensor(data, "fan", "input", index, 1934 page, 0xff, pmbus_fan_registers[f], 1935 PSC_FAN, true, true, true) == NULL) 1936 return -ENOMEM; 1937 1938 /* Fan control */ 1939 if (pmbus_check_word_register(client, page, 1940 pmbus_fan_command_registers[f])) { 1941 ret = pmbus_add_fan_ctrl(client, data, index, 1942 page, f, regval); 1943 if (ret < 0) 1944 return ret; 1945 } 1946 1947 /* 1948 * Each fan status register covers multiple fans, 1949 * so we have to do some magic. 1950 */ 1951 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1952 pmbus_check_byte_register(client, 1953 page, pmbus_fan_status_registers[f])) { 1954 int reg; 1955 1956 if (f > 1) /* fan 3, 4 */ 1957 reg = PMBUS_STATUS_FAN_34; 1958 else 1959 reg = PMBUS_STATUS_FAN_12; 1960 ret = pmbus_add_boolean(data, "fan", 1961 "alarm", index, NULL, NULL, page, reg, 1962 PB_FAN_FAN1_WARNING >> (f & 1)); 1963 if (ret) 1964 return ret; 1965 ret = pmbus_add_boolean(data, "fan", 1966 "fault", index, NULL, NULL, page, reg, 1967 PB_FAN_FAN1_FAULT >> (f & 1)); 1968 if (ret) 1969 return ret; 1970 } 1971 index++; 1972 } 1973 } 1974 return 0; 1975 } 1976 1977 struct pmbus_samples_attr { 1978 int reg; 1979 char *name; 1980 }; 1981 1982 struct pmbus_samples_reg { 1983 int page; 1984 struct pmbus_samples_attr *attr; 1985 struct device_attribute dev_attr; 1986 }; 1987 1988 static struct pmbus_samples_attr pmbus_samples_registers[] = { 1989 { 1990 .reg = PMBUS_VIRT_SAMPLES, 1991 .name = "samples", 1992 }, { 1993 .reg = PMBUS_VIRT_IN_SAMPLES, 1994 .name = "in_samples", 1995 }, { 1996 .reg = PMBUS_VIRT_CURR_SAMPLES, 1997 .name = "curr_samples", 1998 }, { 1999 .reg = PMBUS_VIRT_POWER_SAMPLES, 2000 .name = "power_samples", 2001 }, { 2002 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2003 .name = "temp_samples", 2004 } 2005 }; 2006 2007 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2008 2009 static ssize_t pmbus_show_samples(struct device *dev, 2010 struct device_attribute *devattr, char *buf) 2011 { 2012 int val; 2013 struct i2c_client *client = to_i2c_client(dev->parent); 2014 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2015 2016 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2017 if (val < 0) 2018 return val; 2019 2020 return snprintf(buf, PAGE_SIZE, "%d\n", val); 2021 } 2022 2023 static ssize_t pmbus_set_samples(struct device *dev, 2024 struct device_attribute *devattr, 2025 const char *buf, size_t count) 2026 { 2027 int ret; 2028 long val; 2029 struct i2c_client *client = to_i2c_client(dev->parent); 2030 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2031 struct pmbus_data *data = i2c_get_clientdata(client); 2032 2033 if (kstrtol(buf, 0, &val) < 0) 2034 return -EINVAL; 2035 2036 mutex_lock(&data->update_lock); 2037 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2038 mutex_unlock(&data->update_lock); 2039 2040 return ret ? : count; 2041 } 2042 2043 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2044 struct pmbus_samples_attr *attr) 2045 { 2046 struct pmbus_samples_reg *reg; 2047 2048 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2049 if (!reg) 2050 return -ENOMEM; 2051 2052 reg->attr = attr; 2053 reg->page = page; 2054 2055 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2056 pmbus_show_samples, pmbus_set_samples); 2057 2058 return pmbus_add_attribute(data, ®->dev_attr.attr); 2059 } 2060 2061 static int pmbus_add_samples_attributes(struct i2c_client *client, 2062 struct pmbus_data *data) 2063 { 2064 const struct pmbus_driver_info *info = data->info; 2065 int s; 2066 2067 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2068 return 0; 2069 2070 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2071 struct pmbus_samples_attr *attr; 2072 int ret; 2073 2074 attr = &pmbus_samples_registers[s]; 2075 if (!pmbus_check_word_register(client, 0, attr->reg)) 2076 continue; 2077 2078 ret = pmbus_add_samples_attr(data, 0, attr); 2079 if (ret) 2080 return ret; 2081 } 2082 2083 return 0; 2084 } 2085 2086 