1 /* 2 * Hardware monitoring driver for PMBus devices 3 * 4 * Copyright (c) 2010, 2011 Ericsson AB. 5 * Copyright (c) 2012 Guenter Roeck 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/debugfs.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/init.h> 26 #include <linux/err.h> 27 #include <linux/slab.h> 28 #include <linux/i2c.h> 29 #include <linux/hwmon.h> 30 #include <linux/hwmon-sysfs.h> 31 #include <linux/jiffies.h> 32 #include <linux/pmbus.h> 33 #include <linux/regulator/driver.h> 34 #include <linux/regulator/machine.h> 35 #include "pmbus.h" 36 37 /* 38 * Number of additional attribute pointers to allocate 39 * with each call to krealloc 40 */ 41 #define PMBUS_ATTR_ALLOC_SIZE 32 42 43 /* 44 * Index into status register array, per status register group 45 */ 46 #define PB_STATUS_BASE 0 47 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) 48 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) 49 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) 50 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) 51 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) 52 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES) 53 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1) 54 55 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1) 56 57 #define PMBUS_NAME_SIZE 24 58 59 struct pmbus_sensor { 60 struct pmbus_sensor *next; 61 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 62 struct device_attribute attribute; 63 u8 page; /* page number */ 64 u16 reg; /* register */ 65 enum pmbus_sensor_classes class; /* sensor class */ 66 bool update; /* runtime sensor update needed */ 67 int data; /* Sensor data. 68 Negative if there was a read error */ 69 }; 70 #define to_pmbus_sensor(_attr) \ 71 container_of(_attr, struct pmbus_sensor, attribute) 72 73 struct pmbus_boolean { 74 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 75 struct sensor_device_attribute attribute; 76 struct pmbus_sensor *s1; 77 struct pmbus_sensor *s2; 78 }; 79 #define to_pmbus_boolean(_attr) \ 80 container_of(_attr, struct pmbus_boolean, attribute) 81 82 struct pmbus_label { 83 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 84 struct device_attribute attribute; 85 char label[PMBUS_NAME_SIZE]; /* label */ 86 }; 87 #define to_pmbus_label(_attr) \ 88 container_of(_attr, struct pmbus_label, attribute) 89 90 struct pmbus_data { 91 struct device *dev; 92 struct device *hwmon_dev; 93 94 u32 flags; /* from platform data */ 95 96 int exponent[PMBUS_PAGES]; 97 /* linear mode: exponent for output voltages */ 98 99 const struct pmbus_driver_info *info; 100 101 int max_attributes; 102 int num_attributes; 103 struct attribute_group group; 104 const struct attribute_group *groups[2]; 105 struct dentry *debugfs; /* debugfs device directory */ 106 107 struct pmbus_sensor *sensors; 108 109 struct mutex update_lock; 110 bool valid; 111 unsigned long last_updated; /* in jiffies */ 112 113 /* 114 * A single status register covers multiple attributes, 115 * so we keep them all together. 116 */ 117 u16 status[PB_NUM_STATUS_REG]; 118 119 bool has_status_word; /* device uses STATUS_WORD register */ 120 int (*read_status)(struct i2c_client *client, int page); 121 122 u8 currpage; 123 }; 124 125 struct pmbus_debugfs_entry { 126 struct i2c_client *client; 127 u8 page; 128 u8 reg; 129 }; 130 131 void pmbus_clear_cache(struct i2c_client *client) 132 { 133 struct pmbus_data *data = i2c_get_clientdata(client); 134 135 data->valid = false; 136 } 137 EXPORT_SYMBOL_GPL(pmbus_clear_cache); 138 139 int pmbus_set_page(struct i2c_client *client, int page) 140 { 141 struct pmbus_data *data = i2c_get_clientdata(client); 142 int rv = 0; 143 int newpage; 144 145 if (page >= 0 && page != data->currpage) { 146 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 147 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 148 if (newpage != page) 149 rv = -EIO; 150 else 151 data->currpage = page; 152 } 153 return rv; 154 } 155 EXPORT_SYMBOL_GPL(pmbus_set_page); 156 157 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 158 { 159 int rv; 160 161 rv = pmbus_set_page(client, page); 162 if (rv < 0) 163 return rv; 164 165 return i2c_smbus_write_byte(client, value); 166 } 167 EXPORT_SYMBOL_GPL(pmbus_write_byte); 168 169 /* 170 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 171 * a device specific mapping function exists and calls it if necessary. 172 */ 173 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 174 { 175 struct pmbus_data *data = i2c_get_clientdata(client); 176 const struct pmbus_driver_info *info = data->info; 177 int status; 178 179 if (info->write_byte) { 180 status = info->write_byte(client, page, value); 181 if (status != -ENODATA) 182 return status; 183 } 184 return pmbus_write_byte(client, page, value); 185 } 186 187 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 188 u16 word) 189 { 190 int rv; 191 192 rv = pmbus_set_page(client, page); 193 if (rv < 0) 194 return rv; 195 196 return i2c_smbus_write_word_data(client, reg, word); 197 } 198 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 199 200 /* 201 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 202 * a device specific mapping function exists and calls it if necessary. 203 */ 204 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 205 u16 word) 206 { 207 struct pmbus_data *data = i2c_get_clientdata(client); 208 const struct pmbus_driver_info *info = data->info; 209 int status; 210 211 if (info->write_word_data) { 212 status = info->write_word_data(client, page, reg, word); 213 if (status != -ENODATA) 214 return status; 215 } 216 if (reg >= PMBUS_VIRT_BASE) 217 return -ENXIO; 218 return pmbus_write_word_data(client, page, reg, word); 219 } 220 221 int pmbus_read_word_data(struct i2c_client *client, int page, u8 reg) 222 { 223 int rv; 224 225 rv = pmbus_set_page(client, page); 226 if (rv < 0) 227 return rv; 228 229 return i2c_smbus_read_word_data(client, reg); 230 } 231 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 232 233 /* 234 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 235 * a device specific mapping function exists and calls it if necessary. 236 */ 237 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg) 238 { 239 struct pmbus_data *data = i2c_get_clientdata(client); 240 const struct pmbus_driver_info *info = data->info; 241 int status; 242 243 if (info->read_word_data) { 244 status = info->read_word_data(client, page, reg); 245 if (status != -ENODATA) 246 return status; 247 } 248 if (reg >= PMBUS_VIRT_BASE) 249 return -ENXIO; 250 return pmbus_read_word_data(client, page, reg); 251 } 252 253 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 254 { 255 int rv; 256 257 rv = pmbus_set_page(client, page); 258 if (rv < 0) 259 return rv; 260 261 return i2c_smbus_read_byte_data(client, reg); 262 } 263 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 264 265 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 266 { 267 int rv; 268 269 rv = pmbus_set_page(client, page); 270 if (rv < 0) 271 return rv; 272 273 return i2c_smbus_write_byte_data(client, reg, value); 274 } 275 EXPORT_SYMBOL_GPL(pmbus_write_byte_data); 276 277 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 278 u8 mask, u8 value) 279 { 280 unsigned int tmp; 281 int rv; 282 283 rv = pmbus_read_byte_data(client, page, reg); 284 if (rv < 0) 285 return rv; 286 287 tmp = (rv & ~mask) | (value & mask); 288 289 if (tmp != rv) 290 rv = pmbus_write_byte_data(client, page, reg, tmp); 291 292 return rv; 293 } 294 EXPORT_SYMBOL_GPL(pmbus_update_byte_data); 295 296 /* 297 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 298 * a device specific mapping function exists and calls it if necessary. 