1 /* 2 * Hardware monitoring driver for PMBus devices 3 * 4 * Copyright (c) 2010, 2011 Ericsson AB. 5 * Copyright (c) 2012 Guenter Roeck 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/err.h> 26 #include <linux/slab.h> 27 #include <linux/i2c.h> 28 #include <linux/hwmon.h> 29 #include <linux/hwmon-sysfs.h> 30 #include <linux/jiffies.h> 31 #include <linux/i2c/pmbus.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include "pmbus.h" 35 36 /* 37 * Number of additional attribute pointers to allocate 38 * with each call to krealloc 39 */ 40 #define PMBUS_ATTR_ALLOC_SIZE 32 41 42 /* 43 * Index into status register array, per status register group 44 */ 45 #define PB_STATUS_BASE 0 46 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) 47 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) 48 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) 49 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) 50 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) 51 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES) 52 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1) 53 54 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1) 55 56 #define PMBUS_NAME_SIZE 24 57 58 struct pmbus_sensor { 59 struct pmbus_sensor *next; 60 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 61 struct device_attribute attribute; 62 u8 page; /* page number */ 63 u16 reg; /* register */ 64 enum pmbus_sensor_classes class; /* sensor class */ 65 bool update; /* runtime sensor update needed */ 66 int data; /* Sensor data. 67 Negative if there was a read error */ 68 }; 69 #define to_pmbus_sensor(_attr) \ 70 container_of(_attr, struct pmbus_sensor, attribute) 71 72 struct pmbus_boolean { 73 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 74 struct sensor_device_attribute attribute; 75 struct pmbus_sensor *s1; 76 struct pmbus_sensor *s2; 77 }; 78 #define to_pmbus_boolean(_attr) \ 79 container_of(_attr, struct pmbus_boolean, attribute) 80 81 struct pmbus_label { 82 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 83 struct device_attribute attribute; 84 char label[PMBUS_NAME_SIZE]; /* label */ 85 }; 86 #define to_pmbus_label(_attr) \ 87 container_of(_attr, struct pmbus_label, attribute) 88 89 struct pmbus_data { 90 struct device *dev; 91 struct device *hwmon_dev; 92 93 u32 flags; /* from platform data */ 94 95 int exponent[PMBUS_PAGES]; 96 /* linear mode: exponent for output voltages */ 97 98 const struct pmbus_driver_info *info; 99 100 int max_attributes; 101 int num_attributes; 102 struct attribute_group group; 103 const struct attribute_group *groups[2]; 104 105 struct pmbus_sensor *sensors; 106 107 struct mutex update_lock; 108 bool valid; 109 unsigned long last_updated; /* in jiffies */ 110 111 /* 112 * A single status register covers multiple attributes, 113 * so we keep them all together. 114 */ 115 u8 status[PB_NUM_STATUS_REG]; 116 u8 status_register; 117 118 u8 currpage; 119 }; 120 121 void pmbus_clear_cache(struct i2c_client *client) 122 { 123 struct pmbus_data *data = i2c_get_clientdata(client); 124 125 data->valid = false; 126 } 127 EXPORT_SYMBOL_GPL(pmbus_clear_cache); 128 129 int pmbus_set_page(struct i2c_client *client, u8 page) 130 { 131 struct pmbus_data *data = i2c_get_clientdata(client); 132 int rv = 0; 133 int newpage; 134 135 if (page != data->currpage) { 136 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 137 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 138 if (newpage != page) 139 rv = -EIO; 140 else 141 data->currpage = page; 142 } 143 return rv; 144 } 145 EXPORT_SYMBOL_GPL(pmbus_set_page); 146 147 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 148 { 149 int rv; 150 151 if (page >= 0) { 152 rv = pmbus_set_page(client, page); 153 if (rv < 0) 154 return rv; 155 } 156 157 return i2c_smbus_write_byte(client, value); 158 } 159 EXPORT_SYMBOL_GPL(pmbus_write_byte); 160 161 /* 162 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 163 * a device specific mapping function exists and calls it if necessary. 164 */ 165 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 166 { 167 struct pmbus_data *data = i2c_get_clientdata(client); 168 const struct pmbus_driver_info *info = data->info; 169 int status; 170 171 if (info->write_byte) { 172 status = info->write_byte(client, page, value); 173 if (status != -ENODATA) 174 return status; 175 } 176 return pmbus_write_byte(client, page, value); 177 } 178 179 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word) 180 { 181 int rv; 182 183 rv = pmbus_set_page(client, page); 184 if (rv < 0) 185 return rv; 186 187 return i2c_smbus_write_word_data(client, reg, word); 188 } 189 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 190 191 /* 192 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 193 * a device specific mapping function exists and calls it if necessary. 194 */ 195 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 196 u16 word) 197 { 198 struct pmbus_data *data = i2c_get_clientdata(client); 199 const struct pmbus_driver_info *info = data->info; 200 int status; 201 202 if (info->write_word_data) { 203 status = info->write_word_data(client, page, reg, word); 204 if (status != -ENODATA) 205 return status; 206 } 207 if (reg >= PMBUS_VIRT_BASE) 208 return -ENXIO; 209 return pmbus_write_word_data(client, page, reg, word); 210 } 211 212 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg) 213 { 214 int rv; 215 216 rv = pmbus_set_page(client, page); 217 if (rv < 0) 218 return rv; 219 220 return i2c_smbus_read_word_data(client, reg); 221 } 222 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 223 224 /* 225 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 226 * a device specific mapping function exists and calls it if necessary. 227 */ 228 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg) 229 { 230 struct pmbus_data *data = i2c_get_clientdata(client); 231 const struct pmbus_driver_info *info = data->info; 232 int status; 233 234 if (info->read_word_data) { 235 status = info->read_word_data(client, page, reg); 236 if (status != -ENODATA) 237 return status; 238 } 239 if (reg >= PMBUS_VIRT_BASE) 240 return -ENXIO; 241 return pmbus_read_word_data(client, page, reg); 242 } 243 244 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 245 { 246 int rv; 247 248 if (page >= 0) { 249 rv = pmbus_set_page(client, page); 250 if (rv < 0) 251 return rv; 252 } 253 254 return i2c_smbus_read_byte_data(client, reg); 255 } 256 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 257 258 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 259 { 260 int rv; 261 262 rv = pmbus_set_page(client, page); 263 if (rv < 0) 264 return rv; 265 266 return i2c_smbus_write_byte_data(client, reg, value); 267 } 268 EXPORT_SYMBOL_GPL(pmbus_write_byte_data); 269 270 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 271 u8 mask, u8 value) 272 { 273 unsigned int tmp; 274 int rv; 275 276 rv = pmbus_read_byte_data(client, page, reg); 277 if (rv < 0) 278 return rv; 279 280 tmp = (rv & ~mask) | (value & mask); 281 282 if (tmp != rv) 283 rv = pmbus_write_byte_data(client, page, reg, tmp); 284 285 return rv; 286 } 287 EXPORT_SYMBOL_GPL(pmbus_update_byte_data); 288 289 /* 290 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 291 * a device specific mapping function exists and calls it if necessary. 