xref: /openbmc/linux/drivers/hwmon/pmbus/pmbus_core.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include "pmbus.h"
23 
24 /*
25  * Number of additional attribute pointers to allocate
26  * with each call to krealloc
27  */
28 #define PMBUS_ATTR_ALLOC_SIZE	32
29 #define PMBUS_NAME_SIZE		24
30 
31 struct pmbus_sensor {
32 	struct pmbus_sensor *next;
33 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
34 	struct device_attribute attribute;
35 	u8 page;		/* page number */
36 	u8 phase;		/* phase number, 0xff for all phases */
37 	u16 reg;		/* register */
38 	enum pmbus_sensor_classes class;	/* sensor class */
39 	bool update;		/* runtime sensor update needed */
40 	bool convert;		/* Whether or not to apply linear/vid/direct */
41 	int data;		/* Sensor data.
42 				   Negative if there was a read error */
43 };
44 #define to_pmbus_sensor(_attr) \
45 	container_of(_attr, struct pmbus_sensor, attribute)
46 
47 struct pmbus_boolean {
48 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
49 	struct sensor_device_attribute attribute;
50 	struct pmbus_sensor *s1;
51 	struct pmbus_sensor *s2;
52 };
53 #define to_pmbus_boolean(_attr) \
54 	container_of(_attr, struct pmbus_boolean, attribute)
55 
56 struct pmbus_label {
57 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
58 	struct device_attribute attribute;
59 	char label[PMBUS_NAME_SIZE];	/* label */
60 };
61 #define to_pmbus_label(_attr) \
62 	container_of(_attr, struct pmbus_label, attribute)
63 
64 /* Macros for converting between sensor index and register/page/status mask */
65 
66 #define PB_STATUS_MASK	0xffff
67 #define PB_REG_SHIFT	16
68 #define PB_REG_MASK	0x3ff
69 #define PB_PAGE_SHIFT	26
70 #define PB_PAGE_MASK	0x3f
71 
72 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
73 						 ((reg) << PB_REG_SHIFT) | (mask))
74 
75 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
76 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
77 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
78 
79 struct pmbus_data {
80 	struct device *dev;
81 	struct device *hwmon_dev;
82 
83 	u32 flags;		/* from platform data */
84 
85 	int exponent[PMBUS_PAGES];
86 				/* linear mode: exponent for output voltages */
87 
88 	const struct pmbus_driver_info *info;
89 
90 	int max_attributes;
91 	int num_attributes;
92 	struct attribute_group group;
93 	const struct attribute_group **groups;
94 	struct dentry *debugfs;		/* debugfs device directory */
95 
96 	struct pmbus_sensor *sensors;
97 
98 	struct mutex update_lock;
99 
100 	bool has_status_word;		/* device uses STATUS_WORD register */
101 	int (*read_status)(struct i2c_client *client, int page);
102 
103 	s16 currpage;	/* current page, -1 for unknown/unset */
104 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
105 };
106 
107 struct pmbus_debugfs_entry {
108 	struct i2c_client *client;
109 	u8 page;
110 	u8 reg;
111 };
112 
113 static const int pmbus_fan_rpm_mask[] = {
114 	PB_FAN_1_RPM,
115 	PB_FAN_2_RPM,
116 	PB_FAN_1_RPM,
117 	PB_FAN_2_RPM,
118 };
119 
120 static const int pmbus_fan_config_registers[] = {
121 	PMBUS_FAN_CONFIG_12,
122 	PMBUS_FAN_CONFIG_12,
123 	PMBUS_FAN_CONFIG_34,
124 	PMBUS_FAN_CONFIG_34
125 };
126 
127 static const int pmbus_fan_command_registers[] = {
128 	PMBUS_FAN_COMMAND_1,
129 	PMBUS_FAN_COMMAND_2,
130 	PMBUS_FAN_COMMAND_3,
131 	PMBUS_FAN_COMMAND_4,
132 };
133 
134 void pmbus_clear_cache(struct i2c_client *client)
135 {
136 	struct pmbus_data *data = i2c_get_clientdata(client);
137 	struct pmbus_sensor *sensor;
138 
139 	for (sensor = data->sensors; sensor; sensor = sensor->next)
140 		sensor->data = -ENODATA;
141 }
142 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
143 
144 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
145 {
146 	struct pmbus_data *data = i2c_get_clientdata(client);
147 	struct pmbus_sensor *sensor;
148 
149 	for (sensor = data->sensors; sensor; sensor = sensor->next)
150 		if (sensor->reg == reg)
151 			sensor->update = update;
152 }
153 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
154 
155 int pmbus_set_page(struct i2c_client *client, int page, int phase)
156 {
157 	struct pmbus_data *data = i2c_get_clientdata(client);
158 	int rv;
159 
160 	if (page < 0)
161 		return 0;
162 
163 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
164 	    data->info->pages > 1 && page != data->currpage) {
165 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
166 		if (rv < 0)
167 			return rv;
168 
169 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
170 		if (rv < 0)
171 			return rv;
172 
173 		if (rv != page)
174 			return -EIO;
175 	}
176 	data->currpage = page;
177 
178 	if (data->info->phases[page] && data->currphase != phase &&
179 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
180 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
181 					       phase);
182 		if (rv)
183 			return rv;
184 	}
185 	data->currphase = phase;
186 
187 	return 0;
188 }
189 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
190 
191 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
192 {
193 	int rv;
194 
195 	rv = pmbus_set_page(client, page, 0xff);
196 	if (rv < 0)
197 		return rv;
198 
199 	return i2c_smbus_write_byte(client, value);
200 }
201 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
202 
203 /*
204  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
205  * a device specific mapping function exists and calls it if necessary.
