xref: /openbmc/linux/drivers/hwmon/pmbus/pmbus_core.c (revision 39f555fb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/of.h>
23 #include <linux/thermal.h>
24 #include "pmbus.h"
25 
26 /*
27  * Number of additional attribute pointers to allocate
28  * with each call to krealloc
29  */
30 #define PMBUS_ATTR_ALLOC_SIZE	32
31 #define PMBUS_NAME_SIZE		24
32 
33 struct pmbus_sensor {
34 	struct pmbus_sensor *next;
35 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
36 	struct device_attribute attribute;
37 	u8 page;		/* page number */
38 	u8 phase;		/* phase number, 0xff for all phases */
39 	u16 reg;		/* register */
40 	enum pmbus_sensor_classes class;	/* sensor class */
41 	bool update;		/* runtime sensor update needed */
42 	bool convert;		/* Whether or not to apply linear/vid/direct */
43 	int data;		/* Sensor data.
44 				   Negative if there was a read error */
45 };
46 #define to_pmbus_sensor(_attr) \
47 	container_of(_attr, struct pmbus_sensor, attribute)
48 
49 struct pmbus_boolean {
50 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
51 	struct sensor_device_attribute attribute;
52 	struct pmbus_sensor *s1;
53 	struct pmbus_sensor *s2;
54 };
55 #define to_pmbus_boolean(_attr) \
56 	container_of(_attr, struct pmbus_boolean, attribute)
57 
58 struct pmbus_label {
59 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
60 	struct device_attribute attribute;
61 	char label[PMBUS_NAME_SIZE];	/* label */
62 };
63 #define to_pmbus_label(_attr) \
64 	container_of(_attr, struct pmbus_label, attribute)
65 
66 /* Macros for converting between sensor index and register/page/status mask */
67 
68 #define PB_STATUS_MASK	0xffff
69 #define PB_REG_SHIFT	16
70 #define PB_REG_MASK	0x3ff
71 #define PB_PAGE_SHIFT	26
72 #define PB_PAGE_MASK	0x3f
73 
74 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
75 						 ((reg) << PB_REG_SHIFT) | (mask))
76 
77 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
78 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
79 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
80 
81 struct pmbus_data {
82 	struct device *dev;
83 	struct device *hwmon_dev;
84 	struct regulator_dev **rdevs;
85 
86 	u32 flags;		/* from platform data */
87 
88 	int exponent[PMBUS_PAGES];
89 				/* linear mode: exponent for output voltages */
90 
91 	const struct pmbus_driver_info *info;
92 
93 	int max_attributes;
94 	int num_attributes;
95 	struct attribute_group group;
96 	const struct attribute_group **groups;
97 	struct dentry *debugfs;		/* debugfs device directory */
98 
99 	struct pmbus_sensor *sensors;
100 
101 	struct mutex update_lock;
102 
103 	bool has_status_word;		/* device uses STATUS_WORD register */
104 	int (*read_status)(struct i2c_client *client, int page);
105 
106 	s16 currpage;	/* current page, -1 for unknown/unset */
107 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
108 
109 	int vout_low[PMBUS_PAGES];	/* voltage low margin */
110 	int vout_high[PMBUS_PAGES];	/* voltage high margin */
111 };
112 
113 struct pmbus_debugfs_entry {
114 	struct i2c_client *client;
115 	u8 page;
116 	u8 reg;
117 };
118 
119 static const int pmbus_fan_rpm_mask[] = {
120 	PB_FAN_1_RPM,
121 	PB_FAN_2_RPM,
122 	PB_FAN_1_RPM,
123 	PB_FAN_2_RPM,
124 };
125 
126 static const int pmbus_fan_config_registers[] = {
127 	PMBUS_FAN_CONFIG_12,
128 	PMBUS_FAN_CONFIG_12,
129 	PMBUS_FAN_CONFIG_34,
130 	PMBUS_FAN_CONFIG_34
131 };
132 
133 static const int pmbus_fan_command_registers[] = {
134 	PMBUS_FAN_COMMAND_1,
135 	PMBUS_FAN_COMMAND_2,
136 	PMBUS_FAN_COMMAND_3,
137 	PMBUS_FAN_COMMAND_4,
138 };
139 
140 void pmbus_clear_cache(struct i2c_client *client)
141 {
142 	struct pmbus_data *data = i2c_get_clientdata(client);
143 	struct pmbus_sensor *sensor;
144 
145 	for (sensor = data->sensors; sensor; sensor = sensor->next)
146 		sensor->data = -ENODATA;
147 }
148 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
149 
150 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
151 {
152 	struct pmbus_data *data = i2c_get_clientdata(client);
153 	struct pmbus_sensor *sensor;
154 
155 	for (sensor = data->sensors; sensor; sensor = sensor->next)
156 		if (sensor->reg == reg)
157 			sensor->update = update;
158 }
159 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
160 
161 int pmbus_set_page(struct i2c_client *client, int page, int phase)
162 {
163 	struct pmbus_data *data = i2c_get_clientdata(client);
164 	int rv;
165 
166 	if (page < 0)
167 		return 0;
168 
169 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
170 	    data->info->pages > 1 && page != data->currpage) {
171 		dev_dbg(&client->dev, "Want page %u, %u cached\n", page,
172 			data->currpage);
173 
174 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
175 		if (rv < 0) {
176 			rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE,
177 						       page);
178 			dev_dbg(&client->dev,
179 				"Failed to set page %u, performed one-shot retry %s: %d\n",
180 				page, rv ? "and failed" : "with success", rv);
181 			if (rv < 0)
182 				return rv;
183 		}
184 
185 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
186 		if (rv < 0)
187 			return rv;
188 
189 		if (rv != page)
190 			return -EIO;
191 	}
192 	data->currpage = page;
193 
194 	if (data->info->phases[page] && data->currphase != phase &&
195 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
196 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
197 					       phase);
198 		if (rv)
199 			return rv;
200 	}
201 	data->currphase = phase;
202 
203 	return 0;
204 }
205 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
206 
207 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
208 {
209 	int rv;
210 
211 	rv = pmbus_set_page(client, page, 0xff);
212 	if (rv < 0)
213 		return rv;
214 
215 	return i2c_smbus_write_byte(client, value);
216 }
217 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
218 
219 /*
220  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
221  * a device specific mapping function exists and calls it if necessary.
222  */
223 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
224 {
225 	struct pmbus_data *data = i2c_get_clientdata(client);
226 	const struct pmbus_driver_info *info = data->info;
227 	int status;
228 
229 	if (info->write_byte) {
230 		status = info->write_byte(client, page, value);
231 		if (status != -ENODATA)
232 			return status;
233 	}
234 	return pmbus_write_byte(client, page, value);
235 }
236 
237 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
238 			  u16 word)
239 {
240 	int rv;
241 
242 	rv = pmbus_set_page(client, page, 0xff);
243 	if (rv < 0)
244 		return rv;
245 
246 	return i2c_smbus_write_word_data(client, reg, word);
247 }
248 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
249 
250 
251 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
252 				u16 word)
253 {
254 	int bit;
255 	int id;
256 	int rv;
257 
258 	switch (reg) {
259 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
260 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
261 		bit = pmbus_fan_rpm_mask[id];
262 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
263 		break;
264 	default:
265 		rv = -ENXIO;
266 		break;
267 	}
268 
269 	return rv;
270 }
271 
272 /*
273  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
274  * a device specific mapping function exists and calls it if necessary.
275  */
276 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
277 				  u16 word)
278 {
279 	struct pmbus_data *data = i2c_get_clientdata(client);
280 	const struct pmbus_driver_info *info = data->info;
281 	int status;
282 
283 	if (info->write_word_data) {
284 		status = info->write_word_data(client, page, reg, word);
285 		if (status != -ENODATA)
286 			return status;
287 	}
288 
289 	if (reg >= PMBUS_VIRT_BASE)
290 		return pmbus_write_virt_reg(client, page, reg, word);
291 
292 	return pmbus_write_word_data(client, page, reg, word);
293 }
294 
295 /*
296  * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
297  * a device specific mapping function exists and calls it if necessary.
298  */
299 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
300 {
301 	struct pmbus_data *data = i2c_get_clientdata(client);
302 	const struct pmbus_driver_info *info = data->info;
303 	int status;
304 
305 	if (info->write_byte_data) {
306 		status = info->write_byte_data(client, page, reg, value);
307 		if (status != -ENODATA)
308 			return status;
309 	}
310 	return pmbus_write_byte_data(client, page, reg, value);
311 }
312 
313 /*
314  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
315  * a device specific mapping function exists and calls it if necessary.
316  */
317 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
318 {
319 	struct pmbus_data *data = i2c_get_clientdata(client);
320 	const struct pmbus_driver_info *info = data->info;
321 	int status;
322 
323 	if (info->read_byte_data) {
324 		status = info->read_byte_data(client, page, reg);
325 		if (status != -ENODATA)
326 			return status;
327 	}
328 	return pmbus_read_byte_data(client, page, reg);
329 }
330 
331 int pmbus_update_fan(struct i2c_client *client, int page, int id,
332 		     u8 config, u8 mask, u16 command)
333 {
334 	int from;
335 	int rv;
336 	u8 to;
337 
338 	from = _pmbus_read_byte_data(client, page,
339 				    pmbus_fan_config_registers[id]);
340 	if (from < 0)
341 		return from;
342 
343 	to = (from & ~mask) | (config & mask);
344 	if (to != from) {
345 		rv = _pmbus_write_byte_data(client, page,
346 					   pmbus_fan_config_registers[id], to);
347 		if (rv < 0)
348 			return rv;
349 	}
350 
351 	return _pmbus_write_word_data(client, page,
352 				      pmbus_fan_command_registers[id], command);
353 }
354 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
355 
356 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
357 {
358 	int rv;
359 
360 	rv = pmbus_set_page(client, page, phase);
361 	if (rv < 0)
362 		return rv;
363 
364 	return i2c_smbus_read_word_data(client, reg);
365 }
366 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
367 
368 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
369 {
370 	int rv;
371 	int id;
372 
373 	switch (reg) {
374 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
375 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
376 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
377 		break;
378 	default:
379 		rv = -ENXIO;
380 		break;
381 	}
382 
383 	return rv;
384 }
385 
386 /*
387  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
388  * a device specific mapping function exists and calls it if necessary.
389  */
390 static int _pmbus_read_word_data(struct i2c_client *client, int page,
391 				 int phase, int reg)
392 {
393 	struct pmbus_data *data = i2c_get_clientdata(client);
394 	const struct pmbus_driver_info *info = data->info;
395 	int status;
396 
397 	if (info->read_word_data) {
398 		status = info->read_word_data(client, page, phase, reg);
399 		if (status != -ENODATA)
400 			return status;
401 	}
402 
403 	if (reg >= PMBUS_VIRT_BASE)
404 		return pmbus_read_virt_reg(client, page, reg);
405 
406 	return pmbus_read_word_data(client, page, phase, reg);
407 }
408 
409 /* Same as above, but without phase parameter, for use in check functions */
410 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
411 {
412 	return _pmbus_read_word_data(client, page, 0xff, reg);
413 }
414 
415 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
416 {
417 	int rv;
418 
419 	rv = pmbus_set_page(client, page, 0xff);
420 	if (rv < 0)
421 		return rv;
422 
423 	return i2c_smbus_read_byte_data(client, reg);
424 }
425 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
426 
427 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
428 {
429 	int rv;
430 
431 	rv = pmbus_set_page(client, page, 0xff);
432 	if (rv < 0)
433 		return rv;
434 
435 	return i2c_smbus_write_byte_data(client, reg, value);
436 }
437 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
438 
439 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
440 			   u8 mask, u8 value)
441 {
442 	unsigned int tmp;
443 	int rv;
444 
445 	rv = _pmbus_read_byte_data(client, page, reg);
446 	if (rv < 0)
447 		return rv;
448 
449 	tmp = (rv & ~mask) | (value & mask);
450 
451 	if (tmp != rv)
452 		rv = _pmbus_write_byte_data(client, page, reg, tmp);
453 
454 	return rv;
455 }
456 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
457 
458 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
459 				 char *data_buf)
460 {
461 	int rv;
462 
463 	rv = pmbus_set_page(client, page, 0xff);
464 	if (rv < 0)
465 		return rv;
466 
467 	return i2c_smbus_read_block_data(client, reg, data_buf);
468 }
469 
470 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
471 					      int reg)
472 {
473 	struct pmbus_sensor *sensor;
474 
475 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
476 		if (sensor->page == page && sensor->reg == reg)
477 			return sensor;
478 	}
479 
480 	return ERR_PTR(-EINVAL);
481 }
482 
483 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
484 			      enum pmbus_fan_mode mode,
485 			      bool from_cache)
486 {
487 	struct pmbus_data *data = i2c_get_clientdata(client);
488 	bool want_rpm, have_rpm;
489 	struct pmbus_sensor *s;
490 	int config;
491 	int reg;
492 
493 	want_rpm = (mode == rpm);
494 
495 	if (from_cache) {
496 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
497 		s = pmbus_find_sensor(data, page, reg + id);
498 		if (IS_ERR(s))
499 			return PTR_ERR(s);
500 
501 		return s->data;
502 	}
503 
504 	config = _pmbus_read_byte_data(client, page,
505 				      pmbus_fan_config_registers[id]);
506 	if (config < 0)
507 		return config;
508 
509 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
510 	if (want_rpm == have_rpm)
511 		return pmbus_read_word_data(client, page, 0xff,
512 					    pmbus_fan_command_registers[id]);
513 
514 	/* Can't sensibly map between RPM and PWM, just return zero */
515 	return 0;
516 }
517 
518 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
519 			      enum pmbus_fan_mode mode)
520 {
521 	return pmbus_get_fan_rate(client, page, id, mode, false);
522 }
523 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
524 
525 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
526 			      enum pmbus_fan_mode mode)
527 {
528 	return pmbus_get_fan_rate(client, page, id, mode, true);
529 }
530 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
531 
532 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
533 {
534 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
535 }
536 
537 void pmbus_clear_faults(struct i2c_client *client)
538 {
539 	struct pmbus_data *data = i2c_get_clientdata(client);
540 	int i;
541 
542 	for (i = 0; i < data->info->pages; i++)
543 		pmbus_clear_fault_page(client, i);
544 }
545 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
546 
547 static int pmbus_check_status_cml(struct i2c_client *client)
548 {
549 	struct pmbus_data *data = i2c_get_clientdata(client);
550 	int status, status2;
551 
552 	status = data->read_status(client, -1);
553 	if (status < 0 || (status & PB_STATUS_CML)) {
554 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
555 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
556 			return -EIO;
557 	}
558 	return 0;
559 }
560 
561 static bool pmbus_check_register(struct i2c_client *client,
562 				 int (*func)(struct i2c_client *client,
563 					     int page, int reg),
564 				 int page, int reg)
565 {
566 	int rv;
567 	struct pmbus_data *data = i2c_get_clientdata(client);
568 
569 	rv = func(client, page, reg);
570 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
571 		rv = pmbus_check_status_cml(client);
572 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
573 		data->read_status(client, -1);
574 	if (reg < PMBUS_VIRT_BASE)
575 		pmbus_clear_fault_page(client, -1);
576 	return rv >= 0;
577 }
578 
579 static bool pmbus_check_status_register(struct i2c_client *client, int page)
580 {
581 	int status;
582 	struct pmbus_data *data = i2c_get_clientdata(client);
583 
584 	status = data->read_status(client, page);
585 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
586 	    (status & PB_STATUS_CML)) {
587 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
588 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
589 			status = -EIO;
590 	}
591 
592 	pmbus_clear_fault_page(client, -1);
593 	return status >= 0;
594 }
595 
596 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
597 {
598 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
599 }
600 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
601 
602 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
603 {
604 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
605 }
606 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
607 
608 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
609 						      int page, int reg)
610 {
611 	int rv;
612 	struct pmbus_data *data = i2c_get_clientdata(client);
613 	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
614 
615 	rv = pmbus_read_block_data(client, page, reg, data_buf);
616 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
617 		rv = pmbus_check_status_cml(client);
618 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
619 		data->read_status(client, -1);
620 	pmbus_clear_fault_page(client, -1);
621 	return rv >= 0;
622 }
623 
624 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
625 {
626 	struct pmbus_data *data = i2c_get_clientdata(client);
627 
628 	return data->info;
629 }
630 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
631 
632 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
633 {
634 	struct pmbus_data *data = i2c_get_clientdata(client);
635 	int status;
636 
637 	switch (reg) {
638 	case PMBUS_STATUS_WORD:
639 		status = data->read_status(client, page);
640 		break;
641 	default:
642 		status = _pmbus_read_byte_data(client, page, reg);
643 		break;
644 	}
645 	if (status < 0)
646 		pmbus_clear_faults(client);
647 	return status;
648 }
649 
650 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
651 {
652 	if (sensor->data < 0 || sensor->update)
653 		sensor->data = _pmbus_read_word_data(client, sensor->page,
654 						     sensor->phase, sensor->reg);
655 }
656 
657 /*
658  * Convert ieee754 sensor values to milli- or micro-units
659  * depending on sensor type.