299 */ 300 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 301 { 302 struct pmbus_data *data = i2c_get_clientdata(client); 303 const struct pmbus_driver_info *info = data->info; 304 int status; 305 306 if (info->read_byte_data) { 307 status = info->read_byte_data(client, page, reg); 308 if (status != -ENODATA) 309 return status; 310 } 311 return pmbus_read_byte_data(client, page, reg); 312 } 313 314 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 315 { 316 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 317 } 318 319 void pmbus_clear_faults(struct i2c_client *client) 320 { 321 struct pmbus_data *data = i2c_get_clientdata(client); 322 int i; 323 324 for (i = 0; i < data->info->pages; i++) 325 pmbus_clear_fault_page(client, i); 326 } 327 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 328 329 static int pmbus_check_status_cml(struct i2c_client *client) 330 { 331 struct pmbus_data *data = i2c_get_clientdata(client); 332 int status, status2; 333 334 status = data->read_status(client, -1); 335 if (status < 0 || (status & PB_STATUS_CML)) { 336 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 337 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 338 return -EIO; 339 } 340 return 0; 341 } 342 343 static bool pmbus_check_register(struct i2c_client *client, 344 int (*func)(struct i2c_client *client, 345 int page, int reg), 346 int page, int reg) 347 { 348 int rv; 349 struct pmbus_data *data = i2c_get_clientdata(client); 350 351 rv = func(client, page, reg); 352 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 353 rv = pmbus_check_status_cml(client); 354 pmbus_clear_fault_page(client, -1); 355 return rv >= 0; 356 } 357 358 static bool pmbus_check_status_register(struct i2c_client *client, int page) 359 { 360 int status; 361 struct pmbus_data *data = i2c_get_clientdata(client); 362 363 status = data->read_status(client, page); 364 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 365 (status & PB_STATUS_CML)) { 366 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 367 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 368 status = -EIO; 369 } 370 371 pmbus_clear_fault_page(client, -1); 372 return status >= 0; 373 } 374 375 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 376 { 377 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 378 } 379 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 380 381 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 382 { 383 return pmbus_check_register(client, _pmbus_read_word_data, page, reg); 384 } 385 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 386 387 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 388 { 389 struct pmbus_data *data = i2c_get_clientdata(client); 390 391 return data->info; 392 } 393 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 394 395 static struct _pmbus_status { 396 u32 func; 397 u16 base; 398 u16 reg; 399 } pmbus_status[] = { 400 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT }, 401 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT }, 402 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE, 403 PMBUS_STATUS_TEMPERATURE }, 404 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 }, 405 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 }, 406 }; 407 408 static struct pmbus_data *pmbus_update_device(struct device *dev) 409 { 410 struct i2c_client *client = to_i2c_client(dev->parent); 411 struct pmbus_data *data = i2c_get_clientdata(client); 412 const struct pmbus_driver_info *info = data->info; 413 struct pmbus_sensor *sensor; 414 415 mutex_lock(&data->update_lock); 416 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 417 int i, j; 418 419 for (i = 0; i < info->pages; i++) { 420 data->status[PB_STATUS_BASE + i] 421 = data->read_status(client, i); 422 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) { 423 struct _pmbus_status *s = &pmbus_status[j]; 424 425 if (!(info->func[i] & s->func)) 426 continue; 427 data->status[s->base + i] 428 = _pmbus_read_byte_data(client, i, 429 s->reg); 430 } 431 } 432 433 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) 434 data->status[PB_STATUS_INPUT_BASE] 435 = _pmbus_read_byte_data(client, 0, 436 PMBUS_STATUS_INPUT); 437 438 if (info->func[0] & PMBUS_HAVE_STATUS_VMON) 439 data->status[PB_STATUS_VMON_BASE] 440 = _pmbus_read_byte_data(client, 0, 441 PMBUS_VIRT_STATUS_VMON); 442 443 for (sensor = data->sensors; sensor; sensor = sensor->next) { 444 if (!data->valid || sensor->update) 445 sensor->data 446 = _pmbus_read_word_data(client, 447 sensor->page, 448 sensor->reg); 449 } 450 pmbus_clear_faults(client); 451 data->last_updated = jiffies; 452 data->valid = 1; 453 } 454 mutex_unlock(&data->update_lock); 455 return data; 456 } 457 458 /* 459 * Convert linear sensor values to milli- or micro-units 460 * depending on sensor type. 461 */ 462 static long pmbus_reg2data_linear(struct pmbus_data *data, 463 struct pmbus_sensor *sensor) 464 { 465 s16 exponent; 466 s32 mantissa; 467 long val; 468 469 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 470 exponent = data->exponent[sensor->page]; 471 mantissa = (u16) sensor->data; 472 } else { /* LINEAR11 */ 473 exponent = ((s16)sensor->data) >> 11; 474 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 475 } 476 477 val = mantissa; 478 479 /* scale result to milli-units for all sensors except fans */ 480 if (sensor->class != PSC_FAN) 481 val = val * 1000L; 482 483 /* scale result to micro-units for power sensors */ 484 if (sensor->class == PSC_POWER) 485 val = val * 1000L; 486 487 if (exponent >= 0) 488 val <<= exponent; 489 else 490 val >>= -exponent; 491 492 return val; 493 } 494 495 /* 496 * Convert direct sensor values to milli- or micro-units 497 * depending on sensor type. 498 */ 499 static long pmbus_reg2data_direct(struct pmbus_data *data, 500 struct pmbus_sensor *sensor) 501 { 502 long val = (s16) sensor->data; 503 long m, b, R; 504 505 m = data->info->m[sensor->class]; 506 b = data->info->b[sensor->class]; 507 R = data->info->R[sensor->class]; 508 509 if (m == 0) 510 return 0; 511 512 /* X = 1/m * (Y * 10^-R - b) */ 513 R = -R; 514 /* scale result to milli-units for everything but fans */ 515 if (sensor->class != PSC_FAN) { 516 R += 3; 517 b *= 1000; 518 } 519 520 /* scale result to micro-units for power sensors */ 521 if (sensor->class == PSC_POWER) { 522 R += 3; 523 b *= 1000; 524 } 525 526 while (R > 0) { 527 val *= 10; 528 R--; 529 } 530 while (R < 0) { 531 val = DIV_ROUND_CLOSEST(val, 10); 532 R++; 533 } 534 535 return (val - b) / m; 536 } 537 538 /* 539 * Convert VID sensor values to milli- or micro-units 540 * depending on sensor type. 541 */ 542 static long pmbus_reg2data_vid(struct pmbus_data *data, 543 struct pmbus_sensor *sensor) 544 { 545 long val = sensor->data; 546 long rv = 0; 547 548 switch (data->info->vrm_version) { 549 case vr11: 550 if (val >= 0x02 && val <= 0xb2) 551 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 552 break; 553 case vr12: 554 if (val >= 0x01) 555 rv = 250 + (val - 1) * 5; 556 break; 557 case vr13: 558 if (val >= 0x01) 559 rv = 500 + (val - 1) * 10; 560 break; 561 } 562 return rv; 563 } 564 565 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 566 { 567 long val; 568 569 switch (data->info->format[sensor->class]) { 570 case direct: 571 val = pmbus_reg2data_direct(data, sensor); 