xref: /openbmc/linux/drivers/hwmon/pmbus/pmbus_core.c (revision 70a59dd8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include "pmbus.h"
23 
24 /*
25  * Number of additional attribute pointers to allocate
26  * with each call to krealloc
27  */
28 #define PMBUS_ATTR_ALLOC_SIZE	32
29 #define PMBUS_NAME_SIZE		24
30 
31 struct pmbus_sensor {
32 	struct pmbus_sensor *next;
33 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
34 	struct device_attribute attribute;
35 	u8 page;		/* page number */
36 	u8 phase;		/* phase number, 0xff for all phases */
37 	u16 reg;		/* register */
38 	enum pmbus_sensor_classes class;	/* sensor class */
39 	bool update;		/* runtime sensor update needed */
40 	bool convert;		/* Whether or not to apply linear/vid/direct */
41 	int data;		/* Sensor data.
42 				   Negative if there was a read error */
43 };
44 #define to_pmbus_sensor(_attr) \
45 	container_of(_attr, struct pmbus_sensor, attribute)
46 
47 struct pmbus_boolean {
48 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
49 	struct sensor_device_attribute attribute;
50 	struct pmbus_sensor *s1;
51 	struct pmbus_sensor *s2;
52 };
53 #define to_pmbus_boolean(_attr) \
54 	container_of(_attr, struct pmbus_boolean, attribute)
55 
56 struct pmbus_label {
57 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
58 	struct device_attribute attribute;
59 	char label[PMBUS_NAME_SIZE];	/* label */
60 };
61 #define to_pmbus_label(_attr) \
62 	container_of(_attr, struct pmbus_label, attribute)
63 
64 /* Macros for converting between sensor index and register/page/status mask */
65 
66 #define PB_STATUS_MASK	0xffff
67 #define PB_REG_SHIFT	16
68 #define PB_REG_MASK	0x3ff
69 #define PB_PAGE_SHIFT	26
70 #define PB_PAGE_MASK	0x3f
71 
72 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
73 						 ((reg) << PB_REG_SHIFT) | (mask))
74 
75 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
76 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
77 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
78 
79 struct pmbus_data {
80 	struct device *dev;
81 	struct device *hwmon_dev;
82 
83 	u32 flags;		/* from platform data */
84 
85 	int exponent[PMBUS_PAGES];
86 				/* linear mode: exponent for output voltages */
87 
88 	const struct pmbus_driver_info *info;
89 
90 	int max_attributes;
91 	int num_attributes;
92 	struct attribute_group group;
93 	const struct attribute_group **groups;
94 	struct dentry *debugfs;		/* debugfs device directory */
95 
96 	struct pmbus_sensor *sensors;
97 
98 	struct mutex update_lock;
99 
100 	bool has_status_word;		/* device uses STATUS_WORD register */
101 	int (*read_status)(struct i2c_client *client, int page);
102 
103 	s16 currpage;	/* current page, -1 for unknown/unset */
104 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
105 };
106 
107 struct pmbus_debugfs_entry {
108 	struct i2c_client *client;
109 	u8 page;
110 	u8 reg;
111 };
112 
113 static const int pmbus_fan_rpm_mask[] = {
114 	PB_FAN_1_RPM,
115 	PB_FAN_2_RPM,
116 	PB_FAN_1_RPM,
117 	PB_FAN_2_RPM,
118 };
119 
120 static const int pmbus_fan_config_registers[] = {
121 	PMBUS_FAN_CONFIG_12,
122 	PMBUS_FAN_CONFIG_12,
123 	PMBUS_FAN_CONFIG_34,
124 	PMBUS_FAN_CONFIG_34
125 };
126 
127 static const int pmbus_fan_command_registers[] = {
128 	PMBUS_FAN_COMMAND_1,
129 	PMBUS_FAN_COMMAND_2,
130 	PMBUS_FAN_COMMAND_3,
131 	PMBUS_FAN_COMMAND_4,
132 };
133 
134 void pmbus_clear_cache(struct i2c_client *client)
135 {
136 	struct pmbus_data *data = i2c_get_clientdata(client);
137 	struct pmbus_sensor *sensor;
138 
139 	for (sensor = data->sensors; sensor; sensor = sensor->next)
140 		sensor->data = -ENODATA;
141 }
142 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
143 
144 int pmbus_set_page(struct i2c_client *client, int page, int phase)
145 {
146 	struct pmbus_data *data = i2c_get_clientdata(client);
147 	int rv;
148 
149 	if (page < 0)
150 		return 0;
151 
152 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
153 	    data->info->pages > 1 && page != data->currpage) {
154 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
155 		if (rv < 0)
156 			return rv;
157 
158 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
159 		if (rv < 0)
160 			return rv;
161 
162 		if (rv != page)
163 			return -EIO;
164 	}
165 	data->currpage = page;
166 
167 	if (data->info->phases[page] && data->currphase != phase &&
168 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
169 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
170 					       phase);
171 		if (rv)
172 			return rv;
173 	}
174 	data->currphase = phase;
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(pmbus_set_page);
179 
180 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
181 {
182 	int rv;
183 
184 	rv = pmbus_set_page(client, page, 0xff);
185 	if (rv < 0)
186 		return rv;
187 
188 	return i2c_smbus_write_byte(client, value);
189 }
190 EXPORT_SYMBOL_GPL(pmbus_write_byte);
191 
192 /*
193  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
194  * a device specific mapping function exists and calls it if necessary.
195  */
196 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
197 {
198 	struct pmbus_data *data = i2c_get_clientdata(client);
199 	const struct pmbus_driver_info *info = data->info;
200 	int status;
201 
202 	if (info->write_byte) {
203 		status = info->write_byte(client, page, value);
204 		if (status != -ENODATA)
205 			return status;
206 	}
207 	return pmbus_write_byte(client, page, value);
208 }
209 
210 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
211 			  u16 word)
212 {
213 	int rv;
214 
215 	rv = pmbus_set_page(client, page, 0xff);
216 	if (rv < 0)
217 		return rv;
218 
219 	return i2c_smbus_write_word_data(client, reg, word);
220 }
221 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
222 
223 
224 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
225 				u16 word)
226 {
227 	int bit;
228 	int id;
229 	int rv;
230 
231 	switch (reg) {
232 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
233 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
234 		bit = pmbus_fan_rpm_mask[id];
235 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
236 		break;
237 	default:
238 		rv = -ENXIO;
239 		break;
240 	}
241 
242 	return rv;
243 }
244 
245 /*
246  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
247  * a device specific mapping function exists and calls it if necessary.
248  */
249 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
250 				  u16 word)
251 {
252 	struct pmbus_data *data = i2c_get_clientdata(client);
253 	const struct pmbus_driver_info *info = data->info;
254 	int status;
255 
256 	if (info->write_word_data) {
257 		status = info->write_word_data(client, page, reg, word);
258 		if (status != -ENODATA)
259 			return status;
260 	}
261 
262 	if (reg >= PMBUS_VIRT_BASE)
263 		return pmbus_write_virt_reg(client, page, reg, word);
264 
265 	return pmbus_write_word_data(client, page, reg, word);
266 }
267 
268 int pmbus_update_fan(struct i2c_client *client, int page, int id,
269 		     u8 config, u8 mask, u16 command)
270 {
271 	int from;
272 	int rv;
273 	u8 to;
274 
275 	from = pmbus_read_byte_data(client, page,
276 				    pmbus_fan_config_registers[id]);
277 	if (from < 0)
278 		return from;
279 
280 	to = (from & ~mask) | (config & mask);
281 	if (to != from) {
282 		rv = pmbus_write_byte_data(client, page,
283 					   pmbus_fan_config_registers[id], to);
284 		if (rv < 0)
285 			return rv;
286 	}
287 
288 	return _pmbus_write_word_data(client, page,
289 				      pmbus_fan_command_registers[id], command);
290 }
291 EXPORT_SYMBOL_GPL(pmbus_update_fan);
292 
293 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
294 {
295 	int rv;
296 
297 	rv = pmbus_set_page(client, page, phase);
298 	if (rv < 0)
299 		return rv;
300 
301 	return i2c_smbus_read_word_data(client, reg);
302 }
303 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
304 
305 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
306 {
307 	int rv;
308 	int id;
309 
310 	switch (reg) {
311 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
312 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
313 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
314 		break;
315 	default:
316 		rv = -ENXIO;
317 		break;
318 	}
319 
320 	return rv;
321 }
322 
323 /*
324  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
325  * a device specific mapping function exists and calls it if necessary.
326  */
327 static int _pmbus_read_word_data(struct i2c_client *client, int page,
328 				 int phase, int reg)
329 {
330 	struct pmbus_data *data = i2c_get_clientdata(client);
331 	const struct pmbus_driver_info *info = data->info;
332 	int status;
333 
334 	if (info->read_word_data) {
335 		status = info->read_word_data(client, page, phase, reg);
336 		if (status != -ENODATA)
337 			return status;
338 	}
339 
340 	if (reg >= PMBUS_VIRT_BASE)
341 		return pmbus_read_virt_reg(client, page, reg);
342 
343 	return pmbus_read_word_data(client, page, phase, reg);
344 }
345 
346 /* Same as above, but without phase parameter, for use in check functions */
347 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
348 {
349 	return _pmbus_read_word_data(client, page, 0xff, reg);
350 }
351 
352 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
353 {
354 	int rv;
355 
356 	rv = pmbus_set_page(client, page, 0xff);
357 	if (rv < 0)
358 		return rv;
359 
360 	return i2c_smbus_read_byte_data(client, reg);
361 }
362 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
363 
364 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
365 {
366 	int rv;
367 
368 	rv = pmbus_set_page(client, page, 0xff);
369 	if (rv < 0)
370 		return rv;
371 
372 	return i2c_smbus_write_byte_data(client, reg, value);
373 }
374 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
375 
376 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
377 			   u8 mask, u8 value)
378 {
379 	unsigned int tmp;
380 	int rv;
381 
382 	rv = pmbus_read_byte_data(client, page, reg);
383 	if (rv < 0)
384 		return rv;
385 
386 	tmp = (rv & ~mask) | (value & mask);
387 
388 	if (tmp != rv)
389 		rv = pmbus_write_byte_data(client, page, reg, tmp);
390 
391 	return rv;
392 }
393 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
394 
395 /*
396  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
397  * a device specific mapping function exists and calls it if necessary.