660  *
661  * ieee754 data format:
662  *	bit 15:		sign
663  *	bit 10..14:	exponent
664  *	bit 0..9:	mantissa
665  * exponent=0:
666  *	v=(−1)^signbit * 2^(−14) * 0.significantbits
667  * exponent=1..30:
668  *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
669  * exponent=31:
670  *	v=NaN
671  *
672  * Add the number mantissa bits into the calculations for simplicity.
673  * To do that, add '10' to the exponent. By doing that, we can just add
674  * 0x400 to normal values and get the expected result.
675  */
676 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
677 				   struct pmbus_sensor *sensor)
678 {
679 	int exponent;
680 	bool sign;
681 	long val;
682 
683 	/* only support half precision for now */
684 	sign = sensor->data & 0x8000;
685 	exponent = (sensor->data >> 10) & 0x1f;
686 	val = sensor->data & 0x3ff;
687 
688 	if (exponent == 0) {			/* subnormal */
689 		exponent = -(14 + 10);
690 	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
691 		exponent = 0;
692 		val = 65504;
693 	} else {
694 		exponent -= (15 + 10);		/* normal */
695 		val |= 0x400;
696 	}
697 
698 	/* scale result to milli-units for all sensors except fans */
699 	if (sensor->class != PSC_FAN)
700 		val = val * 1000L;
701 
702 	/* scale result to micro-units for power sensors */
703 	if (sensor->class == PSC_POWER)
704 		val = val * 1000L;
705 
706 	if (exponent >= 0)
707 		val <<= exponent;
708 	else
709 		val >>= -exponent;
710 
711 	if (sign)
712 		val = -val;
713 
714 	return val;
715 }
716 
717 /*
718  * Convert linear sensor values to milli- or micro-units
719  * depending on sensor type.
720  */
721 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
722 				 struct pmbus_sensor *sensor)
723 {
724 	s16 exponent;
725 	s32 mantissa;
726 	s64 val;
727 
728 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
729 		exponent = data->exponent[sensor->page];
730 		mantissa = (u16) sensor->data;
731 	} else {				/* LINEAR11 */
732 		exponent = ((s16)sensor->data) >> 11;
733 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
734 	}
735 
736 	val = mantissa;
737 
738 	/* scale result to milli-units for all sensors except fans */
739 	if (sensor->class != PSC_FAN)
740 		val = val * 1000LL;
741 
742 	/* scale result to micro-units for power sensors */
743 	if (sensor->class == PSC_POWER)
744 		val = val * 1000LL;
745 
746 	if (exponent >= 0)
747 		val <<= exponent;
748 	else
749 		val >>= -exponent;
750 
751 	return val;
752 }
753 
754 /*
755  * Convert direct sensor values to milli- or micro-units
756  * depending on sensor type.
757  */
758 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
759 				 struct pmbus_sensor *sensor)
760 {
761 	s64 b, val = (s16)sensor->data;
762 	s32 m, R;
763 
764 	m = data->info->m[sensor->class];
765 	b = data->info->b[sensor->class];
766 	R = data->info->R[sensor->class];
767 
768 	if (m == 0)
769 		return 0;
770 
771 	/* X = 1/m * (Y * 10^-R - b) */
772 	R = -R;
773 	/* scale result to milli-units for everything but fans */
774 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
775 		R += 3;
776 		b *= 1000;
777 	}
778 
779 	/* scale result to micro-units for power sensors */
780 	if (sensor->class == PSC_POWER) {
781 		R += 3;
782 		b *= 1000;
783 	}
784 
785 	while (R > 0) {
786 		val *= 10;
787 		R--;
788 	}
789 	while (R < 0) {
790 		val = div_s64(val + 5LL, 10L);  /* round closest */
791 		R++;
792 	}
793 
794 	val = div_s64(val - b, m);
795 	return val;
796 }
797 
798 /*
799  * Convert VID sensor values to milli- or micro-units
800  * depending on sensor type.
801  */
802 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
803 			      struct pmbus_sensor *sensor)
804 {
805 	long val = sensor->data;
806 	long rv = 0;
807 
808 	switch (data->info->vrm_version[sensor->page]) {
809 	case vr11:
810 		if (val >= 0x02 && val <= 0xb2)
811 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
812 		break;
813 	case vr12:
814 		if (val >= 0x01)
815 			rv = 250 + (val - 1) * 5;
816 		break;
817 	case vr13:
818 		if (val >= 0x01)
819 			rv = 500 + (val - 1) * 10;
820 		break;
821 	case imvp9:
822 		if (val >= 0x01)
823 			rv = 200 + (val - 1) * 10;
824 		break;
825 	case amd625mv:
826 		if (val >= 0x0 && val <= 0xd8)
827 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
828 		break;
829 	}
830 	return rv;
831 }
832 
833 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
834 {
835 	s64 val;
836 
837 	if (!sensor->convert)
838 		return sensor->data;
839 
840 	switch (data->info->format[sensor->class]) {
841 	case direct:
842 		val = pmbus_reg2data_direct(data, sensor);
843 		break;
844 	case vid:
845 		val = pmbus_reg2data_vid(data, sensor);
846 		break;
847 	case ieee754:
848 		val = pmbus_reg2data_ieee754(data, sensor);
849 		break;
850 	case linear:
851 	default:
852 		val = pmbus_reg2data_linear(data, sensor);
853 		break;
854 	}
855 	return val;
856 }
857 
858 #define MAX_IEEE_MANTISSA	(0x7ff * 1000)
859 #define MIN_IEEE_MANTISSA	(0x400 * 1000)
860 
861 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
862 				  struct pmbus_sensor *sensor, long val)
863 {
864 	u16 exponent = (15 + 10);
865 	long mantissa;
866 	u16 sign = 0;
867 
868 	/* simple case */
869 	if (val == 0)
870 		return 0;
871 
872 	if (val < 0) {
873 		sign = 0x8000;
874 		val = -val;
875 	}
876 
877 	/* Power is in uW. Convert to mW before converting. */
878 	if (sensor->class == PSC_POWER)
879 		val = DIV_ROUND_CLOSEST(val, 1000L);
880 
881 	/*
882 	 * For simplicity, convert fan data to milli-units
883 	 * before calculating the exponent.
884 	 */
885 	if (sensor->class == PSC_FAN)
886 		val = val * 1000;
887 
888 	/* Reduce large mantissa until it fits into 10 bit */
889 	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
890 		exponent++;
891 		val >>= 1;
892 	}
893 	/*
894 	 * Increase small mantissa to generate valid 'normal'
895 	 * number
896 	 */
897 	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
898 		exponent--;
899 		val <<= 1;
900 	}
901 
902 	/* Convert mantissa from milli-units to units */
903 	mantissa = DIV_ROUND_CLOSEST(val, 1000);
904 
905 	/*
906 	 * Ensure that the resulting number is within range.
907 	 * Valid range is 0x400..0x7ff, where bit 10 reflects
908 	 * the implied high bit in normalized ieee754 numbers.
909 	 * Set the range to 0x400..0x7ff to reflect this.
910 	 * The upper bit is then removed by the mask against
911 	 * 0x3ff in the final assignment.
912 	 */
913 	if (mantissa > 0x7ff)
914 		mantissa = 0x7ff;
915 	else if (mantissa < 0x400)
916 		mantissa = 0x400;
917 
918 	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
919 	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
920 }
921 
922 #define MAX_LIN_MANTISSA	(1023 * 1000)
923 #define MIN_LIN_MANTISSA	(511 * 1000)
924 
925 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
926 				 struct pmbus_sensor *sensor, s64 val)
927 {
928 	s16 exponent = 0, mantissa;
929 	bool negative = false;
930 
931 	/* simple case */
932 	if (val == 0)
933 		return 0;
934 
935 	if (sensor->class == PSC_VOLTAGE_OUT) {
936 		/* LINEAR16 does not support negative voltages */
937 		if (val < 0)
938 			return 0;
939 
940 		/*
941 		 * For a static exponents, we don't have a choice
942 		 * but to adjust the value to it.
943 		 */
944 		if (data->exponent[sensor->page] < 0)
945 			val <<= -data->exponent[sensor->page];
946 		else
947 			val >>= data->exponent[sensor->page];
948 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
949 		return clamp_val(val, 0, 0xffff);
950 	}
951 
952 	if (val < 0) {
953 		negative = true;
954 		val = -val;
955 	}
956 
957 	/* Power is in uW. Convert to mW before converting. */
958 	if (sensor->class == PSC_POWER)
959 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
960 
961 	/*
962 	 * For simplicity, convert fan data to milli-units
963 	 * before calculating the exponent.
964 	 */
965 	if (sensor->class == PSC_FAN)
966 		val = val * 1000LL;
967 
968 	/* Reduce large mantissa until it fits into 10 bit */
969 	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
970 		exponent++;
971 		val >>= 1;
972 	}
973 	/* Increase small mantissa to improve precision */
974 	while (val < MIN_LIN_MANTISSA && exponent > -15) {
975 		exponent--;
976 		val <<= 1;
977 	}
978 
979 	/* Convert mantissa from milli-units to units */
980 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
981 
982 	/* restore sign */
983 	if (negative)
984 		mantissa = -mantissa;
985 
986 	/* Convert to 5 bit exponent, 11 bit mantissa */
987 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
988 }
989 
990 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
991 				 struct pmbus_sensor *sensor, s64 val)
992 {
993 	s64 b;
994 	s32 m, R;
995 
996 	m = data->info->m[sensor->class];
997 	b = data->info->b[sensor->class];
998 	R = data->info->R[sensor->class];
999 
1000 	/* Power is in uW. Adjust R and b. */
1001 	if (sensor->class == PSC_POWER) {
1002 		R -= 3;
1003 		b *= 1000;
1004 	}
1005 
1006 	/* Calculate Y = (m * X + b) * 10^R */
1007 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1008 		R -= 3;		/* Adjust R and b for data in milli-units */
1009 		b *= 1000;
1010 	}
1011 	val = val * m + b;
1012 
1013 	while (R > 0) {
1014 		val *= 10;
1015 		R--;
1016 	}
1017 	while (R < 0) {
1018 		val = div_s64(val + 5LL, 10L);  /* round closest */
1019 		R++;
1020 	}
1021 
1022 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1023 }
1024 
1025 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1026 			      struct pmbus_sensor *sensor, s64 val)
1027 {
1028 	val = clamp_val(val, 500, 1600);
1029 
1030 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1031 }
1032 
1033 static u16 pmbus_data2reg(struct pmbus_data *data,
1034 			  struct pmbus_sensor *sensor, s64 val)
1035 {
1036 	u16 regval;
1037 
1038 	if (!sensor->convert)
1039 		return val;
1040 
1041 	switch (data->info->format[sensor->class]) {
1042 	case direct:
1043 		regval = pmbus_data2reg_direct(data, sensor, val);
1044 		break;
1045 	case vid:
1046 		regval = pmbus_data2reg_vid(data, sensor, val);
1047 		break;
1048 	case ieee754:
1049 		regval = pmbus_data2reg_ieee754(data, sensor, val);
1050 		break;
1051 	case linear:
1052 	default:
1053 		regval = pmbus_data2reg_linear(data, sensor, val);
1054 		break;
1055 	}
1056 	return regval;
1057 }
1058 
1059 /*
1060  * Return boolean calculated from converted data.