572 break; 573 case vid: 574 val = pmbus_reg2data_vid(data, sensor); 575 break; 576 case linear: 577 default: 578 val = pmbus_reg2data_linear(data, sensor); 579 break; 580 } 581 return val; 582 } 583 584 #define MAX_MANTISSA (1023 * 1000) 585 #define MIN_MANTISSA (511 * 1000) 586 587 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 588 struct pmbus_sensor *sensor, long val) 589 { 590 s16 exponent = 0, mantissa; 591 bool negative = false; 592 593 /* simple case */ 594 if (val == 0) 595 return 0; 596 597 if (sensor->class == PSC_VOLTAGE_OUT) { 598 /* LINEAR16 does not support negative voltages */ 599 if (val < 0) 600 return 0; 601 602 /* 603 * For a static exponents, we don't have a choice 604 * but to adjust the value to it. 605 */ 606 if (data->exponent[sensor->page] < 0) 607 val <<= -data->exponent[sensor->page]; 608 else 609 val >>= data->exponent[sensor->page]; 610 val = DIV_ROUND_CLOSEST(val, 1000); 611 return val & 0xffff; 612 } 613 614 if (val < 0) { 615 negative = true; 616 val = -val; 617 } 618 619 /* Power is in uW. Convert to mW before converting. */ 620 if (sensor->class == PSC_POWER) 621 val = DIV_ROUND_CLOSEST(val, 1000L); 622 623 /* 624 * For simplicity, convert fan data to milli-units 625 * before calculating the exponent. 626 */ 627 if (sensor->class == PSC_FAN) 628 val = val * 1000; 629 630 /* Reduce large mantissa until it fits into 10 bit */ 631 while (val >= MAX_MANTISSA && exponent < 15) { 632 exponent++; 633 val >>= 1; 634 } 635 /* Increase small mantissa to improve precision */ 636 while (val < MIN_MANTISSA && exponent > -15) { 637 exponent--; 638 val <<= 1; 639 } 640 641 /* Convert mantissa from milli-units to units */ 642 mantissa = DIV_ROUND_CLOSEST(val, 1000); 643 644 /* Ensure that resulting number is within range */ 645 if (mantissa > 0x3ff) 646 mantissa = 0x3ff; 647 648 /* restore sign */ 649 if (negative) 650 mantissa = -mantissa; 651 652 /* Convert to 5 bit exponent, 11 bit mantissa */ 653 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 654 } 655 656 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 657 struct pmbus_sensor *sensor, long val) 658 { 659 long m, b, R; 660 661 m = data->info->m[sensor->class]; 662 b = data->info->b[sensor->class]; 663 R = data->info->R[sensor->class]; 664 665 /* Power is in uW. Adjust R and b. */ 666 if (sensor->class == PSC_POWER) { 667 R -= 3; 668 b *= 1000; 669 } 670 671 /* Calculate Y = (m * X + b) * 10^R */ 672 if (sensor->class != PSC_FAN) { 673 R -= 3; /* Adjust R and b for data in milli-units */ 674 b *= 1000; 675 } 676 val = val * m + b; 677 678 while (R > 0) { 679 val *= 10; 680 R--; 681 } 682 while (R < 0) { 683 val = DIV_ROUND_CLOSEST(val, 10); 684 R++; 685 } 686 687 return val; 688 } 689 690 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 691 struct pmbus_sensor *sensor, long val) 692 { 693 val = clamp_val(val, 500, 1600); 694 695 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625); 696 } 697 698 static u16 pmbus_data2reg(struct pmbus_data *data, 699 struct pmbus_sensor *sensor, long val) 700 { 701 u16 regval; 702 703 switch (data->info->format[sensor->class]) { 704 case direct: 705 regval = pmbus_data2reg_direct(data, sensor, val); 706 break; 707 case vid: 708 regval = pmbus_data2reg_vid(data, sensor, val); 709 break; 710 case linear: 711 default: 712 regval = pmbus_data2reg_linear(data, sensor, val); 713 break; 714 } 715 return regval; 716 } 717 718 /* 719 * Return boolean calculated from converted data. 720 * <index> defines a status register index and mask. 721 * The mask is in the lower 8 bits, the register index is in bits 8..23. 722 * 723 * The associated pmbus_boolean structure contains optional pointers to two 724 * sensor attributes. If specified, those attributes are compared against each 725 * other to determine if a limit has been exceeded. 726 * 727 * If the sensor attribute pointers are NULL, the function returns true if 728 * (status[reg] & mask) is true. 729 * 730 * If sensor attribute pointers are provided, a comparison against a specified 731 * limit has to be performed to determine the boolean result. 732 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 733 * sensor values referenced by sensor attribute pointers s1 and s2). 734 * 735 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 736 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 737 * 738 * If a negative value is stored in any of the referenced registers, this value 739 * reflects an error code which will be returned. 740 */ 741 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b, 742 int index) 743 { 744 struct pmbus_sensor *s1 = b->s1; 745 struct pmbus_sensor *s2 = b->s2; 746 u16 reg = (index >> 16) & 0xffff; 747 u16 mask = index & 0xffff; 748 int ret, status; 749 u16 regval; 750 751 status = data->status[reg]; 752 if (status < 0) 753 return status; 754 755 regval = status & mask; 756 if (!s1 && !s2) { 757 ret = !!regval; 758 } else if (!s1 || !s2) { 759 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2); 760 return 0; 761 } else { 762 long v1, v2; 763 764 if (s1->data < 0) 765 return s1->data; 766 if (s2->data < 0) 767 return s2->data; 768 769 v1 = pmbus_reg2data(data, s1); 770 v2 = pmbus_reg2data(data, s2); 771 ret = !!(regval && v1 >= v2); 772 } 773 return ret; 774 } 775 776 static ssize_t pmbus_show_boolean(struct device *dev, 777 struct device_attribute *da, char *buf) 778 { 779 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 780 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 781 struct pmbus_data *data = pmbus_update_device(dev); 782 int val; 783 784 val = pmbus_get_boolean(data, boolean, attr->index); 785 if (val < 0) 786 return val; 787 return snprintf(buf, PAGE_SIZE, "%d\n", val); 788 } 789 790 static ssize_t pmbus_show_sensor(struct device *dev, 791 struct device_attribute *devattr, char *buf) 792 { 793 struct pmbus_data *data = pmbus_update_device(dev); 794 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 795 796 if (sensor->data < 0) 797 return sensor->data; 798 799 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor)); 800 } 801 802 static ssize_t pmbus_set_sensor(struct device *dev, 803 struct device_attribute *devattr, 804 const char *buf, size_t count) 805 { 806 struct i2c_client *client = to_i2c_client(dev->parent); 807 struct pmbus_data *data = i2c_get_clientdata(client); 808 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 809 ssize_t rv = count; 810 long val = 0; 811 int ret; 812 u16 regval; 813 814 if (kstrtol(buf, 10, &val) < 0) 815 return -EINVAL; 816 817 mutex_lock(&data->update_lock); 818 regval = pmbus_data2reg(data, sensor, val); 819 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 820 if (ret < 0) 821 rv = ret; 822 else 823 sensor->data = regval; 824 mutex_unlock(&data->update_lock); 825 return rv; 826 } 827 828 static ssize_t pmbus_show_label(struct device *dev, 829 struct device_attribute *da, char *buf) 830 { 831 struct pmbus_label *label = to_pmbus_label(da); 832 833 return snprintf(buf, PAGE_SIZE, "%s\n", label->label); 834 } 835 836 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 837 { 838 if (data->num_attributes >= data->max_attributes - 1) { 839 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 840 void *new_attrs = krealloc(data->group.attrs, 841 new_max_attrs * sizeof(void *), 842 GFP_KERNEL); 843 if (!new_attrs) 844 return -ENOMEM; 845 data->group.attrs = new_attrs; 846 data->max_attributes = new_max_attrs; 847 } 848 849 data->group.attrs[data->num_attributes++] = attr; 