static int pmbus_find_attributes(struct i2c_client *client, 2087 struct pmbus_data *data) 2088 { 2089 int ret; 2090 2091 /* Voltage sensors */ 2092 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2093 ARRAY_SIZE(voltage_attributes)); 2094 if (ret) 2095 return ret; 2096 2097 /* Current sensors */ 2098 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2099 ARRAY_SIZE(current_attributes)); 2100 if (ret) 2101 return ret; 2102 2103 /* Power sensors */ 2104 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2105 ARRAY_SIZE(power_attributes)); 2106 if (ret) 2107 return ret; 2108 2109 /* Temperature sensors */ 2110 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2111 ARRAY_SIZE(temp_attributes)); 2112 if (ret) 2113 return ret; 2114 2115 /* Fans */ 2116 ret = pmbus_add_fan_attributes(client, data); 2117 if (ret) 2118 return ret; 2119 2120 ret = pmbus_add_samples_attributes(client, data); 2121 return ret; 2122 } 2123 2124 /* 2125 * Identify chip parameters. 2126 * This function is called for all chips. 2127 */ 2128 static int pmbus_identify_common(struct i2c_client *client, 2129 struct pmbus_data *data, int page) 2130 { 2131 int vout_mode = -1; 2132 2133 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2134 vout_mode = _pmbus_read_byte_data(client, page, 2135 PMBUS_VOUT_MODE); 2136 if (vout_mode >= 0 && vout_mode != 0xff) { 2137 /* 2138 * Not all chips support the VOUT_MODE command, 2139 * so a failure to read it is not an error. 2140 */ 2141 switch (vout_mode >> 5) { 2142 case 0: /* linear mode */ 2143 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2144 return -ENODEV; 2145 2146 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2147 break; 2148 case 1: /* VID mode */ 2149 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2150 return -ENODEV; 2151 break; 2152 case 2: /* direct mode */ 2153 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2154 return -ENODEV; 2155 break; 2156 default: 2157 return -ENODEV; 2158 } 2159 } 2160 2161 pmbus_clear_fault_page(client, page); 2162 return 0; 2163 } 2164 2165 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2166 { 2167 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2168 } 2169 2170 static int pmbus_read_status_word(struct i2c_client *client, int page) 2171 { 2172 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2173 } 2174 2175 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2176 struct pmbus_driver_info *info) 2177 { 2178 struct device *dev = &client->dev; 2179 int page, ret; 2180 2181 /* 2182 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2183 * to use PMBUS_STATUS_BYTE instead if that is the case. 2184 * Bail out if both registers are not supported. 2185 */ 2186 data->read_status = pmbus_read_status_word; 2187 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2188 if (ret < 0 || ret == 0xffff) { 2189 data->read_status = pmbus_read_status_byte; 2190 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2191 if (ret < 0 || ret == 0xff) { 2192 dev_err(dev, "PMBus status register not found\n"); 2193 return -ENODEV; 2194 } 2195 } else { 2196 data->has_status_word = true; 2197 } 2198 2199 /* Enable PEC if the controller supports it */ 2200 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2201 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) 2202 client->flags |= I2C_CLIENT_PEC; 2203 2204 /* 2205 * Check if the chip is write protected. If it is, we can not clear 2206 * faults, and we should not try it. Also, in that case, writes into 2207 * limit registers need to be disabled. 