206  */
207 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
208 {
209 	struct pmbus_data *data = i2c_get_clientdata(client);
210 	const struct pmbus_driver_info *info = data->info;
211 	int status;
212 
213 	if (info->write_byte) {
214 		status = info->write_byte(client, page, value);
215 		if (status != -ENODATA)
216 			return status;
217 	}
218 	return pmbus_write_byte(client, page, value);
219 }
220 
221 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
222 			  u16 word)
223 {
224 	int rv;
225 
226 	rv = pmbus_set_page(client, page, 0xff);
227 	if (rv < 0)
228 		return rv;
229 
230 	return i2c_smbus_write_word_data(client, reg, word);
231 }
232 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
233 
234 
235 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
236 				u16 word)
237 {
238 	int bit;
239 	int id;
240 	int rv;
241 
242 	switch (reg) {
243 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
244 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
245 		bit = pmbus_fan_rpm_mask[id];
246 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
247 		break;
248 	default:
249 		rv = -ENXIO;
250 		break;
251 	}
252 
253 	return rv;
254 }
255 
256 /*
257  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
258  * a device specific mapping function exists and calls it if necessary.
259  */
260 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
261 				  u16 word)
262 {
263 	struct pmbus_data *data = i2c_get_clientdata(client);
264 	const struct pmbus_driver_info *info = data->info;
265 	int status;
266 
267 	if (info->write_word_data) {
268 		status = info->write_word_data(client, page, reg, word);
269 		if (status != -ENODATA)
270 			return status;
271 	}
272 
273 	if (reg >= PMBUS_VIRT_BASE)
274 		return pmbus_write_virt_reg(client, page, reg, word);
275 
276 	return pmbus_write_word_data(client, page, reg, word);
277 }
278 
279 int pmbus_update_fan(struct i2c_client *client, int page, int id,
280 		     u8 config, u8 mask, u16 command)
281 {
282 	int from;
283 	int rv;
284 	u8 to;
285 
286 	from = pmbus_read_byte_data(client, page,
287 				    pmbus_fan_config_registers[id]);
288 	if (from < 0)
289 		return from;
290 
291 	to = (from & ~mask) | (config & mask);
292 	if (to != from) {
293 		rv = pmbus_write_byte_data(client, page,
294 					   pmbus_fan_config_registers[id], to);
295 		if (rv < 0)
296 			return rv;
297 	}
298 
299 	return _pmbus_write_word_data(client, page,
300 				      pmbus_fan_command_registers[id], command);
301 }
302 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
303 
304 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
305 {
306 	int rv;
307 
308 	rv = pmbus_set_page(client, page, phase);
309 	if (rv < 0)
310 		return rv;
311 
312 	return i2c_smbus_read_word_data(client, reg);
313 }
314 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
315 
316 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
317 {
318 	int rv;
319 	int id;
320 
321 	switch (reg) {
322 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
323 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
324 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
325 		break;
326 	default:
327 		rv = -ENXIO;
328 		break;
329 	}
330 
331 	return rv;
332 }
333 
334 /*
335  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
336  * a device specific mapping function exists and calls it if necessary.
337  */
338 static int _pmbus_read_word_data(struct i2c_client *client, int page,
339 				 int phase, int reg)
340 {
341 	struct pmbus_data *data = i2c_get_clientdata(client);
342 	const struct pmbus_driver_info *info = data->info;
343 	int status;
344 
345 	if (info->read_word_data) {
346 		status = info->read_word_data(client, page, phase, reg);
347 		if (status != -ENODATA)
348 			return status;
349 	}
350 
351 	if (reg >= PMBUS_VIRT_BASE)
352 		return pmbus_read_virt_reg(client, page, reg);
353 
354 	return pmbus_read_word_data(client, page, phase, reg);
355 }
356 
357 /* Same as above, but without phase parameter, for use in check functions */
358 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
359 {
360 	return _pmbus_read_word_data(client, page, 0xff, reg);
361 }
362 
363 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
364 {
365 	int rv;
366 
367 	rv = pmbus_set_page(client, page, 0xff);
368 	if (rv < 0)
369 		return rv;
370 
371 	return i2c_smbus_read_byte_data(client, reg);
372 }
373 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
374 
375 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
376 {
377 	int rv;
378 
379 	rv = pmbus_set_page(client, page, 0xff);
380 	if (rv < 0)
381 		return rv;
382 
383 	return i2c_smbus_write_byte_data(client, reg, value);
384 }
385 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
386 
387 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
388 			   u8 mask, u8 value)
389 {
390 	unsigned int tmp;
391 	int rv;
392 
393 	rv = pmbus_read_byte_data(client, page, reg);
394 	if (rv < 0)
395 		return rv;
396 
397 	tmp = (rv & ~mask) | (value & mask);
398 
399 	if (tmp != rv)
400 		rv = pmbus_write_byte_data(client, page, reg, tmp);
401 
402 	return rv;
403 }
404 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
405 
406 /*
407  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
408  * a device specific mapping function exists and calls it if necessary.