292 */ 293 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 294 { 295 struct pmbus_data *data = i2c_get_clientdata(client); 296 const struct pmbus_driver_info *info = data->info; 297 int status; 298 299 if (info->read_byte_data) { 300 status = info->read_byte_data(client, page, reg); 301 if (status != -ENODATA) 302 return status; 303 } 304 return pmbus_read_byte_data(client, page, reg); 305 } 306 307 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 308 { 309 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 310 } 311 312 void pmbus_clear_faults(struct i2c_client *client) 313 { 314 struct pmbus_data *data = i2c_get_clientdata(client); 315 int i; 316 317 for (i = 0; i < data->info->pages; i++) 318 pmbus_clear_fault_page(client, i); 319 } 320 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 321 322 static int pmbus_check_status_cml(struct i2c_client *client) 323 { 324 struct pmbus_data *data = i2c_get_clientdata(client); 325 int status, status2; 326 327 status = _pmbus_read_byte_data(client, -1, data->status_register); 328 if (status < 0 || (status & PB_STATUS_CML)) { 329 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 330 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 331 return -EIO; 332 } 333 return 0; 334 } 335 336 static bool pmbus_check_register(struct i2c_client *client, 337 int (*func)(struct i2c_client *client, 338 int page, int reg), 339 int page, int reg) 340 { 341 int rv; 342 struct pmbus_data *data = i2c_get_clientdata(client); 343 344 rv = func(client, page, reg); 345 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 346 rv = pmbus_check_status_cml(client); 347 pmbus_clear_fault_page(client, -1); 348 return rv >= 0; 349 } 350 351 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 352 { 353 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 354 } 355 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 356 357 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 358 { 359 return pmbus_check_register(client, _pmbus_read_word_data, page, reg); 360 } 361 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 362 363 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 364 { 365 struct pmbus_data *data = i2c_get_clientdata(client); 366 367 return data->info; 368 } 369 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 370 371 static struct _pmbus_status { 372 u32 func; 373 u16 base; 374 u16 reg; 375 } pmbus_status[] = { 376 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT }, 377 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT }, 378 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE, 379 PMBUS_STATUS_TEMPERATURE }, 380 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 }, 381 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 }, 382 }; 383 384 static struct pmbus_data *pmbus_update_device(struct device *dev) 385 { 386 struct i2c_client *client = to_i2c_client(dev->parent); 387 struct pmbus_data *data = i2c_get_clientdata(client); 388 const struct pmbus_driver_info *info = data->info; 389 struct pmbus_sensor *sensor; 390 391 mutex_lock(&data->update_lock); 392 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 393 int i, j; 394 395 for (i = 0; i < info->pages; i++) { 396 data->status[PB_STATUS_BASE + i] 397 = _pmbus_read_byte_data(client, i, 398 data->status_register); 399 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) { 400 struct _pmbus_status *s = &pmbus_status[j]; 401 402 if (!(info->func[i] & s->func)) 403 continue; 404 data->status[s->base + i] 405 = _pmbus_read_byte_data(client, i, 406 s->reg); 407 } 408 } 409 410 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) 411 data->status[PB_STATUS_INPUT_BASE] 412 = _pmbus_read_byte_data(client, 0, 413 PMBUS_STATUS_INPUT); 414 415 if (info->func[0] & PMBUS_HAVE_STATUS_VMON) 416 data->status[PB_STATUS_VMON_BASE] 417 = _pmbus_read_byte_data(client, 0, 418 PMBUS_VIRT_STATUS_VMON); 419 420 for (sensor = data->sensors; sensor; sensor = sensor->next) { 421 if (!data->valid || sensor->update) 422 sensor->data 423 = _pmbus_read_word_data(client, 424 sensor->page, 425 sensor->reg); 426 } 427 pmbus_clear_faults(client); 428 data->last_updated = jiffies; 429 data->valid = 1; 430 } 431 mutex_unlock(&data->update_lock); 432 return data; 433 } 434 435 /* 436 * Convert linear sensor values to milli- or micro-units 437 * depending on sensor type. 438 */ 439 static long pmbus_reg2data_linear(struct pmbus_data *data, 440 struct pmbus_sensor *sensor) 441 { 442 s16 exponent; 443 s32 mantissa; 444 long val; 445 446 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 447 exponent = data->exponent[sensor->page]; 448 mantissa = (u16) sensor->data; 449 } else { /* LINEAR11 */ 450 exponent = ((s16)sensor->data) >> 11; 451 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 452 } 453 454 val = mantissa; 455 456 /* scale result to milli-units for all sensors except fans */ 457 if (sensor->class != PSC_FAN) 458 val = val * 1000L; 459 460 /* scale result to micro-units for power sensors */ 461 if (sensor->class == PSC_POWER) 462 val = val * 1000L; 463 464 if (exponent >= 0) 465 val <<= exponent; 466 else 467 val >>= -exponent; 468 469 return val; 470 } 471 472 /* 473 * Convert direct sensor values to milli- or micro-units 474 * depending on sensor type. 475 */ 476 static long pmbus_reg2data_direct(struct pmbus_data *data, 477 struct pmbus_sensor *sensor) 478 { 479 long val = (s16) sensor->data; 480 long m, b, R; 481 482 m = data->info->m[sensor->class]; 483 b = data->info->b[sensor->class]; 484 R = data->info->R[sensor->class]; 485 486 if (m == 0) 487 return 0; 488 489 /* X = 1/m * (Y * 10^-R - b) */ 490 R = -R; 491 /* scale result to milli-units for everything but fans */ 492 if (sensor->class != PSC_FAN) { 493 R += 3; 494 b *= 1000; 495 } 496 