850 data->group.attrs[data->num_attributes] = NULL; 851 return 0; 852 } 853 854 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 855 const char *name, 856 umode_t mode, 857 ssize_t (*show)(struct device *dev, 858 struct device_attribute *attr, 859 char *buf), 860 ssize_t (*store)(struct device *dev, 861 struct device_attribute *attr, 862 const char *buf, size_t count)) 863 { 864 sysfs_attr_init(&dev_attr->attr); 865 dev_attr->attr.name = name; 866 dev_attr->attr.mode = mode; 867 dev_attr->show = show; 868 dev_attr->store = store; 869 } 870 871 static void pmbus_attr_init(struct sensor_device_attribute *a, 872 const char *name, 873 umode_t mode, 874 ssize_t (*show)(struct device *dev, 875 struct device_attribute *attr, 876 char *buf), 877 ssize_t (*store)(struct device *dev, 878 struct device_attribute *attr, 879 const char *buf, size_t count), 880 int idx) 881 { 882 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 883 a->index = idx; 884 } 885 886 static int pmbus_add_boolean(struct pmbus_data *data, 887 const char *name, const char *type, int seq, 888 struct pmbus_sensor *s1, 889 struct pmbus_sensor *s2, 890 u16 reg, u16 mask) 891 { 892 struct pmbus_boolean *boolean; 893 struct sensor_device_attribute *a; 894 895 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 896 if (!boolean) 897 return -ENOMEM; 898 899 a = &boolean->attribute; 900 901 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 902 name, seq, type); 903 boolean->s1 = s1; 904 boolean->s2 = s2; 905 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL, 906 (reg << 16) | mask); 907 908 return pmbus_add_attribute(data, &a->dev_attr.attr); 909 } 910 911 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 912 const char *name, const char *type, 913 int seq, int page, int reg, 914 enum pmbus_sensor_classes class, 915 bool update, bool readonly) 916 { 917 struct pmbus_sensor *sensor; 918 struct device_attribute *a; 919 920 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 921 if (!sensor) 922 return NULL; 923 a = &sensor->attribute; 924 925 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 926 name, seq, type); 927 sensor->page = page; 928 sensor->reg = reg; 929 sensor->class = class; 930 sensor->update = update; 931 pmbus_dev_attr_init(a, sensor->name, 932 readonly ? S_IRUGO : S_IRUGO | S_IWUSR, 933 pmbus_show_sensor, pmbus_set_sensor); 934 935 if (pmbus_add_attribute(data, &a->attr)) 936 return NULL; 937 938 sensor->next = data->sensors; 939 data->sensors = sensor; 940 941 return sensor; 942 } 943 944 static int pmbus_add_label(struct pmbus_data *data, 945 const char *name, int seq, 946 const char *lstring, int index) 947 { 948 struct pmbus_label *label; 949 struct device_attribute *a; 950 951 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 952 if (!label) 953 return -ENOMEM; 954 955 a = &label->attribute; 956 957 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 958 if (!index) 959 strncpy(label->label, lstring, sizeof(label->label) - 1); 960 else 961 snprintf(label->label, sizeof(label->label), "%s%d", lstring, 962 index); 963 964 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL); 965 return pmbus_add_attribute(data, &a->attr); 966 } 967 968 /* 969 * Search for attributes. Allocate sensors, booleans, and labels as needed. 970 */ 971 972 /* 973 * The pmbus_limit_attr structure describes a single limit attribute 974 * and its associated alarm attribute. 975 */ 976 struct pmbus_limit_attr { 977 u16 reg; /* Limit register */ 978 u16 sbit; /* Alarm attribute status bit */ 979 bool update; /* True if register needs updates */ 980 bool low; /* True if low limit; for limits with compare 981 functions only */ 982 const char *attr; /* Attribute name */ 983 const char *alarm; /* Alarm attribute name */ 984 }; 985 986 /* 987 * The pmbus_sensor_attr structure describes one sensor attribute. This 988 * description includes a reference to the associated limit attributes. 989 */ 990 struct pmbus_sensor_attr { 991 u16 reg; /* sensor register */ 992 u16 gbit; /* generic status bit */ 993 u8 nlimit; /* # of limit registers */ 994 enum pmbus_sensor_classes class;/* sensor class */ 995 const char *label; /* sensor label */ 996 bool paged; /* true if paged sensor */ 997 bool update; /* true if update needed */ 998 bool compare; /* true if compare function needed */ 999 u32 func; /* sensor mask */ 1000 u32 sfunc; /* sensor status mask */ 1001 int sbase; /* status base register */ 1002 const struct pmbus_limit_attr *limit;/* limit registers */ 1003 }; 1004 1005 /* 1006 * Add a set of limit attributes and, if supported, the associated 1007 * alarm attributes. 1008 * returns 0 if no alarm register found, 1 if an alarm register was found, 1009 * < 0 on errors. 1010 */ 1011 static int pmbus_add_limit_attrs(struct i2c_client *client, 1012 struct pmbus_data *data, 1013 const struct pmbus_driver_info *info, 1014 const char *name, int index, int page, 1015 struct pmbus_sensor *base, 1016 const struct pmbus_sensor_attr *attr) 1017 { 1018 const struct pmbus_limit_attr *l = attr->limit; 1019 int nlimit = attr->nlimit; 1020 int have_alarm = 0; 1021 int i, ret; 1022 struct pmbus_sensor *curr; 1023 1024 for (i = 0; i < nlimit; i++) { 1025 if (pmbus_check_word_register(client, page, l->reg)) { 1026 curr = pmbus_add_sensor(data, name, l->attr, index, 1027 page, l->reg, attr->class, 1028 attr->update || l->update, 1029 false); 1030 if (!curr) 1031 return -ENOMEM; 1032 if (l->sbit && (info->func[page] & attr->sfunc)) { 1033 ret = pmbus_add_boolean(data, name, 1034 l->alarm, index, 1035 attr->compare ? l->low ? curr : base 1036 : NULL, 1037 attr->compare ? l->low ? base : curr 1038 : NULL, 1039 attr->sbase + page, l->sbit); 1040 if (ret) 1041 return ret; 1042 have_alarm = 1; 1043 } 1044 } 1045 l++; 1046 } 1047 return have_alarm; 1048 } 1049 1050 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1051 struct pmbus_data *data, 1052 const struct pmbus_driver_info *info, 1053 const char *name, 1054 int index, int page, 1055 const struct pmbus_sensor_attr *attr) 1056 { 1057 struct pmbus_sensor *base; 1058 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1059 int ret; 1060 1061 if (attr->label) { 1062 ret = pmbus_add_label(data, name, index, attr->label, 1063 attr->paged ? page + 1 : 0); 1064 if (ret) 1065 return ret; 1066 } 1067 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg, 1068 attr->class, true, true); 1069 if (!base) 1070 return -ENOMEM; 1071 if (attr->sfunc) { 1072 ret = pmbus_add_limit_attrs(client, data, info, name, 1073 index, page, base, attr); 1074 if (ret < 0) 1075 return ret; 1076 /* 1077 * Add generic alarm attribute only if there are no individual 1078 * alarm attributes, if there is a global alarm bit, and if 1079 * the generic status register (word or byte, depending on 1080 * which global bit is set) for this page is accessible. 1081 */ 1082 if (!ret && attr->gbit && 1083 (!upper || (upper && data->has_status_word)) && 1084 pmbus_check_status_register(client, page)) { 1085 ret = pmbus_add_boolean(data, name, "alarm", index, 1086 NULL, NULL, 1087 PB_STATUS_BASE + page, 1088 attr->gbit); 1089 if (ret) 1090 return ret; 1091 } 1092 } 1093 return 0; 1094 } 1095 1096 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1097 struct pmbus_data *data, 1098 const char *name, 1099 const struct pmbus_sensor_attr *attrs, 1100 int nattrs) 1101 { 1102 const struct pmbus_driver_info *info = data->info; 1103 int index, i; 1104 int ret; 1105 1106 index = 1; 1107 for (i = 0; i < nattrs; i++) { 1108 int page, pages; 1109 1110 pages = attrs->paged ? info->pages : 1; 1111 for (page = 0; page < pages; page++) { 1112 if (!