1061  * <index> defines a status register index and mask.
1062  * The mask is in the lower 8 bits, the register index is in bits 8..23.
1063  *
1064  * The associated pmbus_boolean structure contains optional pointers to two
1065  * sensor attributes. If specified, those attributes are compared against each
1066  * other to determine if a limit has been exceeded.
1067  *
1068  * If the sensor attribute pointers are NULL, the function returns true if
1069  * (status[reg] & mask) is true.
1070  *
1071  * If sensor attribute pointers are provided, a comparison against a specified
1072  * limit has to be performed to determine the boolean result.
1073  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1074  * sensor values referenced by sensor attribute pointers s1 and s2).
1075  *
1076  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1077  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1078  *
1079  * If a negative value is stored in any of the referenced registers, this value
1080  * reflects an error code which will be returned.
1081  */
1082 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1083 			     int index)
1084 {
1085 	struct pmbus_data *data = i2c_get_clientdata(client);
1086 	struct pmbus_sensor *s1 = b->s1;
1087 	struct pmbus_sensor *s2 = b->s2;
1088 	u16 mask = pb_index_to_mask(index);
1089 	u8 page = pb_index_to_page(index);
1090 	u16 reg = pb_index_to_reg(index);
1091 	int ret, status;
1092 	u16 regval;
1093 
1094 	mutex_lock(&data->update_lock);
1095 	status = pmbus_get_status(client, page, reg);
1096 	if (status < 0) {
1097 		ret = status;
1098 		goto unlock;
1099 	}
1100 
1101 	if (s1)
1102 		pmbus_update_sensor_data(client, s1);
1103 	if (s2)
1104 		pmbus_update_sensor_data(client, s2);
1105 
1106 	regval = status & mask;
1107 	if (regval) {
1108 		ret = _pmbus_write_byte_data(client, page, reg, regval);
1109 		if (ret)
1110 			goto unlock;
1111 	}
1112 	if (s1 && s2) {
1113 		s64 v1, v2;
1114 
1115 		if (s1->data < 0) {
1116 			ret = s1->data;
1117 			goto unlock;
1118 		}
1119 		if (s2->data < 0) {
1120 			ret = s2->data;
1121 			goto unlock;
1122 		}
1123 
1124 		v1 = pmbus_reg2data(data, s1);
1125 		v2 = pmbus_reg2data(data, s2);
1126 		ret = !!(regval && v1 >= v2);
1127 	} else {
1128 		ret = !!regval;
1129 	}
1130 unlock:
1131 	mutex_unlock(&data->update_lock);
1132 	return ret;
1133 }
1134 
1135 static ssize_t pmbus_show_boolean(struct device *dev,
1136 				  struct device_attribute *da, char *buf)
1137 {
1138 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1139 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1140 	struct i2c_client *client = to_i2c_client(dev->parent);
1141 	int val;
1142 
1143 	val = pmbus_get_boolean(client, boolean, attr->index);
1144 	if (val < 0)
1145 		return val;
1146 	return sysfs_emit(buf, "%d\n", val);
1147 }
1148 
1149 static ssize_t pmbus_show_sensor(struct device *dev,
1150 				 struct device_attribute *devattr, char *buf)
1151 {
1152 	struct i2c_client *client = to_i2c_client(dev->parent);
1153 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1154 	struct pmbus_data *data = i2c_get_clientdata(client);
1155 	ssize_t ret;
1156 
1157 	mutex_lock(&data->update_lock);
1158 	pmbus_update_sensor_data(client, sensor);
1159 	if (sensor->data < 0)
1160 		ret = sensor->data;
1161 	else
1162 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1163 	mutex_unlock(&data->update_lock);
1164 	return ret;
1165 }
1166 
1167 static ssize_t pmbus_set_sensor(struct device *dev,
1168 				struct device_attribute *devattr,
1169 				const char *buf, size_t count)
1170 {
1171 	struct i2c_client *client = to_i2c_client(dev->parent);
1172 	struct pmbus_data *data = i2c_get_clientdata(client);
1173 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1174 	ssize_t rv = count;
1175 	s64 val;
1176 	int ret;
1177 	u16 regval;
1178 
1179 	if (kstrtos64(buf, 10, &val) < 0)
1180 		return -EINVAL;
1181 
1182 	mutex_lock(&data->update_lock);
1183 	regval = pmbus_data2reg(data, sensor, val);
1184 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1185 	if (ret < 0)
1186 		rv = ret;
1187 	else
1188 		sensor->data = -ENODATA;
1189 	mutex_unlock(&data->update_lock);
1190 	return rv;
1191 }
1192 
1193 static ssize_t pmbus_show_label(struct device *dev,
1194 				struct device_attribute *da, char *buf)
1195 {
1196 	struct pmbus_label *label = to_pmbus_label(da);
1197 
1198 	return sysfs_emit(buf, "%s\n", label->label);
1199 }
1200 
1201 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1202 {
1203 	if (data->num_attributes >= data->max_attributes - 1) {
1204 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1205 		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1206 						      new_max_attrs, sizeof(void *),
1207 						      GFP_KERNEL);
1208 		if (!new_attrs)
1209 			return -ENOMEM;
1210 		data->group.attrs = new_attrs;
1211 		data->max_attributes = new_max_attrs;
1212 	}
1213 
1214 	data->group.attrs[data->num_attributes++] = attr;
1215 	data->group.attrs[data->num_attributes] = NULL;
1216 	return 0;
1217 }
1218 
1219 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1220 				const char *name,
1221 				umode_t mode,
1222 				ssize_t (*show)(struct device *dev,
1223 						struct device_attribute *attr,
1224 						char *buf),
1225 				ssize_t (*store)(struct device *dev,
1226 						 struct device_attribute *attr,
1227 						 const char *buf, size_t count))
1228 {
1229 	sysfs_attr_init(&dev_attr->attr);
1230 	dev_attr->attr.name = name;
1231 	dev_attr->attr.mode = mode;
1232 	dev_attr->show = show;
1233 	dev_attr->store = store;
1234 }
1235 
1236 static void pmbus_attr_init(struct sensor_device_attribute *a,
1237 			    const char *name,
1238 			    umode_t mode,
1239 			    ssize_t (*show)(struct device *dev,
1240 					    struct device_attribute *attr,
1241 					    char *buf),
1242 			    ssize_t (*store)(struct device *dev,
1243 					     struct device_attribute *attr,
1244 					     const char *buf, size_t count),
1245 			    int idx)
1246 {
1247 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1248 	a->index = idx;
1249 }
1250 
1251 static int pmbus_add_boolean(struct pmbus_data *data,
1252 			     const char *name, const char *type, int seq,
1253 			     struct pmbus_sensor *s1,
1254 			     struct pmbus_sensor *s2,
1255 			     u8 page, u16 reg, u16 mask)
1256 {
1257 	struct pmbus_boolean *boolean;
1258 	struct sensor_device_attribute *a;
1259 
1260 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1261 		return -EINVAL;
1262 
1263 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1264 	if (!boolean)
1265 		return -ENOMEM;
1266 
1267 	a = &boolean->attribute;
1268 
1269 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1270 		 name, seq, type);
1271 	boolean->s1 = s1;
1272 	boolean->s2 = s2;
1273 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1274 			pb_reg_to_index(page, reg, mask));
1275 
1276 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1277 }
1278 
1279 /* of thermal for pmbus temperature sensors */
1280 struct pmbus_thermal_data {
1281 	struct pmbus_data *pmbus_data;
1282 	struct pmbus_sensor *sensor;
1283 };
1284 
1285 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1286 {
1287 	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1288 	struct pmbus_sensor *sensor = tdata->sensor;
1289 	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1290 	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1291 	struct device *dev = pmbus_data->hwmon_dev;
1292 	int ret = 0;
1293 
1294 	if (!dev) {
1295 		/* May not even get to hwmon yet */
1296 		*temp = 0;
1297 		return 0;
1298 	}
1299 
1300 	mutex_lock(&pmbus_data->update_lock);
1301 	pmbus_update_sensor_data(client, sensor);
1302 	if (sensor->data < 0)
1303 		ret = sensor->data;
1304 	else
1305 		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1306 	mutex_unlock(&pmbus_data->update_lock);
1307 
1308 	return ret;
1309 }
1310 
1311 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1312 	.get_temp = pmbus_thermal_get_temp,
1313 };
1314 
1315 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1316 				    struct pmbus_sensor *sensor, int index)
1317 {
1318 	struct device *dev = pmbus_data->dev;
1319 	struct pmbus_thermal_data *tdata;
1320 	struct thermal_zone_device *tzd;
1321 
1322 	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1323 	if (!tdata)
1324 		return -ENOMEM;
1325 
1326 	tdata->sensor = sensor;
1327 	tdata->pmbus_data = pmbus_data;
1328 
1329 	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1330 					    &pmbus_thermal_ops);
1331 	/*
1332 	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1333 	 * so ignore that error but forward any other error.
1334 	 */
1335 	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1336 		return PTR_ERR(tzd);
1337 
1338 	return 0;
1339 }
1340 
1341 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1342 					     const char *name, const char *type,
1343 					     int seq, int page, int phase,
1344 					     int reg,
1345 					     enum pmbus_sensor_classes class,
1346 					     bool update, bool readonly,
1347 					     bool convert)
1348 {
1349 	struct pmbus_sensor *sensor;
1350 	struct device_attribute *a;
1351 
1352 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1353 	if (!sensor)
1354 		return NULL;
1355 	a = &sensor->attribute;
1356 
1357 	if (type)
1358 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1359 			 name, seq, type);
1360 	else
1361 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1362 			 name, seq);
1363 
1364 	if (data->flags & PMBUS_WRITE_PROTECTED)
1365 		readonly = true;
1366 
1367 	sensor->page = page;
1368 	sensor->phase = phase;
1369 	sensor->reg = reg;
1370 	sensor->class = class;
1371 	sensor->update = update;
1372 	sensor->convert = convert;
1373 	sensor->data = -ENODATA;
1374 	pmbus_dev_attr_init(a, sensor->name,
1375 			    readonly ? 0444 : 0644,
1376 			    pmbus_show_sensor, pmbus_set_sensor);
1377 
1378 	if (pmbus_add_attribute(data, &a->attr))
1379 		return NULL;
1380 
1381 	sensor->next = data->sensors;
1382 	data->sensors = sensor;
1383 
1384 	/* temperature sensors with _input values are registered with thermal */
1385 	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1386 		pmbus_thermal_add_sensor(data, sensor, seq);
1387 
1388 	return sensor;
1389 }
1390 
1391 static int pmbus_add_label(struct pmbus_data *data,
1392 			   const char *name, int seq,
1393 			   const char *lstring, int index, int phase)
1394 {
1395 	struct pmbus_label *label;
1396 	struct device_attribute *a;
1397 
1398 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1399 	if (!label)
1400 		return -ENOMEM;
1401 
1402 	a = &label->attribute;
1403 
1404 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1405 	if (!index) {
1406 		if (phase == 0xff)
1407 			strncpy(label->label, lstring,
1408 				sizeof(label->label) - 1);
1409 		else
1410 			snprintf(label->label, sizeof(label->label), "%s.%d",
1411 				 lstring, phase);
1412 	} else {
1413 		if (phase == 0xff)
1414 			snprintf(label->label, sizeof(label->label), "%s%d",
1415 				 lstring, index);
1416 		else
1417 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1418 				 lstring, index, phase);
1419 	}
1420 
1421 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1422 	return pmbus_add_attribute(data, &a->attr);
1423 }
1424 
1425 /*
1426  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1427  */
1428 
1429 /*
1430  * The pmbus_limit_attr structure describes a single limit attribute
1431  * and its associated alarm attribute.
1432  */
1433 struct pmbus_limit_attr {
1434 	u16 reg;		/* Limit register */
1435 	u16 sbit;		/* Alarm attribute status bit */
1436 	bool update;		/* True if register needs updates */
1437 	bool low;		/* True if low limit; for limits with compare
1438 				   functions only */
1439 	const char *attr;	/* Attribute name */
1440 	const char *alarm;	/* Alarm attribute name */
1441 };
1442 
1443 /*
1444  * The pmbus_sensor_attr structure describes one sensor attribute. This
1445  * description includes a reference to the associated limit attributes.
1446  */
1447 struct pmbus_sensor_attr {
1448 	u16 reg;			/* sensor register */
1449 	u16 gbit;			/* generic status bit */
1450 	u8 nlimit;			/* # of limit registers */
1451 	enum pmbus_sensor_classes class;/* sensor class */
1452 	const char *label;		/* sensor label */
1453 	bool paged;			/* true if paged sensor */
1454 	bool update;			/* true if update needed */
1455 	bool compare;			/* true if compare function needed */
1456 	u32 func;			/* sensor mask */
1457 	u32 sfunc;			/* sensor status mask */
1458 	int sreg;			/* status register */
1459 	const struct pmbus_limit_attr *limit;/* limit registers */
1460 };
1461 
1462 /*
1463  * Add a set of limit attributes and, if supported, the associated
1464  * alarm attributes.
1465  * returns 0 if no alarm register found, 1 if an alarm register was found,
1466  * < 0 on errors.