497 /* scale result to micro-units for power sensors */ 498 if (sensor->class == PSC_POWER) { 499 R += 3; 500 b *= 1000; 501 } 502 503 while (R > 0) { 504 val *= 10; 505 R--; 506 } 507 while (R < 0) { 508 val = DIV_ROUND_CLOSEST(val, 10); 509 R++; 510 } 511 512 return (val - b) / m; 513 } 514 515 /* 516 * Convert VID sensor values to milli- or micro-units 517 * depending on sensor type. 518 */ 519 static long pmbus_reg2data_vid(struct pmbus_data *data, 520 struct pmbus_sensor *sensor) 521 { 522 long val = sensor->data; 523 long rv = 0; 524 525 switch (data->info->vrm_version) { 526 case vr11: 527 if (val >= 0x02 && val <= 0xb2) 528 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 529 break; 530 case vr12: 531 if (val >= 0x01) 532 rv = 250 + (val - 1) * 5; 533 break; 534 } 535 return rv; 536 } 537 538 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 539 { 540 long val; 541 542 switch (data->info->format[sensor->class]) { 543 case direct: 544 val = pmbus_reg2data_direct(data, sensor); 545 break; 546 case vid: 547 val = pmbus_reg2data_vid(data, sensor); 548 break; 549 case linear: 550 default: 551 val = pmbus_reg2data_linear(data, sensor); 552 break; 553 } 554 return val; 555 } 556 557 #define MAX_MANTISSA (1023 * 1000) 558 #define MIN_MANTISSA (511 * 1000) 559 560 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 561 struct pmbus_sensor *sensor, long val) 562 { 563 s16 exponent = 0, mantissa; 564 bool negative = false; 565 566 /* simple case */ 567 if (val == 0) 568 return 0; 569 570 if (sensor->class == PSC_VOLTAGE_OUT) { 571 /* LINEAR16 does not support negative voltages */ 572 if (val < 0) 573 return 0; 574 575 /* 576 * For a static exponents, we don't have a choice 577 * but to adjust the value to it. 578 */ 579 if (data->exponent[sensor->page] < 0) 580 val <<= -data->exponent[sensor->page]; 581 else 582 val >>= data->exponent[sensor->page]; 583 val = DIV_ROUND_CLOSEST(val, 1000); 584 return val & 0xffff; 585 } 586 587 if (val < 0) { 588 negative = true; 589 val = -val; 590 } 591 592 /* Power is in uW. Convert to mW before converting. */ 593 if (sensor->class == PSC_POWER) 594 val = DIV_ROUND_CLOSEST(val, 1000L); 595 596 /* 597 * For simplicity, convert fan data to milli-units 598 * before calculating the exponent. 599 */ 600 if (sensor->class == PSC_FAN) 601 val = val * 1000; 602 603 /* Reduce large mantissa until it fits into 10 bit */ 604 while (val >= MAX_MANTISSA && exponent < 15) { 605 exponent++; 606 val >>= 1; 607 } 608 /* Increase small mantissa to improve precision */ 609 while (val < MIN_MANTISSA && exponent > -15) { 610 exponent--; 611 val <<= 1; 612 } 613 614 /* Convert mantissa from milli-units to units */ 615 mantissa = DIV_ROUND_CLOSEST(val, 1000); 616 617 /* Ensure that resulting number is within range */ 618 if (mantissa > 0x3ff) 619 mantissa = 0x3ff; 620 621 /* restore sign */ 622 if (negative) 623 mantissa = -mantissa; 624 625 /* Convert to 5 bit exponent, 11 bit mantissa */ 626 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 627 } 628 629 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 630 struct pmbus_sensor *sensor, long val) 631 { 632 long m, b, R; 633 634 m = data->info->m[sensor->class]; 635 b = data->info->b[sensor->class]; 636 R = data->info->R[sensor->class]; 637 638 /* Power is in uW. Adjust R and b. */ 639 if (sensor->class == PSC_POWER) { 640 R -= 3; 641 b *= 1000; 642 } 643 644 /* Calculate Y = (m * X + b) * 10^R */ 645 if (sensor->class != PSC_FAN) { 646 R -= 3; /* Adjust R and b for data in milli-units */ 647 b *= 1000; 648 } 649 val = val * m + b; 650 651 while (R > 0) { 652 val *= 10; 653 R--; 654 } 655 while (R < 0) { 656 val = DIV_ROUND_CLOSEST(val, 10); 657 R++; 658 } 659 660 return val; 661 } 662 663 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 664 struct pmbus_sensor *sensor, long val) 665 { 666 val = clamp_val(val, 500, 1600); 667 668 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625); 669 } 670 671 static u16 pmbus_data2reg(struct pmbus_data *data, 672 struct pmbus_sensor *sensor, long val) 673 { 674 u16 regval; 675 676 switch (data->info->format[sensor->class]) { 677 case direct: 678 regval = pmbus_data2reg_direct(data, sensor, val); 679 break; 680 case vid: 681 regval = pmbus_data2reg_vid(data, sensor, val); 682 break; 683 case linear: 684 default: 685 regval = pmbus_data2reg_linear(data, sensor, val); 686 break; 687 } 688 return regval; 689 } 690 691 /* 692 * Return boolean calculated from converted data. 693 * <index> defines a status register index and mask. 694 * The mask is in the lower 8 bits, the register index is in bits 8..23. 695 * 696 * The associated pmbus_boolean structure contains optional pointers to two 697 * sensor attributes. If specified, those attributes are compared against each 698 * other to determine if a limit has been exceeded. 699 * 700 * If the sensor attribute pointers are NULL, the function returns true if 701 * (status[reg] & mask) is true. 702 * 703 * If sensor attribute pointers are provided, a comparison against a specified 704 * limit has to be performed to determine the boolean result. 705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 706 * sensor values referenced by sensor attribute pointers s1 and s2). 707 * 708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 710 * 711 * If a negative value is stored in any of the referenced registers, this value 712 * reflects an error code which will be returned. 713 */ 714 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b, 715 int index) 716 { 717 struct pmbus_sensor *s1 = b->s1; 718 struct pmbus_sensor *s2 = b->s2; 719 u16 reg = (index >> 8) & 0xffff; 720 u8 mask = index & 0xff; 721 int ret, status; 722 u8 regval; 723 724 status = data->status[reg]; 725 if (status < 0) 726 return status; 727 728 regval = status & mask; 729 if (!s1 && !s2) { 730 ret = !!regval; 731 } else if (!s1 || !s2) { 732 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2); 733 return 0; 734 } else { 735 long v1, v2; 736 737 if (s1->data < 0) 738 return s1->data; 739 if (s2->data < 0) 740 return s2->data; 741 742 v1 = pmbus_reg2data(data, s1); 743 v2 = pmbus_reg2data(data, s2); 744 ret = !!