(info->func[page] & attrs->func)) 1113 continue; 1114 ret = pmbus_add_sensor_attrs_one(client, data, info, 1115 name, index, page, 1116 attrs); 1117 if (ret) 1118 return ret; 1119 index++; 1120 } 1121 attrs++; 1122 } 1123 return 0; 1124 } 1125 1126 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1127 { 1128 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1129 .attr = "min", 1130 .alarm = "min_alarm", 1131 .sbit = PB_VOLTAGE_UV_WARNING, 1132 }, { 1133 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1134 .attr = "lcrit", 1135 .alarm = "lcrit_alarm", 1136 .sbit = PB_VOLTAGE_UV_FAULT, 1137 }, { 1138 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1139 .attr = "max", 1140 .alarm = "max_alarm", 1141 .sbit = PB_VOLTAGE_OV_WARNING, 1142 }, { 1143 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1144 .attr = "crit", 1145 .alarm = "crit_alarm", 1146 .sbit = PB_VOLTAGE_OV_FAULT, 1147 }, { 1148 .reg = PMBUS_VIRT_READ_VIN_AVG, 1149 .update = true, 1150 .attr = "average", 1151 }, { 1152 .reg = PMBUS_VIRT_READ_VIN_MIN, 1153 .update = true, 1154 .attr = "lowest", 1155 }, { 1156 .reg = PMBUS_VIRT_READ_VIN_MAX, 1157 .update = true, 1158 .attr = "highest", 1159 }, { 1160 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1161 .attr = "reset_history", 1162 }, 1163 }; 1164 1165 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1166 { 1167 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1168 .attr = "min", 1169 .alarm = "min_alarm", 1170 .sbit = PB_VOLTAGE_UV_WARNING, 1171 }, { 1172 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1173 .attr = "lcrit", 1174 .alarm = "lcrit_alarm", 1175 .sbit = PB_VOLTAGE_UV_FAULT, 1176 }, { 1177 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1178 .attr = "max", 1179 .alarm = "max_alarm", 1180 .sbit = PB_VOLTAGE_OV_WARNING, 1181 }, { 1182 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1183 .attr = "crit", 1184 .alarm = "crit_alarm", 1185 .sbit = PB_VOLTAGE_OV_FAULT, 1186 } 1187 }; 1188 1189 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1190 { 1191 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1192 .attr = "min", 1193 .alarm = "min_alarm", 1194 .sbit = PB_VOLTAGE_UV_WARNING, 1195 }, { 1196 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1197 .attr = "lcrit", 1198 .alarm = "lcrit_alarm", 1199 .sbit = PB_VOLTAGE_UV_FAULT, 1200 }, { 1201 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1202 .attr = "max", 1203 .alarm = "max_alarm", 1204 .sbit = PB_VOLTAGE_OV_WARNING, 1205 }, { 1206 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1207 .attr = "crit", 1208 .alarm = "crit_alarm", 1209 .sbit = PB_VOLTAGE_OV_FAULT, 1210 }, { 1211 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1212 .update = true, 1213 .attr = "average", 1214 }, { 1215 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1216 .update = true, 1217 .attr = "lowest", 1218 }, { 1219 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1220 .update = true, 1221 .attr = "highest", 1222 }, { 1223 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1224 .attr = "reset_history", 1225 } 1226 }; 1227 1228 static const struct pmbus_sensor_attr voltage_attributes[] = { 1229 { 1230 .reg = PMBUS_READ_VIN, 1231 .class = PSC_VOLTAGE_IN, 1232 .label = "vin", 1233 .func = PMBUS_HAVE_VIN, 1234 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1235 .sbase = PB_STATUS_INPUT_BASE, 1236 .gbit = PB_STATUS_VIN_UV, 1237 .limit = vin_limit_attrs, 1238 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1239 }, { 1240 .reg = PMBUS_VIRT_READ_VMON, 1241 .class = PSC_VOLTAGE_IN, 1242 .label = "vmon", 1243 .func = PMBUS_HAVE_VMON, 1244 .sfunc = PMBUS_HAVE_STATUS_VMON, 1245 .sbase = PB_STATUS_VMON_BASE, 1246 .limit = vmon_limit_attrs, 1247 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1248 }, { 1249 .reg = PMBUS_READ_VCAP, 1250 .class = PSC_VOLTAGE_IN, 1251 .label = "vcap", 1252 .func = PMBUS_HAVE_VCAP, 1253 }, { 1254 .reg = PMBUS_READ_VOUT, 1255 .class = PSC_VOLTAGE_OUT, 1256 .label = "vout", 1257 .paged = true, 1258 .func = PMBUS_HAVE_VOUT, 1259 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1260 .sbase = PB_STATUS_VOUT_BASE, 1261 .gbit = PB_STATUS_VOUT_OV, 1262 .limit = vout_limit_attrs, 1263 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1264 } 1265 }; 1266 1267 /* Current attributes */ 1268 1269 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1270 { 1271 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1272 .attr = "max", 1273 .alarm = "max_alarm", 1274 .sbit = PB_IIN_OC_WARNING, 1275 }, { 1276 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1277 .attr = "crit", 1278 .alarm = "crit_alarm", 1279 .sbit = PB_IIN_OC_FAULT, 1280 }, { 1281 .reg = PMBUS_VIRT_READ_IIN_AVG, 1282 .update = true, 1283 .attr = "average", 1284 }, { 1285 .reg = PMBUS_VIRT_READ_IIN_MIN, 1286 .update = true, 1287 .attr = "lowest", 1288 }, { 1289 .reg = PMBUS_VIRT_READ_IIN_MAX, 1290 .update = true, 1291 .attr = "highest", 1292 }, { 1293 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1294 .attr = "reset_history", 1295 } 1296 }; 1297 1298 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1299 { 1300 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1301 .attr = "max", 1302 .alarm = "max_alarm", 1303 .sbit = PB_IOUT_OC_WARNING, 1304 }, { 1305 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1306 .attr = "lcrit", 1307 .alarm = "lcrit_alarm", 1308 .sbit = PB_IOUT_UC_FAULT, 1309 }, { 1310 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1311 .attr = "crit", 1312 .alarm = "crit_alarm", 1313 .sbit = PB_IOUT_OC_FAULT, 1314 }, { 1315 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1316 .update = true, 1317 .attr = "average", 1318 }, { 1319 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1320 .update = true, 1321 .attr = "lowest", 1322 }, { 1323 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1324 .update = true, 1325 .attr = "highest", 1326 }, { 1327 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1328 .attr = "reset_history", 1329 } 1330 }; 1331 1332 static const struct pmbus_sensor_attr current_attributes[] = { 1333 { 1334 .reg = PMBUS_READ_IIN, 1335 .class = PSC_CURRENT_IN, 1336 .label = "iin", 1337 .func = PMBUS_HAVE_IIN, 1338 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1339 .sbase = PB_STATUS_INPUT_BASE, 1340 .gbit = PB_STATUS_INPUT, 1341 .limit = iin_limit_attrs, 1342 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1343 }, { 1344 .reg = PMBUS_READ_IOUT, 1345 .class = PSC_CURRENT_OUT, 1346 .label = "iout", 1347 .paged = true, 1348 .func = PMBUS_HAVE_IOUT, 1349 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1350 .sbase = PB_STATUS_IOUT_BASE, 1351 .gbit = PB_STATUS_IOUT_OC, 1352 .limit = iout_limit_attrs, 1353 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1354 } 1355 }; 1356 1357 /* Power attributes */ 1358 1359 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1360 { 1361 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1362 .attr = "max", 1363 .alarm = "alarm", 1364 .sbit = PB_PIN_OP_WARNING, 1365 }, { 1366 .reg = PMBUS_VIRT_READ_PIN_AVG, 1367 .update = true, 1368 .attr = "average", 1369 }, { 1370 .reg = PMBUS_VIRT_READ_PIN_MIN, 1371 .update = true, 1372 .attr = "input_lowest", 1373 }, { 1374 .reg = PMBUS_VIRT_READ_PIN_MAX, 1375 .update = true, 1376 .attr = "input_highest", 1377 }, { 1378 