2208 */ 2209 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2210 if (ret > 0 && (ret & PB_WP_ANY)) 2211 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2212 2213 if (data->info->pages) 2214 pmbus_clear_faults(client); 2215 else 2216 pmbus_clear_fault_page(client, -1); 2217 2218 if (info->identify) { 2219 ret = (*info->identify)(client, info); 2220 if (ret < 0) { 2221 dev_err(dev, "Chip identification failed\n"); 2222 return ret; 2223 } 2224 } 2225 2226 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2227 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2228 return -ENODEV; 2229 } 2230 2231 for (page = 0; page < info->pages; page++) { 2232 ret = pmbus_identify_common(client, data, page); 2233 if (ret < 0) { 2234 dev_err(dev, "Failed to identify chip capabilities\n"); 2235 return ret; 2236 } 2237 } 2238 return 0; 2239 } 2240 2241 #if IS_ENABLED(CONFIG_REGULATOR) 2242 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2243 { 2244 struct device *dev = rdev_get_dev(rdev); 2245 struct i2c_client *client = to_i2c_client(dev->parent); 2246 u8 page = rdev_get_id(rdev); 2247 int ret; 2248 2249 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2250 if (ret < 0) 2251 return ret; 2252 2253 return !!(ret & PB_OPERATION_CONTROL_ON); 2254 } 2255 2256 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2257 { 2258 struct device *dev = rdev_get_dev(rdev); 2259 struct i2c_client *client = to_i2c_client(dev->parent); 2260 u8 page = rdev_get_id(rdev); 2261 2262 return pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2263 PB_OPERATION_CONTROL_ON, 2264 enable ? PB_OPERATION_CONTROL_ON : 0); 2265 } 2266 2267 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2268 { 2269 return _pmbus_regulator_on_off(rdev, 1); 2270 } 2271 2272 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2273 { 2274 return _pmbus_regulator_on_off(rdev, 0); 2275 } 2276 2277 const struct regulator_ops pmbus_regulator_ops = { 2278 .enable = pmbus_regulator_enable, 2279 .disable = pmbus_regulator_disable, 2280 .is_enabled = pmbus_regulator_is_enabled, 2281 }; 2282 EXPORT_SYMBOL_GPL(pmbus_regulator_ops); 2283 2284 static int pmbus_regulator_register(struct pmbus_data *data) 2285 { 2286 struct device *dev = data->dev; 2287 const struct pmbus_driver_info *info = data->info; 2288 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2289 struct regulator_dev *rdev; 2290 int i; 2291 2292 for (i = 0; i < info->num_regulators; i++) { 2293 struct regulator_config config = { }; 2294 2295 config.dev = dev; 2296 config.driver_data = data; 2297 2298 if (pdata && pdata->reg_init_data) 2299 config.init_data = &pdata->reg_init_data[i]; 2300 2301 rdev = devm_regulator_register(dev, &info->reg_desc[i], 2302 &config); 2303 if (IS_ERR(rdev)) { 2304 dev_err(dev, "Failed to register %s regulator\n", 2305 info->reg_desc[i].name); 2306 return PTR_ERR(rdev); 2307 } 2308 } 2309 2310 return 0; 2311 } 2312 #else 2313 static int pmbus_regulator_register(struct pmbus_data *data) 2314 { 2315 return 0; 2316 } 2317 #endif 2318 2319 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 2320 2321 #if IS_ENABLED(CONFIG_DEBUG_FS) 2322 static int pmbus_debugfs_get(void *data, u64 *val) 2323 { 2324 int rc; 2325 struct pmbus_debugfs_entry *entry = data; 2326 2327 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 2328 if (rc < 0) 2329 return rc; 2330 2331 *val = rc; 2332 2333 return 0; 2334 } 2335 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 2336 "0x%02llx\n"); 2337 2338 static int pmbus_debugfs_get_status(void *data, u64 *val) 2339 { 2340 int rc; 2341 struct pmbus_debugfs_entry *entry = data; 2342 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 2343 2344 rc = pdata->read_status(entry->client, entry->page); 2345 if (rc < 0) 2346 return rc; 2347 2348 *val = rc; 2349 2350 return 0; 2351 } 2352 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 2353 NULL, "0x%04llx\n"); 2354 2355 static int pmbus_debugfs_get_pec(void *data, u64 *val) 2356 { 2357 struct i2c_client *client = data; 2358 2359 *val = !!(client->flags & I2C_CLIENT_PEC); 2360 2361 return 0; 2362 } 2363 2364 static int pmbus_debugfs_set_pec(void *data, u64 val) 2365 { 2366 int rc; 2367 struct i2c_client *client = data; 2368 2369 if (!val) { 2370 client->flags &= ~I2C_CLIENT_PEC; 2371 return 0; 2372 } 2373 2374 if (val != 1) 2375 return -EINVAL; 2376 2377 rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2378 if (rc < 0) 2379 return rc; 2380 2381 if (!