(regval && v1 >= v2); 745 } 746 return ret; 747 } 748 749 static ssize_t pmbus_show_boolean(struct device *dev, 750 struct device_attribute *da, char *buf) 751 { 752 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 753 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 754 struct pmbus_data *data = pmbus_update_device(dev); 755 int val; 756 757 val = pmbus_get_boolean(data, boolean, attr->index); 758 if (val < 0) 759 return val; 760 return snprintf(buf, PAGE_SIZE, "%d\n", val); 761 } 762 763 static ssize_t pmbus_show_sensor(struct device *dev, 764 struct device_attribute *devattr, char *buf) 765 { 766 struct pmbus_data *data = pmbus_update_device(dev); 767 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 768 769 if (sensor->data < 0) 770 return sensor->data; 771 772 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor)); 773 } 774 775 static ssize_t pmbus_set_sensor(struct device *dev, 776 struct device_attribute *devattr, 777 const char *buf, size_t count) 778 { 779 struct i2c_client *client = to_i2c_client(dev->parent); 780 struct pmbus_data *data = i2c_get_clientdata(client); 781 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 782 ssize_t rv = count; 783 long val = 0; 784 int ret; 785 u16 regval; 786 787 if (kstrtol(buf, 10, &val) < 0) 788 return -EINVAL; 789 790 mutex_lock(&data->update_lock); 791 regval = pmbus_data2reg(data, sensor, val); 792 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 793 if (ret < 0) 794 rv = ret; 795 else 796 sensor->data = regval; 797 mutex_unlock(&data->update_lock); 798 return rv; 799 } 800 801 static ssize_t pmbus_show_label(struct device *dev, 802 struct device_attribute *da, char *buf) 803 { 804 struct pmbus_label *label = to_pmbus_label(da); 805 806 return snprintf(buf, PAGE_SIZE, "%s\n", label->label); 807 } 808 809 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 810 { 811 if (data->num_attributes >= data->max_attributes - 1) { 812 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 813 void *new_attrs = krealloc(data->group.attrs, 814 new_max_attrs * sizeof(void *), 815 GFP_KERNEL); 816 if (!new_attrs) 817 return -ENOMEM; 818 data->group.attrs = new_attrs; 819 data->max_attributes = new_max_attrs; 820 } 821 822 data->group.attrs[data->num_attributes++] = attr; 823 data->group.attrs[data->num_attributes] = NULL; 824 return 0; 825 } 826 827 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 828 const char *name, 829 umode_t mode, 830 ssize_t (*show)(struct device *dev, 831 struct device_attribute *attr, 832 char *buf), 833 ssize_t (*store)(struct device *dev, 834 struct device_attribute *attr, 835 const char *buf, size_t count)) 836 { 837 sysfs_attr_init(&dev_attr->attr); 838 dev_attr->attr.name = name; 839 dev_attr->attr.mode = mode; 840 dev_attr->show = show; 841 dev_attr->store = store; 842 } 843 844 static void pmbus_attr_init(struct sensor_device_attribute *a, 845 const char *name, 846 umode_t mode, 847 ssize_t (*show)(struct device *dev, 848 struct device_attribute *attr, 849 char *buf), 850 ssize_t (*store)(struct device *dev, 851 struct device_attribute *attr, 852 const char *buf, size_t count), 853 int idx) 854 { 855 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 856 a->index = idx; 857 } 858 859 static int pmbus_add_boolean(struct pmbus_data *data, 860 const char *name, const char *type, int seq, 861 struct pmbus_sensor *s1, 862 struct pmbus_sensor *s2, 863 u16 reg, u8 mask) 864 { 865 struct pmbus_boolean *boolean; 866 struct sensor_device_attribute *a; 867 868 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 869 if (!boolean) 870 return -ENOMEM; 871 872 a = &boolean->attribute; 873 874 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 875 name, seq, type); 876 boolean->s1 = s1; 877 boolean->s2 = s2; 878 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL, 879 (reg << 8) | mask); 880 881 return pmbus_add_attribute(data, &a->dev_attr.attr); 882 } 883 884 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 885 const char *name, const char *type, 886 int seq, int page, int reg, 887 enum pmbus_sensor_classes class, 888 bool update, bool readonly) 889 { 890 struct pmbus_sensor *sensor; 891 struct device_attribute *a; 892 893 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 894 if (!sensor) 895 return NULL; 896 a = &sensor->attribute; 897 898 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 899 name, seq, type); 900 sensor->page = page; 901 sensor->reg = reg; 902 sensor->class = class; 903 sensor->update = update; 904 pmbus_dev_attr_init(a, sensor->name, 905 readonly ? S_IRUGO : S_IRUGO | S_IWUSR, 906 pmbus_show_sensor, pmbus_set_sensor); 907 908 if (pmbus_add_attribute(data, &a->attr)) 909 return NULL; 910 911 sensor->next = data->sensors; 912 data->sensors = sensor; 913 914 return sensor; 915 } 916 917 static int pmbus_add_label(struct pmbus_data *data, 918 const char *name, int seq, 919 const char *lstring, int index) 920 { 921 struct pmbus_label *label; 922 struct device_attribute *a; 923 924 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 925 if (!label) 926 return -ENOMEM; 927 928 a = &label->attribute; 929 930 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 931 if (!index) 932 strncpy(label->label, lstring, sizeof(label->label) - 1); 933 else 934 snprintf(label->label, sizeof(label->label), "%s%d", lstring, 935 index); 936 937 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL); 938 return pmbus_add_attribute(data, &a->attr); 939 } 940 941 /* 942 * Search for attributes. Allocate sensors, booleans, and labels as needed. 943 */ 944 945 /* 946 * The pmbus_limit_attr structure describes a single limit attribute 947 * and its associated alarm attribute. 948 */ 949 struct pmbus_limit_attr { 950 u16 reg; /* Limit register */ 951 u16 sbit; /* Alarm attribute status bit */ 952 bool update; /* True if register needs updates */ 953 bool low; /* True if low limit; for limits with compare 954 functions only */ 955 const char *attr; /* Attribute name */ 956 const char *alarm; /* Alarm attribute name */ 957 }; 958 959 /* 960 * The pmbus_sensor_attr structure describes one sensor attribute. This 961 * description includes a reference to the associated limit attributes. 962 */ 963 struct pmbus_sensor_attr { 964 u16 reg; /* sensor register */ 965 u8 gbit; /* generic status bit */ 966 u8 nlimit; /* # of limit registers */ 967 enum pmbus_sensor_classes class;/* sensor class */ 968 const char *label; /* sensor label */ 969 bool paged; /* true if paged sensor */ 970 bool update; /* true if update needed */ 971 bool compare; /* true if compare function needed */ 972 u32 func; /* sensor mask */ 973 u32 sfunc; /* sensor status mask */ 974 int sbase; /* status base register */ 975 const struct pmbus_limit_attr *limit;/* limit registers */ 976 }; 977 978 /* 979 * Add a set of limit attributes and, if supported, the associated 980 * alarm attributes. 