398  */
399 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
400 {
401 	struct pmbus_data *data = i2c_get_clientdata(client);
402 	const struct pmbus_driver_info *info = data->info;
403 	int status;
404 
405 	if (info->read_byte_data) {
406 		status = info->read_byte_data(client, page, reg);
407 		if (status != -ENODATA)
408 			return status;
409 	}
410 	return pmbus_read_byte_data(client, page, reg);
411 }
412 
413 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
414 					      int reg)
415 {
416 	struct pmbus_sensor *sensor;
417 
418 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
419 		if (sensor->page == page && sensor->reg == reg)
420 			return sensor;
421 	}
422 
423 	return ERR_PTR(-EINVAL);
424 }
425 
426 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
427 			      enum pmbus_fan_mode mode,
428 			      bool from_cache)
429 {
430 	struct pmbus_data *data = i2c_get_clientdata(client);
431 	bool want_rpm, have_rpm;
432 	struct pmbus_sensor *s;
433 	int config;
434 	int reg;
435 
436 	want_rpm = (mode == rpm);
437 
438 	if (from_cache) {
439 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
440 		s = pmbus_find_sensor(data, page, reg + id);
441 		if (IS_ERR(s))
442 			return PTR_ERR(s);
443 
444 		return s->data;
445 	}
446 
447 	config = pmbus_read_byte_data(client, page,
448 				      pmbus_fan_config_registers[id]);
449 	if (config < 0)
450 		return config;
451 
452 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
453 	if (want_rpm == have_rpm)
454 		return pmbus_read_word_data(client, page, 0xff,
455 					    pmbus_fan_command_registers[id]);
456 
457 	/* Can't sensibly map between RPM and PWM, just return zero */
458 	return 0;
459 }
460 
461 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
462 			      enum pmbus_fan_mode mode)
463 {
464 	return pmbus_get_fan_rate(client, page, id, mode, false);
465 }
466 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device);
467 
468 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
469 			      enum pmbus_fan_mode mode)
470 {
471 	return pmbus_get_fan_rate(client, page, id, mode, true);
472 }
473 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached);
474 
475 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
476 {
477 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
478 }
479 
480 void pmbus_clear_faults(struct i2c_client *client)
481 {
482 	struct pmbus_data *data = i2c_get_clientdata(client);
483 	int i;
484 
485 	for (i = 0; i < data->info->pages; i++)
486 		pmbus_clear_fault_page(client, i);
487 }
488 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
489 
490 static int pmbus_check_status_cml(struct i2c_client *client)
491 {
492 	struct pmbus_data *data = i2c_get_clientdata(client);
493 	int status, status2;
494 
495 	status = data->read_status(client, -1);
496 	if (status < 0 || (status & PB_STATUS_CML)) {
497 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
498 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
499 			return -EIO;
500 	}
501 	return 0;
502 }
503 
504 static bool pmbus_check_register(struct i2c_client *client,
505 				 int (*func)(struct i2c_client *client,
506 					     int page, int reg),
507 				 int page, int reg)
508 {
509 	int rv;
510 	struct pmbus_data *data = i2c_get_clientdata(client);
511 
512 	rv = func(client, page, reg);
513 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
514 		rv = pmbus_check_status_cml(client);
515 	pmbus_clear_fault_page(client, -1);
516 	return rv >= 0;
517 }
518 
519 static bool pmbus_check_status_register(struct i2c_client *client, int page)
520 {
521 	int status;
522 	struct pmbus_data *data = i2c_get_clientdata(client);
523 
524 	status = data->read_status(client, page);
525 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
526 	    (status & PB_STATUS_CML)) {
527 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
528 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
529 			status = -EIO;
530 	}
531 
532 	pmbus_clear_fault_page(client, -1);
533 	return status >= 0;
534 }
535 
536 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
537 {
538 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
539 }
540 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
541 
542 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
543 {
544 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
545 }
546 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
547 
548 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
549 {
550 	struct pmbus_data *data = i2c_get_clientdata(client);
551 
552 	return data->info;
553 }
554 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
555 
556 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
557 {
558 	struct pmbus_data *data = i2c_get_clientdata(client);
559 	int status;
560 
561 	switch (reg) {
562 	case PMBUS_STATUS_WORD:
563 		status = data->read_status(client, page);
564 		break;
565 	default:
566 		status = _pmbus_read_byte_data(client, page, reg);
567 		break;
568 	}
569 	if (status < 0)
570 		pmbus_clear_faults(client);
571 	return status;
572 }
573 
574 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
575 {
576 	if (sensor->data < 0 || sensor->update)
577 		sensor->data = _pmbus_read_word_data(client, sensor->page,
578 						     sensor->phase, sensor->reg);
579 }
580 
581 /*
582  * Convert linear sensor values to milli- or micro-units
583  * depending on sensor type.
584  */
585 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
586 				 struct pmbus_sensor *sensor)
587 {
588 	s16 exponent;
589 	s32 mantissa;
590 	s64 val;
591 
592 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
593 		exponent = data->exponent[sensor->page];
594 		mantissa = (u16) sensor->data;
595 	} else {				/* LINEAR11 */
596 		exponent = ((s16)sensor->data) >> 11;
597 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
598 	}
599 
600 	val = mantissa;
601 
602 	/* scale result to milli-units for all sensors except fans */
603 	if (sensor->class != PSC_FAN)
604 		val = val * 1000LL;
605 
606 	/* scale result to micro-units for power sensors */
607 	if (sensor->class == PSC_POWER)
608 		val = val * 1000LL;
609 
610 	if (exponent >= 0)
611 		val <<= exponent;
612 	else
613 		val >>= -exponent;
614 
615 	return val;
616 }
617 
618 /*
619  * Convert direct sensor values to milli- or micro-units
620  * depending on sensor type.
621  */
622 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
623 				 struct pmbus_sensor *sensor)
624 {
625 	s64 b, val = (s16)sensor->data;
626 	s32 m, R;
627 
628 	m = data->info->m[sensor->class];
629 	b = data->info->b[sensor->class];
630 	R = data->info->R[sensor->class];
631 
632 	if (m == 0)
633 		return 0;
634 
635 	/* X = 1/m * (Y * 10^-R - b) */
636 	R = -R;
637 	/* scale result to milli-units for everything but fans */
638 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
639 		R += 3;
640 		b *= 1000;
641 	}
642 
643 	/* scale result to micro-units for power sensors */
644 	if (sensor->class == PSC_POWER) {
645 		R += 3;
646 		b *= 1000;
647 	}
648 
649 	while (R > 0) {
650 		val *= 10;
651 		R--;
652 	}
653 	while (R < 0) {
654 		val = div_s64(val + 5LL, 10L);  /* round closest */
655 		R++;
656 	}
657 
658 	val = div_s64(val - b, m);
659 	return val;
660 }
661 
662 /*
663  * Convert VID sensor values to milli- or micro-units
664  * depending on sensor type.
665  */
666 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
667 			      struct pmbus_sensor *sensor)
668 {
669 	long val = sensor->data;
670 	long rv = 0;
671 
672 	switch (data->info->vrm_version[sensor->page]) {
673 	case vr11:
674 		if (val >= 0x02 && val <= 0xb2)
675 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
676 		break;
677 	case vr12:
678 		if (val >= 0x01)
679 			rv = 250 + (val - 1) * 5;
680 		break;
681 	case vr13:
682 		if (val >= 0x01)
683 			rv = 500 + (val - 1) * 10;
684 		break;
685 	case imvp9:
686 		if (val >= 0x01)
687 			rv = 200 + (val - 1) * 10;
688 		break;
689 	case amd625mv:
690 		if (val >= 0x0 && val <= 0xd8)
691 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
692 		break;
693 	}
694 	return rv;
695 }
696 
697 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
698 {
699 	s64 val;
700 
701 	if (!sensor->convert)
702 		return sensor->data;
703 
704 	switch (data->info->format[sensor->class]) {
705 	case direct:
706 		val = pmbus_reg2data_direct(data, sensor);
707 		break;
708 	case vid:
709 		val = pmbus_reg2data_vid(data, sensor);
710 		break;
711 	case linear:
712 	default:
713 		val = pmbus_reg2data_linear(data, sensor);
714 		break;
715 	}
716 	return val;
717 }
718 
719 #define MAX_MANTISSA	(1023 * 1000)
720 #define MIN_MANTISSA	(511 * 1000)
721 
722 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
723 				 struct pmbus_sensor *sensor, s64 val)
724 {
725 	s16 exponent = 0, mantissa;
726 	bool negative = false;
727 
728 	/* simple case */
729 	if (val == 0)
730 		return 0;
731 
732 	if (sensor->class == PSC_VOLTAGE_OUT) {
733 		/* LINEAR16 does not support negative voltages */
734 		if (val < 0)
735 			return 0;
736 
737 		/*
738 		 * For a static exponents, we don't have a choice
739 		 * but to adjust the value to it.
740 		 */
741 		if (data->exponent[sensor->page] < 0)
742 			val <<= -data->exponent[sensor->page];
743 		else
744 			val >>= data->exponent[sensor->page];
745 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
746 		return clamp_val(val, 0, 0xffff);
747 	}
748 
749 	if (val < 0) {
750 		negative = true;
751 		val = -val;
752 	}
753 
754 	/* Power is in uW. Convert to mW before converting. */
755 	if (sensor->class == PSC_POWER)
756 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
757 
758 	/*
759 	 * For simplicity, convert fan data to milli-units
760 	 * before calculating the exponent.