1467  */
1468 static int pmbus_add_limit_attrs(struct i2c_client *client,
1469 				 struct pmbus_data *data,
1470 				 const struct pmbus_driver_info *info,
1471 				 const char *name, int index, int page,
1472 				 struct pmbus_sensor *base,
1473 				 const struct pmbus_sensor_attr *attr)
1474 {
1475 	const struct pmbus_limit_attr *l = attr->limit;
1476 	int nlimit = attr->nlimit;
1477 	int have_alarm = 0;
1478 	int i, ret;
1479 	struct pmbus_sensor *curr;
1480 
1481 	for (i = 0; i < nlimit; i++) {
1482 		if (pmbus_check_word_register(client, page, l->reg)) {
1483 			curr = pmbus_add_sensor(data, name, l->attr, index,
1484 						page, 0xff, l->reg, attr->class,
1485 						attr->update || l->update,
1486 						false, true);
1487 			if (!curr)
1488 				return -ENOMEM;
1489 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1490 				ret = pmbus_add_boolean(data, name,
1491 					l->alarm, index,
1492 					attr->compare ?  l->low ? curr : base
1493 						      : NULL,
1494 					attr->compare ? l->low ? base : curr
1495 						      : NULL,
1496 					page, attr->sreg, l->sbit);
1497 				if (ret)
1498 					return ret;
1499 				have_alarm = 1;
1500 			}
1501 		}
1502 		l++;
1503 	}
1504 	return have_alarm;
1505 }
1506 
1507 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1508 				      struct pmbus_data *data,
1509 				      const struct pmbus_driver_info *info,
1510 				      const char *name,
1511 				      int index, int page, int phase,
1512 				      const struct pmbus_sensor_attr *attr,
1513 				      bool paged)
1514 {
1515 	struct pmbus_sensor *base;
1516 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1517 	int ret;
1518 
1519 	if (attr->label) {
1520 		ret = pmbus_add_label(data, name, index, attr->label,
1521 				      paged ? page + 1 : 0, phase);
1522 		if (ret)
1523 			return ret;
1524 	}
1525 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1526 				attr->reg, attr->class, true, true, true);
1527 	if (!base)
1528 		return -ENOMEM;
1529 	/* No limit and alarm attributes for phase specific sensors */
1530 	if (attr->sfunc && phase == 0xff) {
1531 		ret = pmbus_add_limit_attrs(client, data, info, name,
1532 					    index, page, base, attr);
1533 		if (ret < 0)
1534 			return ret;
1535 		/*
1536 		 * Add generic alarm attribute only if there are no individual
1537 		 * alarm attributes, if there is a global alarm bit, and if
1538 		 * the generic status register (word or byte, depending on
1539 		 * which global bit is set) for this page is accessible.
1540 		 */
1541 		if (!ret && attr->gbit &&
1542 		    (!upper || data->has_status_word) &&
1543 		    pmbus_check_status_register(client, page)) {
1544 			ret = pmbus_add_boolean(data, name, "alarm", index,
1545 						NULL, NULL,
1546 						page, PMBUS_STATUS_WORD,
1547 						attr->gbit);
1548 			if (ret)
1549 				return ret;
1550 		}
1551 	}
1552 	return 0;
1553 }
1554 
1555 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1556 				  const struct pmbus_sensor_attr *attr)
1557 {
1558 	int p;
1559 
1560 	if (attr->paged)
1561 		return true;
1562 
1563 	/*
1564 	 * Some attributes may be present on more than one page despite
1565 	 * not being marked with the paged attribute. If that is the case,
1566 	 * then treat the sensor as being paged and add the page suffix to the
1567 	 * attribute name.
1568 	 * We don't just add the paged attribute to all such attributes, in
1569 	 * order to maintain the un-suffixed labels in the case where the
1570 	 * attribute is only on page 0.
1571 	 */
1572 	for (p = 1; p < info->pages; p++) {
1573 		if (info->func[p] & attr->func)
1574 			return true;
1575 	}
1576 	return false;
1577 }
1578 
1579 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1580 				  struct pmbus_data *data,
1581 				  const char *name,
1582 				  const struct pmbus_sensor_attr *attrs,
1583 				  int nattrs)
1584 {
1585 	const struct pmbus_driver_info *info = data->info;
1586 	int index, i;
1587 	int ret;
1588 
1589 	index = 1;
1590 	for (i = 0; i < nattrs; i++) {
1591 		int page, pages;
1592 		bool paged = pmbus_sensor_is_paged(info, attrs);
1593 
1594 		pages = paged ? info->pages : 1;
1595 		for (page = 0; page < pages; page++) {
1596 			if (info->func[page] & attrs->func) {
1597 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1598 								 name, index, page,
1599 								 0xff, attrs, paged);
1600 				if (ret)
1601 					return ret;
1602 				index++;
1603 			}
1604 			if (info->phases[page]) {
1605 				int phase;
1606 
1607 				for (phase = 0; phase < info->phases[page];
1608 				     phase++) {
1609 					if (!(info->pfunc[phase] & attrs->func))
1610 						continue;
1611 					ret = pmbus_add_sensor_attrs_one(client,
1612 						data, info, name, index, page,
1613 						phase, attrs, paged);
1614 					if (ret)
1615 						return ret;
1616 					index++;
1617 				}
1618 			}
1619 		}
1620 		attrs++;
1621 	}
1622 	return 0;
1623 }
1624 
1625 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1626 	{
1627 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1628 		.attr = "min",
1629 		.alarm = "min_alarm",
1630 		.sbit = PB_VOLTAGE_UV_WARNING,
1631 	}, {
1632 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1633 		.attr = "lcrit",
1634 		.alarm = "lcrit_alarm",
1635 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1636 	}, {
1637 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1638 		.attr = "max",
1639 		.alarm = "max_alarm",
1640 		.sbit = PB_VOLTAGE_OV_WARNING,
1641 	}, {
1642 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1643 		.attr = "crit",
1644 		.alarm = "crit_alarm",
1645 		.sbit = PB_VOLTAGE_OV_FAULT,
1646 	}, {
1647 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1648 		.update = true,
1649 		.attr = "average",
1650 	}, {
1651 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1652 		.update = true,
1653 		.attr = "lowest",
1654 	}, {
1655 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1656 		.update = true,
1657 		.attr = "highest",
1658 	}, {
1659 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1660 		.attr = "reset_history",
1661 	}, {
1662 		.reg = PMBUS_MFR_VIN_MIN,
1663 		.attr = "rated_min",
1664 	}, {
1665 		.reg = PMBUS_MFR_VIN_MAX,
1666 		.attr = "rated_max",
1667 	},
1668 };
1669 
1670 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1671 	{
1672 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1673 		.attr = "min",
1674 		.alarm = "min_alarm",
1675 		.sbit = PB_VOLTAGE_UV_WARNING,
1676 	}, {
1677 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1678 		.attr = "lcrit",
1679 		.alarm = "lcrit_alarm",
1680 		.sbit = PB_VOLTAGE_UV_FAULT,
1681 	}, {
1682 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1683 		.attr = "max",
1684 		.alarm = "max_alarm",
1685 		.sbit = PB_VOLTAGE_OV_WARNING,
1686 	}, {
1687 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1688 		.attr = "crit",
1689 		.alarm = "crit_alarm",
1690 		.sbit = PB_VOLTAGE_OV_FAULT,
1691 	}
1692 };
1693 
1694 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1695 	{
1696 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1697 		.attr = "min",
1698 		.alarm = "min_alarm",
1699 		.sbit = PB_VOLTAGE_UV_WARNING,
1700 	}, {
1701 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1702 		.attr = "lcrit",
1703 		.alarm = "lcrit_alarm",
1704 		.sbit = PB_VOLTAGE_UV_FAULT,
1705 	}, {
1706 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1707 		.attr = "max",
1708 		.alarm = "max_alarm",
1709 		.sbit = PB_VOLTAGE_OV_WARNING,
1710 	}, {
1711 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1712 		.attr = "crit",
1713 		.alarm = "crit_alarm",
1714 		.sbit = PB_VOLTAGE_OV_FAULT,
1715 	}, {
1716 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1717 		.update = true,
1718 		.attr = "average",
1719 	}, {
1720 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1721 		.update = true,
1722 		.attr = "lowest",
1723 	}, {
1724 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1725 		.update = true,
1726 		.attr = "highest",
1727 	}, {
1728 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1729 		.attr = "reset_history",
1730 	}, {
1731 		.reg = PMBUS_MFR_VOUT_MIN,
1732 		.attr = "rated_min",
1733 	}, {
1734 		.reg = PMBUS_MFR_VOUT_MAX,
1735 		.attr = "rated_max",
1736 	},
1737 };
1738 
1739 static const struct pmbus_sensor_attr voltage_attributes[] = {
1740 	{
1741 		.reg = PMBUS_READ_VIN,
1742 		.class = PSC_VOLTAGE_IN,
1743 		.label = "vin",
1744 		.func = PMBUS_HAVE_VIN,
1745 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1746 		.sreg = PMBUS_STATUS_INPUT,
1747 		.gbit = PB_STATUS_VIN_UV,
1748 		.limit = vin_limit_attrs,
1749 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1750 	}, {
1751 		.reg = PMBUS_VIRT_READ_VMON,
1752 		.class = PSC_VOLTAGE_IN,
1753 		.label = "vmon",
1754 		.func = PMBUS_HAVE_VMON,
1755 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1756 		.sreg = PMBUS_VIRT_STATUS_VMON,
1757 		.limit = vmon_limit_attrs,
1758 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1759 	}, {
1760 		.reg = PMBUS_READ_VCAP,
1761 		.class = PSC_VOLTAGE_IN,
1762 		.label = "vcap",
1763 		.func = PMBUS_HAVE_VCAP,
1764 	}, {
1765 		.reg = PMBUS_READ_VOUT,
1766 		.class = PSC_VOLTAGE_OUT,
1767 		.label = "vout",
1768 		.paged = true,
1769 		.func = PMBUS_HAVE_VOUT,
1770 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1771 		.sreg = PMBUS_STATUS_VOUT,
1772 		.gbit = PB_STATUS_VOUT_OV,
1773 		.limit = vout_limit_attrs,
1774 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1775 	}
1776 };
1777 
1778 /* Current attributes */
1779 
1780 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1781 	{
1782 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1783 		.attr = "max",
1784 		.alarm = "max_alarm",
1785 		.sbit = PB_IIN_OC_WARNING,
1786 	}, {
1787 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1788 		.attr = "crit",
1789 		.alarm = "crit_alarm",
1790 		.sbit = PB_IIN_OC_FAULT,
1791 	}, {
1792 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1793 		.update = true,
1794 		.attr = "average",
1795 	}, {
1796 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1797 		.update = true,
1798 		.attr = "lowest",
1799 	}, {
1800 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1801 		.update = true,
1802 		.attr = "highest",
1803 	}, {
1804 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1805 		.attr = "reset_history",
1806 	}, {
1807 		.reg = PMBUS_MFR_IIN_MAX,
1808 		.attr = "rated_max",
1809 	},
1810 };
1811 
1812 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1813 	{
1814 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1815 		.attr = "max",
1816 		.alarm = "max_alarm",
1817 		.sbit = PB_IOUT_OC_WARNING,
1818 	}, {
1819 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1820 		.attr = "lcrit",
1821 		.alarm = "lcrit_alarm",
1822 		.sbit = PB_IOUT_UC_FAULT,
1823 	}, {
1824 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1825 		.attr = "crit",
1826 		.alarm = "crit_alarm",
1827 		.sbit = PB_IOUT_OC_FAULT,
1828 	}, {
1829 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1830 		.update = true,
1831 		.attr = "average",
1832 	}, {
1833 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1834 		.update = true,
1835 		.attr = "lowest",
1836 	}, {
1837 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1838 		.update = true,
1839 		.attr = "highest",
1840 	}, {
1841 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1842 		.attr = "reset_history",
1843 	}, {
1844 		.reg = PMBUS_MFR_IOUT_MAX,
1845 		.attr = "rated_max",
1846 	},
1847 };
1848 
1849 static const struct pmbus_sensor_attr current_attributes[] = {
1850 	{
1851 		.reg = PMBUS_READ_IIN,
1852 		.class = PSC_CURRENT_IN,
1853 		.label = "iin",
1854 		.func = PMBUS_HAVE_IIN,
1855 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1856 		.sreg = PMBUS_STATUS_INPUT,
1857 		.gbit = PB_STATUS_INPUT,
1858 		.limit = iin_limit_attrs,
1859 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1860 	}, {
1861 		.reg = PMBUS_READ_IOUT,
1862 		.class = PSC_CURRENT_OUT,
1863 		.label = "iout",
1864 		.paged = true,
1865 		.func = PMBUS_HAVE_IOUT,
1866 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1867 		.sreg = PMBUS_STATUS_IOUT,
1868 		.gbit = PB_STATUS_IOUT_OC,
1869 		.limit = iout_limit_attrs,
1870 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1871 	}
1872 };
1873 
1874 /* Power attributes */
1875 
1876 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1877 	{
1878 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1879 		.attr = "max",
1880 		.alarm = "alarm",
1881 		.sbit = PB_PIN_OP_WARNING,
1882 	}, {
1883 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1884 		.update = true,
1885 		.attr = "average",
1886 	}, {
1887 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1888 		.update = true,
1889 		.attr = "input_lowest",
1890 	}, {
1891 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1892 		.update = true,
1893 		.attr = "input_highest",
1894 	}, {
1895 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1896 		.attr = "reset_history",
1897 	}, {
1898 		.reg = PMBUS_MFR_PIN_MAX,
1899 		.attr = "rated_max",
1900 	},
1901 };
1902 
1903 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1904 	{
1905 		.reg = PMBUS_POUT_MAX,
1906 		.attr = "cap",
1907 		.alarm = "cap_alarm",
1908 		.sbit = PB_POWER_LIMITING,
1909 	}, {
1910 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1911 		.attr = "max",
1912 		.alarm = "max_alarm",
1913 		.sbit = PB_POUT_OP_WARNING,
1914 	}, {
1915 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1916 		.attr = "crit",
1917 		.alarm = "crit_alarm",
1918 		.sbit = PB_POUT_OP_FAULT,
1919 	}, {
1920 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1921 		.update = true,
1922 		.attr = "average",
1923 	}, {