981 * returns 0 if no alarm register found, 1 if an alarm register was found, 982 * < 0 on errors. 983 */ 984 static int pmbus_add_limit_attrs(struct i2c_client *client, 985 struct pmbus_data *data, 986 const struct pmbus_driver_info *info, 987 const char *name, int index, int page, 988 struct pmbus_sensor *base, 989 const struct pmbus_sensor_attr *attr) 990 { 991 const struct pmbus_limit_attr *l = attr->limit; 992 int nlimit = attr->nlimit; 993 int have_alarm = 0; 994 int i, ret; 995 struct pmbus_sensor *curr; 996 997 for (i = 0; i < nlimit; i++) { 998 if (pmbus_check_word_register(client, page, l->reg)) { 999 curr = pmbus_add_sensor(data, name, l->attr, index, 1000 page, l->reg, attr->class, 1001 attr->update || l->update, 1002 false); 1003 if (!curr) 1004 return -ENOMEM; 1005 if (l->sbit && (info->func[page] & attr->sfunc)) { 1006 ret = pmbus_add_boolean(data, name, 1007 l->alarm, index, 1008 attr->compare ? l->low ? curr : base 1009 : NULL, 1010 attr->compare ? l->low ? base : curr 1011 : NULL, 1012 attr->sbase + page, l->sbit); 1013 if (ret) 1014 return ret; 1015 have_alarm = 1; 1016 } 1017 } 1018 l++; 1019 } 1020 return have_alarm; 1021 } 1022 1023 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1024 struct pmbus_data *data, 1025 const struct pmbus_driver_info *info, 1026 const char *name, 1027 int index, int page, 1028 const struct pmbus_sensor_attr *attr) 1029 { 1030 struct pmbus_sensor *base; 1031 int ret; 1032 1033 if (attr->label) { 1034 ret = pmbus_add_label(data, name, index, attr->label, 1035 attr->paged ? page + 1 : 0); 1036 if (ret) 1037 return ret; 1038 } 1039 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg, 1040 attr->class, true, true); 1041 if (!base) 1042 return -ENOMEM; 1043 if (attr->sfunc) { 1044 ret = pmbus_add_limit_attrs(client, data, info, name, 1045 index, page, base, attr); 1046 if (ret < 0) 1047 return ret; 1048 /* 1049 * Add generic alarm attribute only if there are no individual 1050 * alarm attributes, if there is a global alarm bit, and if 1051 * the generic status register for this page is accessible. 1052 */ 1053 if (!ret && attr->gbit && 1054 pmbus_check_byte_register(client, page, 1055 data->status_register)) { 1056 ret = pmbus_add_boolean(data, name, "alarm", index, 1057 NULL, NULL, 1058 PB_STATUS_BASE + page, 1059 attr->gbit); 1060 if (ret) 1061 return ret; 1062 } 1063 } 1064 return 0; 1065 } 1066 1067 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1068 struct pmbus_data *data, 1069 const char *name, 1070 const struct pmbus_sensor_attr *attrs, 1071 int nattrs) 1072 { 1073 const struct pmbus_driver_info *info = data->info; 1074 int index, i; 1075 int ret; 1076 1077 index = 1; 1078 for (i = 0; i < nattrs; i++) { 1079 int page, pages; 1080 1081 pages = attrs->paged ? info->pages : 1; 1082 for (page = 0; page < pages; page++) { 1083 if (!(info->func[page] & attrs->func)) 1084 continue; 1085 ret = pmbus_add_sensor_attrs_one(client, data, info, 1086 name, index, page, 1087 attrs); 1088 if (ret) 1089 return ret; 1090 index++; 1091 } 1092 attrs++; 1093 } 1094 return 0; 1095 } 1096 1097 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1098 { 1099 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1100 .attr = "min", 1101 .alarm = "min_alarm", 1102 .sbit = PB_VOLTAGE_UV_WARNING, 1103 }, { 1104 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1105 .attr = "lcrit", 1106 .alarm = "lcrit_alarm", 1107 .sbit = PB_VOLTAGE_UV_FAULT, 1108 }, { 1109 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1110 .attr = "max", 1111 .alarm = "max_alarm", 1112 .sbit = PB_VOLTAGE_OV_WARNING, 1113 }, { 1114 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1115 .attr = "crit", 1116 .alarm = "crit_alarm", 1117 .sbit = PB_VOLTAGE_OV_FAULT, 1118 }, { 1119 .reg = PMBUS_VIRT_READ_VIN_AVG, 1120 .update = true, 1121 .attr = "average", 1122 }, { 1123 .reg = PMBUS_VIRT_READ_VIN_MIN, 1124 .update = true, 1125 .attr = "lowest", 1126 }, { 1127 .reg = PMBUS_VIRT_READ_VIN_MAX, 1128 .update = true, 1129 .attr = "highest", 1130 }, { 1131 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1132 .attr = "reset_history", 1133 }, 1134 }; 1135 1136 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1137 { 1138 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1139 .attr = "min", 1140 .alarm = "min_alarm", 1141 .sbit = PB_VOLTAGE_UV_WARNING, 1142 }, { 1143 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1144 .attr = "lcrit", 1145 .alarm = "lcrit_alarm", 1146 .sbit = PB_VOLTAGE_UV_FAULT, 1147 }, { 1148 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1149 .attr = "max", 1150 .alarm = "max_alarm", 1151 .sbit = PB_VOLTAGE_OV_WARNING, 1152 }, { 1153 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1154 .attr = "crit", 1155 .alarm = "crit_alarm", 1156 .sbit = PB_VOLTAGE_OV_FAULT, 1157 } 1158 }; 1159 1160 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1161 { 1162 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1163 .attr = "min", 1164 .alarm = "min_alarm", 1165 .sbit = PB_VOLTAGE_UV_WARNING, 1166 }, { 1167 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1168 .attr = "lcrit", 1169 .alarm = "lcrit_alarm", 1170 .sbit = PB_VOLTAGE_UV_FAULT, 1171 }, { 1172 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1173 .attr = "max", 1174 .alarm = "max_alarm", 1175 .sbit = PB_VOLTAGE_OV_WARNING, 1176 }, { 1177 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1178 .attr = "crit", 1179 .alarm = "crit_alarm", 1180 .sbit = PB_VOLTAGE_OV_FAULT, 1181 }, { 1182 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1183 .update = true, 1184 .attr = "average", 1185 }, { 1186 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1187 .update = true, 1188 .attr = "lowest", 1189 }, { 1190 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1191 .update = true, 1192 .attr = "highest", 1193 }, { 1194 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1195 .attr = "reset_history", 1196 } 1197 }; 1198 1199 static const struct pmbus_sensor_attr voltage_attributes[] = { 1200 { 1201 .reg = PMBUS_READ_VIN, 1202 .class = PSC_VOLTAGE_IN, 1203 .label = "vin", 1204 .func = PMBUS_HAVE_VIN, 1205 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1206 .sbase = PB_STATUS_INPUT_BASE, 1207 .gbit = PB_STATUS_VIN_UV, 1208 .limit = vin_limit_attrs, 1209 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1210 }, { 1211 .reg = PMBUS_VIRT_READ_VMON, 1212 .class = PSC_VOLTAGE_IN, 1213 .label = "vmon", 1214 .func = PMBUS_HAVE_VMON, 1215 .sfunc = PMBUS_HAVE_STATUS_VMON, 1216 .sbase = PB_STATUS_VMON_BASE, 1217 .limit = vmon_limit_attrs, 