409  */
410 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
411 {
412 	struct pmbus_data *data = i2c_get_clientdata(client);
413 	const struct pmbus_driver_info *info = data->info;
414 	int status;
415 
416 	if (info->read_byte_data) {
417 		status = info->read_byte_data(client, page, reg);
418 		if (status != -ENODATA)
419 			return status;
420 	}
421 	return pmbus_read_byte_data(client, page, reg);
422 }
423 
424 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
425 					      int reg)
426 {
427 	struct pmbus_sensor *sensor;
428 
429 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
430 		if (sensor->page == page && sensor->reg == reg)
431 			return sensor;
432 	}
433 
434 	return ERR_PTR(-EINVAL);
435 }
436 
437 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
438 			      enum pmbus_fan_mode mode,
439 			      bool from_cache)
440 {
441 	struct pmbus_data *data = i2c_get_clientdata(client);
442 	bool want_rpm, have_rpm;
443 	struct pmbus_sensor *s;
444 	int config;
445 	int reg;
446 
447 	want_rpm = (mode == rpm);
448 
449 	if (from_cache) {
450 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
451 		s = pmbus_find_sensor(data, page, reg + id);
452 		if (IS_ERR(s))
453 			return PTR_ERR(s);
454 
455 		return s->data;
456 	}
457 
458 	config = pmbus_read_byte_data(client, page,
459 				      pmbus_fan_config_registers[id]);
460 	if (config < 0)
461 		return config;
462 
463 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
464 	if (want_rpm == have_rpm)
465 		return pmbus_read_word_data(client, page, 0xff,
466 					    pmbus_fan_command_registers[id]);
467 
468 	/* Can't sensibly map between RPM and PWM, just return zero */
469 	return 0;
470 }
471 
472 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
473 			      enum pmbus_fan_mode mode)
474 {
475 	return pmbus_get_fan_rate(client, page, id, mode, false);
476 }
477 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
478 
479 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
480 			      enum pmbus_fan_mode mode)
481 {
482 	return pmbus_get_fan_rate(client, page, id, mode, true);
483 }
484 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
485 
486 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
487 {
488 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
489 }
490 
491 void pmbus_clear_faults(struct i2c_client *client)
492 {
493 	struct pmbus_data *data = i2c_get_clientdata(client);
494 	int i;
495 
496 	for (i = 0; i < data->info->pages; i++)
497 		pmbus_clear_fault_page(client, i);
498 }
499 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
500 
501 static int pmbus_check_status_cml(struct i2c_client *client)
502 {
503 	struct pmbus_data *data = i2c_get_clientdata(client);
504 	int status, status2;
505 
506 	status = data->read_status(client, -1);
507 	if (status < 0 || (status & PB_STATUS_CML)) {
508 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
509 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
510 			return -EIO;
511 	}
512 	return 0;
513 }
514 
515 static bool pmbus_check_register(struct i2c_client *client,
516 				 int (*func)(struct i2c_client *client,
517 					     int page, int reg),
518 				 int page, int reg)
519 {
520 	int rv;
521 	struct pmbus_data *data = i2c_get_clientdata(client);
522 
523 	rv = func(client, page, reg);
524 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
525 		rv = pmbus_check_status_cml(client);
526 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
527 		data->read_status(client, -1);
528 	pmbus_clear_fault_page(client, -1);
529 	return rv >= 0;
530 }
531 
532 static bool pmbus_check_status_register(struct i2c_client *client, int page)
533 {
534 	int status;
535 	struct pmbus_data *data = i2c_get_clientdata(client);
536 
537 	status = data->read_status(client, page);
538 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
539 	    (status & PB_STATUS_CML)) {
540 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
541 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
542 			status = -EIO;
543 	}
544 
545 	pmbus_clear_fault_page(client, -1);
546 	return status >= 0;
547 }
548 
549 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
550 {
551 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
552 }
553 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
554 
555 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
556 {
557 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
558 }
559 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
560 
561 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
562 {
563 	struct pmbus_data *data = i2c_get_clientdata(client);
564 
565 	return data->info;
566 }
567 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
568 
569 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
570 {
571 	struct pmbus_data *data = i2c_get_clientdata(client);
572 	int status;
573 
574 	switch (reg) {
575 	case PMBUS_STATUS_WORD:
576 		status = data->read_status(client, page);
577 		break;
578 	default:
579 		status = _pmbus_read_byte_data(client, page, reg);
580 		break;
581 	}
582 	if (status < 0)
583 		pmbus_clear_faults(client);
584 	return status;
585 }
586 
587 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
588 {
589 	if (sensor->data < 0 || sensor->update)
590 		sensor->data = _pmbus_read_word_data(client, sensor->page,
591 						     sensor->phase, sensor->reg);
592 }
593 
594 /*
595  * Convert linear sensor values to milli- or micro-units
596  * depending on sensor type.
597  */
598 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
599 				 struct pmbus_sensor *sensor)
600 {
601 	s16 exponent;
602 	s32 mantissa;
603 	s64 val;
604 
605 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
606 		exponent = data->exponent[sensor->page];
607 		mantissa = (u16) sensor->data;
608 	} else {				/* LINEAR11 */
609 		exponent = ((s16)sensor->data) >> 11;
610 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
611 	}
612 
613 	val = mantissa;
614 
615 	/* scale result to milli-units for all sensors except fans */
616 	if (sensor->class != PSC_FAN)
617 		val = val * 1000LL;
618 
619 	/* scale result to micro-units for power sensors */
620 	if (sensor->class == PSC_POWER)
621 		val = val * 1000LL;
622 
623 	if (exponent >= 0)
624 		val <<= exponent;
625 	else
626 		val >>= -exponent;
627 
628 	return val;
629 }
630 
631 /*
632  * Convert direct sensor values to milli- or micro-units
633  * depending on sensor type.
634  */
635 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
636 				 struct pmbus_sensor *sensor)
637 {
638 	s64 b, val = (s16)sensor->data;
639 	s32 m, R;
640 
641 	m = data->info->m[sensor->class];
642 	b = data->info->b[sensor->class];
643 	R = data->info->R[sensor->class];
644 
645 	if (m == 0)
646 		return 0;
647 
648 	/* X = 1/m * (Y * 10^-R - b) */
649 	R = -R;
650 	/* scale result to milli-units for everything but fans */
651 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
652 		R += 3;
653 		b *= 1000;
654 	}
655 
656 	/* scale result to micro-units for power sensors */
657 	if (sensor->class == PSC_POWER) {
658 		R += 3;
659 		b *= 1000;
660 	}
661 
662 	while (R > 0) {
663 		val *= 10;
664 		R--;
665 	}
666 	while (R < 0) {
667 		val = div_s64(val + 5LL, 10L);  /* round closest */
668 		R++;
669 	}
670 
671 	val = div_s64(val - b, m);
672 	return val;
673 }
674 
675 /*
676  * Convert VID sensor values to milli- or micro-units
677  * depending on sensor type.