1924 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1925 		.update = true,
1926 		.attr = "input_lowest",
1927 	}, {
1928 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1929 		.update = true,
1930 		.attr = "input_highest",
1931 	}, {
1932 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1933 		.attr = "reset_history",
1934 	}, {
1935 		.reg = PMBUS_MFR_POUT_MAX,
1936 		.attr = "rated_max",
1937 	},
1938 };
1939 
1940 static const struct pmbus_sensor_attr power_attributes[] = {
1941 	{
1942 		.reg = PMBUS_READ_PIN,
1943 		.class = PSC_POWER,
1944 		.label = "pin",
1945 		.func = PMBUS_HAVE_PIN,
1946 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1947 		.sreg = PMBUS_STATUS_INPUT,
1948 		.gbit = PB_STATUS_INPUT,
1949 		.limit = pin_limit_attrs,
1950 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1951 	}, {
1952 		.reg = PMBUS_READ_POUT,
1953 		.class = PSC_POWER,
1954 		.label = "pout",
1955 		.paged = true,
1956 		.func = PMBUS_HAVE_POUT,
1957 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1958 		.sreg = PMBUS_STATUS_IOUT,
1959 		.limit = pout_limit_attrs,
1960 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1961 	}
1962 };
1963 
1964 /* Temperature atributes */
1965 
1966 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1967 	{
1968 		.reg = PMBUS_UT_WARN_LIMIT,
1969 		.low = true,
1970 		.attr = "min",
1971 		.alarm = "min_alarm",
1972 		.sbit = PB_TEMP_UT_WARNING,
1973 	}, {
1974 		.reg = PMBUS_UT_FAULT_LIMIT,
1975 		.low = true,
1976 		.attr = "lcrit",
1977 		.alarm = "lcrit_alarm",
1978 		.sbit = PB_TEMP_UT_FAULT,
1979 	}, {
1980 		.reg = PMBUS_OT_WARN_LIMIT,
1981 		.attr = "max",
1982 		.alarm = "max_alarm",
1983 		.sbit = PB_TEMP_OT_WARNING,
1984 	}, {
1985 		.reg = PMBUS_OT_FAULT_LIMIT,
1986 		.attr = "crit",
1987 		.alarm = "crit_alarm",
1988 		.sbit = PB_TEMP_OT_FAULT,
1989 	}, {
1990 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1991 		.attr = "lowest",
1992 	}, {
1993 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1994 		.attr = "average",
1995 	}, {
1996 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1997 		.attr = "highest",
1998 	}, {
1999 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2000 		.attr = "reset_history",
2001 	}, {
2002 		.reg = PMBUS_MFR_MAX_TEMP_1,
2003 		.attr = "rated_max",
2004 	},
2005 };
2006 
2007 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2008 	{
2009 		.reg = PMBUS_UT_WARN_LIMIT,
2010 		.low = true,
2011 		.attr = "min",
2012 		.alarm = "min_alarm",
2013 		.sbit = PB_TEMP_UT_WARNING,
2014 	}, {
2015 		.reg = PMBUS_UT_FAULT_LIMIT,
2016 		.low = true,
2017 		.attr = "lcrit",
2018 		.alarm = "lcrit_alarm",
2019 		.sbit = PB_TEMP_UT_FAULT,
2020 	}, {
2021 		.reg = PMBUS_OT_WARN_LIMIT,
2022 		.attr = "max",
2023 		.alarm = "max_alarm",
2024 		.sbit = PB_TEMP_OT_WARNING,
2025 	}, {
2026 		.reg = PMBUS_OT_FAULT_LIMIT,
2027 		.attr = "crit",
2028 		.alarm = "crit_alarm",
2029 		.sbit = PB_TEMP_OT_FAULT,
2030 	}, {
2031 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2032 		.attr = "lowest",
2033 	}, {
2034 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2035 		.attr = "average",
2036 	}, {
2037 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2038 		.attr = "highest",
2039 	}, {
2040 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2041 		.attr = "reset_history",
2042 	}, {
2043 		.reg = PMBUS_MFR_MAX_TEMP_2,
2044 		.attr = "rated_max",
2045 	},
2046 };
2047 
2048 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2049 	{
2050 		.reg = PMBUS_UT_WARN_LIMIT,
2051 		.low = true,
2052 		.attr = "min",
2053 		.alarm = "min_alarm",
2054 		.sbit = PB_TEMP_UT_WARNING,
2055 	}, {
2056 		.reg = PMBUS_UT_FAULT_LIMIT,
2057 		.low = true,
2058 		.attr = "lcrit",
2059 		.alarm = "lcrit_alarm",
2060 		.sbit = PB_TEMP_UT_FAULT,
2061 	}, {
2062 		.reg = PMBUS_OT_WARN_LIMIT,
2063 		.attr = "max",
2064 		.alarm = "max_alarm",
2065 		.sbit = PB_TEMP_OT_WARNING,
2066 	}, {
2067 		.reg = PMBUS_OT_FAULT_LIMIT,
2068 		.attr = "crit",
2069 		.alarm = "crit_alarm",
2070 		.sbit = PB_TEMP_OT_FAULT,
2071 	}, {
2072 		.reg = PMBUS_MFR_MAX_TEMP_3,
2073 		.attr = "rated_max",
2074 	},
2075 };
2076 
2077 static const struct pmbus_sensor_attr temp_attributes[] = {
2078 	{
2079 		.reg = PMBUS_READ_TEMPERATURE_1,
2080 		.class = PSC_TEMPERATURE,
2081 		.paged = true,
2082 		.update = true,
2083 		.compare = true,
2084 		.func = PMBUS_HAVE_TEMP,
2085 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2086 		.sreg = PMBUS_STATUS_TEMPERATURE,
2087 		.gbit = PB_STATUS_TEMPERATURE,
2088 		.limit = temp_limit_attrs,
2089 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2090 	}, {
2091 		.reg = PMBUS_READ_TEMPERATURE_2,
2092 		.class = PSC_TEMPERATURE,
2093 		.paged = true,
2094 		.update = true,
2095 		.compare = true,
2096 		.func = PMBUS_HAVE_TEMP2,
2097 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2098 		.sreg = PMBUS_STATUS_TEMPERATURE,
2099 		.gbit = PB_STATUS_TEMPERATURE,
2100 		.limit = temp_limit_attrs2,
2101 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2102 	}, {
2103 		.reg = PMBUS_READ_TEMPERATURE_3,
2104 		.class = PSC_TEMPERATURE,
2105 		.paged = true,
2106 		.update = true,
2107 		.compare = true,
2108 		.func = PMBUS_HAVE_TEMP3,
2109 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2110 		.sreg = PMBUS_STATUS_TEMPERATURE,
2111 		.gbit = PB_STATUS_TEMPERATURE,
2112 		.limit = temp_limit_attrs3,
2113 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2114 	}
2115 };
2116 
2117 static const int pmbus_fan_registers[] = {
2118 	PMBUS_READ_FAN_SPEED_1,
2119 	PMBUS_READ_FAN_SPEED_2,
2120 	PMBUS_READ_FAN_SPEED_3,
2121 	PMBUS_READ_FAN_SPEED_4
2122 };
2123 
2124 static const int pmbus_fan_status_registers[] = {
2125 	PMBUS_STATUS_FAN_12,
2126 	PMBUS_STATUS_FAN_12,
2127 	PMBUS_STATUS_FAN_34,
2128 	PMBUS_STATUS_FAN_34
2129 };
2130 
2131 static const u32 pmbus_fan_flags[] = {
2132 	PMBUS_HAVE_FAN12,
2133 	PMBUS_HAVE_FAN12,
2134 	PMBUS_HAVE_FAN34,
2135 	PMBUS_HAVE_FAN34
2136 };
2137 
2138 static const u32 pmbus_fan_status_flags[] = {
2139 	PMBUS_HAVE_STATUS_FAN12,
2140 	PMBUS_HAVE_STATUS_FAN12,
2141 	PMBUS_HAVE_STATUS_FAN34,
2142 	PMBUS_HAVE_STATUS_FAN34
2143 };
2144 
2145 /* Fans */
2146 
2147 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2148 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2149 		struct pmbus_data *data, int index, int page, int id,
2150 		u8 config)
2151 {
2152 	struct pmbus_sensor *sensor;
2153 
2154 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2155 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2156 				  false, false, true);
2157 
2158 	if (!sensor)
2159 		return -ENOMEM;
2160 
2161 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2162 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
2163 		return 0;
2164 
2165 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2166 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2167 				  false, false, true);
2168 
2169 	if (!sensor)
2170 		return -ENOMEM;
2171 
2172 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2173 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2174 				  true, false, false);
2175 
2176 	if (!sensor)
2177 		return -ENOMEM;
2178 
2179 	return 0;
2180 }
2181 
2182 static int pmbus_add_fan_attributes(struct i2c_client *client,
2183 				    struct pmbus_data *data)
2184 {
2185 	const struct pmbus_driver_info *info = data->info;
2186 	int index = 1;
2187 	int page;
2188 	int ret;
2189 
2190 	for (page = 0; page < info->pages; page++) {
2191 		int f;
2192 
2193 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2194 			int regval;
2195 
2196 			if (!(info->func[page] & pmbus_fan_flags[f]))
2197 				break;
2198 
2199 			if (!pmbus_check_word_register(client, page,
2200 						       pmbus_fan_registers[f]))
2201 				break;
2202 
2203 			/*
2204 			 * Skip fan if not installed.
2205 			 * Each fan configuration register covers multiple fans,
2206 			 * so we have to do some magic.
2207 			 */
2208 			regval = _pmbus_read_byte_data(client, page,
2209 				pmbus_fan_config_registers[f]);
2210 			if (regval < 0 ||
2211 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2212 				continue;
2213 
2214 			if (pmbus_add_sensor(data, "fan", "input", index,
2215 					     page, 0xff, pmbus_fan_registers[f],
2216 					     PSC_FAN, true, true, true) == NULL)
2217 				return -ENOMEM;
2218 
2219 			/* Fan control */
2220 			if (pmbus_check_word_register(client, page,
2221 					pmbus_fan_command_registers[f])) {
2222 				ret = pmbus_add_fan_ctrl(client, data, index,
2223 							 page, f, regval);
2224 				if (ret < 0)
2225 					return ret;
2226 			}
2227 
2228 			/*
2229 			 * Each fan status register covers multiple fans,
2230 			 * so we have to do some magic.
2231 			 */
2232 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2233 			    pmbus_check_byte_register(client,
2234 					page, pmbus_fan_status_registers[f])) {
2235 				int reg;
2236 
2237 				if (f > 1)	/* fan 3, 4 */
2238 					reg = PMBUS_STATUS_FAN_34;
2239 				else
2240 					reg = PMBUS_STATUS_FAN_12;
2241 				ret = pmbus_add_boolean(data, "fan",
2242 					"alarm", index, NULL, NULL, page, reg,
2243 					PB_FAN_FAN1_WARNING >> (f & 1));
2244 				if (ret)
2245 					return ret;
2246 				ret = pmbus_add_boolean(data, "fan",
2247 					"fault", index, NULL, NULL, page, reg,
2248 					PB_FAN_FAN1_FAULT >> (f & 1));
2249 				if (ret)
2250 					return ret;
2251 			}
2252 			index++;
2253 		}
2254 	}
2255 	return 0;
2256 }
2257 
2258 struct pmbus_samples_attr {
2259 	int reg;
2260 	char *name;
2261 };
2262 
2263 struct pmbus_samples_reg {
2264 	int page;
2265 	struct pmbus_samples_attr *attr;
2266 	struct device_attribute dev_attr;
2267 };
2268 
2269 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2270 	{
2271 		.reg = PMBUS_VIRT_SAMPLES,
2272 		.name = "samples",
2273 	}, {
2274 		.reg = PMBUS_VIRT_IN_SAMPLES,
2275 		.name = "in_samples",
2276 	}, {
2277 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2278 		.name = "curr_samples",
2279 	}, {
2280 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2281 		.name = "power_samples",
2282 	}, {
2283 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2284 		.name = "temp_samples",
2285 	}
2286 };
2287 
2288 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2289 
2290 static ssize_t pmbus_show_samples(struct device *dev,
2291 				  struct device_attribute *devattr, char *buf)
2292 {
2293 	int val;
2294 	struct i2c_client *client = to_i2c_client(dev->parent);
2295 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2296 	struct pmbus_data *data = i2c_get_clientdata(client);
2297 
2298 	mutex_lock(&data->update_lock);
2299 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2300 	mutex_unlock(&data->update_lock);
2301 	if (val < 0)
2302 		return val;
2303 
2304 	return sysfs_emit(buf, "%d\n", val);
2305 }
2306 
2307 static ssize_t pmbus_set_samples(struct device *dev,
2308 				 struct device_attribute *devattr,
2309 				 const char *buf, size_t count)
2310 {
2311 	int ret;
2312 	long val;
2313 	struct i2c_client *client = to_i2c_client(dev->parent);
2314 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2315 	struct pmbus_data *data = i2c_get_clientdata(client);
2316 
2317 	if (kstrtol(buf, 0, &val) < 0)
2318 		return -EINVAL;
2319 
2320 	mutex_lock(&data->update_lock);
2321 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2322 	mutex_unlock(&data->update_lock);
2323 
2324 	return ret ? : count;
2325 }
2326 
2327 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2328 				  struct pmbus_samples_attr *attr)
2329 {
2330 	struct pmbus_samples_reg *reg;
2331 
2332 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2333 	if (!reg)
2334 		return -ENOMEM;
2335 
2336 	reg->attr = attr;
2337 	reg->page = page;
2338 
2339 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2340 			    pmbus_show_samples, pmbus_set_samples);
2341 
2342 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2343 }
2344 
2345 static int pmbus_add_samples_attributes(struct i2c_client *client,
2346 					struct pmbus_data *data)
2347 {
2348 	const struct pmbus_driver_info *info = data->info;
2349 	int s;
2350 
2351 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2352 		return 0;
2353 
2354 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2355 		struct pmbus_samples_attr *attr;
2356 		int ret;
2357 
2358 		attr = &pmbus_samples_registers[s];
2359 		if (!pmbus_check_word_register(client, 0, attr->reg))
2360 			continue;
2361 
2362 		ret = pmbus_add_samples_attr(data, 0, attr);
2363 		if (ret)
2364 			return ret;
2365 	}
2366 
2367 	return 0;
2368 }
2369 
2370 static int pmbus_find_attributes(struct i2c_client *client,
2371 				 struct pmbus_data *data)
2372 {
2373 	int ret;
2374 
2375 	/* Voltage sensors */
2376 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2377 				     ARRAY_SIZE(voltage_attributes));
2378 	if (ret)
2379 		return ret;
2380 
2381 	/* Current sensors */
2382 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2383 				     ARRAY_SIZE(current_attributes));
2384 	if (ret)
2385 		return ret;
2386 
2387 	/* Power sensors */
2388 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2389 				     ARRAY_SIZE(power_attributes));
2390 	if (ret)
2391 		return ret;
2392 
2393 	/* Temperature sensors */
2394 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2395 				     ARRAY_SIZE(temp_attributes));
2396 	if (ret)
2397 		return ret;
2398 
2399 	/* Fans */
2400 	ret = pmbus_add_fan_attributes(client, data);
2401 	if (ret)
2402 		return ret;
2403 
2404 	ret = pmbus_add_samples_attributes(client, data);
2405 	return ret;
2406 }
2407 
2408 /*
2409  * The pmbus_class_attr_map structure maps one sensor class to
2410  * it's corresponding sensor attributes array.