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1379 .attr = "reset_history", 1380 } 1381 }; 1382 1383 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1384 { 1385 .reg = PMBUS_POUT_MAX, 1386 .attr = "cap", 1387 .alarm = "cap_alarm", 1388 .sbit = PB_POWER_LIMITING, 1389 }, { 1390 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1391 .attr = "max", 1392 .alarm = "max_alarm", 1393 .sbit = PB_POUT_OP_WARNING, 1394 }, { 1395 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1396 .attr = "crit", 1397 .alarm = "crit_alarm", 1398 .sbit = PB_POUT_OP_FAULT, 1399 }, { 1400 .reg = PMBUS_VIRT_READ_POUT_AVG, 1401 .update = true, 1402 .attr = "average", 1403 }, { 1404 .reg = PMBUS_VIRT_READ_POUT_MIN, 1405 .update = true, 1406 .attr = "input_lowest", 1407 }, { 1408 .reg = PMBUS_VIRT_READ_POUT_MAX, 1409 .update = true, 1410 .attr = "input_highest", 1411 }, { 1412 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1413 .attr = "reset_history", 1414 } 1415 }; 1416 1417 static const struct pmbus_sensor_attr power_attributes[] = { 1418 { 1419 .reg = PMBUS_READ_PIN, 1420 .class = PSC_POWER, 1421 .label = "pin", 1422 .func = PMBUS_HAVE_PIN, 1423 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1424 .sbase = PB_STATUS_INPUT_BASE, 1425 .gbit = PB_STATUS_INPUT, 1426 .limit = pin_limit_attrs, 1427 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1428 }, { 1429 .reg = PMBUS_READ_POUT, 1430 .class = PSC_POWER, 1431 .label = "pout", 1432 .paged = true, 1433 .func = PMBUS_HAVE_POUT, 1434 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1435 .sbase = PB_STATUS_IOUT_BASE, 1436 .limit = pout_limit_attrs, 1437 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1438 } 1439 }; 1440 1441 /* Temperature atributes */ 1442 1443 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1444 { 1445 .reg = PMBUS_UT_WARN_LIMIT, 1446 .low = true, 1447 .attr = "min", 1448 .alarm = "min_alarm", 1449 .sbit = PB_TEMP_UT_WARNING, 1450 }, { 1451 .reg = PMBUS_UT_FAULT_LIMIT, 1452 .low = true, 1453 .attr = "lcrit", 1454 .alarm = "lcrit_alarm", 1455 .sbit = PB_TEMP_UT_FAULT, 1456 }, { 1457 .reg = PMBUS_OT_WARN_LIMIT, 1458 .attr = "max", 1459 .alarm = "max_alarm", 1460 .sbit = PB_TEMP_OT_WARNING, 1461 }, { 1462 .reg = PMBUS_OT_FAULT_LIMIT, 1463 .attr = "crit", 1464 .alarm = "crit_alarm", 1465 .sbit = PB_TEMP_OT_FAULT, 1466 }, { 1467 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1468 .attr = "lowest", 1469 }, { 1470 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1471 .attr = "average", 1472 }, { 1473 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1474 .attr = "highest", 1475 }, { 1476 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1477 .attr = "reset_history", 1478 } 1479 }; 1480 1481 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1482 { 1483 .reg = PMBUS_UT_WARN_LIMIT, 1484 .low = true, 1485 .attr = "min", 1486 .alarm = "min_alarm", 1487 .sbit = PB_TEMP_UT_WARNING, 1488 }, { 1489 .reg = PMBUS_UT_FAULT_LIMIT, 1490 .low = true, 1491 .attr = "lcrit", 1492 .alarm = "lcrit_alarm", 1493 .sbit = PB_TEMP_UT_FAULT, 1494 }, { 1495 .reg = PMBUS_OT_WARN_LIMIT, 1496 .attr = "max", 1497 .alarm = "max_alarm", 1498 .sbit = PB_TEMP_OT_WARNING, 1499 }, { 1500 .reg = PMBUS_OT_FAULT_LIMIT, 1501 .attr = "crit", 1502 .alarm = "crit_alarm", 1503 .sbit = PB_TEMP_OT_FAULT, 1504 }, { 1505 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1506 .attr = "lowest", 1507 }, { 1508 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1509 .attr = "average", 1510 }, { 1511 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1512 .attr = "highest", 1513 }, { 1514 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1515 .attr = "reset_history", 1516 } 1517 }; 1518 1519 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1520 { 1521 .reg = PMBUS_UT_WARN_LIMIT, 1522 .low = true, 1523 .attr = "min", 1524 .alarm = "min_alarm", 1525 .sbit = PB_TEMP_UT_WARNING, 1526 }, { 1527 .reg = PMBUS_UT_FAULT_LIMIT, 1528 .low = true, 1529 .attr = "lcrit", 1530 .alarm = "lcrit_alarm", 1531 .sbit = PB_TEMP_UT_FAULT, 1532 }, { 1533 .reg = PMBUS_OT_WARN_LIMIT, 1534 .attr = "max", 1535 .alarm = "max_alarm", 1536 .sbit = PB_TEMP_OT_WARNING, 1537 }, { 1538 .reg = PMBUS_OT_FAULT_LIMIT, 1539 .attr = "crit", 1540 .alarm = "crit_alarm", 1541 .sbit = PB_TEMP_OT_FAULT, 1542 } 1543 }; 1544 1545 static const struct pmbus_sensor_attr temp_attributes[] = { 1546 { 1547 .reg = PMBUS_READ_TEMPERATURE_1, 1548 .class = PSC_TEMPERATURE, 1549 .paged = true, 1550 .update = true, 1551 .compare = true, 1552 .func = PMBUS_HAVE_TEMP, 1553 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1554 .sbase = PB_STATUS_TEMP_BASE, 1555 .gbit = PB_STATUS_TEMPERATURE, 1556 .limit = temp_limit_attrs, 1557 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1558 }, { 1559 .reg = PMBUS_READ_TEMPERATURE_2, 1560 .class = PSC_TEMPERATURE, 1561 .paged = true, 1562 .update = true, 1563 .compare = true, 1564 .func = PMBUS_HAVE_TEMP2, 1565 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1566 .sbase = PB_STATUS_TEMP_BASE, 1567 .gbit = PB_STATUS_TEMPERATURE, 1568 .limit = temp_limit_attrs2, 1569 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1570 }, { 1571 .reg = PMBUS_READ_TEMPERATURE_3, 1572 .class = PSC_TEMPERATURE, 1573 .paged = true, 1574 .update = true, 1575 .compare = true, 1576 .func = PMBUS_HAVE_TEMP3, 1577 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1578 .sbase = PB_STATUS_TEMP_BASE, 1579 .gbit = PB_STATUS_TEMPERATURE, 1580 .limit = temp_limit_attrs3, 1581 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1582 } 1583 }; 1584 1585 static const int pmbus_fan_registers[] = { 1586 PMBUS_READ_FAN_SPEED_1, 1587 PMBUS_READ_FAN_SPEED_2, 1588 PMBUS_READ_FAN_SPEED_3, 1589 PMBUS_READ_FAN_SPEED_4 1590 }; 1591 1592 static const int pmbus_fan_config_registers[] = { 1593 PMBUS_FAN_CONFIG_12, 1594 PMBUS_FAN_CONFIG_12, 1595 PMBUS_FAN_CONFIG_34, 1596 PMBUS_FAN_CONFIG_34 1597 }; 1598 1599 static const int pmbus_fan_status_registers[] = { 1600 PMBUS_STATUS_FAN_12, 1601 PMBUS_STATUS_FAN_12, 1602 PMBUS_STATUS_FAN_34, 1603 PMBUS_STATUS_FAN_34 1604 }; 1605 1606 static const u32 pmbus_fan_flags[] = { 1607 PMBUS_HAVE_FAN12, 1608 PMBUS_HAVE_FAN12, 1609 PMBUS_HAVE_FAN34, 1610 PMBUS_HAVE_FAN34 1611 }; 1612 1613 static const u32 pmbus_fan_status_flags[] = { 1614 PMBUS_HAVE_STATUS_FAN12, 1615 PMBUS_HAVE_STATUS_FAN12, 1616 PMBUS_HAVE_STATUS_FAN34, 1617 PMBUS_HAVE_STATUS_FAN34 1618 }; 1619 1620 /* Fans */ 1621 static int pmbus_add_fan_attributes(struct i2c_client *client, 1622 struct pmbus_data *data) 1623 { 1624 const struct pmbus_driver_info *info = data->info; 1625 int index = 1; 1626 int page; 1627 int ret; 1628 1629 for (page = 0; page < info->pages; page++) { 1630 int f; 1631 1632 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1633 int regval; 1634 1635 if (!(info->func[page] & pmbus_fan_flags[f])) 1636 break; 1637 1638 if (!pmbus_check_word_register(client, page, 1639 pmbus_fan_registers[f])) 1640 break; 1641 1642 /* 1643 * Skip fan if not installed. 1644 * Each fan configuration register covers multiple fans, 1645 * so we have to do some magic. 1646 */ 1647 regval = _pmbus_read_byte_data(client, page, 1648 pmbus_fan_config_registers[f]); 1649 if (regval < 0 || 1650 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1651 continue; 1652 1653 if (pmbus_add_sensor(data, "fan", "input", index, 1654 page, pmbus_fan_registers[f], 1655 PSC_FAN, true, true) == NULL) 1656 return -ENOMEM; 1657 1658 /* 1659 * Each fan status register covers multiple fans, 1660 * so we have to do some magic. 