678  */
679 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
680 			      struct pmbus_sensor *sensor)
681 {
682 	long val = sensor->data;
683 	long rv = 0;
684 
685 	switch (data->info->vrm_version[sensor->page]) {
686 	case vr11:
687 		if (val >= 0x02 && val <= 0xb2)
688 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
689 		break;
690 	case vr12:
691 		if (val >= 0x01)
692 			rv = 250 + (val - 1) * 5;
693 		break;
694 	case vr13:
695 		if (val >= 0x01)
696 			rv = 500 + (val - 1) * 10;
697 		break;
698 	case imvp9:
699 		if (val >= 0x01)
700 			rv = 200 + (val - 1) * 10;
701 		break;
702 	case amd625mv:
703 		if (val >= 0x0 && val <= 0xd8)
704 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
705 		break;
706 	}
707 	return rv;
708 }
709 
710 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
711 {
712 	s64 val;
713 
714 	if (!sensor->convert)
715 		return sensor->data;
716 
717 	switch (data->info->format[sensor->class]) {
718 	case direct:
719 		val = pmbus_reg2data_direct(data, sensor);
720 		break;
721 	case vid:
722 		val = pmbus_reg2data_vid(data, sensor);
723 		break;
724 	case linear:
725 	default:
726 		val = pmbus_reg2data_linear(data, sensor);
727 		break;
728 	}
729 	return val;
730 }
731 
732 #define MAX_MANTISSA	(1023 * 1000)
733 #define MIN_MANTISSA	(511 * 1000)
734 
735 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
736 				 struct pmbus_sensor *sensor, s64 val)
737 {
738 	s16 exponent = 0, mantissa;
739 	bool negative = false;
740 
741 	/* simple case */
742 	if (val == 0)
743 		return 0;
744 
745 	if (sensor->class == PSC_VOLTAGE_OUT) {
746 		/* LINEAR16 does not support negative voltages */
747 		if (val < 0)
748 			return 0;
749 
750 		/*
751 		 * For a static exponents, we don't have a choice
752 		 * but to adjust the value to it.
753 		 */
754 		if (data->exponent[sensor->page] < 0)
755 			val <<= -data->exponent[sensor->page];
756 		else
757 			val >>= data->exponent[sensor->page];
758 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
759 		return clamp_val(val, 0, 0xffff);
760 	}
761 
762 	if (val < 0) {
763 		negative = true;
764 		val = -val;
765 	}
766 
767 	/* Power is in uW. Convert to mW before converting. */
768 	if (sensor->class == PSC_POWER)
769 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
770 
771 	/*
772 	 * For simplicity, convert fan data to milli-units
773 	 * before calculating the exponent.
774 	 */
775 	if (sensor->class == PSC_FAN)
776 		val = val * 1000LL;
777 
778 	/* Reduce large mantissa until it fits into 10 bit */
779 	while (val >= MAX_MANTISSA && exponent < 15) {
780 		exponent++;
781 		val >>= 1;
782 	}
783 	/* Increase small mantissa to improve precision */
784 	while (val < MIN_MANTISSA && exponent > -15) {
785 		exponent--;
786 		val <<= 1;
787 	}
788 
789 	/* Convert mantissa from milli-units to units */
790 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
791 
792 	/* restore sign */
793 	if (negative)
794 		mantissa = -mantissa;
795 
796 	/* Convert to 5 bit exponent, 11 bit mantissa */
797 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
798 }
799 
800 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
801 				 struct pmbus_sensor *sensor, s64 val)
802 {
803 	s64 b;
804 	s32 m, R;
805 
806 	m = data->info->m[sensor->class];
807 	b = data->info->b[sensor->class];
808 	R = data->info->R[sensor->class];
809 
810 	/* Power is in uW. Adjust R and b. */
811 	if (sensor->class == PSC_POWER) {
812 		R -= 3;
813 		b *= 1000;
814 	}
815 
816 	/* Calculate Y = (m * X + b) * 10^R */
817 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
818 		R -= 3;		/* Adjust R and b for data in milli-units */
819 		b *= 1000;
820 	}
821 	val = val * m + b;
822 
823 	while (R > 0) {
824 		val *= 10;
825 		R--;
826 	}
827 	while (R < 0) {
828 		val = div_s64(val + 5LL, 10L);  /* round closest */
829 		R++;
830 	}
831 
832 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
833 }
834 
835 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
836 			      struct pmbus_sensor *sensor, s64 val)
837 {
838 	val = clamp_val(val, 500, 1600);
839 
840 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
841 }
842 
843 static u16 pmbus_data2reg(struct pmbus_data *data,
844 			  struct pmbus_sensor *sensor, s64 val)
845 {
846 	u16 regval;
847 
848 	if (!sensor->convert)
849 		return val;
850 
851 	switch (data->info->format[sensor->class]) {
852 	case direct:
853 		regval = pmbus_data2reg_direct(data, sensor, val);
854 		break;
855 	case vid:
856 		regval = pmbus_data2reg_vid(data, sensor, val);
857 		break;
858 	case linear:
859 	default:
860 		regval = pmbus_data2reg_linear(data, sensor, val);
861 		break;
862 	}
863 	return regval;
864 }
865 
866 /*
867  * Return boolean calculated from converted data.
868  * <index> defines a status register index and mask.
869  * The mask is in the lower 8 bits, the register index is in bits 8..23.
870  *
871  * The associated pmbus_boolean structure contains optional pointers to two
872  * sensor attributes. If specified, those attributes are compared against each
873  * other to determine if a limit has been exceeded.
874  *
875  * If the sensor attribute pointers are NULL, the function returns true if
876  * (status[reg] & mask) is true.
877  *
878  * If sensor attribute pointers are provided, a comparison against a specified
879  * limit has to be performed to determine the boolean result.
880  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
881  * sensor values referenced by sensor attribute pointers s1 and s2).
882  *
883  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
884  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
885  *
886  * If a negative value is stored in any of the referenced registers, this value
887  * reflects an error code which will be returned.