2411  */
2412 struct pmbus_class_attr_map {
2413 	enum pmbus_sensor_classes class;
2414 	int nattr;
2415 	const struct pmbus_sensor_attr *attr;
2416 };
2417 
2418 static const struct pmbus_class_attr_map class_attr_map[] = {
2419 	{
2420 		.class = PSC_VOLTAGE_IN,
2421 		.attr = voltage_attributes,
2422 		.nattr = ARRAY_SIZE(voltage_attributes),
2423 	}, {
2424 		.class = PSC_VOLTAGE_OUT,
2425 		.attr = voltage_attributes,
2426 		.nattr = ARRAY_SIZE(voltage_attributes),
2427 	}, {
2428 		.class = PSC_CURRENT_IN,
2429 		.attr = current_attributes,
2430 		.nattr = ARRAY_SIZE(current_attributes),
2431 	}, {
2432 		.class = PSC_CURRENT_OUT,
2433 		.attr = current_attributes,
2434 		.nattr = ARRAY_SIZE(current_attributes),
2435 	}, {
2436 		.class = PSC_POWER,
2437 		.attr = power_attributes,
2438 		.nattr = ARRAY_SIZE(power_attributes),
2439 	}, {
2440 		.class = PSC_TEMPERATURE,
2441 		.attr = temp_attributes,
2442 		.nattr = ARRAY_SIZE(temp_attributes),
2443 	}
2444 };
2445 
2446 /*
2447  * Read the coefficients for direct mode.
2448  */
2449 static int pmbus_read_coefficients(struct i2c_client *client,
2450 				   struct pmbus_driver_info *info,
2451 				   const struct pmbus_sensor_attr *attr)
2452 {
2453 	int rv;
2454 	union i2c_smbus_data data;
2455 	enum pmbus_sensor_classes class = attr->class;
2456 	s8 R;
2457 	s16 m, b;
2458 
2459 	data.block[0] = 2;
2460 	data.block[1] = attr->reg;
2461 	data.block[2] = 0x01;
2462 
2463 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2464 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2465 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2466 
2467 	if (rv < 0)
2468 		return rv;
2469 
2470 	if (data.block[0] != 5)
2471 		return -EIO;
2472 
2473 	m = data.block[1] | (data.block[2] << 8);
2474 	b = data.block[3] | (data.block[4] << 8);
2475 	R = data.block[5];
2476 	info->m[class] = m;
2477 	info->b[class] = b;
2478 	info->R[class] = R;
2479 
2480 	return rv;
2481 }
2482 
2483 static int pmbus_init_coefficients(struct i2c_client *client,
2484 				   struct pmbus_driver_info *info)
2485 {
2486 	int i, n, ret = -EINVAL;
2487 	const struct pmbus_class_attr_map *map;
2488 	const struct pmbus_sensor_attr *attr;
2489 
2490 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2491 		map = &class_attr_map[i];
2492 		if (info->format[map->class] != direct)
2493 			continue;
2494 		for (n = 0; n < map->nattr; n++) {
2495 			attr = &map->attr[n];
2496 			if (map->class != attr->class)
2497 				continue;
2498 			ret = pmbus_read_coefficients(client, info, attr);
2499 			if (ret >= 0)
2500 				break;
2501 		}
2502 		if (ret < 0) {
2503 			dev_err(&client->dev,
2504 				"No coefficients found for sensor class %d\n",
2505 				map->class);
2506 			return -EINVAL;
2507 		}
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 /*
2514  * Identify chip parameters.
2515  * This function is called for all chips.
2516  */
2517 static int pmbus_identify_common(struct i2c_client *client,
2518 				 struct pmbus_data *data, int page)
2519 {
2520 	int vout_mode = -1;
2521 
2522 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2523 		vout_mode = _pmbus_read_byte_data(client, page,
2524 						  PMBUS_VOUT_MODE);
2525 	if (vout_mode >= 0 && vout_mode != 0xff) {
2526 		/*
2527 		 * Not all chips support the VOUT_MODE command,
2528 		 * so a failure to read it is not an error.
2529 		 */
2530 		switch (vout_mode >> 5) {
2531 		case 0:	/* linear mode      */
2532 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2533 				return -ENODEV;
2534 
2535 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2536 			break;
2537 		case 1: /* VID mode         */
2538 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2539 				return -ENODEV;
2540 			break;
2541 		case 2:	/* direct mode      */
2542 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2543 				return -ENODEV;
2544 			break;
2545 		case 3:	/* ieee 754 half precision */
2546 			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2547 				return -ENODEV;
2548 			break;
2549 		default:
2550 			return -ENODEV;
2551 		}
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2558 {
2559 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2560 }
2561 
2562 static int pmbus_read_status_word(struct i2c_client *client, int page)
2563 {
2564 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2565 }
2566 
2567 /* PEC attribute support */
2568 
2569 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2570 			char *buf)
2571 {
2572 	struct i2c_client *client = to_i2c_client(dev);
2573 
2574 	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2575 }
2576 
2577 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2578 			 const char *buf, size_t count)
2579 {
2580 	struct i2c_client *client = to_i2c_client(dev);
2581 	bool enable;
2582 	int err;
2583 
2584 	err = kstrtobool(buf, &enable);
2585 	if (err < 0)
2586 		return err;
2587 
2588 	if (enable)
2589 		client->flags |= I2C_CLIENT_PEC;
2590 	else
2591 		client->flags &= ~I2C_CLIENT_PEC;
2592 
2593 	return count;
2594 }
2595 
2596 static DEVICE_ATTR_RW(pec);
2597 
2598 static void pmbus_remove_pec(void *dev)
2599 {
2600 	device_remove_file(dev, &dev_attr_pec);
2601 }
2602 
2603 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2604 			     struct pmbus_driver_info *info)
2605 {
2606 	struct device *dev = &client->dev;
2607 	int page, ret;
2608 
2609 	/*
2610 	 * Figure out if PEC is enabled before accessing any other register.
2611 	 * Make sure PEC is disabled, will be enabled later if needed.
2612 	 */
2613 	client->flags &= ~I2C_CLIENT_PEC;
2614 
2615 	/* Enable PEC if the controller and bus supports it */
2616 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2617 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2618 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2619 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2620 				client->flags |= I2C_CLIENT_PEC;
2621 		}
2622 	}
2623 
2624 	/*
2625 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2626 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2627 	 * Bail out if both registers are not supported.
2628 	 */
2629 	data->read_status = pmbus_read_status_word;
2630 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2631 	if (ret < 0 || ret == 0xffff) {
2632 		data->read_status = pmbus_read_status_byte;
2633 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2634 		if (ret < 0 || ret == 0xff) {
2635 			dev_err(dev, "PMBus status register not found\n");
2636 			return -ENODEV;
2637 		}
2638 	} else {
2639 		data->has_status_word = true;
2640 	}
2641 
2642 	/*
2643 	 * Check if the chip is write protected. If it is, we can not clear
2644 	 * faults, and we should not try it. Also, in that case, writes into
2645 	 * limit registers need to be disabled.
2646 	 */
2647 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2648 		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2649 		if (ret > 0 && (ret & PB_WP_ANY))
2650 			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2651 	}
2652 
2653 	if (data->info->pages)
2654 		pmbus_clear_faults(client);
2655 	else
2656 		pmbus_clear_fault_page(client, -1);
2657 
2658 	if (info->identify) {
2659 		ret = (*info->identify)(client, info);
2660 		if (ret < 0) {
2661 			dev_err(dev, "Chip identification failed\n");
2662 			return ret;
2663 		}
2664 	}
2665 
2666 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2667 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2668 		return -ENODEV;
2669 	}
2670 
2671 	for (page = 0; page < info->pages; page++) {
2672 		ret = pmbus_identify_common(client, data, page);
2673 		if (ret < 0) {
2674 			dev_err(dev, "Failed to identify chip capabilities\n");
2675 			return ret;
2676 		}
2677 	}
2678 
2679 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2680 		if (!i2c_check_functionality(client->adapter,
2681 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2682 			return -ENODEV;
2683 
2684 		ret = pmbus_init_coefficients(client, info);
2685 		if (ret < 0)
2686 			return ret;
2687 	}
2688 
2689 	if (client->flags & I2C_CLIENT_PEC) {
2690 		/*
2691 		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2692 		 * chip support PEC. Add 'pec' attribute to client device to let
2693 		 * the user control it.
2694 		 */
2695 		ret = device_create_file(dev, &dev_attr_pec);
2696 		if (ret)
2697 			return ret;
2698 		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2699 		if (ret)
2700 			return ret;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2707 struct pmbus_status_assoc {
2708 	int pflag, rflag, eflag;
2709 };
2710 
2711 /* PMBus->regulator bit mappings for a PMBus status register */
2712 struct pmbus_status_category {
2713 	int func;
2714 	int reg;
2715 	const struct pmbus_status_assoc *bits; /* zero-terminated */
2716 };
2717 
2718 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2719 	{
2720 		.func = PMBUS_HAVE_STATUS_VOUT,
2721 		.reg = PMBUS_STATUS_VOUT,
2722 		.bits = (const struct pmbus_status_assoc[]) {
2723 			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2724 			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2725 			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2726 			REGULATOR_EVENT_UNDER_VOLTAGE },
2727 			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2728 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2729 			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2730 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2731 			{ },
2732 		},
2733 	}, {
2734 		.func = PMBUS_HAVE_STATUS_IOUT,
2735 		.reg = PMBUS_STATUS_IOUT,
2736 		.bits = (const struct pmbus_status_assoc[]) {
2737 			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2738 			REGULATOR_EVENT_OVER_CURRENT_WARN },
2739 			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2740 			REGULATOR_EVENT_OVER_CURRENT },
2741 			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2742 			REGULATOR_EVENT_OVER_CURRENT },
2743 			{ },
2744 		},
2745 	}, {
2746 		.func = PMBUS_HAVE_STATUS_TEMP,
2747 		.reg = PMBUS_STATUS_TEMPERATURE,
2748 		.bits = (const struct pmbus_status_assoc[]) {
2749 			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2750 			REGULATOR_EVENT_OVER_TEMP_WARN },
2751 			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2752 			REGULATOR_EVENT_OVER_TEMP },
2753 			{ },
2754 		},
2755 	},
2756 };
2757 
2758 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2759 {
2760 	int ret;
2761 
2762 	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2763 
2764 	if (ret < 0)
2765 		return ret;
2766 
2767 	return !!(ret & PB_OPERATION_CONTROL_ON);
2768 }
2769 
2770 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2771 {
2772 	struct pmbus_data *data = i2c_get_clientdata(client);
2773 	int ret;
2774 
2775 	mutex_lock(&data->update_lock);
2776 	ret = _pmbus_is_enabled(client, page);
2777 	mutex_unlock(&data->update_lock);
2778 
2779 	return ret;
2780 }
2781 
2782 #define to_dev_attr(_dev_attr) \
2783 	container_of(_dev_attr, struct device_attribute, attr)
2784 
2785 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2786 {
2787 	int i;
2788 
2789 	for (i = 0; i < data->num_attributes; i++) {
2790 		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2791 		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2792 		int index = attr->index;
2793 		u16 smask = pb_index_to_mask(index);
2794 		u8 spage = pb_index_to_page(index);
2795 		u16 sreg = pb_index_to_reg(index);
2796 
2797 		if (reg == sreg && page == spage && (smask & flags)) {
2798 			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2799 			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2800 			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2801 			flags &= ~smask;
2802 		}
2803 
2804 		if (!flags)
2805 			break;
2806 	}
2807 }
2808 
2809 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2810 			   unsigned int *event, bool notify)
2811 {
2812 	int i, status;
2813 	const struct pmbus_status_category *cat;
2814 	const struct pmbus_status_assoc *bit;
2815 	struct device *dev = data->dev;
2816 	struct i2c_client *client = to_i2c_client(dev);
2817 	int func = data->info->func[page];
2818 
2819 	*flags = 0;
2820 	*event = 0;
2821 
2822 	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2823 		cat = &pmbus_status_flag_map[i];
2824 		if (!(func & cat->func))
2825 			continue;
2826 
2827 		status = _pmbus_read_byte_data(client, page, cat->reg);
2828 		if (status < 0)
2829 			return status;
2830 
2831 		for (bit = cat->bits; bit->pflag; bit++)
2832 			if (status & bit->pflag) {
2833 				*flags |= bit->rflag;
2834 				*event |= bit->eflag;
2835 			}
2836 
2837 		if (notify && status)
2838 			pmbus_notify(data, page, cat->reg, status);
2839 
2840 	}
2841 
2842 	/*
2843 	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2844 	 * bits.  Some of the other bits are tempting (especially for cases
2845 	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2846 	 * functionality), but there's an unfortunate ambiguity in that
2847 	 * they're defined as indicating a fault *or* a warning, so we can't
2848 	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2849 	 * REGULATOR_ERROR_<foo>_WARN.