1218 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1219 }, { 1220 .reg = PMBUS_READ_VCAP, 1221 .class = PSC_VOLTAGE_IN, 1222 .label = "vcap", 1223 .func = PMBUS_HAVE_VCAP, 1224 }, { 1225 .reg = PMBUS_READ_VOUT, 1226 .class = PSC_VOLTAGE_OUT, 1227 .label = "vout", 1228 .paged = true, 1229 .func = PMBUS_HAVE_VOUT, 1230 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1231 .sbase = PB_STATUS_VOUT_BASE, 1232 .gbit = PB_STATUS_VOUT_OV, 1233 .limit = vout_limit_attrs, 1234 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1235 } 1236 }; 1237 1238 /* Current attributes */ 1239 1240 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1241 { 1242 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1243 .attr = "max", 1244 .alarm = "max_alarm", 1245 .sbit = PB_IIN_OC_WARNING, 1246 }, { 1247 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1248 .attr = "crit", 1249 .alarm = "crit_alarm", 1250 .sbit = PB_IIN_OC_FAULT, 1251 }, { 1252 .reg = PMBUS_VIRT_READ_IIN_AVG, 1253 .update = true, 1254 .attr = "average", 1255 }, { 1256 .reg = PMBUS_VIRT_READ_IIN_MIN, 1257 .update = true, 1258 .attr = "lowest", 1259 }, { 1260 .reg = PMBUS_VIRT_READ_IIN_MAX, 1261 .update = true, 1262 .attr = "highest", 1263 }, { 1264 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1265 .attr = "reset_history", 1266 } 1267 }; 1268 1269 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1270 { 1271 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1272 .attr = "max", 1273 .alarm = "max_alarm", 1274 .sbit = PB_IOUT_OC_WARNING, 1275 }, { 1276 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1277 .attr = "lcrit", 1278 .alarm = "lcrit_alarm", 1279 .sbit = PB_IOUT_UC_FAULT, 1280 }, { 1281 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1282 .attr = "crit", 1283 .alarm = "crit_alarm", 1284 .sbit = PB_IOUT_OC_FAULT, 1285 }, { 1286 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1287 .update = true, 1288 .attr = "average", 1289 }, { 1290 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1291 .update = true, 1292 .attr = "lowest", 1293 }, { 1294 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1295 .update = true, 1296 .attr = "highest", 1297 }, { 1298 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1299 .attr = "reset_history", 1300 } 1301 }; 1302 1303 static const struct pmbus_sensor_attr current_attributes[] = { 1304 { 1305 .reg = PMBUS_READ_IIN, 1306 .class = PSC_CURRENT_IN, 1307 .label = "iin", 1308 .func = PMBUS_HAVE_IIN, 1309 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1310 .sbase = PB_STATUS_INPUT_BASE, 1311 .limit = iin_limit_attrs, 1312 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1313 }, { 1314 .reg = PMBUS_READ_IOUT, 1315 .class = PSC_CURRENT_OUT, 1316 .label = "iout", 1317 .paged = true, 1318 .func = PMBUS_HAVE_IOUT, 1319 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1320 .sbase = PB_STATUS_IOUT_BASE, 1321 .gbit = PB_STATUS_IOUT_OC, 1322 .limit = iout_limit_attrs, 1323 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1324 } 1325 }; 1326 1327 /* Power attributes */ 1328 1329 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1330 { 1331 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1332 .attr = "max", 1333 .alarm = "alarm", 1334 .sbit = PB_PIN_OP_WARNING, 1335 }, { 1336 .reg = PMBUS_VIRT_READ_PIN_AVG, 1337 .update = true, 1338 .attr = "average", 1339 }, { 1340 .reg = PMBUS_VIRT_READ_PIN_MIN, 1341 .update = true, 1342 .attr = "input_lowest", 1343 }, { 1344 .reg = PMBUS_VIRT_READ_PIN_MAX, 1345 .update = true, 1346 .attr = "input_highest", 1347 }, { 1348 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1349 .attr = "reset_history", 1350 } 1351 }; 1352 1353 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1354 { 1355 .reg = PMBUS_POUT_MAX, 1356 .attr = "cap", 1357 .alarm = "cap_alarm", 1358 .sbit = PB_POWER_LIMITING, 1359 }, { 1360 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1361 .attr = "max", 1362 .alarm = "max_alarm", 1363 .sbit = PB_POUT_OP_WARNING, 1364 }, { 1365 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1366 .attr = "crit", 1367 .alarm = "crit_alarm", 1368 .sbit = PB_POUT_OP_FAULT, 1369 }, { 1370 .reg = PMBUS_VIRT_READ_POUT_AVG, 1371 .update = true, 1372 .attr = "average", 1373 }, { 1374 .reg = PMBUS_VIRT_READ_POUT_MIN, 1375 .update = true, 1376 .attr = "input_lowest", 1377 }, { 1378 .reg = PMBUS_VIRT_READ_POUT_MAX, 1379 .update = true, 1380 .attr = "input_highest", 1381 }, { 1382 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1383 .attr = "reset_history", 1384 } 1385 }; 1386 1387 static const struct pmbus_sensor_attr power_attributes[] = { 1388 { 1389 .reg = PMBUS_READ_PIN, 1390 .class = PSC_POWER, 1391 .label = "pin", 1392 .func = PMBUS_HAVE_PIN, 1393 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1394 .sbase = PB_STATUS_INPUT_BASE, 1395 .limit = pin_limit_attrs, 1396 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1397 }, { 1398 .reg = PMBUS_READ_POUT, 1399 .class = PSC_POWER, 1400 .label = "pout", 1401 .paged = true, 1402 .func = PMBUS_HAVE_POUT, 1403 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1404 .sbase = PB_STATUS_IOUT_BASE, 1405 .limit = pout_limit_attrs, 1406 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1407 } 1408 }; 1409 1410 /* Temperature atributes */ 1411 1412 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1413 { 1414 .reg = PMBUS_UT_WARN_LIMIT, 1415 .low = true, 1416 .attr = "min", 1417 .alarm = "min_alarm", 1418 .sbit = PB_TEMP_UT_WARNING, 1419 }, { 1420 .reg = PMBUS_UT_FAULT_LIMIT, 1421 .low = true, 1422 .attr = "lcrit", 1423 .alarm = "lcrit_alarm", 1424 .sbit = PB_TEMP_UT_FAULT, 1425 }, { 1426 .reg = PMBUS_OT_WARN_LIMIT, 1427 .attr = "max", 1428 .alarm = "max_alarm", 1429 .sbit = PB_TEMP_OT_WARNING, 1430 }, { 1431 .reg = PMBUS_OT_FAULT_LIMIT, 1432 .attr = "crit", 1433 .alarm = "crit_alarm", 1434 .sbit = PB_TEMP_OT_FAULT, 1435 }, { 1436 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1437 .attr = "lowest", 1438 }, { 1439 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1440 .attr = "average", 1441 }, { 1442 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1443 .attr = "highest", 1444 }, { 1445 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1446 .attr = "reset_history", 1447 } 1448 }; 1449 1450 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1451 { 1452 .reg = PMBUS_UT_WARN_LIMIT, 1453 .low = true, 1454 .attr = "min", 1455 .alarm = "min_alarm", 1456 .sbit = PB_TEMP_UT_WARNING, 1457 }, { 1458 .reg = PMBUS_UT_FAULT_LIMIT, 1459 .low = true, 1460 .attr = "lcrit", 1461 .alarm = "lcrit_alarm", 1462 .sbit = PB_TEMP_UT_FAULT, 1463 }, { 1464 .reg = PMBUS_OT_WARN_LIMIT, 1465 .attr = "max", 1466 .alarm = "max_alarm", 1467 .sbit = PB_TEMP_OT_WARNING, 1468 }, { 1469 .reg = PMBUS_OT_FAULT_LIMIT, 1470 .attr = "crit", 1471 .alarm = "crit_alarm", 1472 .sbit = PB_TEMP_OT_FAULT, 1473 }, { 1474 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1475 .attr = "lowest", 1476 }, { 1477 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1478 .attr = "average", 1479 }, { 1480 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1481 .attr = "highest", 1482 }, { 1483 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1484 .attr = "reset_history", 1485 } 1486 }; 1487 1488 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1489 { 1490 .reg = PMBUS_UT_WARN_LIMIT, 1491 .low = true, 1492 .attr = "min", 1493 .alarm = "min_alarm", 1494 .sbit = PB_TEMP_UT_WARNING, 1495 }, { 1496 .reg = PMBUS_UT_FAULT_LIMIT, 1497 .low = true, 1498 .attr = "lcrit", 1499 .alarm = "lcrit_alarm", 1500 .sbit = PB_TEMP_UT_FAULT, 1501 }, { 1502 .reg = PMBUS_OT_WARN_LIMIT, 1503 .attr = "max", 1504 .alarm = "max_alarm", 1505 .sbit = PB_TEMP_OT_WARNING, 1506 }, { 1507 .reg = PMBUS_OT_FAULT_LIMIT, 1508 .attr = "crit", 1509 .alarm = "crit_alarm", 1510 .sbit = PB_TEMP_OT_FAULT, 1511 } 1512 }; 1513 1514 static const struct pmbus_sensor_attr temp_attributes[] = { 1515 { 1516 .reg = PMBUS_READ_TEMPERATURE_1, 1517 .class = PSC_TEMPERATURE, 1518 .paged = true, 1519 .update = true, 1520 .compare = true, 1521 .func = PMBUS_HAVE_TEMP, 1522 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1523 .sbase = PB_STATUS_TEMP_BASE, 1524 .gbit = PB_STATUS_TEMPERATURE, 1525 .limit = temp_limit_attrs, 1526 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1527 }, { 1528 .reg = PMBUS_READ_TEMPERATURE_2, 1529 .class = PSC_TEMPERATURE, 1530 .paged = true, 1531 .update = true, 1532 .compare = true, 1533 .func = PMBUS_HAVE_TEMP2, 1534 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1535 .sbase = PB_STATUS_TEMP_BASE, 1536 .gbit = PB_STATUS_TEMPERATURE, 1537 .limit = temp_limit_attrs2, 1538 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1539 }, { 1540 .reg = PMBUS_READ_TEMPERATURE_3, 1541 .class = PSC_TEMPERATURE, 1542 .paged = true, 1543 .update = true, 1544 .compare = true, 1545 .func = PMBUS_HAVE_TEMP3, 1546 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1547 .sbase = PB_STATUS_TEMP_BASE, 1548 .gbit = PB_STATUS_TEMPERATURE, 1549 .limit = temp_limit_attrs3, 1550 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1551 } 1552 }; 1553 1554 static const int pmbus_fan_registers[] = { 1555 PMBUS_READ_FAN_SPEED_1, 1556 PMBUS_READ_FAN_SPEED_2, 1557 PMBUS_READ_FAN_SPEED_3, 1558 PMBUS_READ_FAN_SPEED_4 1559 }; 1560 1561 static const int pmbus_fan_config_registers[] = { 1562 PMBUS_FAN_CONFIG_12, 1563 PMBUS_FAN_CONFIG_12, 1564 PMBUS_FAN_CONFIG_34, 1565 PMBUS_FAN_CONFIG_34 1566 }; 1567 1568 static const int pmbus_fan_status_registers[] = { 1569 PMBUS_STATUS_FAN_12, 1570 PMBUS_STATUS_FAN_12, 1571 PMBUS_STATUS_FAN_34, 1572 PMBUS_STATUS_FAN_34 1573 }; 1574 1575 static const u32 pmbus_fan_flags[] = { 1576 PMBUS_HAVE_FAN12, 1577 PMBUS_HAVE_FAN12, 1578 PMBUS_HAVE_FAN34, 1579 PMBUS_HAVE_FAN34 1580 }; 1581 1582 static const u32 pmbus_fan_status_flags[] = { 1583 PMBUS_HAVE_STATUS_FAN12, 1584 PMBUS_HAVE_STATUS_FAN12, 1585 PMBUS_HAVE_STATUS_FAN34, 1586 PMBUS_HAVE_STATUS_FAN34 1587 }; 1588 1589 /* Fans */ 1590 static int pmbus_add_fan_attributes(struct i2c_client *client, 1591 struct pmbus_data *data) 1592 { 1593 const struct pmbus_driver_info *info = data->info; 1594 int index = 1; 1595 int page; 1596 int ret; 1597 1598 for (page = 0; page < info->pages; page++) { 1599 int f; 1600 1601 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1602 int regval; 1603 1604 if (!(info->func[page] & pmbus_fan_flags[f])) 1605 break; 1606 1607 if (!pmbus_check_word_register(client, page, 1608 pmbus_fan_registers[f])) 1609 break; 1610 1611 /* 1612 * Skip fan if not installed. 1613 * Each fan configuration register covers multiple fans, 1614 * so we have to do some magic. 1615 */ 1616 regval = _pmbus_read_byte_data(client, page, 1617 pmbus_fan_config_registers[f]); 1618 if (regval < 0 || 1619 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1620 continue; 1621 1622 if (pmbus_add_sensor(data, "fan", "input", index, 1623 page, pmbus_fan_registers[f], 1624 PSC_FAN, true, true) == NULL) 1625 return -ENOMEM; 1626 1627 /* 1628 * Each fan status register covers multiple fans, 1629 * so we have to do some magic. 1630 */ 1631 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1632 pmbus_check_byte_register(client, 1633 page, pmbus_fan_status_registers[f])) { 1634 int base; 1635 1636 if (f > 1) /* fan 3, 4 */ 1637 base = PB_STATUS_FAN34_BASE + page; 1638 else 1639 base = PB_STATUS_FAN_BASE + page; 1640 ret = pmbus_add_boolean(data, "fan", 1641 "alarm", index, NULL, NULL, base, 1642 PB_FAN_FAN1_WARNING >> (f & 1)); 1643 if (ret) 1644 return ret; 1645 ret = pmbus_add_boolean(data, "fan", 1646 "fault", index, NULL, NULL, base, 1647 PB_FAN_FAN1_FAULT >> (f & 1)); 1648 if (ret) 1649 return ret; 1650 } 1651 index++; 1652 } 1653 } 1654 return 0; 1655 } 1656 1657 static int pmbus_find_attributes(struct i2c_client *client, 1658 struct pmbus_data *data) 1659 { 1660 int ret; 1661 1662 /* Voltage sensors */ 1663 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 1664 ARRAY_SIZE(voltage_attributes)); 1665 if (ret) 1666 return ret; 1667 1668 /* Current sensors */ 1669 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 1670 ARRAY_SIZE(current_attributes)); 1671 if (ret) 1672 return ret; 1673 1674 /* Power sensors */ 1675 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 1676 ARRAY_SIZE(power_attributes)); 1677 if (ret) 1678 return ret; 1679 1680 /* Temperature sensors */ 1681 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 1682 ARRAY_SIZE(temp_attributes)); 1683 if (ret) 1684 return ret; 1685 1686 /* Fans */ 1687 ret = pmbus_add_fan_attributes(client, data); 1688 return ret; 1689 } 1690 1691 /* 1692 * Identify chip parameters. 1693 * This function is called for all chips. 1694 */ 1695 static int pmbus_identify_common(struct i2c_client *client, 1696 struct pmbus_data *data, int page) 1697 { 1698 int vout_mode = -1; 1699 1700 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 1701 vout_mode = _pmbus_read_byte_data(client, page, 1702 PMBUS_VOUT_MODE); 1703 if (vout_mode >= 0 && vout_mode != 0xff) { 1704 /* 1705 * Not all chips support the VOUT_MODE command, 1706 * so a failure to read it is not an error. 