761 	 */
762 	if (sensor->class == PSC_FAN)
763 		val = val * 1000LL;
764 
765 	/* Reduce large mantissa until it fits into 10 bit */
766 	while (val >= MAX_MANTISSA && exponent < 15) {
767 		exponent++;
768 		val >>= 1;
769 	}
770 	/* Increase small mantissa to improve precision */
771 	while (val < MIN_MANTISSA && exponent > -15) {
772 		exponent--;
773 		val <<= 1;
774 	}
775 
776 	/* Convert mantissa from milli-units to units */
777 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
778 
779 	/* restore sign */
780 	if (negative)
781 		mantissa = -mantissa;
782 
783 	/* Convert to 5 bit exponent, 11 bit mantissa */
784 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
785 }
786 
787 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
788 				 struct pmbus_sensor *sensor, s64 val)
789 {
790 	s64 b;
791 	s32 m, R;
792 
793 	m = data->info->m[sensor->class];
794 	b = data->info->b[sensor->class];
795 	R = data->info->R[sensor->class];
796 
797 	/* Power is in uW. Adjust R and b. */
798 	if (sensor->class == PSC_POWER) {
799 		R -= 3;
800 		b *= 1000;
801 	}
802 
803 	/* Calculate Y = (m * X + b) * 10^R */
804 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
805 		R -= 3;		/* Adjust R and b for data in milli-units */
806 		b *= 1000;
807 	}
808 	val = val * m + b;
809 
810 	while (R > 0) {
811 		val *= 10;
812 		R--;
813 	}
814 	while (R < 0) {
815 		val = div_s64(val + 5LL, 10L);  /* round closest */
816 		R++;
817 	}
818 
819 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
820 }
821 
822 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
823 			      struct pmbus_sensor *sensor, s64 val)
824 {
825 	val = clamp_val(val, 500, 1600);
826 
827 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
828 }
829 
830 static u16 pmbus_data2reg(struct pmbus_data *data,
831 			  struct pmbus_sensor *sensor, s64 val)
832 {
833 	u16 regval;
834 
835 	if (!sensor->convert)
836 		return val;
837 
838 	switch (data->info->format[sensor->class]) {
839 	case direct:
840 		regval = pmbus_data2reg_direct(data, sensor, val);
841 		break;
842 	case vid:
843 		regval = pmbus_data2reg_vid(data, sensor, val);
844 		break;
845 	case linear:
846 	default:
847 		regval = pmbus_data2reg_linear(data, sensor, val);
848 		break;
849 	}
850 	return regval;
851 }
852 
853 /*
854  * Return boolean calculated from converted data.
855  * <index> defines a status register index and mask.
856  * The mask is in the lower 8 bits, the register index is in bits 8..23.
857  *
858  * The associated pmbus_boolean structure contains optional pointers to two
859  * sensor attributes. If specified, those attributes are compared against each
860  * other to determine if a limit has been exceeded.
861  *
862  * If the sensor attribute pointers are NULL, the function returns true if
863  * (status[reg] & mask) is true.
864  *
865  * If sensor attribute pointers are provided, a comparison against a specified
866  * limit has to be performed to determine the boolean result.
867  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
868  * sensor values referenced by sensor attribute pointers s1 and s2).
869  *
870  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
871  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
872  *
873  * If a negative value is stored in any of the referenced registers, this value
874  * reflects an error code which will be returned.
875  */
876 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
877 			     int index)
878 {
879 	struct pmbus_data *data = i2c_get_clientdata(client);
880 	struct pmbus_sensor *s1 = b->s1;
881 	struct pmbus_sensor *s2 = b->s2;
882 	u16 mask = pb_index_to_mask(index);
883 	u8 page = pb_index_to_page(index);
884 	u16 reg = pb_index_to_reg(index);
885 	int ret, status;
886 	u16 regval;
887 
888 	mutex_lock(&data->update_lock);
889 	status = pmbus_get_status(client, page, reg);
890 	if (status < 0) {
891 		ret = status;
892 		goto unlock;
893 	}
894 
895 	if (s1)
896 		pmbus_update_sensor_data(client, s1);
897 	if (s2)
898 		pmbus_update_sensor_data(client, s2);
899 
900 	regval = status & mask;
901 	if (s1 && s2) {
902 		s64 v1, v2;
903 
904 		if (s1->data < 0) {
905 			ret = s1->data;
906 			goto unlock;
907 		}
908 		if (s2->data < 0) {
909 			ret = s2->data;
910 			goto unlock;
911 		}
912 
913 		v1 = pmbus_reg2data(data, s1);
914 		v2 = pmbus_reg2data(data, s2);
915 		ret = !!(regval && v1 >= v2);
916 	} else {
917 		ret = !!regval;
918 	}
919 unlock:
920 	mutex_unlock(&data->update_lock);
921 	return ret;
922 }
923 
924 static ssize_t pmbus_show_boolean(struct device *dev,
925 				  struct device_attribute *da, char *buf)
926 {
927 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
928 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
929 	struct i2c_client *client = to_i2c_client(dev->parent);
930 	int val;
931 
932 	val = pmbus_get_boolean(client, boolean, attr->index);
933 	if (val < 0)
934 		return val;
935 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
936 }
937 
938 static ssize_t pmbus_show_sensor(struct device *dev,
939 				 struct device_attribute *devattr, char *buf)
940 {
941 	struct i2c_client *client = to_i2c_client(dev->parent);
942 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
943 	struct pmbus_data *data = i2c_get_clientdata(client);
944 
945 	pmbus_update_sensor_data(client, sensor);
946 	if (sensor->data < 0)
947 		return sensor->data;
948 
949 	return snprintf(buf, PAGE_SIZE, "%lld\n", pmbus_reg2data(data, sensor));
950 }
951 
952 static ssize_t pmbus_set_sensor(struct device *dev,
953 				struct device_attribute *devattr,
954 				const char *buf, size_t count)
955 {
956 	struct i2c_client *client = to_i2c_client(dev->parent);
957 	struct pmbus_data *data = i2c_get_clientdata(client);
958 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
959 	ssize_t rv = count;
960 	s64 val;
961 	int ret;
962 	u16 regval;
963 
964 	if (kstrtos64(buf, 10, &val) < 0)
965 		return -EINVAL;
966 
967 	mutex_lock(&data->update_lock);
968 	regval = pmbus_data2reg(data, sensor, val);
969 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
970 	if (ret < 0)
971 		rv = ret;
972 	else
973 		sensor->data = regval;
974 	mutex_unlock(&data->update_lock);
975 	return rv;
976 }
977 
978 static ssize_t pmbus_show_label(struct device *dev,
979 				struct device_attribute *da, char *buf)
980 {
981 	struct pmbus_label *label = to_pmbus_label(da);
982 
983 	return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
984 }
985 
986 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
987 {
988 	if (data->num_attributes >= data->max_attributes - 1) {
989 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
990 		void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
991 						new_max_attrs * sizeof(void *),
992 						GFP_KERNEL);
993 		if (!new_attrs)
994 			return -ENOMEM;
995 		data->group.attrs = new_attrs;
996 		data->max_attributes = new_max_attrs;
997 	}
998 
999 	data->group.attrs[data->num_attributes++] = attr;
1000 	data->group.attrs[data->num_attributes] = NULL;
1001 	return 0;
1002 }
1003 
1004 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1005 				const char *name,
1006 				umode_t mode,
1007 				ssize_t (*show)(struct device *dev,
1008 						struct device_attribute *attr,
1009 						char *buf),
1010 				ssize_t (*store)(struct device *dev,
1011 						 struct device_attribute *attr,
1012 						 const char *buf, size_t count))
1013 {
1014 	sysfs_attr_init(&dev_attr->attr);
1015 	dev_attr->attr.name = name;
1016 	dev_attr->attr.mode = mode;
1017 	dev_attr->show = show;
1018 	dev_attr->store = store;
1019 }
1020 
1021 static void pmbus_attr_init(struct sensor_device_attribute *a,
1022 			    const char *name,
1023 			    umode_t mode,
1024 			    ssize_t (*show)(struct device *dev,
1025 					    struct device_attribute *attr,
1026 					    char *buf),
1027 			    ssize_t (*store)(struct device *dev,
1028 					     struct device_attribute *attr,
1029 					     const char *buf, size_t count),
1030 			    int idx)
1031 {
1032 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1033 	a->index = idx;
1034 }
1035 
1036 static int pmbus_add_boolean(struct pmbus_data *data,
1037 			     const char *name, const char *type, int seq,
1038 			     struct pmbus_sensor *s1,
1039 			     struct pmbus_sensor *s2,
1040 			     u8 page, u16 reg, u16 mask)
1041 {
1042 	struct pmbus_boolean *boolean;
1043 	struct sensor_device_attribute *a;
1044 
1045 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1046 		return -EINVAL;
1047 
1048 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1049 	if (!boolean)
1050 		return -ENOMEM;
1051 
1052 	a = &boolean->attribute;
1053 
1054 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1055 		 name, seq, type);
1056 	boolean->s1 = s1;
1057 	boolean->s2 = s2;
1058 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1059 			pb_reg_to_index(page, reg, mask));
1060 
1061 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1062 }
1063 
1064 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1065 					     const char *name, const char *type,
1066 					     int seq, int page, int phase,
1067 					     int reg,
1068 					     enum pmbus_sensor_classes class,
1069 					     bool update, bool readonly,
1070 					     bool convert)
1071 {
1072 	struct pmbus_sensor *sensor;
1073 	struct device_attribute *a;
1074 
1075 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1076 	if (!sensor)
1077 		return NULL;
1078 	a = &sensor->attribute;
1079 
1080 	if (type)
1081 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1082 			 name, seq, type);
1083 	else
1084 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1085 			 name, seq);
1086 
1087 	if (data->flags & PMBUS_WRITE_PROTECTED)
1088 		readonly = true;
1089 
1090 	sensor->page = page;
1091 	sensor->phase = phase;
1092 	sensor->reg = reg;
1093 	sensor->class = class;
1094 	sensor->update = update;
1095 	sensor->convert = convert;
1096 	sensor->data = -ENODATA;
1097 	pmbus_dev_attr_init(a, sensor->name,
1098 			    readonly ? 0444 : 0644,
1099 			    pmbus_show_sensor, pmbus_set_sensor);
1100 
1101 	if (pmbus_add_attribute(data, &a->attr))
1102 		return NULL;
1103 
1104 	sensor->next = data->sensors;
1105 	data->sensors = sensor;
1106 
1107 	return sensor;
1108 }
1109 
1110 static int pmbus_add_label(struct pmbus_data *data,
1111 			   const char *name, int seq,
1112 			   const char *lstring, int index, int phase)
1113 {
1114 	struct pmbus_label *label;
1115 	struct device_attribute *a;
1116 
1117 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1118 	if (!label)
1119 		return -ENOMEM;
1120 
1121 	a = &label->attribute;
1122 
1123 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1124 	if (!index) {
1125 		if (phase == 0xff)
1126 			strncpy(label->label, lstring,
1127 				sizeof(label->label) - 1);
1128 		else
1129 			snprintf(label->label, sizeof(label->label), "%s.%d",
1130 				 lstring, phase);
1131 	} else {
1132 		if (phase == 0xff)
1133 			snprintf(label->label, sizeof(label->label), "%s%d",
1134 				 lstring, index);
1135 		else
1136 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1137 				 lstring, index, phase);
1138 	}
1139 
1140 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1141 	return pmbus_add_attribute(data, &a->attr);
1142 }
1143 
1144 /*
1145  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1146  */
1147 
1148 /*
1149  * The pmbus_limit_attr structure describes a single limit attribute
1150  * and its associated alarm attribute.