2850 	 */
2851 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2852 	if (status < 0)
2853 		return status;
2854 
2855 	if (_pmbus_is_enabled(client, page)) {
2856 		if (status & PB_STATUS_OFF) {
2857 			*flags |= REGULATOR_ERROR_FAIL;
2858 			*event |= REGULATOR_EVENT_FAIL;
2859 		}
2860 
2861 		if (status & PB_STATUS_POWER_GOOD_N) {
2862 			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2863 			*event |= REGULATOR_EVENT_REGULATION_OUT;
2864 		}
2865 	}
2866 	/*
2867 	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2868 	 * defined strictly as fault indicators (not warnings).
2869 	 */
2870 	if (status & PB_STATUS_IOUT_OC) {
2871 		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2872 		*event |= REGULATOR_EVENT_OVER_CURRENT;
2873 	}
2874 	if (status & PB_STATUS_VOUT_OV) {
2875 		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2876 		*event |= REGULATOR_EVENT_FAIL;
2877 	}
2878 
2879 	/*
2880 	 * If we haven't discovered any thermal faults or warnings via
2881 	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2882 	 * a (conservative) best-effort interpretation.
2883 	 */
2884 	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2885 	    (status & PB_STATUS_TEMPERATURE)) {
2886 		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2887 		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2888 	}
2889 
2890 
2891 	return 0;
2892 }
2893 
2894 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2895 					  unsigned int *event, bool notify)
2896 {
2897 	int ret;
2898 
2899 	mutex_lock(&data->update_lock);
2900 	ret = _pmbus_get_flags(data, page, flags, event, notify);
2901 	mutex_unlock(&data->update_lock);
2902 
2903 	return ret;
2904 }
2905 
2906 #if IS_ENABLED(CONFIG_REGULATOR)
2907 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2908 {
2909 	struct device *dev = rdev_get_dev(rdev);
2910 	struct i2c_client *client = to_i2c_client(dev->parent);
2911 
2912 	return pmbus_is_enabled(client, rdev_get_id(rdev));
2913 }
2914 
2915 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2916 {
2917 	struct device *dev = rdev_get_dev(rdev);
2918 	struct i2c_client *client = to_i2c_client(dev->parent);
2919 	struct pmbus_data *data = i2c_get_clientdata(client);
2920 	u8 page = rdev_get_id(rdev);
2921 	int ret;
2922 
2923 	mutex_lock(&data->update_lock);
2924 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2925 				     PB_OPERATION_CONTROL_ON,
2926 				     enable ? PB_OPERATION_CONTROL_ON : 0);
2927 	mutex_unlock(&data->update_lock);
2928 
2929 	return ret;
2930 }
2931 
2932 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2933 {
2934 	return _pmbus_regulator_on_off(rdev, 1);
2935 }
2936 
2937 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2938 {
2939 	return _pmbus_regulator_on_off(rdev, 0);
2940 }
2941 
2942 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2943 {
2944 	struct device *dev = rdev_get_dev(rdev);
2945 	struct i2c_client *client = to_i2c_client(dev->parent);
2946 	struct pmbus_data *data = i2c_get_clientdata(client);
2947 	int event;
2948 
2949 	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
2950 }
2951 
2952 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
2953 {
2954 	struct device *dev = rdev_get_dev(rdev);
2955 	struct i2c_client *client = to_i2c_client(dev->parent);
2956 	struct pmbus_data *data = i2c_get_clientdata(client);
2957 	u8 page = rdev_get_id(rdev);
2958 	int status, ret;
2959 	int event;
2960 
2961 	mutex_lock(&data->update_lock);
2962 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2963 	if (status < 0) {
2964 		ret = status;
2965 		goto unlock;
2966 	}
2967 
2968 	if (status & PB_STATUS_OFF) {
2969 		ret = REGULATOR_STATUS_OFF;
2970 		goto unlock;
2971 	}
2972 
2973 	/* If regulator is ON & reports power good then return ON */
2974 	if (!(status & PB_STATUS_POWER_GOOD_N)) {
2975 		ret = REGULATOR_STATUS_ON;
2976 		goto unlock;
2977 	}
2978 
2979 	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
2980 	if (ret)
2981 		goto unlock;
2982 
2983 	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
2984 	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
2985 		ret = REGULATOR_STATUS_ERROR;
2986 		goto unlock;
2987 	}
2988 
2989 	ret = REGULATOR_STATUS_UNDEFINED;
2990 
2991 unlock:
2992 	mutex_unlock(&data->update_lock);
2993 	return ret;
2994 }
2995 
2996 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
2997 {
2998 	struct pmbus_data *data = i2c_get_clientdata(client);
2999 	struct pmbus_sensor s = {
3000 		.page = page,
3001 		.class = PSC_VOLTAGE_OUT,
3002 		.convert = true,
3003 		.data = -1,
3004 	};
3005 
3006 	if (data->vout_low[page] < 0) {
3007 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3008 			s.data = _pmbus_read_word_data(client, page, 0xff,
3009 						       PMBUS_MFR_VOUT_MIN);
3010 		if (s.data < 0) {
3011 			s.data = _pmbus_read_word_data(client, page, 0xff,
3012 						       PMBUS_VOUT_MARGIN_LOW);
3013 			if (s.data < 0)
3014 				return s.data;
3015 		}
3016 		data->vout_low[page] = pmbus_reg2data(data, &s);
3017 	}
3018 
3019 	return data->vout_low[page];
3020 }
3021 
3022 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3023 {
3024 	struct pmbus_data *data = i2c_get_clientdata(client);
3025 	struct pmbus_sensor s = {
3026 		.page = page,
3027 		.class = PSC_VOLTAGE_OUT,
3028 		.convert = true,
3029 		.data = -1,
3030 	};
3031 
3032 	if (data->vout_high[page] < 0) {
3033 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3034 			s.data = _pmbus_read_word_data(client, page, 0xff,
3035 						       PMBUS_MFR_VOUT_MAX);
3036 		if (s.data < 0) {
3037 			s.data = _pmbus_read_word_data(client, page, 0xff,
3038 						       PMBUS_VOUT_MARGIN_HIGH);
3039 			if (s.data < 0)
3040 				return s.data;
3041 		}
3042 		data->vout_high[page] = pmbus_reg2data(data, &s);
3043 	}
3044 
3045 	return data->vout_high[page];
3046 }
3047 
3048 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3049 {
3050 	struct device *dev = rdev_get_dev(rdev);
3051 	struct i2c_client *client = to_i2c_client(dev->parent);
3052 	struct pmbus_data *data = i2c_get_clientdata(client);
3053 	struct pmbus_sensor s = {
3054 		.page = rdev_get_id(rdev),
3055 		.class = PSC_VOLTAGE_OUT,
3056 		.convert = true,
3057 	};
3058 
3059 	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3060 	if (s.data < 0)
3061 		return s.data;
3062 
3063 	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3064 }
3065 
3066 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3067 				       int max_uv, unsigned int *selector)
3068 {
3069 	struct device *dev = rdev_get_dev(rdev);
3070 	struct i2c_client *client = to_i2c_client(dev->parent);
3071 	struct pmbus_data *data = i2c_get_clientdata(client);
3072 	struct pmbus_sensor s = {
3073 		.page = rdev_get_id(rdev),
3074 		.class = PSC_VOLTAGE_OUT,
3075 		.convert = true,
3076 		.data = -1,
3077 	};
3078 	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3079 	int low, high;
3080 
3081 	*selector = 0;
3082 
3083 	low = pmbus_regulator_get_low_margin(client, s.page);
3084 	if (low < 0)
3085 		return low;
3086 
3087 	high = pmbus_regulator_get_high_margin(client, s.page);
3088 	if (high < 0)
3089 		return high;
3090 
3091 	/* Make sure we are within margins */
3092 	if (low > val)
3093 		val = low;
3094 	if (high < val)
3095 		val = high;
3096 
3097 	val = pmbus_data2reg(data, &s, val);
3098 
3099 	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3100 }
3101 
3102 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3103 					 unsigned int selector)
3104 {
3105 	struct device *dev = rdev_get_dev(rdev);
3106 	struct i2c_client *client = to_i2c_client(dev->parent);
3107 	int val, low, high;
3108 
3109 	if (selector >= rdev->desc->n_voltages ||
3110 	    selector < rdev->desc->linear_min_sel)
3111 		return -EINVAL;
3112 
3113 	selector -= rdev->desc->linear_min_sel;
3114 	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3115 				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3116 
3117 	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3118 	if (low < 0)
3119 		return low;
3120 
3121 	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3122 	if (high < 0)
3123 		return high;
3124 
3125 	if (val >= low && val <= high)
3126 		return val * 1000; /* unit is uV */
3127 
3128 	return 0;
3129 }
3130 
3131 const struct regulator_ops pmbus_regulator_ops = {
3132 	.enable = pmbus_regulator_enable,
3133 	.disable = pmbus_regulator_disable,
3134 	.is_enabled = pmbus_regulator_is_enabled,
3135 	.get_error_flags = pmbus_regulator_get_error_flags,
3136 	.get_status = pmbus_regulator_get_status,
3137 	.get_voltage = pmbus_regulator_get_voltage,
3138 	.set_voltage = pmbus_regulator_set_voltage,
3139 	.list_voltage = pmbus_regulator_list_voltage,
3140 };
3141 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3142 
3143 static int pmbus_regulator_register(struct pmbus_data *data)
3144 {
3145 	struct device *dev = data->dev;
3146 	const struct pmbus_driver_info *info = data->info;
3147 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3148 	int i;
3149 
3150 	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3151 				   GFP_KERNEL);
3152 	if (!data->rdevs)
3153 		return -ENOMEM;
3154 
3155 	for (i = 0; i < info->num_regulators; i++) {
3156 		struct regulator_config config = { };
3157 
3158 		config.dev = dev;
3159 		config.driver_data = data;
3160 
3161 		if (pdata && pdata->reg_init_data)
3162 			config.init_data = &pdata->reg_init_data[i];
3163 
3164 		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3165 							 &config);
3166 		if (IS_ERR(data->rdevs[i]))
3167 			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3168 					     "Failed to register %s regulator\n",
3169 					     info->reg_desc[i].name);
3170 	}
3171 
3172 	return 0;
3173 }
3174 
3175 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3176 {
3177 		int j;
3178 
3179 		for (j = 0; j < data->info->num_regulators; j++) {
3180 			if (page == rdev_get_id(data->rdevs[j])) {
3181 				regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3182 				break;
3183 			}
3184 		}
3185 		return 0;
3186 }
3187 #else
3188 static int pmbus_regulator_register(struct pmbus_data *data)
3189 {
3190 	return 0;
3191 }
3192 
3193 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3194 {
3195 		return 0;
3196 }
3197 #endif
3198 
3199 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3200 {
3201 	return pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3202 }
3203 
3204 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3205 {
3206 	struct pmbus_data *data = pdata;
3207 	struct i2c_client *client = to_i2c_client(data->dev);
3208 
3209 	int i, status, event;
3210 	mutex_lock(&data->update_lock);
3211 	for (i = 0; i < data->info->pages; i++) {
3212 		_pmbus_get_flags(data, i, &status, &event, true);
3213 
3214 		if (event)
3215 			pmbus_regulator_notify(data, i, event);
3216 	}
3217 
3218 	pmbus_clear_faults(client);
3219 	mutex_unlock(&data->update_lock);
3220 
3221 	return IRQ_HANDLED;
3222 }
3223 
3224 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3225 {
3226 	struct device *dev = &client->dev;
3227 	const struct pmbus_status_category *cat;
3228 	const struct pmbus_status_assoc *bit;
3229 	int i, j, err, func;
3230 	u8 mask;
3231 
3232 	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3233 					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3234 					 PMBUS_STATUS_FAN_34};
3235 
3236 	if (!client->irq)
3237 		return 0;
3238 
3239 	for (i = 0; i < data->info->pages; i++) {
3240 		func = data->info->func[i];
3241 
3242 		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3243 			cat = &pmbus_status_flag_map[j];
3244 			if (!(func & cat->func))
3245 				continue;
3246 			mask = 0;
3247 			for (bit = cat->bits; bit->pflag; bit++)
3248 				mask |= bit->pflag;
3249 
3250 			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3251 			if (err)
3252 				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3253 					     cat->reg);
3254 		}
3255 
3256 		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3257 			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3258 	}
3259 
3260 	/* Register notifiers */
3261 	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3262 					IRQF_ONESHOT, "pmbus-irq", data);
3263 	if (err) {
3264 		dev_err(dev, "failed to request an irq %d\n", err);
3265 		return err;
3266 	}
3267 
3268 	return 0;
3269 }
3270 
3271 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3272 
3273 #if IS_ENABLED(CONFIG_DEBUG_FS)
3274 static int pmbus_debugfs_get(void *data, u64 *val)
3275 {
3276 	int rc;
3277 	struct pmbus_debugfs_entry *entry = data;
3278 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3279 
3280 	rc = mutex_lock_interruptible(&pdata->update_lock);
3281 	if (rc)
3282 		return rc;
3283 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3284 	mutex_unlock(&pdata->update_lock);
3285 	if (rc < 0)
3286 		return rc;
3287 
3288 	*val = rc;
3289 
3290 	return 0;
3291 }
3292 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3293 			 "0x%02llx\n");
3294 
3295 static int pmbus_debugfs_get_status(void *data, u64 *val)
3296 {
3297 	int rc;
3298 	struct pmbus_debugfs_entry *entry = data;
3299 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3300 
3301 	rc = mutex_lock_interruptible(&pdata->update_lock);
3302 	if (rc)
3303 		return rc;
3304 	rc = pdata->read_status(entry->client, entry->page);
3305 	mutex_unlock(&pdata->update_lock);
3306 	if (rc < 0)
3307 		return rc;
3308 
3309 	*val = rc;
3310 
3311 	return 0;
3312 }
3313 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3314 			 NULL, "0x%04llx\n");
3315 
3316 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3317 				       size_t count, loff_t *ppos)
3318 {
3319 	int rc;
3320 	struct pmbus_debugfs_entry *entry = file->private_data;
3321 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3322 	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3323 
3324 	rc = mutex_lock_interruptible(&pdata->update_lock);
3325 	if (rc)
3326 		return rc;
3327 	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3328 				   data);
3329 	mutex_unlock(&pdata->update_lock);
3330 	if (rc < 0)
3331 		return rc;
3332 
3333 	/* Add newline at the end of a read data */
3334 	data[rc] = '\n';
3335 
3336 	/* Include newline into the length */
3337 	rc += 1;
3338 
3339 	return simple_read_from_buffer(buf, count, ppos, data, rc);
3340 }
3341 
3342 static const struct file_operations pmbus_debugfs_ops_mfr = {
3343 	.llseek = noop_llseek,
3344 	.read = pmbus_debugfs_mfr_read,
3345 	.write = NULL,
3346 	.open = simple_open,
3347 };
3348 
3349 static void pmbus_remove_debugfs(void *data)
3350 {
3351 	struct dentry *entry = data;
3352 
3353 	debugfs_remove_recursive(entry);
3354 }
3355 
3356 static int pmbus_init_debugfs(struct i2c_client *client,
3357 			      struct pmbus_data *data)
3358 {
3359 	int i, idx = 0;
3360 	char name[PMBUS_NAME_SIZE];
3361 	struct pmbus_debugfs_entry *entries;
3362 
3363 	if (!pmbus_debugfs_dir)
3364 		return -ENODEV;
3365 
3366 	/*
3367 	 * Create the debugfs directory for this device. Use the hwmon device
3368 	 * name to avoid conflicts (hwmon numbers are globally unique).