888  */
889 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
890 			     int index)
891 {
892 	struct pmbus_data *data = i2c_get_clientdata(client);
893 	struct pmbus_sensor *s1 = b->s1;
894 	struct pmbus_sensor *s2 = b->s2;
895 	u16 mask = pb_index_to_mask(index);
896 	u8 page = pb_index_to_page(index);
897 	u16 reg = pb_index_to_reg(index);
898 	int ret, status;
899 	u16 regval;
900 
901 	mutex_lock(&data->update_lock);
902 	status = pmbus_get_status(client, page, reg);
903 	if (status < 0) {
904 		ret = status;
905 		goto unlock;
906 	}
907 
908 	if (s1)
909 		pmbus_update_sensor_data(client, s1);
910 	if (s2)
911 		pmbus_update_sensor_data(client, s2);
912 
913 	regval = status & mask;
914 	if (s1 && s2) {
915 		s64 v1, v2;
916 
917 		if (s1->data < 0) {
918 			ret = s1->data;
919 			goto unlock;
920 		}
921 		if (s2->data < 0) {
922 			ret = s2->data;
923 			goto unlock;
924 		}
925 
926 		v1 = pmbus_reg2data(data, s1);
927 		v2 = pmbus_reg2data(data, s2);
928 		ret = !!(regval && v1 >= v2);
929 	} else {
930 		ret = !!regval;
931 	}
932 unlock:
933 	mutex_unlock(&data->update_lock);
934 	return ret;
935 }
936 
937 static ssize_t pmbus_show_boolean(struct device *dev,
938 				  struct device_attribute *da, char *buf)
939 {
940 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
941 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
942 	struct i2c_client *client = to_i2c_client(dev->parent);
943 	int val;
944 
945 	val = pmbus_get_boolean(client, boolean, attr->index);
946 	if (val < 0)
947 		return val;
948 	return sysfs_emit(buf, "%d\n", val);
949 }
950 
951 static ssize_t pmbus_show_sensor(struct device *dev,
952 				 struct device_attribute *devattr, char *buf)
953 {
954 	struct i2c_client *client = to_i2c_client(dev->parent);
955 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
956 	struct pmbus_data *data = i2c_get_clientdata(client);
957 	ssize_t ret;
958 
959 	mutex_lock(&data->update_lock);
960 	pmbus_update_sensor_data(client, sensor);
961 	if (sensor->data < 0)
962 		ret = sensor->data;
963 	else
964 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
965 	mutex_unlock(&data->update_lock);
966 	return ret;
967 }
968 
969 static ssize_t pmbus_set_sensor(struct device *dev,
970 				struct device_attribute *devattr,
971 				const char *buf, size_t count)
972 {
973 	struct i2c_client *client = to_i2c_client(dev->parent);
974 	struct pmbus_data *data = i2c_get_clientdata(client);
975 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
976 	ssize_t rv = count;
977 	s64 val;
978 	int ret;
979 	u16 regval;
980 
981 	if (kstrtos64(buf, 10, &val) < 0)
982 		return -EINVAL;
983 
984 	mutex_lock(&data->update_lock);
985 	regval = pmbus_data2reg(data, sensor, val);
986 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
987 	if (ret < 0)
988 		rv = ret;
989 	else
990 		sensor->data = -ENODATA;
991 	mutex_unlock(&data->update_lock);
992 	return rv;
993 }
994 
995 static ssize_t pmbus_show_label(struct device *dev,
996 				struct device_attribute *da, char *buf)
997 {
998 	struct pmbus_label *label = to_pmbus_label(da);
999 
1000 	return sysfs_emit(buf, "%s\n", label->label);
1001 }
1002 
1003 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1004 {
1005 	if (data->num_attributes >= data->max_attributes - 1) {
1006 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1007 		void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1008 						new_max_attrs * sizeof(void *),
1009 						GFP_KERNEL);
1010 		if (!new_attrs)
1011 			return -ENOMEM;
1012 		data->group.attrs = new_attrs;
1013 		data->max_attributes = new_max_attrs;
1014 	}
1015 
1016 	data->group.attrs[data->num_attributes++] = attr;
1017 	data->group.attrs[data->num_attributes] = NULL;
1018 	return 0;
1019 }
1020 
1021 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1022 				const char *name,
1023 				umode_t mode,
1024 				ssize_t (*show)(struct device *dev,
1025 						struct device_attribute *attr,
1026 						char *buf),
1027 				ssize_t (*store)(struct device *dev,
1028 						 struct device_attribute *attr,
1029 						 const char *buf, size_t count))
1030 {
1031 	sysfs_attr_init(&dev_attr->attr);
1032 	dev_attr->attr.name = name;
1033 	dev_attr->attr.mode = mode;
1034 	dev_attr->show = show;
1035 	dev_attr->store = store;
1036 }
1037 
1038 static void pmbus_attr_init(struct sensor_device_attribute *a,
1039 			    const char *name,
1040 			    umode_t mode,
1041 			    ssize_t (*show)(struct device *dev,
1042 					    struct device_attribute *attr,
1043 					    char *buf),
1044 			    ssize_t (*store)(struct device *dev,
1045 					     struct device_attribute *attr,
1046 					     const char *buf, size_t count),
1047 			    int idx)
1048 {
1049 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1050 	a->index = idx;
1051 }
1052 
1053 static int pmbus_add_boolean(struct pmbus_data *data,
1054 			     const char *name, const char *type, int seq,
1055 			     struct pmbus_sensor *s1,
1056 			     struct pmbus_sensor *s2,
1057 			     u8 page, u16 reg, u16 mask)
1058 {
1059 	struct pmbus_boolean *boolean;
1060 	struct sensor_device_attribute *a;
1061 
1062 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1063 		return -EINVAL;
1064 
1065 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1066 	if (!boolean)
1067 		return -ENOMEM;
1068 
1069 	a = &boolean->attribute;
1070 
1071 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1072 		 name, seq, type);
1073 	boolean->s1 = s1;
1074 	boolean->s2 = s2;
1075 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1076 			pb_reg_to_index(page, reg, mask));
1077 
1078 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1079 }
1080 
1081 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1082 					     const char *name, const char *type,
1083 					     int seq, int page, int phase,
1084 					     int reg,
1085 					     enum pmbus_sensor_classes class,
1086 					     bool update, bool readonly,
1087 					     bool convert)
1088 {
1089 	struct pmbus_sensor *sensor;
1090 	struct device_attribute *a;
1091 