1707 */ 1708 switch (vout_mode >> 5) { 1709 case 0: /* linear mode */ 1710 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 1711 return -ENODEV; 1712 1713 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 1714 break; 1715 case 1: /* VID mode */ 1716 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 1717 return -ENODEV; 1718 break; 1719 case 2: /* direct mode */ 1720 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 1721 return -ENODEV; 1722 break; 1723 default: 1724 return -ENODEV; 1725 } 1726 } 1727 1728 pmbus_clear_fault_page(client, page); 1729 return 0; 1730 } 1731 1732 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 1733 struct pmbus_driver_info *info) 1734 { 1735 struct device *dev = &client->dev; 1736 int page, ret; 1737 1738 /* 1739 * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try 1740 * to use PMBUS_STATUS_WORD instead if that is the case. 1741 * Bail out if both registers are not supported. 1742 */ 1743 data->status_register = PMBUS_STATUS_BYTE; 1744 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 1745 if (ret < 0 || ret == 0xff) { 1746 data->status_register = PMBUS_STATUS_WORD; 1747 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 1748 if (ret < 0 || ret == 0xffff) { 1749 dev_err(dev, "PMBus status register not found\n"); 1750 return -ENODEV; 1751 } 1752 } 1753 1754 /* Enable PEC if the controller supports it */ 1755 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 1756 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) 1757 client->flags |= I2C_CLIENT_PEC; 1758 1759 pmbus_clear_faults(client); 1760 1761 if (info->identify) { 1762 ret = (*info->identify)(client, info); 1763 if (ret < 0) { 1764 dev_err(dev, "Chip identification failed\n"); 1765 return ret; 1766 } 1767 } 1768 1769 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 1770 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 1771 return -ENODEV; 1772 } 1773 1774 for (page = 0; page < info->pages; page++) { 1775 ret = pmbus_identify_common(client, data, page); 1776 if (ret < 0) { 1777 dev_err(dev, "Failed to identify chip capabilities\n"); 1778 return ret; 1779 } 1780 } 1781 return 0; 1782 } 1783 1784 #if IS_ENABLED(CONFIG_REGULATOR) 1785 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 1786 { 1787 struct device *dev = rdev_get_dev(rdev); 1788 struct i2c_client *client = to_i2c_client(dev->parent); 1789 u8 page = rdev_get_id(rdev); 1790 int ret; 1791 1792 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION); 1793 if (ret < 0) 1794 return ret; 1795 1796 return !!(ret & PB_OPERATION_CONTROL_ON); 1797 } 1798 1799 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 1800 { 1801 struct device *dev = rdev_get_dev(rdev); 1802 struct i2c_client *client = to_i2c_client(dev->parent); 1803 u8 page = rdev_get_id(rdev); 1804 1805 return pmbus_update_byte_data(client, page, PMBUS_OPERATION, 1806 PB_OPERATION_CONTROL_ON, 1807 enable ? PB_OPERATION_CONTROL_ON : 0); 1808 } 1809 1810 static int pmbus_regulator_enable(struct regulator_dev *rdev) 1811 { 1812 return _pmbus_regulator_on_off(rdev, 1); 1813 } 1814 1815 static int pmbus_regulator_disable(struct regulator_dev *rdev) 1816 { 1817 return _pmbus_regulator_on_off(rdev, 0); 1818 } 1819 1820 const struct regulator_ops pmbus_regulator_ops = { 1821 .enable = pmbus_regulator_enable, 1822 .disable = pmbus_regulator_disable, 1823 .is_enabled = pmbus_regulator_is_enabled, 1824 }; 1825 EXPORT_SYMBOL_GPL(pmbus_regulator_ops); 1826 1827 static int pmbus_regulator_register(struct pmbus_data *data) 1828 { 1829 struct device *dev = data->dev; 1830 const struct pmbus_driver_info *info = data->info; 1831 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 1832 struct regulator_dev *rdev; 1833 int i; 1834 1835 for (i = 0; i < info->num_regulators; i++) { 1836 struct regulator_config config = { }; 1837 1838 config.dev = dev; 1839 config.driver_data = data; 1840 1841 if (pdata && pdata->reg_init_data) 1842 config.init_data = &pdata->reg_init_data[i]; 1843 1844 rdev = devm_regulator_register(dev, &info->reg_desc[i], 1845 &config); 1846 if (IS_ERR(rdev)) { 1847 dev_err(dev, "Failed to register %s regulator\n", 1848 info->reg_desc[i].name); 1849 return PTR_ERR(rdev); 1850 } 1851 } 1852 1853 return 0; 1854 } 1855 #else 1856 static int pmbus_regulator_register(struct pmbus_data *data) 1857 { 1858 return 0; 1859 } 1860 #endif 1861 1862 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, 1863 struct pmbus_driver_info *info) 1864 { 1865 struct device *dev = &client->dev; 1866 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 1867 struct pmbus_data *data; 1868 int ret; 1869 1870 if (!info) 1871 return -ENODEV; 1872 1873 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 1874 | I2C_FUNC_SMBUS_BYTE_DATA 1875 | I2C_FUNC_SMBUS_WORD_DATA)) 1876 return -ENODEV; 1877 1878 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 1879 if (!data) 1880 return -ENOMEM; 1881 1882 i2c_set_clientdata(client, data); 1883 mutex_init(&data->update_lock); 1884 data->dev = dev; 1885 1886 if (pdata) 1887 data->flags = pdata->flags; 1888 data->info = info; 1889 1890 ret = pmbus_init_common(client, data, info); 1891 if (ret < 0) 1892 return ret; 1893 1894 ret = pmbus_find_attributes(client, data); 1895 if (ret) 1896 goto out_kfree; 1897 1898 /* 1899 * If there are no attributes, something is wrong. 1900 * Bail out instead of trying to register nothing. 1901 */ 1902 if (!data->num_attributes) { 1903 dev_err(dev, "No attributes found\n"); 1904 ret = -ENODEV; 1905 goto out_kfree; 1906 } 1907 1908 data->groups[0] = &data->group; 1909 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name, 1910 data, data->groups); 1911 if (IS_ERR(data->hwmon_dev)) { 1912 ret = PTR_ERR(data->hwmon_dev); 1913 dev_err(dev, "Failed to register hwmon device\n"); 1914 goto out_kfree; 1915 } 1916 1917 ret = pmbus_regulator_register(data); 1918 if (ret) 1919 goto out_unregister; 1920 1921 return 0; 1922 1923 out_unregister: 1924 hwmon_device_unregister(data->hwmon_dev); 1925 out_kfree: 1926 kfree(data->group.attrs); 1927 return ret; 1928 } 1929 EXPORT_SYMBOL_GPL(pmbus_do_probe); 1930 1931 int pmbus_do_remove(struct i2c_client *client) 1932 { 1933 struct pmbus_data *data = i2c_get_clientdata(client); 1934 hwmon_device_unregister(data->hwmon_dev); 1935 kfree(data->group.attrs); 1936 return 0; 1937 } 1938 EXPORT_SYMBOL_GPL(pmbus_do_remove); 1939 1940 MODULE_AUTHOR("Guenter Roeck"); 1941 MODULE_DESCRIPTION("PMBus core driver"); 1942 MODULE_LICENSE("GPL"); 1943