3369 	 */
3370 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3371 					   pmbus_debugfs_dir);
3372 	if (IS_ERR_OR_NULL(data->debugfs)) {
3373 		data->debugfs = NULL;
3374 		return -ENODEV;
3375 	}
3376 
3377 	/*
3378 	 * Allocate the max possible entries we need.
3379 	 * 6 entries device-specific
3380 	 * 10 entries page-specific
3381 	 */
3382 	entries = devm_kcalloc(data->dev,
3383 			       6 + data->info->pages * 10, sizeof(*entries),
3384 			       GFP_KERNEL);
3385 	if (!entries)
3386 		return -ENOMEM;
3387 
3388 	/*
3389 	 * Add device-specific entries.
3390 	 * Please note that the PMBUS standard allows all registers to be
3391 	 * page-specific.
3392 	 * To reduce the number of debugfs entries for devices with many pages
3393 	 * assume that values of the following registers are the same for all
3394 	 * pages and report values only for page 0.
3395 	 */
3396 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3397 		entries[idx].client = client;
3398 		entries[idx].page = 0;
3399 		entries[idx].reg = PMBUS_MFR_ID;
3400 		debugfs_create_file("mfr_id", 0444, data->debugfs,
3401 				    &entries[idx++],
3402 				    &pmbus_debugfs_ops_mfr);
3403 	}
3404 
3405 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3406 		entries[idx].client = client;
3407 		entries[idx].page = 0;
3408 		entries[idx].reg = PMBUS_MFR_MODEL;
3409 		debugfs_create_file("mfr_model", 0444, data->debugfs,
3410 				    &entries[idx++],
3411 				    &pmbus_debugfs_ops_mfr);
3412 	}
3413 
3414 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3415 		entries[idx].client = client;
3416 		entries[idx].page = 0;
3417 		entries[idx].reg = PMBUS_MFR_REVISION;
3418 		debugfs_create_file("mfr_revision", 0444, data->debugfs,
3419 				    &entries[idx++],
3420 				    &pmbus_debugfs_ops_mfr);
3421 	}
3422 
3423 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3424 		entries[idx].client = client;
3425 		entries[idx].page = 0;
3426 		entries[idx].reg = PMBUS_MFR_LOCATION;
3427 		debugfs_create_file("mfr_location", 0444, data->debugfs,
3428 				    &entries[idx++],
3429 				    &pmbus_debugfs_ops_mfr);
3430 	}
3431 
3432 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3433 		entries[idx].client = client;
3434 		entries[idx].page = 0;
3435 		entries[idx].reg = PMBUS_MFR_DATE;
3436 		debugfs_create_file("mfr_date", 0444, data->debugfs,
3437 				    &entries[idx++],
3438 				    &pmbus_debugfs_ops_mfr);
3439 	}
3440 
3441 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3442 		entries[idx].client = client;
3443 		entries[idx].page = 0;
3444 		entries[idx].reg = PMBUS_MFR_SERIAL;
3445 		debugfs_create_file("mfr_serial", 0444, data->debugfs,
3446 				    &entries[idx++],
3447 				    &pmbus_debugfs_ops_mfr);
3448 	}
3449 
3450 	/* Add page specific entries */
3451 	for (i = 0; i < data->info->pages; ++i) {
3452 		/* Check accessibility of status register if it's not page 0 */
3453 		if (!i || pmbus_check_status_register(client, i)) {
3454 			/* No need to set reg as we have special read op. */
3455 			entries[idx].client = client;
3456 			entries[idx].page = i;
3457 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3458 			debugfs_create_file(name, 0444, data->debugfs,
3459 					    &entries[idx++],
3460 					    &pmbus_debugfs_ops_status);
3461 		}
3462 
3463 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3464 			entries[idx].client = client;
3465 			entries[idx].page = i;
3466 			entries[idx].reg = PMBUS_STATUS_VOUT;
3467 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3468 			debugfs_create_file(name, 0444, data->debugfs,
3469 					    &entries[idx++],
3470 					    &pmbus_debugfs_ops);
3471 		}
3472 
3473 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3474 			entries[idx].client = client;
3475 			entries[idx].page = i;
3476 			entries[idx].reg = PMBUS_STATUS_IOUT;
3477 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3478 			debugfs_create_file(name, 0444, data->debugfs,
3479 					    &entries[idx++],
3480 					    &pmbus_debugfs_ops);
3481 		}
3482 
3483 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3484 			entries[idx].client = client;
3485 			entries[idx].page = i;
3486 			entries[idx].reg = PMBUS_STATUS_INPUT;
3487 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3488 			debugfs_create_file(name, 0444, data->debugfs,
3489 					    &entries[idx++],
3490 					    &pmbus_debugfs_ops);
3491 		}
3492 
3493 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3494 			entries[idx].client = client;
3495 			entries[idx].page = i;
3496 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3497 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3498 			debugfs_create_file(name, 0444, data->debugfs,
3499 					    &entries[idx++],
3500 					    &pmbus_debugfs_ops);
3501 		}
3502 
3503 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3504 			entries[idx].client = client;
3505 			entries[idx].page = i;
3506 			entries[idx].reg = PMBUS_STATUS_CML;
3507 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3508 			debugfs_create_file(name, 0444, data->debugfs,
3509 					    &entries[idx++],
3510 					    &pmbus_debugfs_ops);
3511 		}
3512 
3513 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3514 			entries[idx].client = client;
3515 			entries[idx].page = i;
3516 			entries[idx].reg = PMBUS_STATUS_OTHER;
3517 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3518 			debugfs_create_file(name, 0444, data->debugfs,
3519 					    &entries[idx++],
3520 					    &pmbus_debugfs_ops);
3521 		}
3522 
3523 		if (pmbus_check_byte_register(client, i,
3524 					      PMBUS_STATUS_MFR_SPECIFIC)) {
3525 			entries[idx].client = client;
3526 			entries[idx].page = i;
3527 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3528 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3529 			debugfs_create_file(name, 0444, data->debugfs,
3530 					    &entries[idx++],
3531 					    &pmbus_debugfs_ops);
3532 		}
3533 
3534 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3535 			entries[idx].client = client;
3536 			entries[idx].page = i;
3537 			entries[idx].reg = PMBUS_STATUS_FAN_12;
3538 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3539 			debugfs_create_file(name, 0444, data->debugfs,
3540 					    &entries[idx++],
3541 					    &pmbus_debugfs_ops);
3542 		}
3543 
3544 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3545 			entries[idx].client = client;
3546 			entries[idx].page = i;
3547 			entries[idx].reg = PMBUS_STATUS_FAN_34;
3548 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3549 			debugfs_create_file(name, 0444, data->debugfs,
3550 					    &entries[idx++],
3551 					    &pmbus_debugfs_ops);
3552 		}
3553 	}
3554 
3555 	return devm_add_action_or_reset(data->dev,
3556 					pmbus_remove_debugfs, data->debugfs);
3557 }
3558 #else
3559 static int pmbus_init_debugfs(struct i2c_client *client,
3560 			      struct pmbus_data *data)
3561 {
3562 	return 0;
3563 }
3564 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
3565 
3566 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3567 {
3568 	struct device *dev = &client->dev;
3569 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3570 	struct pmbus_data *data;
3571 	size_t groups_num = 0;
3572 	int ret;
3573 	int i;
3574 	char *name;
3575 
3576 	if (!info)
3577 		return -ENODEV;
3578 
3579 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3580 				     | I2C_FUNC_SMBUS_BYTE_DATA
3581 				     | I2C_FUNC_SMBUS_WORD_DATA))
3582 		return -ENODEV;
3583 
3584 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3585 	if (!data)
3586 		return -ENOMEM;
3587 
3588 	if (info->groups)
3589 		while (info->groups[groups_num])
3590 			groups_num++;
3591 
3592 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3593 				    GFP_KERNEL);
3594 	if (!data->groups)
3595 		return -ENOMEM;
3596 
3597 	i2c_set_clientdata(client, data);
3598 	mutex_init(&data->update_lock);
3599 	data->dev = dev;
3600 
3601 	if (pdata)
3602 		data->flags = pdata->flags;
3603 	data->info = info;
3604 	data->currpage = -1;
3605 	data->currphase = -1;
3606 
3607 	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3608 		data->vout_low[i] = -1;
3609 		data->vout_high[i] = -1;
3610 	}
3611 
3612 	ret = pmbus_init_common(client, data, info);
3613 	if (ret < 0)
3614 		return ret;
3615 
3616 	ret = pmbus_find_attributes(client, data);
3617 	if (ret)
3618 		return ret;
3619 
3620 	/*
3621 	 * If there are no attributes, something is wrong.
3622 	 * Bail out instead of trying to register nothing.
3623 	 */
3624 	if (!data->num_attributes) {
3625 		dev_err(dev, "No attributes found\n");
3626 		return -ENODEV;
3627 	}
3628 
3629 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3630 	if (!name)
3631 		return -ENOMEM;
3632 	strreplace(name, '-', '_');
3633 
3634 	data->groups[0] = &data->group;
3635 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3636 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3637 					name, data, data->groups);
3638 	if (IS_ERR(data->hwmon_dev)) {
3639 		dev_err(dev, "Failed to register hwmon device\n");
3640 		return PTR_ERR(data->hwmon_dev);
3641 	}
3642 
3643 	ret = pmbus_regulator_register(data);
3644 	if (ret)
3645 		return ret;
3646 
3647 	ret = pmbus_irq_setup(client, data);
3648 	if (ret)
3649 		return ret;
3650 
3651 	ret = pmbus_init_debugfs(client, data);
3652 	if (ret)
3653 		dev_warn(dev, "Failed to register debugfs\n");
3654 
3655 	return 0;
3656 }
3657 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3658 
3659 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3660 {
3661 	struct pmbus_data *data = i2c_get_clientdata(client);
3662 
3663 	return data->debugfs;
3664 }
3665 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3666 
3667 int pmbus_lock_interruptible(struct i2c_client *client)
3668 {
3669 	struct pmbus_data *data = i2c_get_clientdata(client);
3670 
3671 	return mutex_lock_interruptible(&data->update_lock);
3672 }
3673 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
3674 
3675 void pmbus_unlock(struct i2c_client *client)
3676 {
3677 	struct pmbus_data *data = i2c_get_clientdata(client);
3678 
3679 	mutex_unlock(&data->update_lock);
3680 }
3681 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
3682 
3683 static int __init pmbus_core_init(void)
3684 {
3685 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3686 	if (IS_ERR(pmbus_debugfs_dir))
3687 		pmbus_debugfs_dir = NULL;
3688 
3689 	return 0;
3690 }
3691 
3692 static void __exit pmbus_core_exit(void)
3693 {
3694 	debugfs_remove_recursive(pmbus_debugfs_dir);
3695 }
3696 
3697 module_init(pmbus_core_init);
3698 module_exit(pmbus_core_exit);
3699 
3700 MODULE_AUTHOR("Guenter Roeck");
3701 MODULE_DESCRIPTION("PMBus core driver");
3702 MODULE_LICENSE("GPL");
3703