(rc & PB_CAPABILITY_ERROR_CHECK)) 2382 return -EOPNOTSUPP; 2383 2384 client->flags |= I2C_CLIENT_PEC; 2385 2386 return 0; 2387 } 2388 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec, 2389 pmbus_debugfs_set_pec, "%llu\n"); 2390 2391 static int pmbus_init_debugfs(struct i2c_client *client, 2392 struct pmbus_data *data) 2393 { 2394 int i, idx = 0; 2395 char name[PMBUS_NAME_SIZE]; 2396 struct pmbus_debugfs_entry *entries; 2397 2398 if (!pmbus_debugfs_dir) 2399 return -ENODEV; 2400 2401 /* 2402 * Create the debugfs directory for this device. Use the hwmon device 2403 * name to avoid conflicts (hwmon numbers are globally unique). 2404 */ 2405 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 2406 pmbus_debugfs_dir); 2407 if (IS_ERR_OR_NULL(data->debugfs)) { 2408 data->debugfs = NULL; 2409 return -ENODEV; 2410 } 2411 2412 /* Allocate the max possible entries we need. */ 2413 entries = devm_kcalloc(data->dev, 2414 data->info->pages * 10, sizeof(*entries), 2415 GFP_KERNEL); 2416 if (!entries) 2417 return -ENOMEM; 2418 2419 debugfs_create_file("pec", 0664, data->debugfs, client, 2420 &pmbus_debugfs_ops_pec); 2421 2422 for (i = 0; i < data->info->pages; ++i) { 2423 /* Check accessibility of status register if it's not page 0 */ 2424 if (!i || pmbus_check_status_register(client, i)) { 2425 /* No need to set reg as we have special read op. */ 2426 entries[idx].client = client; 2427 entries[idx].page = i; 2428 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 2429 debugfs_create_file(name, 0444, data->debugfs, 2430 &entries[idx++], 2431 &pmbus_debugfs_ops_status); 2432 } 2433 2434 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 2435 entries[idx].client = client; 2436 entries[idx].page = i; 2437 entries[idx].reg = PMBUS_STATUS_VOUT; 2438 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 2439 debugfs_create_file(name, 0444, data->debugfs, 2440 &entries[idx++], 2441 &pmbus_debugfs_ops); 2442 } 2443 2444 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 2445 entries[idx].client = client; 2446 entries[idx].page = i; 2447 entries[idx].reg = PMBUS_STATUS_IOUT; 2448 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 2449 debugfs_create_file(name, 0444, data->debugfs, 2450 &entries[idx++], 2451 &pmbus_debugfs_ops); 2452 } 2453 2454 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 2455 entries[idx].client = client; 2456 entries[idx].page = i; 2457 entries[idx].reg = PMBUS_STATUS_INPUT; 2458 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 2459 debugfs_create_file(name, 0444, data->debugfs, 2460 &entries[idx++], 2461 &pmbus_debugfs_ops); 2462 } 2463 2464 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 2465 entries[idx].client = client; 2466 entries[idx].page = i; 2467 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 2468 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 2469 debugfs_create_file(name, 0444, data->debugfs, 2470 &entries[idx++], 2471 &pmbus_debugfs_ops); 2472 } 2473 2474 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 2475 entries[idx].client = client; 2476 entries[idx].page = i; 2477 entries[idx].reg = PMBUS_STATUS_CML; 2478 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 2479 debugfs_create_file(name, 0444, data->debugfs, 2480 &entries[idx++], 2481 &pmbus_debugfs_ops); 2482 } 2483 2484 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 2485 entries[idx].client = client; 2486 entries[idx].page = i; 2487 entries[idx].reg = PMBUS_STATUS_OTHER; 2488 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 2489 debugfs_create_file(name, 0444, data->debugfs, 2490 &entries[idx++], 2491 &pmbus_debugfs_ops); 2492 } 2493 2494 if (pmbus_check_byte_register(client, i, 2495 PMBUS_STATUS_MFR_SPECIFIC)) { 2496 entries[idx].client = client; 2497 entries[idx].page = i; 2498 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 2499 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 2500 debugfs_create_file(name, 