1092 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1093 	if (!sensor)
1094 		return NULL;
1095 	a = &sensor->attribute;
1096 
1097 	if (type)
1098 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1099 			 name, seq, type);
1100 	else
1101 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1102 			 name, seq);
1103 
1104 	if (data->flags & PMBUS_WRITE_PROTECTED)
1105 		readonly = true;
1106 
1107 	sensor->page = page;
1108 	sensor->phase = phase;
1109 	sensor->reg = reg;
1110 	sensor->class = class;
1111 	sensor->update = update;
1112 	sensor->convert = convert;
1113 	sensor->data = -ENODATA;
1114 	pmbus_dev_attr_init(a, sensor->name,
1115 			    readonly ? 0444 : 0644,
1116 			    pmbus_show_sensor, pmbus_set_sensor);
1117 
1118 	if (pmbus_add_attribute(data, &a->attr))
1119 		return NULL;
1120 
1121 	sensor->next = data->sensors;
1122 	data->sensors = sensor;
1123 
1124 	return sensor;
1125 }
1126 
1127 static int pmbus_add_label(struct pmbus_data *data,
1128 			   const char *name, int seq,
1129 			   const char *lstring, int index, int phase)
1130 {
1131 	struct pmbus_label *label;
1132 	struct device_attribute *a;
1133 
1134 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1135 	if (!label)
1136 		return -ENOMEM;
1137 
1138 	a = &label->attribute;
1139 
1140 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1141 	if (!index) {
1142 		if (phase == 0xff)
1143 			strncpy(label->label, lstring,
1144 				sizeof(label->label) - 1);
1145 		else
1146 			snprintf(label->label, sizeof(label->label), "%s.%d",
1147 				 lstring, phase);
1148 	} else {
1149 		if (phase == 0xff)
1150 			snprintf(label->label, sizeof(label->label), "%s%d",
1151 				 lstring, index);
1152 		else
1153 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1154 				 lstring, index, phase);
1155 	}
1156 
1157 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1158 	return pmbus_add_attribute(data, &a->attr);
1159 }
1160 
1161 /*
1162  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1163  */
1164 
1165 /*
1166  * The pmbus_limit_attr structure describes a single limit attribute
1167  * and its associated alarm attribute.
1168  */
1169 struct pmbus_limit_attr {
1170 	u16 reg;		/* Limit register */
1171 	u16 sbit;		/* Alarm attribute status bit */
1172 	bool update;		/* True if register needs updates */
1173 	bool low;		/* True if low limit; for limits with compare
1174 				   functions only */
1175 	const char *attr;	/* Attribute name */
1176 	const char *alarm;	/* Alarm attribute name */
1177 };
1178 
1179 /*
1180  * The pmbus_sensor_attr structure describes one sensor attribute. This
1181  * description includes a reference to the associated limit attributes.
1182  */
1183 struct pmbus_sensor_attr {
1184 	u16 reg;			/* sensor register */
1185 	u16 gbit;			/* generic status bit */
1186 	u8 nlimit;			/* # of limit registers */
1187 	enum pmbus_sensor_classes class;/* sensor class */
1188 	const char *label;		/* sensor label */
1189 	bool paged;			/* true if paged sensor */
1190 	bool update;			/* true if update needed */
1191 	bool compare;			/* true if compare function needed */
1192 	u32 func;			/* sensor mask */
1193 	u32 sfunc;			/* sensor status mask */
1194 	int sreg;			/* status register */
1195 	const struct pmbus_limit_attr *limit;/* limit registers */
1196 };
1197 
1198 /*
1199  * Add a set of limit attributes and, if supported, the associated
1200  * alarm attributes.
1201  * returns 0 if no alarm register found, 1 if an alarm register was found,
1202  * < 0 on errors.
1203  */
1204 static int pmbus_add_limit_attrs(struct i2c_client *client,
1205 				 struct pmbus_data *data,
1206 				 const struct pmbus_driver_info *info,
1207 				 const char *name, int index, int page,
1208 				 struct pmbus_sensor *base,
1209 				 const struct pmbus_sensor_attr *attr)
1210 {
1211 	const struct pmbus_limit_attr *l = attr->limit;
1212 	int nlimit = attr->nlimit;
1213 	int have_alarm = 0;
1214 	int i, ret;
1215 	struct pmbus_sensor *curr;
1216 
1217 	for (i = 0; i < nlimit; i++) {
1218 		if (pmbus_check_word_register(client, page, l->reg)) {
1219 			curr = pmbus_add_sensor(data, name, l->attr, index,
1220 						page, 0xff, l->reg, attr->class,
1221 						attr->update || l->update,
1222 						false, true);
1223 			if (!curr)
1224 				return -ENOMEM;
1225 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1226 				ret = pmbus_add_boolean(data, name,
1227 					l->alarm, index,
1228 					attr->compare ?  l->low ? curr : base
1229 						      : NULL,
1230 					attr->compare ? l->low ? base : curr
1231 						      : NULL,
1232 					page, attr->sreg, l->sbit);
1233 				if (ret)
1234 					return ret;
1235 				have_alarm = 1;
1236 			}
1237 		}
1238 		l++;
1239 	}
1240 	return have_alarm;
1241 }
1242 
1243 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1244 				      struct pmbus_data *data,
1245 				      const struct pmbus_driver_info *info,
1246 				      const char *name,
1247 				      int index, int page, int phase,
1248 				      const struct pmbus_sensor_attr *attr,
1249 				      bool paged)
1250 {
1251 	struct pmbus_sensor *base;
1252 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1253 	int ret;
1254 
1255 	if (attr->label) {
1256 		ret = pmbus_add_label(data, name, index, attr->label,
1257 				      paged ? page + 1 : 0, phase);
1258 		if (ret)
1259 			return ret;
1260 	}
1261 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1262 				attr->reg, attr->class, true, true, true);
1263 	if (!base)
1264 		return -ENOMEM;
1265 	/* No limit and alarm attributes for phase specific sensors */
1266 	if (attr->sfunc && phase == 0xff) {
1267 		ret = pmbus_add_limit_attrs(client, data, info, name,
1268 					    index, page, base, attr);
1269 		if (ret < 0)
1270 			return ret;
1271 		/*
1272 		 * Add generic alarm attribute only if there are no individual
1273 		 * alarm attributes, if there is a global alarm bit, and if
1274 		 * the generic status register (word or byte, depending on
1275 		 * which global bit is set) for this page is accessible.