1151  */
1152 struct pmbus_limit_attr {
1153 	u16 reg;		/* Limit register */
1154 	u16 sbit;		/* Alarm attribute status bit */
1155 	bool update;		/* True if register needs updates */
1156 	bool low;		/* True if low limit; for limits with compare
1157 				   functions only */
1158 	const char *attr;	/* Attribute name */
1159 	const char *alarm;	/* Alarm attribute name */
1160 };
1161 
1162 /*
1163  * The pmbus_sensor_attr structure describes one sensor attribute. This
1164  * description includes a reference to the associated limit attributes.
1165  */
1166 struct pmbus_sensor_attr {
1167 	u16 reg;			/* sensor register */
1168 	u16 gbit;			/* generic status bit */
1169 	u8 nlimit;			/* # of limit registers */
1170 	enum pmbus_sensor_classes class;/* sensor class */
1171 	const char *label;		/* sensor label */
1172 	bool paged;			/* true if paged sensor */
1173 	bool update;			/* true if update needed */
1174 	bool compare;			/* true if compare function needed */
1175 	u32 func;			/* sensor mask */
1176 	u32 sfunc;			/* sensor status mask */
1177 	int sreg;			/* status register */
1178 	const struct pmbus_limit_attr *limit;/* limit registers */
1179 };
1180 
1181 /*
1182  * Add a set of limit attributes and, if supported, the associated
1183  * alarm attributes.
1184  * returns 0 if no alarm register found, 1 if an alarm register was found,
1185  * < 0 on errors.
1186  */
1187 static int pmbus_add_limit_attrs(struct i2c_client *client,
1188 				 struct pmbus_data *data,
1189 				 const struct pmbus_driver_info *info,
1190 				 const char *name, int index, int page,
1191 				 struct pmbus_sensor *base,
1192 				 const struct pmbus_sensor_attr *attr)
1193 {
1194 	const struct pmbus_limit_attr *l = attr->limit;
1195 	int nlimit = attr->nlimit;
1196 	int have_alarm = 0;
1197 	int i, ret;
1198 	struct pmbus_sensor *curr;
1199 
1200 	for (i = 0; i < nlimit; i++) {
1201 		if (pmbus_check_word_register(client, page, l->reg)) {
1202 			curr = pmbus_add_sensor(data, name, l->attr, index,
1203 						page, 0xff, l->reg, attr->class,
1204 						attr->update || l->update,
1205 						false, true);
1206 			if (!curr)
1207 				return -ENOMEM;
1208 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1209 				ret = pmbus_add_boolean(data, name,
1210 					l->alarm, index,
1211 					attr->compare ?  l->low ? curr : base
1212 						      : NULL,
1213 					attr->compare ? l->low ? base : curr
1214 						      : NULL,
1215 					page, attr->sreg, l->sbit);
1216 				if (ret)
1217 					return ret;
1218 				have_alarm = 1;
1219 			}
1220 		}
1221 		l++;
1222 	}
1223 	return have_alarm;
1224 }
1225 
1226 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1227 				      struct pmbus_data *data,
1228 				      const struct pmbus_driver_info *info,
1229 				      const char *name,
1230 				      int index, int page, int phase,
1231 				      const struct pmbus_sensor_attr *attr,
1232 				      bool paged)
1233 {
1234 	struct pmbus_sensor *base;
1235 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1236 	int ret;
1237 
1238 	if (attr->label) {
1239 		ret = pmbus_add_label(data, name, index, attr->label,
1240 				      paged ? page + 1 : 0, phase);
1241 		if (ret)
1242 			return ret;
1243 	}
1244 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1245 				attr->reg, attr->class, true, true, true);
1246 	if (!base)
1247 		return -ENOMEM;
1248 	/* No limit and alarm attributes for phase specific sensors */
1249 	if (attr->sfunc && phase == 0xff) {
1250 		ret = pmbus_add_limit_attrs(client, data, info, name,
1251 					    index, page, base, attr);
1252 		if (ret < 0)
1253 			return ret;
1254 		/*
1255 		 * Add generic alarm attribute only if there are no individual
1256 		 * alarm attributes, if there is a global alarm bit, and if
1257 		 * the generic status register (word or byte, depending on
1258 		 * which global bit is set) for this page is accessible.
1259 		 */
1260 		if (!ret && attr->gbit &&
1261 		    (!upper || (upper && data->has_status_word)) &&
1262 		    pmbus_check_status_register(client, page)) {
1263 			ret = pmbus_add_boolean(data, name, "alarm", index,
1264 						NULL, NULL,
1265 						page, PMBUS_STATUS_WORD,
1266 						attr->gbit);
1267 			if (ret)
1268 				return ret;
1269 		}
1270 	}
1271 	return 0;
1272 }
1273 
1274 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1275 				  const struct pmbus_sensor_attr *attr)
1276 {
1277 	int p;
1278 
1279 	if (attr->paged)
1280 		return true;
1281 
1282 	/*
1283 	 * Some attributes may be present on more than one page despite
1284 	 * not being marked with the paged attribute. If that is the case,
1285 	 * then treat the sensor as being paged and add the page suffix to the
1286 	 * attribute name.
1287 	 * We don't just add the paged attribute to all such attributes, in
1288 	 * order to maintain the un-suffixed labels in the case where the
1289 	 * attribute is only on page 0.