1661 */ 1662 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1663 pmbus_check_byte_register(client, 1664 page, pmbus_fan_status_registers[f])) { 1665 int base; 1666 1667 if (f > 1) /* fan 3, 4 */ 1668 base = PB_STATUS_FAN34_BASE + page; 1669 else 1670 base = PB_STATUS_FAN_BASE + page; 1671 ret = pmbus_add_boolean(data, "fan", 1672 "alarm", index, NULL, NULL, base, 1673 PB_FAN_FAN1_WARNING >> (f & 1)); 1674 if (ret) 1675 return ret; 1676 ret = pmbus_add_boolean(data, "fan", 1677 "fault", index, NULL, NULL, base, 1678 PB_FAN_FAN1_FAULT >> (f & 1)); 1679 if (ret) 1680 return ret; 1681 } 1682 index++; 1683 } 1684 } 1685 return 0; 1686 } 1687 1688 static int pmbus_find_attributes(struct i2c_client *client, 1689 struct pmbus_data *data) 1690 { 1691 int ret; 1692 1693 /* Voltage sensors */ 1694 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 1695 ARRAY_SIZE(voltage_attributes)); 1696 if (ret) 1697 return ret; 1698 1699 /* Current sensors */ 1700 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 1701 ARRAY_SIZE(current_attributes)); 1702 if (ret) 1703 return ret; 1704 1705 /* Power sensors */ 1706 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 1707 ARRAY_SIZE(power_attributes)); 1708 if (ret) 1709 return ret; 1710 1711 /* Temperature sensors */ 1712 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 1713 ARRAY_SIZE(temp_attributes)); 1714 if (ret) 1715 return ret; 1716 1717 /* Fans */ 1718 ret = pmbus_add_fan_attributes(client, data); 1719 return ret; 1720 } 1721 1722 /* 1723 * Identify chip parameters. 1724 * This function is called for all chips. 1725 */ 1726 static int pmbus_identify_common(struct i2c_client *client, 1727 struct pmbus_data *data, int page) 1728 { 1729 int vout_mode = -1; 1730 1731 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 1732 vout_mode = _pmbus_read_byte_data(client, page, 1733 PMBUS_VOUT_MODE); 1734 if (vout_mode >= 0 && vout_mode != 0xff) { 1735 /* 1736 * Not all chips support the VOUT_MODE command, 1737 * so a failure to read it is not an error. 1738 */ 1739 switch (vout_mode >> 5) { 1740 case 0: /* linear mode */ 1741 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 1742 return -ENODEV; 1743 1744 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 1745 break; 1746 case 1: /* VID mode */ 1747 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 1748 return -ENODEV; 1749 break; 1750 case 2: /* direct mode */ 1751 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 1752 return -ENODEV; 1753 break; 1754 default: 1755 return -ENODEV; 1756 } 1757 } 1758 1759 pmbus_clear_fault_page(client, page); 1760 return 0; 1761 } 1762 1763 static int pmbus_read_status_byte(struct i2c_client *client, int page) 1764 { 1765 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 1766 } 1767 1768 static int pmbus_read_status_word(struct i2c_client *client, int page) 1769 { 1770 return _pmbus_read_word_data(client, page, PMBUS_STATUS_WORD); 1771 } 1772 1773 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 1774 struct pmbus_driver_info *info) 1775 { 1776 struct device *dev = &client->dev; 1777 int page, ret; 1778 1779 /* 1780 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 1781 * to use PMBUS_STATUS_BYTE instead if that is the case. 1782 * Bail out if both registers are not supported. 1783 */ 1784 data->read_status = pmbus_read_status_word; 1785 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 1786 if (ret < 0 || ret == 0xffff) { 1787 data->read_status = pmbus_read_status_byte; 1788 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 1789 if (ret < 0 || ret == 0xff) { 1790 dev_err(dev, "PMBus status register not found\n"); 1791 return -ENODEV; 1792 } 1793 } else { 1794 data->has_status_word = true; 1795 } 1796 1797 /* Enable PEC if the controller supports it */ 1798 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 1799 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) 1800 client->flags |= I2C_CLIENT_PEC; 1801 1802 pmbus_clear_faults(client); 1803 1804 if (info->identify) { 1805 ret = (*info->identify)(client, info); 1806 if (ret < 0) { 1807 dev_err(dev, "Chip identification failed\n"); 1808 return ret; 1809 } 1810 } 1811 1812 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 1813 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 1814 return -ENODEV; 1815 } 1816 1817 for (page = 0; page < info->pages; page++) { 1818 ret = pmbus_identify_common(client, data, page); 1819 if (ret < 0) { 1820 dev_err(dev, "Failed to identify chip capabilities\n"); 1821 return ret; 1822 } 1823 } 1824 return 0; 1825 } 1826 1827 #if IS_ENABLED(CONFIG_REGULATOR) 1828 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 1829 { 1830 struct device *dev = rdev_get_dev(rdev); 1831 struct i2c_client *client = to_i2c_client(dev->parent); 1832 u8 page = rdev_get_id(rdev); 1833 int ret; 1834 1835 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION); 1836 if (ret < 0) 1837 return ret; 1838 1839 return !!(ret & PB_OPERATION_CONTROL_ON); 1840 } 1841 1842 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 1843 { 1844 struct device *dev = rdev_get_dev(rdev); 1845 struct i2c_client *client = to_i2c_client(dev->parent); 1846 u8 page = rdev_get_id(rdev); 1847 1848 return pmbus_update_byte_data(client, page, PMBUS_OPERATION, 1849 PB_OPERATION_CONTROL_ON, 1850 enable ? PB_OPERATION_CONTROL_ON : 0); 1851 } 1852 1853 static int pmbus_regulator_enable(struct regulator_dev *rdev) 1854 { 1855 return _pmbus_regulator_on_off(rdev, 1); 1856 } 1857 1858 static int pmbus_regulator_disable(struct regulator_dev *rdev) 1859 { 1860 return _pmbus_regulator_on_off(rdev, 0); 1861 } 1862 1863 const struct regulator_ops pmbus_regulator_ops = { 1864 .enable = pmbus_regulator_enable, 1865 .disable = pmbus_regulator_disable, 1866 .is_enabled = pmbus_regulator_is_enabled, 1867 }; 1868 EXPORT_SYMBOL_GPL(pmbus_regulator_ops); 1869 1870 static int pmbus_regulator_register(struct pmbus_data *data) 1871 { 1872 struct device *dev = data->dev; 1873 const struct pmbus_driver_info *info = data->info; 1874 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 1875 struct regulator_dev *rdev; 1876 int i; 1877 1878 for (i = 0; i < info->num_regulators; i++) { 1879 struct regulator_config config = { }; 1880 1881 config.dev = dev; 1882 config.driver_data = data; 1883 1884 if (pdata && pdata->reg_init_data) 1885 config.init_data = &pdata->reg_init_data[i]; 1886 1887 rdev = devm_regulator_register(dev, &info->reg_desc[i], 1888 &config); 1889 if (IS_ERR(rdev)) { 1890 dev_err(dev, "Failed to register %s regulator\n", 1891 info->reg_desc[i].name); 1892 return PTR_ERR(rdev); 1893 } 1894 } 1895 1896 return 0; 1897 } 1898 #else 1899 static int pmbus_regulator_register(struct pmbus_data *data) 1900 { 1901 return 0; 1902 } 1903 #endif 1904 1905 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 1906 1907 #if IS_ENABLED(CONFIG_DEBUG_FS) 1908 static int pmbus_debugfs_get(void *data, u64 *val) 1909 { 1910 int rc; 1911 struct pmbus_debugfs_entry *entry = data; 1912 1913 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 1914 if (rc < 0) 1915 return rc; 1916 1917 *val = rc; 1918 1919 return 0; 1920 } 1921 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 1922 "0x%02llx\n"); 1923 1924 static int pmbus_debugfs_get_status(void *data, u64 *val) 1925 { 1926 int rc; 1927 struct pmbus_debugfs_entry *entry = data; 1928 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 1929 1930 rc = pdata->read_status(entry->client, entry->page); 1931 if (rc < 0) 1932 return rc; 1933 1934 *val = rc; 1935 1936 return 0; 1937 } 1938 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 1939 NULL, "0x%04llx\n"); 1940 1941 static int pmbus_init_debugfs(struct i2c_client *client, 1942 struct pmbus_data *data) 1943 { 1944 int i, idx = 0; 1945 char name[PMBUS_NAME_SIZE]; 1946 struct pmbus_debugfs_entry *entries; 1947 1948 if (!pmbus_debugfs_dir) 1949 return -ENODEV; 1950 1951 /* 1952 * Create the debugfs directory for this device. Use the hwmon device 1953 * name to avoid conflicts (hwmon numbers are globally unique). 