1276 		 */
1277 		if (!ret && attr->gbit &&
1278 		    (!upper || data->has_status_word) &&
1279 		    pmbus_check_status_register(client, page)) {
1280 			ret = pmbus_add_boolean(data, name, "alarm", index,
1281 						NULL, NULL,
1282 						page, PMBUS_STATUS_WORD,
1283 						attr->gbit);
1284 			if (ret)
1285 				return ret;
1286 		}
1287 	}
1288 	return 0;
1289 }
1290 
1291 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1292 				  const struct pmbus_sensor_attr *attr)
1293 {
1294 	int p;
1295 
1296 	if (attr->paged)
1297 		return true;
1298 
1299 	/*
1300 	 * Some attributes may be present on more than one page despite
1301 	 * not being marked with the paged attribute. If that is the case,
1302 	 * then treat the sensor as being paged and add the page suffix to the
1303 	 * attribute name.
1304 	 * We don't just add the paged attribute to all such attributes, in
1305 	 * order to maintain the un-suffixed labels in the case where the
1306 	 * attribute is only on page 0.
1307 	 */
1308 	for (p = 1; p < info->pages; p++) {
1309 		if (info->func[p] & attr->func)
1310 			return true;
1311 	}
1312 	return false;
1313 }
1314 
1315 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1316 				  struct pmbus_data *data,
1317 				  const char *name,
1318 				  const struct pmbus_sensor_attr *attrs,
1319 				  int nattrs)
1320 {
1321 	const struct pmbus_driver_info *info = data->info;
1322 	int index, i;
1323 	int ret;
1324 
1325 	index = 1;
1326 	for (i = 0; i < nattrs; i++) {
1327 		int page, pages;
1328 		bool paged = pmbus_sensor_is_paged(info, attrs);
1329 
1330 		pages = paged ? info->pages : 1;
1331 		for (page = 0; page < pages; page++) {
1332 			if (info->func[page] & attrs->func) {
1333 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1334 								 name, index, page,
1335 								 0xff, attrs, paged);
1336 				if (ret)
1337 					return ret;
1338 				index++;
1339 			}
1340 			if (info->phases[page]) {
1341 				int phase;
1342 
1343 				for (phase = 0; phase < info->phases[page];
1344 				     phase++) {
1345 					if (!(info->pfunc[phase] & attrs->func))
1346 						continue;
1347 					ret = pmbus_add_sensor_attrs_one(client,
1348 						data, info, name, index, page,
1349 						phase, attrs, paged);
1350 					if (ret)
1351 						return ret;
1352 					index++;
1353 				}
1354 			}
1355 		}
1356 		attrs++;
1357 	}
1358 	return 0;
1359 }
1360 
1361 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1362 	{
1363 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1364 		.attr = "min",
1365 		.alarm = "min_alarm",
1366 		.sbit = PB_VOLTAGE_UV_WARNING,
1367 	}, {
1368 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1369 		.attr = "lcrit",
1370 		.alarm = "lcrit_alarm",
1371 		.sbit = PB_VOLTAGE_UV_FAULT,
1372 	}, {
1373 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1374 		.attr = "max",
1375 		.alarm = "max_alarm",
1376 		.sbit = PB_VOLTAGE_OV_WARNING,
1377 	}, {
1378 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1379 		.attr = "crit",
1380 		.alarm = "crit_alarm",
1381 		.sbit = PB_VOLTAGE_OV_FAULT,
1382 	}, {
1383 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1384 		.update = true,
1385 		.attr = "average",
1386 	}, {
1387 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1388 		.update = true,
1389 		.attr = "lowest",
1390 	}, {
1391 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1392 		.update = true,
1393 		.attr = "highest",
1394 	}, {
1395 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1396 		.attr = "reset_history",
1397 	}, {
1398 		.reg = PMBUS_MFR_VIN_MIN,
1399 		.attr = "rated_min",
1400 	}, {
1401 		.reg = PMBUS_MFR_VIN_MAX,
1402 		.attr = "rated_max",
1403 	},
1404 };
1405 
1406 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1407 	{
1408 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1409 		.attr = "min",
1410 		.alarm = "min_alarm",
1411 		.sbit = PB_VOLTAGE_UV_WARNING,
1412 	}, {
1413 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1414 		.attr = "lcrit",
1415 		.alarm = "lcrit_alarm",
1416 		.sbit = PB_VOLTAGE_UV_FAULT,
1417 	}, {
1418 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1419 		.attr = "max",
1420 		.alarm = "max_alarm",
1421 		.sbit = PB_VOLTAGE_OV_WARNING,
1422 	}, {
1423 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1424 		.attr = "crit",
1425 		.alarm = "crit_alarm",
1426 		.sbit = PB_VOLTAGE_OV_FAULT,
1427 	}
1428 };
1429 
1430 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1431 	{
1432 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1433 		.attr = "min",
1434 		.alarm = "min_alarm",
1435 		.sbit = PB_VOLTAGE_UV_WARNING,
1436 	}, {
1437 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1438 		.attr = "lcrit",
1439 		.alarm = "lcrit_alarm",
1440 		.sbit = PB_VOLTAGE_UV_FAULT,
1441 	}, {
1442 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1443 		.attr = "max",
1444 		.alarm = "max_alarm",
1445 		.sbit = PB_VOLTAGE_OV_WARNING,
1446 	}, {
1447 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1448 		.attr = "crit",
1449 		.alarm = "crit_alarm",
1450 		.sbit = PB_VOLTAGE_OV_FAULT,
1451 	}, {
1452 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1453 		.update = true,
1454 		.attr = "average",
1455 	}, {
1456 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1457 		.update = true,
1458 		.attr = "lowest",
1459 	}, {
1460 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1461 		.update = true,
1462 		.attr = "highest",
1463 	}, {
1464 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1465 		.attr = "reset_history",
1466 	}, {
1467 		.reg = PMBUS_MFR_VOUT_MIN,