1290 	 */
1291 	for (p = 1; p < info->pages; p++) {
1292 		if (info->func[p] & attr->func)
1293 			return true;
1294 	}
1295 	return false;
1296 }
1297 
1298 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1299 				  struct pmbus_data *data,
1300 				  const char *name,
1301 				  const struct pmbus_sensor_attr *attrs,
1302 				  int nattrs)
1303 {
1304 	const struct pmbus_driver_info *info = data->info;
1305 	int index, i;
1306 	int ret;
1307 
1308 	index = 1;
1309 	for (i = 0; i < nattrs; i++) {
1310 		int page, pages;
1311 		bool paged = pmbus_sensor_is_paged(info, attrs);
1312 
1313 		pages = paged ? info->pages : 1;
1314 		for (page = 0; page < pages; page++) {
1315 			if (!(info->func[page] & attrs->func))
1316 				continue;
1317 			ret = pmbus_add_sensor_attrs_one(client, data, info,
1318 							 name, index, page,
1319 							 0xff, attrs, paged);
1320 			if (ret)
1321 				return ret;
1322 			index++;
1323 			if (info->phases[page]) {
1324 				int phase;
1325 
1326 				for (phase = 0; phase < info->phases[page];
1327 				     phase++) {
1328 					if (!(info->pfunc[phase] & attrs->func))
1329 						continue;
1330 					ret = pmbus_add_sensor_attrs_one(client,
1331 						data, info, name, index, page,
1332 						phase, attrs, paged);
1333 					if (ret)
1334 						return ret;
1335 					index++;
1336 				}
1337 			}
1338 		}
1339 		attrs++;
1340 	}
1341 	return 0;
1342 }
1343 
1344 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1345 	{
1346 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1347 		.attr = "min",
1348 		.alarm = "min_alarm",
1349 		.sbit = PB_VOLTAGE_UV_WARNING,
1350 	}, {
1351 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1352 		.attr = "lcrit",
1353 		.alarm = "lcrit_alarm",
1354 		.sbit = PB_VOLTAGE_UV_FAULT,
1355 	}, {
1356 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1357 		.attr = "max",
1358 		.alarm = "max_alarm",
1359 		.sbit = PB_VOLTAGE_OV_WARNING,
1360 	}, {
1361 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1362 		.attr = "crit",
1363 		.alarm = "crit_alarm",
1364 		.sbit = PB_VOLTAGE_OV_FAULT,
1365 	}, {
1366 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1367 		.update = true,
1368 		.attr = "average",
1369 	}, {
1370 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1371 		.update = true,
1372 		.attr = "lowest",
1373 	}, {
1374 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1375 		.update = true,
1376 		.attr = "highest",
1377 	}, {
1378 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1379 		.attr = "reset_history",
1380 	}, {
1381 		.reg = PMBUS_MFR_VIN_MIN,
1382 		.attr = "rated_min",
1383 	}, {
1384 		.reg = PMBUS_MFR_VIN_MAX,
1385 		.attr = "rated_max",
1386 	},
1387 };
1388 
1389 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1390 	{
1391 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1392 		.attr = "min",
1393 		.alarm = "min_alarm",
1394 		.sbit = PB_VOLTAGE_UV_WARNING,
1395 	}, {
1396 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1397 		.attr = "lcrit",
1398 		.alarm = "lcrit_alarm",
1399 		.sbit = PB_VOLTAGE_UV_FAULT,
1400 	}, {
1401 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1402 		.attr = "max",
1403 		.alarm = "max_alarm",
1404 		.sbit = PB_VOLTAGE_OV_WARNING,
1405 	}, {
1406 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1407 		.attr = "crit",
1408 		.alarm = "crit_alarm",
1409 		.sbit = PB_VOLTAGE_OV_FAULT,
1410 	}
1411 };
1412 
1413 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1414 	{
1415 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1416 		.attr = "min",
1417 		.alarm = "min_alarm",
1418 		.sbit = PB_VOLTAGE_UV_WARNING,
1419 	}, {
1420 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1421 		.attr = "lcrit",
1422 		.alarm = "lcrit_alarm",
1423 		.sbit = PB_VOLTAGE_UV_FAULT,
1424 	}, {
1425 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1426 		.attr = "max",
1427 		.alarm = "max_alarm",
1428 		.sbit = PB_VOLTAGE_OV_WARNING,
1429 	}, {
1430 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1431 		.attr = "crit",
1432 		.alarm = "crit_alarm",
1433 		.sbit = PB_VOLTAGE_OV_FAULT,
1434 	}, {
1435 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1436 		.update = true,
1437 		.attr = "average",
1438 	}, {
1439 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1440 		.update = true,
1441 		.attr = "lowest",
1442 	}, {
1443 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1444 		.update = true,
1445 		.attr = "highest",
1446 	}, {
1447 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1448 		.attr = "reset_history",
1449 	}, {
1450 		.reg = PMBUS_MFR_VOUT_MIN,
1451 		.attr = "rated_min",
1452 	}, {
1453 		.reg = PMBUS_MFR_VOUT_MAX,
1454 		.attr = "rated_max",
1455 	},
1456 };
1457 
1458 static const struct pmbus_sensor_attr voltage_attributes[] = {
1459 	{
1460 		.reg = PMBUS_READ_VIN,
1461 		.class = PSC_VOLTAGE_IN,
1462 		.label = "vin",
1463 		.func = PMBUS_HAVE_VIN,
1464 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1465 		.sreg = PMBUS_STATUS_INPUT,
1466 		.gbit = PB_STATUS_VIN_UV,
1467 		.limit = vin_limit_attrs,
1468 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1469 	}, {
1470 		.reg = PMBUS_VIRT_READ_VMON,
1471 		.class = PSC_VOLTAGE_IN,
1472 		.label = "vmon",
1473 		.func = PMBUS_HAVE_VMON,
1474 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1475 		.sreg = PMBUS_VIRT_STATUS_VMON,
1476 		.limit = vmon_limit_attrs,
1477 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1478 	}, {
1479 		.reg = PMBUS_READ_VCAP,
1480 		.class = PSC_VOLTAGE_IN,
1481 		.label = "vcap",
1482 		.func = PMBUS_HAVE_VCAP,
1483 	}, {
1484 		.reg = PMBUS_READ_VOUT,
1485 		.class = PSC_VOLTAGE_OUT,
1486 		.label = "vout",
1487 		.paged = true,
1488 		.func = PMBUS_HAVE_VOUT,
1489 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1490 		.sreg = PMBUS_STATUS_VOUT,
1491 		.gbit = PB_STATUS_VOUT_OV,
1492 		.limit = vout_limit_attrs,
1493 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1494 	}
1495 };
1496 
1497 /* Current attributes */
1498 
1499 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1500 	{
1501 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1502 		.attr = "max",
1503 		.alarm = "max_alarm",
1504 		.sbit = PB_IIN_OC_WARNING,
1505 	}, {
1506 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1507 		.attr = "crit",
1508 		.alarm = "crit_alarm",
1509 		.sbit = PB_IIN_OC_FAULT,
1510 	}, {
1511 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1512 		.update = true,
1513 		.attr = "average",
1514 	}, {
1515 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1516 		.update = true,
1517 		.attr = "lowest",
1518 	}, {
1519 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1520 		.update = true,
1521 		.attr = "highest",
1522 	}, {
1523 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1524 		.attr = "reset_history",
1525 	}, {
1526 		.reg = PMBUS_MFR_IIN_MAX,
1527 		.attr = "rated_max",
1528 	},
1529 };
1530 
1531 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1532 	{
1533 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1534 		.attr = "max",
1535 		.alarm = "max_alarm",
1536 		.sbit = PB_IOUT_OC_WARNING,
1537 	}, {
1538 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1539 		.attr = "lcrit",
1540 		.alarm = "lcrit_alarm",
1541 		.sbit = PB_IOUT_UC_FAULT,
1542 	}, {
1543 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1544 		.attr = "crit",
1545 		.alarm = "crit_alarm",
1546 		.sbit = PB_IOUT_OC_FAULT,
1547 	}, {
1548 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1549 		.update = true,
1550 		.attr = "average",
1551 	}, {
1552 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1553 		.update = true,
1554 		.attr = "lowest",
1555 	}, {
1556 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1557 		.update = true,
1558 		.attr = "highest",
1559 	}, {
1560 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1561 		.attr = "reset_history",
1562 	}, {
1563 		.reg = PMBUS_MFR_IOUT_MAX,
1564 		.attr = "rated_max",
1565 	},
1566 };
1567 
1568 static const struct pmbus_sensor_attr current_attributes[] = {
1569 	{
1570 		.reg = PMBUS_READ_IIN,
1571 		.class = PSC_CURRENT_IN,
1572 		.label = "iin",
1573 		.func = PMBUS_HAVE_IIN,
1574 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1575 		.sreg = PMBUS_STATUS_INPUT,
1576 		.gbit = PB_STATUS_INPUT,
1577 		.limit = iin_limit_attrs,
1578 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1579 	}, {
1580 		.reg = PMBUS_READ_IOUT,
1581 		.class = PSC_CURRENT_OUT,
1582 		.label = "iout",
1583 		.paged = true,
1584 		.func = PMBUS_HAVE_IOUT,
1585 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1586 		.sreg = PMBUS_STATUS_IOUT,
1587 		.gbit = PB_STATUS_IOUT_OC,
1588 		.limit = iout_limit_attrs,
1589 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1590 	}
1591 };
1592 
1593 /* Power attributes */
1594 
1595 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1596 	{
1597 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1598 		.attr = "max",
1599 		.alarm = "alarm",
1600 		.sbit = PB_PIN_OP_WARNING,
1601 	}, {
1602 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1603 		.update = true,
1604 		.attr = "average",
1605 	}, {
1606 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1607 		.update = true,
1608 		.attr = "input_lowest",
1609 	}, {
1610 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1611 		.update = true,
1612 		.attr = "input_highest",
1613 	}, {
1614 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1615 		.attr = "reset_history",