1954 */ 1955 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 1956 pmbus_debugfs_dir); 1957 if (IS_ERR_OR_NULL(data->debugfs)) { 1958 data->debugfs = NULL; 1959 return -ENODEV; 1960 } 1961 1962 /* Allocate the max possible entries we need. */ 1963 entries = devm_kzalloc(data->dev, 1964 sizeof(*entries) * (data->info->pages * 10), 1965 GFP_KERNEL); 1966 if (!entries) 1967 return -ENOMEM; 1968 1969 for (i = 0; i < data->info->pages; ++i) { 1970 /* Check accessibility of status register if it's not page 0 */ 1971 if (!i || pmbus_check_status_register(client, i)) { 1972 /* No need to set reg as we have special read op. */ 1973 entries[idx].client = client; 1974 entries[idx].page = i; 1975 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 1976 debugfs_create_file(name, 0444, data->debugfs, 1977 &entries[idx++], 1978 &pmbus_debugfs_ops_status); 1979 } 1980 1981 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 1982 entries[idx].client = client; 1983 entries[idx].page = i; 1984 entries[idx].reg = PMBUS_STATUS_VOUT; 1985 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 1986 debugfs_create_file(name, 0444, data->debugfs, 1987 &entries[idx++], 1988 &pmbus_debugfs_ops); 1989 } 1990 1991 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 1992 entries[idx].client = client; 1993 entries[idx].page = i; 1994 entries[idx].reg = PMBUS_STATUS_IOUT; 1995 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 1996 debugfs_create_file(name, 0444, data->debugfs, 1997 &entries[idx++], 1998 &pmbus_debugfs_ops); 1999 } 2000 2001 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 2002 entries[idx].client = client; 2003 entries[idx].page = i; 2004 entries[idx].reg = PMBUS_STATUS_INPUT; 2005 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 2006 debugfs_create_file(name, 0444, data->debugfs, 2007 &entries[idx++], 2008 &pmbus_debugfs_ops); 2009 } 2010 2011 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 2012 entries[idx].client = client; 2013 entries[idx].page = i; 2014 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 2015 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 2016 debugfs_create_file(name, 0444, data->debugfs, 2017 &entries[idx++], 2018 &pmbus_debugfs_ops); 2019 } 2020 2021 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 2022 entries[idx].client = client; 2023 entries[idx].page = i; 2024 entries[idx].reg = PMBUS_STATUS_CML; 2025 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 2026 debugfs_create_file(name, 0444, data->debugfs, 2027 &entries[idx++], 2028 &pmbus_debugfs_ops); 2029 } 2030 2031 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 2032 entries[idx].client = client; 2033 entries[idx].page = i; 2034 entries[idx].reg = PMBUS_STATUS_OTHER; 2035 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 2036 debugfs_create_file(name, 0444, data->debugfs, 2037 &entries[idx++], 2038 &pmbus_debugfs_ops); 2039 } 2040 2041 if (pmbus_check_byte_register(client, i, 2042 PMBUS_STATUS_MFR_SPECIFIC)) { 2043 entries[idx].client = client; 2044 entries[idx].page = i; 2045 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 2046 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 2047 debugfs_create_file(name, 0444, data->debugfs, 2048 &entries[idx++], 2049 &pmbus_debugfs_ops); 2050 } 2051 2052 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 2053 entries[idx].client = client; 2054 entries[idx].page = i; 2055 entries[idx].reg = PMBUS_STATUS_FAN_12; 2056 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 2057 debugfs_create_file(name, 0444, data->debugfs, 2058 &entries[idx++], 2059 &pmbus_debugfs_ops); 2060 } 2061 2062 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 2063 entries[idx].client = client; 2064 entries[idx].page = i; 2065 entries[idx].reg = PMBUS_STATUS_FAN_34; 2066 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 2067 debugfs_create_file(name, 0444, data->debugfs, 2068 &entries[idx++], 2069 &pmbus_debugfs_ops); 2070 } 2071 } 2072 2073 return 0; 2074 } 2075 #else 2076 static int pmbus_init_debugfs(struct i2c_client *client, 2077 struct pmbus_data *data) 2078 { 2079 return 0; 2080 } 2081 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 2082 2083 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, 2084 struct pmbus_driver_info *info) 2085 { 2086 struct device *dev = &client->dev; 2087 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2088 struct pmbus_data *data; 2089 int ret; 2090 2091 if (!info) 2092 return -ENODEV; 2093 2094 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 2095 | I2C_FUNC_SMBUS_BYTE_DATA 2096 | I2C_FUNC_SMBUS_WORD_DATA)) 2097 return -ENODEV; 2098 2099 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 2100 if (!data) 2101 return -ENOMEM; 2102 2103 i2c_set_clientdata(client, data); 2104 mutex_init(&data->update_lock); 2105 data->dev = dev; 2106 2107 if (pdata) 2108 data->flags = pdata->flags; 2109 data->info = info; 2110 2111 ret = pmbus_init_common(client, data, info); 2112 if (ret < 0) 2113 return ret; 2114 2115 ret = pmbus_find_attributes(client, data); 2116 if (ret) 2117 goto out_kfree; 2118 2119 /* 2120 * If there are no attributes, something is wrong. 2121 * Bail out instead of trying to register nothing. 2122 */ 2123 if (!data->num_attributes) { 2124 dev_err(dev, "No attributes found\n"); 2125 ret = -ENODEV; 2126 goto out_kfree; 2127 } 2128 2129 data->groups[0] = &data->group; 2130 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name, 2131 data, data->groups); 2132 if (IS_ERR(data->hwmon_dev)) { 2133 ret = PTR_ERR(data->hwmon_dev); 2134 dev_err(dev, "Failed to register hwmon device\n"); 2135 goto out_kfree; 2136 } 2137 2138 ret = pmbus_regulator_register(data); 2139 if (ret) 2140 goto out_unregister; 2141 2142 ret = pmbus_init_debugfs(client, data); 2143 if (ret) 2144 dev_warn(dev, "Failed to register debugfs\n"); 2145 2146 return 0; 2147 2148 out_unregister: 2149 hwmon_device_unregister(data->hwmon_dev); 2150 out_kfree: 2151 kfree(data->group.attrs); 2152 return ret; 2153 } 2154 EXPORT_SYMBOL_GPL(pmbus_do_probe); 2155 2156 int pmbus_do_remove(struct i2c_client *client) 2157 { 2158 struct pmbus_data *data = i2c_get_clientdata(client); 2159 2160 debugfs_remove_recursive(data->debugfs); 2161 2162 hwmon_device_unregister(data->hwmon_dev); 2163 kfree(data->group.attrs); 2164 return 0; 2165 } 2166 EXPORT_SYMBOL_GPL(pmbus_do_remove); 2167 2168 static int __init pmbus_core_init(void) 2169 { 2170 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 2171 if (IS_ERR(pmbus_debugfs_dir)) 2172 pmbus_debugfs_dir = NULL; 2173 2174 return 0; 2175 } 2176 2177 static void __exit pmbus_core_exit(void) 2178 { 2179 debugfs_remove_recursive(pmbus_debugfs_dir); 2180 } 2181 2182 module_init(pmbus_core_init); 2183 module_exit(pmbus_core_exit); 2184 2185 MODULE_AUTHOR("Guenter Roeck"); 2186 MODULE_DESCRIPTION("PMBus core driver"); 2187 MODULE_LICENSE("GPL"); 2188