0444, data->debugfs, 2501 &entries[idx++], 2502 &pmbus_debugfs_ops); 2503 } 2504 2505 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 2506 entries[idx].client = client; 2507 entries[idx].page = i; 2508 entries[idx].reg = PMBUS_STATUS_FAN_12; 2509 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 2510 debugfs_create_file(name, 0444, data->debugfs, 2511 &entries[idx++], 2512 &pmbus_debugfs_ops); 2513 } 2514 2515 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 2516 entries[idx].client = client; 2517 entries[idx].page = i; 2518 entries[idx].reg = PMBUS_STATUS_FAN_34; 2519 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 2520 debugfs_create_file(name, 0444, data->debugfs, 2521 &entries[idx++], 2522 &pmbus_debugfs_ops); 2523 } 2524 } 2525 2526 return 0; 2527 } 2528 #else 2529 static int pmbus_init_debugfs(struct i2c_client *client, 2530 struct pmbus_data *data) 2531 { 2532 return 0; 2533 } 2534 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 2535 2536 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) 2537 { 2538 struct device *dev = &client->dev; 2539 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2540 struct pmbus_data *data; 2541 size_t groups_num = 0; 2542 int ret; 2543 2544 if (!info) 2545 return -ENODEV; 2546 2547 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 2548 | I2C_FUNC_SMBUS_BYTE_DATA 2549 | I2C_FUNC_SMBUS_WORD_DATA)) 2550 return -ENODEV; 2551 2552 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 2553 if (!data) 2554 return -ENOMEM; 2555 2556 if (info->groups) 2557 while (info->groups[groups_num]) 2558 groups_num++; 2559 2560 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 2561 GFP_KERNEL); 2562 if (!data->groups) 2563 return -ENOMEM; 2564 2565 i2c_set_clientdata(client, data); 2566 mutex_init(&data->update_lock); 2567 data->dev = dev; 2568 2569 if (pdata) 2570 data->flags = pdata->flags; 2571 data->info = info; 2572 data->currpage = -1; 2573 data->currphase = -1; 2574 2575 ret = pmbus_init_common(client, data, info); 2576 if (ret < 0) 2577 return ret; 2578 2579 ret = pmbus_find_attributes(client, data); 2580 if (ret) 2581 return ret; 2582 2583 /* 2584 * If there are no attributes, something is wrong. 2585 * Bail out instead of trying to register nothing. 2586 */ 2587 if (!data->num_attributes) { 2588 dev_err(dev, "No attributes found\n"); 2589 return -ENODEV; 2590 } 2591 2592 data->groups[0] = &data->group; 2593 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 2594 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, 2595 client->name, data, data->groups); 2596 if (IS_ERR(data->hwmon_dev)) { 2597 dev_err(dev, "Failed to register hwmon device\n"); 2598 return PTR_ERR(data->hwmon_dev); 2599 } 2600 2601 ret = pmbus_regulator_register(data); 2602 if (ret) 2603 return ret; 2604 2605 ret = pmbus_init_debugfs(client, data); 2606 if (ret) 2607 dev_warn(dev, "Failed to register debugfs\n"); 2608 2609 return 0; 2610 } 2611 EXPORT_SYMBOL_GPL(pmbus_do_probe); 2612 2613 int pmbus_do_remove(struct i2c_client *client) 2614 { 2615 struct pmbus_data *data = i2c_get_clientdata(client); 2616 2617 debugfs_remove_recursive(data->debugfs); 2618 2619 return 0; 2620 } 2621 EXPORT_SYMBOL_GPL(pmbus_do_remove); 2622 2623 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 2624 { 2625 struct pmbus_data *data = i2c_get_clientdata(client); 2626 2627 return data->debugfs; 2628 } 2629 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir); 2630 2631 static int __init pmbus_core_init(void) 2632 { 2633 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 2634 if (IS_ERR(pmbus_debugfs_dir)) 2635 pmbus_debugfs_dir = NULL; 2636 2637 return 0; 2638 } 2639 2640 static void __exit pmbus_core_exit(void) 2641 { 2642 debugfs_remove_recursive(pmbus_debugfs_dir); 2643 } 2644 2645 module_init(pmbus_core_init); 2646 module_exit(pmbus_core_exit); 2647 2648 MODULE_AUTHOR("Guenter Roeck"); 2649 MODULE_DESCRIPTION("PMBus core driver"); 2650 MODULE_LICENSE("GPL"); 2651