1616 	}, {
1617 		.reg = PMBUS_MFR_PIN_MAX,
1618 		.attr = "rated_max",
1619 	},
1620 };
1621 
1622 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1623 	{
1624 		.reg = PMBUS_POUT_MAX,
1625 		.attr = "cap",
1626 		.alarm = "cap_alarm",
1627 		.sbit = PB_POWER_LIMITING,
1628 	}, {
1629 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1630 		.attr = "max",
1631 		.alarm = "max_alarm",
1632 		.sbit = PB_POUT_OP_WARNING,
1633 	}, {
1634 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1635 		.attr = "crit",
1636 		.alarm = "crit_alarm",
1637 		.sbit = PB_POUT_OP_FAULT,
1638 	}, {
1639 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1640 		.update = true,
1641 		.attr = "average",
1642 	}, {
1643 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1644 		.update = true,
1645 		.attr = "input_lowest",
1646 	}, {
1647 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1648 		.update = true,
1649 		.attr = "input_highest",
1650 	}, {
1651 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1652 		.attr = "reset_history",
1653 	}, {
1654 		.reg = PMBUS_MFR_POUT_MAX,
1655 		.attr = "rated_max",
1656 	},
1657 };
1658 
1659 static const struct pmbus_sensor_attr power_attributes[] = {
1660 	{
1661 		.reg = PMBUS_READ_PIN,
1662 		.class = PSC_POWER,
1663 		.label = "pin",
1664 		.func = PMBUS_HAVE_PIN,
1665 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1666 		.sreg = PMBUS_STATUS_INPUT,
1667 		.gbit = PB_STATUS_INPUT,
1668 		.limit = pin_limit_attrs,
1669 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1670 	}, {
1671 		.reg = PMBUS_READ_POUT,
1672 		.class = PSC_POWER,
1673 		.label = "pout",
1674 		.paged = true,
1675 		.func = PMBUS_HAVE_POUT,
1676 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1677 		.sreg = PMBUS_STATUS_IOUT,
1678 		.limit = pout_limit_attrs,
1679 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1680 	}
1681 };
1682 
1683 /* Temperature atributes */
1684 
1685 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1686 	{
1687 		.reg = PMBUS_UT_WARN_LIMIT,
1688 		.low = true,
1689 		.attr = "min",
1690 		.alarm = "min_alarm",
1691 		.sbit = PB_TEMP_UT_WARNING,
1692 	}, {
1693 		.reg = PMBUS_UT_FAULT_LIMIT,
1694 		.low = true,
1695 		.attr = "lcrit",
1696 		.alarm = "lcrit_alarm",
1697 		.sbit = PB_TEMP_UT_FAULT,
1698 	}, {
1699 		.reg = PMBUS_OT_WARN_LIMIT,
1700 		.attr = "max",
1701 		.alarm = "max_alarm",
1702 		.sbit = PB_TEMP_OT_WARNING,
1703 	}, {
1704 		.reg = PMBUS_OT_FAULT_LIMIT,
1705 		.attr = "crit",
1706 		.alarm = "crit_alarm",
1707 		.sbit = PB_TEMP_OT_FAULT,
1708 	}, {
1709 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1710 		.attr = "lowest",
1711 	}, {
1712 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1713 		.attr = "average",
1714 	}, {
1715 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1716 		.attr = "highest",
1717 	}, {
1718 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1719 		.attr = "reset_history",
1720 	}, {
1721 		.reg = PMBUS_MFR_MAX_TEMP_1,
1722 		.attr = "rated_max",
1723 	},
1724 };
1725 
1726 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1727 	{
1728 		.reg = PMBUS_UT_WARN_LIMIT,
1729 		.low = true,
1730 		.attr = "min",
1731 		.alarm = "min_alarm",
1732 		.sbit = PB_TEMP_UT_WARNING,
1733 	}, {
1734 		.reg = PMBUS_UT_FAULT_LIMIT,
1735 		.low = true,
1736 		.attr = "lcrit",
1737 		.alarm = "lcrit_alarm",
1738 		.sbit = PB_TEMP_UT_FAULT,
1739 	}, {
1740 		.reg = PMBUS_OT_WARN_LIMIT,
1741 		.attr = "max",
1742 		.alarm = "max_alarm",
1743 		.sbit = PB_TEMP_OT_WARNING,
1744 	}, {
1745 		.reg = PMBUS_OT_FAULT_LIMIT,
1746 		.attr = "crit",
1747 		.alarm = "crit_alarm",
1748 		.sbit = PB_TEMP_OT_FAULT,
1749 	}, {
1750 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1751 		.attr = "lowest",
1752 	}, {
1753 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1754 		.attr = "average",
1755 	}, {
1756 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1757 		.attr = "highest",
1758 	}, {
1759 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1760 		.attr = "reset_history",
1761 	}, {
1762 		.reg = PMBUS_MFR_MAX_TEMP_2,
1763 		.attr = "rated_max",
1764 	},
1765 };
1766 
1767 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1768 	{
1769 		.reg = PMBUS_UT_WARN_LIMIT,
1770 		.low = true,
1771 		.attr = "min",
1772 		.alarm = "min_alarm",
1773 		.sbit = PB_TEMP_UT_WARNING,
1774 	}, {
1775 		.reg = PMBUS_UT_FAULT_LIMIT,
1776 		.low = true,
1777 		.attr = "lcrit",
1778 		.alarm = "lcrit_alarm",
1779 		.sbit = PB_TEMP_UT_FAULT,
1780 	}, {
1781 		.reg = PMBUS_OT_WARN_LIMIT,
1782 		.attr = "max",
1783 		.alarm = "max_alarm",
1784 		.sbit = PB_TEMP_OT_WARNING,
1785 	}, {
1786 		.reg = PMBUS_OT_FAULT_LIMIT,
1787 		.attr = "crit",
1788 		.alarm = "crit_alarm",
1789 		.sbit = PB_TEMP_OT_FAULT,
1790 	}, {
1791 		.reg = PMBUS_MFR_MAX_TEMP_3,
1792 		.attr = "rated_max",
1793 	},
1794 };
1795 
1796 static const struct pmbus_sensor_attr temp_attributes[] = {
1797 	{
1798 		.reg = PMBUS_READ_TEMPERATURE_1,
1799 		.class = PSC_TEMPERATURE,
1800 		.paged = true,
1801 		.update = true,
1802 		.compare = true,
1803 		.func = PMBUS_HAVE_TEMP,
1804 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1805 		.sreg = PMBUS_STATUS_TEMPERATURE,
1806 		.gbit = PB_STATUS_TEMPERATURE,
1807 		.limit = temp_limit_attrs,
1808 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1809 	}, {
1810 		.reg = PMBUS_READ_TEMPERATURE_2,
1811 		.class = PSC_TEMPERATURE,
1812 		.paged = true,
1813 		.update = true,
1814 		.compare = true,
1815 		.func = PMBUS_HAVE_TEMP2,
1816 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1817 		.sreg = PMBUS_STATUS_TEMPERATURE,
1818 		.gbit = PB_STATUS_TEMPERATURE,
1819 		.limit = temp_limit_attrs2,
1820 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1821 	}, {
1822 		.reg = PMBUS_READ_TEMPERATURE_3,
1823 		.class = PSC_TEMPERATURE,
1824 		.paged = true,
1825 		.update = true,
1826 		.compare = true,
1827 		.func = PMBUS_HAVE_TEMP3,
1828 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1829 		.sreg = PMBUS_STATUS_TEMPERATURE,
1830 		.gbit = PB_STATUS_TEMPERATURE,
1831 		.limit = temp_limit_attrs3,
1832 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1833 	}
1834 };
1835 
1836 static const int pmbus_fan_registers[] = {
1837 	PMBUS_READ_FAN_SPEED_1,
1838 	PMBUS_READ_FAN_SPEED_2,
1839 	PMBUS_READ_FAN_SPEED_3,
1840 	PMBUS_READ_FAN_SPEED_4
1841 };
1842 
1843 static const int pmbus_fan_status_registers[] = {
1844 	PMBUS_STATUS_FAN_12,
1845 	PMBUS_STATUS_FAN_12,
1846 	PMBUS_STATUS_FAN_34,
1847 	PMBUS_STATUS_FAN_34
1848 };
1849 
1850 static const u32 pmbus_fan_flags[] = {
1851 	PMBUS_HAVE_FAN12,
1852 	PMBUS_HAVE_FAN12,
1853 	PMBUS_HAVE_FAN34,
1854 	PMBUS_HAVE_FAN34
1855 };
1856 
1857 static const u32 pmbus_fan_status_flags[] = {
1858 	PMBUS_HAVE_STATUS_FAN12,
1859 	PMBUS_HAVE_STATUS_FAN12,
1860 	PMBUS_HAVE_STATUS_FAN34,
1861 	PMBUS_HAVE_STATUS_FAN34
1862 };
1863 
1864 /* Fans */
1865 
1866 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
1867 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1868 		struct pmbus_data *data, int index, int page, int id,
1869 		u8 config)
1870 {
1871 	struct pmbus_sensor *sensor;
1872 
1873 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1874 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1875 				  false, false, true);
1876 
1877 	if (!sensor)
1878 		return -ENOMEM;
1879 
1880 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1881 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
1882 		return 0;
1883 
1884 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1885 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1886 				  false, false, true);
1887 
1888 	if (!sensor)
1889 		return -ENOMEM;
1890 
1891 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1892 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1893 				  true, false, false);
1894 
1895 	if (!sensor)
1896 		return -ENOMEM;
1897 
1898 	return 0;
1899 }
1900 
1901 static int pmbus_add_fan_attributes(struct i2c_client *client,
1902 				    struct pmbus_data *data)
1903 {
1904 	const struct pmbus_driver_info *info = data->info;
1905 	int index = 1;
1906 	int page;
1907 	int ret;
1908 
1909 	for (page = 0; page < info->pages; page++) {
1910 		int f;
1911 
1912 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1913 			int regval;
1914 
1915 			if (!(info->func[page] & pmbus_fan_flags[f]))
1916 				break;
1917 
1918 			if (!pmbus_check_word_register(client, page,
1919 						       pmbus_fan_registers[f]))
1920 				break;
1921 
1922 			/*
1923 			 * Skip fan if not installed.
1924 			 * Each fan configuration register covers multiple fans,
1925 			 * so we have to do some magic.
1926 			 */
1927 			regval = _pmbus_read_byte_data(client, page,
1928 				pmbus_fan_config_registers[f]);
1929 			if (regval < 0 ||
1930 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1931 				continue;
1932 
1933 			if (pmbus_add_sensor(data, "fan", "input", index,
1934 					     page, 0xff, pmbus_fan_registers[f],
1935 					     PSC_FAN, true, true, true) == NULL)
1936 				return -ENOMEM;
1937 
1938 			/* Fan control */
1939 			if (pmbus_check_word_register(client, page,
1940 					pmbus_fan_command_registers[f])) {
1941 				ret = pmbus_add_fan_ctrl(client, data, index,
1942 							 page, f, regval);
1943 				if (ret < 0)
1944 					return ret;
1945 			}
1946 
1947 			/*
1948 			 * Each fan status register covers multiple fans,
1949 			 * so we have to do some magic.
1950 			 */
1951 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1952 			    pmbus_check_byte_register(client,
1953 					page, pmbus_fan_status_registers[f])) {
1954 				int reg;
1955 
1956 				if (f > 1)	/* fan 3, 4 */
1957 					reg = PMBUS_STATUS_FAN_34;
1958 				else
1959 					reg = PMBUS_STATUS_FAN_12;
1960 				ret = pmbus_add_boolean(data, "fan",
1961 					"alarm", index, NULL, NULL, page, reg,
1962 					PB_FAN_FAN1_WARNING >> (f & 1));
1963 				if (ret)
1964 					return ret;
1965 				ret = pmbus_add_boolean(data, "fan",
1966 					"fault", index, NULL, NULL, page, reg,
1967 					PB_FAN_FAN1_FAULT >> (f & 1));
1968 				if (ret)
1969 					return ret;
1970 			}
1971 			index++;
1972 		}
1973 	}
1974 	return 0;
1975 }
1976 
1977 struct pmbus_samples_attr {
1978 	int reg;
1979 	char *name;
1980 };
1981 
1982 struct pmbus_samples_reg {
1983 	int page;
1984 	struct pmbus_samples_attr *attr;
1985 	struct device_attribute dev_attr;
1986 };
1987 
1988 static struct pmbus_samples_attr pmbus_samples_registers[] = {
1989 	{
1990 		.reg = PMBUS_VIRT_SAMPLES,
1991 		.name = "samples",
1992 	}, {
1993 		.reg = PMBUS_VIRT_IN_SAMPLES,
1994 		.name = "in_samples",
1995 	}, {
1996 		.reg = PMBUS_VIRT_CURR_SAMPLES,
1997 		.name = "curr_samples",
1998 	}, {
1999 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2000 		.name = "power_samples",
2001 	}, {
2002 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2003 		.name = "temp_samples",
2004 	}
2005 };
2006 
2007 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2008 
2009 static ssize_t pmbus_show_samples(struct device *dev,
2010 				  struct device_attribute *devattr, char *buf)
2011 {
2012 	int val;
2013 	struct i2c_client *client = to_i2c_client(dev->parent);
2014 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2015 
2016 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2017 	if (val < 0)
2018 		return val;
2019 
2020 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
2021 }
2022 
2023 static ssize_t pmbus_set_samples(struct device *dev,
2024 				 struct device_attribute *devattr,
2025 				 const char *buf, size_t count)
2026 {
2027 	int ret;
2028 	long val;
2029 	struct i2c_client *client = to_i2c_client(dev->parent);
2030 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2031 	struct pmbus_data *data = i2c_get_clientdata(client);
2032 
2033 	if (kstrtol(buf, 0, &val) < 0)
2034 		return -EINVAL;
2035 
2036 	mutex_lock(&data->update_lock);
2037 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2038 	mutex_unlock(&data->update_lock);
2039 
2040 	return ret ? : count;
2041 }
2042 
2043 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2044 				  struct pmbus_samples_attr *attr)
2045 {
2046 	struct pmbus_samples_reg *reg;
2047 
2048 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2049 	if (!reg)
2050 		return -ENOMEM;
2051 
2052 	reg->attr = attr;
2053 	reg->page = page;
2054 
2055 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2056 			    pmbus_show_samples, pmbus_set_samples);
2057 
2058 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2059 }
2060 
2061 static int pmbus_add_samples_attributes(struct i2c_client *client,
2062 					struct pmbus_data *data)
2063 {
2064 	const struct pmbus_driver_info *info = data->info;
2065 	int s;
2066 
2067 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2068 		return 0;
2069 
2070 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2071 		struct pmbus_samples_attr *attr;
2072 		int ret;
2073 
2074 		attr = &pmbus_samples_registers[s];
2075 		if (!pmbus_check_word_register(client, 0, attr->reg))
2076 			continue;
2077 
2078 		ret = pmbus_add_samples_attr(data, 0, attr);
2079 		if (ret)
2080 			return ret;
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 static int pmbus_find_attributes(struct i2c_client *client,
2087 				 struct pmbus_data *data)
2088 {
2089 	int ret;
2090 
2091 	/* Voltage sensors */
2092 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2093 				     ARRAY_SIZE(voltage_attributes));
2094 	if (ret)
2095 		return ret;
2096 
2097 	/* Current sensors */
2098 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2099 				     ARRAY_SIZE(current_attributes));
2100 	if (ret)
2101 		return ret;
2102 
2103 	/* Power sensors */
2104 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2105 				     ARRAY_SIZE(power_attributes));
2106 	if (ret)
2107 		return ret;
2108 
2109 	/* Temperature sensors */
2110 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2111 				     ARRAY_SIZE(temp_attributes));
2112 	if (ret)
2113 		return ret;
2114 
2115 	/* Fans */
2116 	ret = pmbus_add_fan_attributes(client, data);
2117 	if (ret)
2118 		return ret;
2119 
2120 	ret = pmbus_add_samples_attributes(client, data);
2121 	return ret;
2122 }
2123 
2124 /*
2125  * Identify chip parameters.
2126  * This function is called for all chips.
2127  */
2128 static int pmbus_identify_common(struct i2c_client *client,
2129 				 struct pmbus_data *data, int page)
2130 {
2131 	int vout_mode = -1;
2132 
2133 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2134 		vout_mode = _pmbus_read_byte_data(client, page,
2135 						  PMBUS_VOUT_MODE);
2136 	if (vout_mode >= 0 && vout_mode != 0xff) {
2137 		/*
2138 		 * Not all chips support the VOUT_MODE command,
2139 		 * so a failure to read it is not an error.
2140 		 */
2141 		switch (vout_mode >> 5) {
2142 		case 0:	/* linear mode      */
2143 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2144 				return -ENODEV;
2145 
2146 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2147 			break;
2148 		case 1: /* VID mode         */
2149 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2150 				return -ENODEV;
2151 			break;
2152 		case 2:	/* direct mode      */
2153 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2154 				return -ENODEV;
2155 			break;
2156 		default:
2157 			return -ENODEV;
2158 		}
2159 	}
2160 
2161 	pmbus_clear_fault_page(client, page);
2162 	return 0;
2163 }
2164 
2165 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2166 {
2167 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2168 }
2169 
2170 static int pmbus_read_status_word(struct i2c_client *client, int page)
2171 {
2172 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2173 }
2174 
2175 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2176 			     struct pmbus_driver_info *info)
2177 {
2178 	struct device *dev = &client->dev;
2179 	int page, ret;
2180 
2181 	/*
2182 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2183 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2184 	 * Bail out if both registers are not supported.
2185 	 */
2186 	data->read_status = pmbus_read_status_word;
2187 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2188 	if (ret < 0 || ret == 0xffff) {
2189 		data->read_status = pmbus_read_status_byte;
2190 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2191 		if (ret < 0 || ret == 0xff) {
2192 			dev_err(dev, "PMBus status register not found\n");
2193 			return -ENODEV;
2194 		}
2195 	} else {
2196 		data->has_status_word = true;
2197 	}
2198 
2199 	/* Enable PEC if the controller supports it */
2200 	ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2201 	if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK))
2202 		client->flags |= I2C_CLIENT_PEC;
2203 
2204 	/*
2205 	 * Check if the chip is write protected. If it is, we can not clear
2206 	 * faults, and we should not try it. Also, in that case, writes into
2207 	 * limit registers need to be disabled.
2208 	 */
2209 	ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2210 	if (ret > 0 && (ret & PB_WP_ANY))
2211 		data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2212 
2213 	if (data->info->pages)
2214 		pmbus_clear_faults(client);
2215 	else
2216 		pmbus_clear_fault_page(client, -1);
2217 
2218 	if (info->identify) {
2219 		ret = (*info->identify)(client, info);
2220 		if (ret < 0) {
2221 			dev_err(dev, "Chip identification failed\n");
2222 			return ret;
2223 		}
2224 	}
2225 
2226 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2227 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2228 		return -ENODEV;
2229 	}
2230 
2231 	for (page = 0; page < info->pages; page++) {
2232 		ret = pmbus_identify_common(client, data, page);
2233 		if (ret < 0) {
2234 			dev_err(dev, "Failed to identify chip capabilities\n");
2235 			return ret;
2236 		}
2237 	}
2238 	return 0;
2239 }
2240 
2241 #if IS_ENABLED(CONFIG_REGULATOR)
2242 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2243 {
2244 	struct device *dev = rdev_get_dev(rdev);
2245 	struct i2c_client *client = to_i2c_client(dev->parent);
2246 	u8 page = rdev_get_id(rdev);
2247 	int ret;
2248 
2249 	ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2250 	if (ret < 0)
2251 		return ret;
2252 
2253 	return !!(ret & PB_OPERATION_CONTROL_ON);
2254 }
2255 
2256 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2257 {
2258 	struct device *dev = rdev_get_dev(rdev);
2259 	struct i2c_client *client = to_i2c_client(dev->parent);
2260 	u8 page = rdev_get_id(rdev);
2261 
2262 	return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2263 				      PB_OPERATION_CONTROL_ON,
2264 				      enable ? PB_OPERATION_CONTROL_ON : 0);
2265 }
2266 
2267 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2268 {
2269 	return _pmbus_regulator_on_off(rdev, 1);
2270 }
2271 
2272 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2273 {
2274 	return _pmbus_regulator_on_off(rdev, 0);
2275 }
2276 
2277 const struct regulator_ops pmbus_regulator_ops = {
2278 	.enable = pmbus_regulator_enable,
2279 	.disable = pmbus_regulator_disable,
2280 	.is_enabled = pmbus_regulator_is_enabled,
2281 };
2282 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
2283 
2284 static int pmbus_regulator_register(struct pmbus_data *data)
2285 {
2286 	struct device *dev = data->dev;
2287 	const struct pmbus_driver_info *info = data->info;
2288 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2289 	struct regulator_dev *rdev;
2290 	int i;
2291 
2292 	for (i = 0; i < info->num_regulators; i++) {
2293 		struct regulator_config config = { };
2294 
2295 		config.dev = dev;
2296 		config.driver_data = data;
2297 
2298 		if (pdata && pdata->reg_init_data)
2299 			config.init_data = &pdata->reg_init_data[i];
2300 
2301 		rdev = devm_regulator_register(dev, &info->reg_desc[i],
2302 					       &config);
2303 		if (IS_ERR(rdev)) {
2304 			dev_err(dev, "Failed to register %s regulator\n",
2305 				info->reg_desc[i].name);
2306 			return PTR_ERR(rdev);
2307 		}
2308 	}
2309 
2310 	return 0;
2311 }
2312 #else
2313 static int pmbus_regulator_register(struct pmbus_data *data)
2314 {
2315 	return 0;
2316 }
2317 #endif
2318 
2319 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
2320 
2321 #if IS_ENABLED(CONFIG_DEBUG_FS)
2322 static int pmbus_debugfs_get(void *data, u64 *val)
2323 {
2324 	int rc;
2325 	struct pmbus_debugfs_entry *entry = data;
2326 
2327 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2328 	if (rc < 0)
2329 		return rc;
2330 
2331 	*val = rc;
2332 
2333 	return 0;
2334 }
2335 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2336 			 "0x%02llx\n");
2337 
2338 static int pmbus_debugfs_get_status(void *data, u64 *val)
2339 {
2340 	int rc;
2341 	struct pmbus_debugfs_entry *entry = data;
2342 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2343 
2344 	rc = pdata->read_status(entry->client, entry->page);
2345 	if (rc < 0)
2346 		return rc;
2347 
2348 	*val = rc;
2349 
2350 	return 0;
2351 }
2352 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2353 			 NULL, "0x%04llx\n");
2354 
2355 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2356 {
2357 	struct i2c_client *client = data;
2358 
2359 	*val = !!(client->flags & I2C_CLIENT_PEC);
2360 
2361 	return 0;
2362 }
2363 
2364 static int pmbus_debugfs_set_pec(void *data, u64 val)
2365 {
2366 	int rc;
2367 	struct i2c_client *client = data;
2368 
2369 	if (!val) {
2370 		client->flags &= ~I2C_CLIENT_PEC;
2371 		return 0;
2372 	}
2373 
2374 	if (val != 1)
2375 		return -EINVAL;
2376 
2377 	rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2378 	if (rc < 0)
2379 		return rc;
2380 
2381 	if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2382 		return -EOPNOTSUPP;
2383 
2384 	client->flags |= I2C_CLIENT_PEC;
2385 
2386 	return 0;
2387 }
2388 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2389 			 pmbus_debugfs_set_pec, "%llu\n");
2390 
2391 static int pmbus_init_debugfs(struct i2c_client *client,
2392 			      struct pmbus_data *data)
2393 {
2394 	int i, idx = 0;
2395 	char name[PMBUS_NAME_SIZE];
2396 	struct pmbus_debugfs_entry *entries;
2397 
2398 	if (!pmbus_debugfs_dir)
2399 		return -ENODEV;
2400 
2401 	/*
2402 	 * Create the debugfs directory for this device. Use the hwmon device
2403 	 * name to avoid conflicts (hwmon numbers are globally unique).
2404 	 */
2405 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2406 					   pmbus_debugfs_dir);
2407 	if (IS_ERR_OR_NULL(data->debugfs)) {
2408 		data->debugfs = NULL;
2409 		return -ENODEV;
2410 	}
2411 
2412 	/* Allocate the max possible entries we need. */
2413 	entries = devm_kcalloc(data->dev,
2414 			       data->info->pages * 10, sizeof(*entries),
2415 			       GFP_KERNEL);
2416 	if (!entries)
2417 		return -ENOMEM;
2418 
2419 	debugfs_create_file("pec", 0664, data->debugfs, client,
2420 			    &pmbus_debugfs_ops_pec);
2421 
2422 	for (i = 0; i < data->info->pages; ++i) {
2423 		/* Check accessibility of status register if it's not page 0 */
2424 		if (!i || pmbus_check_status_register(client, i)) {
2425 			/* No need to set reg as we have special read op. */
2426 			entries[idx].client = client;
2427 			entries[idx].page = i;
2428 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2429 			debugfs_create_file(name, 0444, data->debugfs,
2430 					    &entries[idx++],
2431 					    &pmbus_debugfs_ops_status);
2432 		}
2433 
2434 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2435 			entries[idx].client = client;
2436 			entries[idx].page = i;
2437 			entries[idx].reg = PMBUS_STATUS_VOUT;
2438 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2439 			debugfs_create_file(name, 0444, data->debugfs,
2440 					    &entries[idx++],
2441 					    &pmbus_debugfs_ops);
2442 		}
2443 
2444 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2445 			entries[idx].client = client;
2446 			entries[idx].page = i;
2447 			entries[idx].reg = PMBUS_STATUS_IOUT;
2448 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2449 			debugfs_create_file(name, 0444, data->debugfs,
2450 					    &entries[idx++],
2451 					    &pmbus_debugfs_ops);
2452 		}
2453 
2454 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2455 			entries[idx].client = client;
2456 			entries[idx].page = i;
2457 			entries[idx].reg = PMBUS_STATUS_INPUT;
2458 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2459 			debugfs_create_file(name, 0444, data->debugfs,
2460 					    &entries[idx++],
2461 					    &pmbus_debugfs_ops);
2462 		}
2463 
2464 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2465 			entries[idx].client = client;
2466 			entries[idx].page = i;
2467 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2468 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2469 			debugfs_create_file(name, 0444, data->debugfs,
2470 					    &entries[idx++],
2471 					    &pmbus_debugfs_ops);
2472 		}
2473 
2474 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2475 			entries[idx].client = client;
2476 			entries[idx].page = i;
2477 			entries[idx].reg = PMBUS_STATUS_CML;
2478 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2479 			debugfs_create_file(name, 0444, data->debugfs,
2480 					    &entries[idx++],
2481 					    &pmbus_debugfs_ops);
2482 		}
2483 
2484 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2485 			entries[idx].client = client;
2486 			entries[idx].page = i;
2487 			entries[idx].reg = PMBUS_STATUS_OTHER;
2488 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2489 			debugfs_create_file(name, 0444, data->debugfs,
2490 					    &entries[idx++],
2491 					    &pmbus_debugfs_ops);
2492 		}
2493 
2494 		if (pmbus_check_byte_register(client, i,
2495 					      PMBUS_STATUS_MFR_SPECIFIC)) {
2496 			entries[idx].client = client;
2497 			entries[idx].page = i;
2498 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2499 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2500 			debugfs_create_file(name, 0444, data->debugfs,
2501 					    &entries[idx++],
2502 					    &pmbus_debugfs_ops);
2503 		}
2504 
2505 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2506 			entries[idx].client = client;
2507 			entries[idx].page = i;
2508 			entries[idx].reg = PMBUS_STATUS_FAN_12;
2509 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2510 			debugfs_create_file(name, 0444, data->debugfs,
2511 					    &entries[idx++],
2512 					    &pmbus_debugfs_ops);
2513 		}
2514 
2515 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2516 			entries[idx].client = client;
2517 			entries[idx].page = i;
2518 			entries[idx].reg = PMBUS_STATUS_FAN_34;
2519 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2520 			debugfs_create_file(name, 0444, data->debugfs,
2521 					    &entries[idx++],
2522 					    &pmbus_debugfs_ops);
2523 		}
2524 	}
2525 
2526 	return 0;
2527 }
2528 #else
2529 static int pmbus_init_debugfs(struct i2c_client *client,
2530 			      struct pmbus_data *data)
2531 {
2532 	return 0;
2533 }
2534 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
2535 
2536 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2537 {
2538 	struct device *dev = &client->dev;
2539 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2540 	struct pmbus_data *data;
2541 	size_t groups_num = 0;
2542 	int ret;
2543 
2544 	if (!info)
2545 		return -ENODEV;
2546 
2547 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2548 				     | I2C_FUNC_SMBUS_BYTE_DATA
2549 				     | I2C_FUNC_SMBUS_WORD_DATA))
2550 		return -ENODEV;
2551 
2552 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2553 	if (!data)
2554 		return -ENOMEM;
2555 
2556 	if (info->groups)
2557 		while (info->groups[groups_num])
2558 			groups_num++;
2559 
2560 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
2561 				    GFP_KERNEL);
2562 	if (!data->groups)
2563 		return -ENOMEM;
2564 
2565 	i2c_set_clientdata(client, data);
2566 	mutex_init(&data->update_lock);
2567 	data->dev = dev;
2568 
2569 	if (pdata)
2570 		data->flags = pdata->flags;
2571 	data->info = info;
2572 	data->currpage = -1;
2573 	data->currphase = -1;
2574 
2575 	ret = pmbus_init_common(client, data, info);
2576 	if (ret < 0)
2577 		return ret;
2578 
2579 	ret = pmbus_find_attributes(client, data);
2580 	if (ret)
2581 		return ret;
2582 
2583 	/*
2584 	 * If there are no attributes, something is wrong.
2585 	 * Bail out instead of trying to register nothing.
2586 	 */
2587 	if (!data->num_attributes) {
2588 		dev_err(dev, "No attributes found\n");
2589 		return -ENODEV;
2590 	}
2591 
2592 	data->groups[0] = &data->group;
2593 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
2594 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
2595 					client->name, data, data->groups);
2596 	if (IS_ERR(data->hwmon_dev)) {
2597 		dev_err(dev, "Failed to register hwmon device\n");
2598 		return PTR_ERR(data->hwmon_dev);
2599 	}
2600 
2601 	ret = pmbus_regulator_register(data);
2602 	if (ret)
2603 		return ret;
2604 
2605 	ret = pmbus_init_debugfs(client, data);
2606 	if (ret)
2607 		dev_warn(dev, "Failed to register debugfs\n");
2608 
2609 	return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(pmbus_do_probe);
2612 
2613 int pmbus_do_remove(struct i2c_client *client)
2614 {
2615 	struct pmbus_data *data = i2c_get_clientdata(client);
2616 
2617 	debugfs_remove_recursive(data->debugfs);
2618 
2619 	return 0;
2620 }
2621 EXPORT_SYMBOL_GPL(pmbus_do_remove);
2622 
2623 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2624 {
2625 	struct pmbus_data *data = i2c_get_clientdata(client);
2626 
2627 	return data->debugfs;
2628 }
2629 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir);
2630 
2631 static int __init pmbus_core_init(void)
2632 {
2633 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2634 	if (IS_ERR(pmbus_debugfs_dir))
2635 		pmbus_debugfs_dir = NULL;
2636 
2637 	return 0;
2638 }
2639 
2640 static void __exit pmbus_core_exit(void)
2641 {
2642 	debugfs_remove_recursive(pmbus_debugfs_dir);
2643 }
2644 
2645 module_init(pmbus_core_init);
2646 module_exit(pmbus_core_exit);
2647 
2648 MODULE_AUTHOR("Guenter Roeck");
2649 MODULE_DESCRIPTION("PMBus core driver");
2650 MODULE_LICENSE("GPL");
2651