1468 		.attr = "rated_min",
1469 	}, {
1470 		.reg = PMBUS_MFR_VOUT_MAX,
1471 		.attr = "rated_max",
1472 	},
1473 };
1474 
1475 static const struct pmbus_sensor_attr voltage_attributes[] = {
1476 	{
1477 		.reg = PMBUS_READ_VIN,
1478 		.class = PSC_VOLTAGE_IN,
1479 		.label = "vin",
1480 		.func = PMBUS_HAVE_VIN,
1481 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1482 		.sreg = PMBUS_STATUS_INPUT,
1483 		.gbit = PB_STATUS_VIN_UV,
1484 		.limit = vin_limit_attrs,
1485 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1486 	}, {
1487 		.reg = PMBUS_VIRT_READ_VMON,
1488 		.class = PSC_VOLTAGE_IN,
1489 		.label = "vmon",
1490 		.func = PMBUS_HAVE_VMON,
1491 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1492 		.sreg = PMBUS_VIRT_STATUS_VMON,
1493 		.limit = vmon_limit_attrs,
1494 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1495 	}, {
1496 		.reg = PMBUS_READ_VCAP,
1497 		.class = PSC_VOLTAGE_IN,
1498 		.label = "vcap",
1499 		.func = PMBUS_HAVE_VCAP,
1500 	}, {
1501 		.reg = PMBUS_READ_VOUT,
1502 		.class = PSC_VOLTAGE_OUT,
1503 		.label = "vout",
1504 		.paged = true,
1505 		.func = PMBUS_HAVE_VOUT,
1506 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1507 		.sreg = PMBUS_STATUS_VOUT,
1508 		.gbit = PB_STATUS_VOUT_OV,
1509 		.limit = vout_limit_attrs,
1510 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1511 	}
1512 };
1513 
1514 /* Current attributes */
1515 
1516 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1517 	{
1518 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1519 		.attr = "max",
1520 		.alarm = "max_alarm",
1521 		.sbit = PB_IIN_OC_WARNING,
1522 	}, {
1523 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1524 		.attr = "crit",
1525 		.alarm = "crit_alarm",
1526 		.sbit = PB_IIN_OC_FAULT,
1527 	}, {
1528 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1529 		.update = true,
1530 		.attr = "average",
1531 	}, {
1532 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1533 		.update = true,
1534 		.attr = "lowest",
1535 	}, {
1536 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1537 		.update = true,
1538 		.attr = "highest",
1539 	}, {
1540 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1541 		.attr = "reset_history",
1542 	}, {
1543 		.reg = PMBUS_MFR_IIN_MAX,
1544 		.attr = "rated_max",
1545 	},
1546 };
1547 
1548 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1549 	{
1550 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1551 		.attr = "max",
1552 		.alarm = "max_alarm",
1553 		.sbit = PB_IOUT_OC_WARNING,
1554 	}, {
1555 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1556 		.attr = "lcrit",
1557 		.alarm = "lcrit_alarm",
1558 		.sbit = PB_IOUT_UC_FAULT,
1559 	}, {
1560 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1561 		.attr = "crit",
1562 		.alarm = "crit_alarm",
1563 		.sbit = PB_IOUT_OC_FAULT,
1564 	}, {
1565 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1566 		.update = true,
1567 		.attr = "average",
1568 	}, {
1569 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1570 		.update = true,
1571 		.attr = "lowest",
1572 	}, {
1573 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1574 		.update = true,
1575 		.attr = "highest",
1576 	}, {
1577 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1578 		.attr = "reset_history",
1579 	}, {
1580 		.reg = PMBUS_MFR_IOUT_MAX,
1581 		.attr = "rated_max",
1582 	},
1583 };
1584 
1585 static const struct pmbus_sensor_attr current_attributes[] = {
1586 	{
1587 		.reg = PMBUS_READ_IIN,
1588 		.class = PSC_CURRENT_IN,
1589 		.label = "iin",
1590 		.func = PMBUS_HAVE_IIN,
1591 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1592 		.sreg = PMBUS_STATUS_INPUT,
1593 		.gbit = PB_STATUS_INPUT,
1594 		.limit = iin_limit_attrs,
1595 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1596 	}, {
1597 		.reg = PMBUS_READ_IOUT,
1598 		.class = PSC_CURRENT_OUT,
1599 		.label = "iout",
1600 		.paged = true,
1601 		.func = PMBUS_HAVE_IOUT,
1602 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1603 		.sreg = PMBUS_STATUS_IOUT,
1604 		.gbit = PB_STATUS_IOUT_OC,
1605 		.limit = iout_limit_attrs,
1606 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1607 	}
1608 };
1609 
1610 /* Power attributes */
1611 
1612 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1613 	{
1614 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1615 		.attr = "max",
1616 		.alarm = "alarm",
1617 		.sbit = PB_PIN_OP_WARNING,
1618 	}, {
1619 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1620 		.update = true,
1621 		.attr = "average",
1622 	}, {
1623 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1624 		.update = true,
1625 		.attr = "input_lowest",
1626 	}, {
1627 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1628 		.update = true,
1629 		.attr = "input_highest",
1630 	}, {
1631 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1632 		.attr = "reset_history",
1633 	}, {
1634 		.reg = PMBUS_MFR_PIN_MAX,
1635 		.attr = "rated_max",
1636 	},
1637 };
1638 
1639 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1640 	{
1641 		.reg = PMBUS_POUT_MAX,
1642 		.attr = "cap",
1643 		.alarm = "cap_alarm",
1644 		.sbit = PB_POWER_LIMITING,
1645 	}, {
1646 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1647 		.attr = "max",
1648 		.alarm = "max_alarm",
1649 		.sbit = PB_POUT_OP_WARNING,
1650 	}, {
1651 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1652 		.attr = "crit",
1653 		.alarm = "crit_alarm",
1654 		.sbit = PB_POUT_OP_FAULT,
1655 	}, {
1656 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1657 		.update = true,
1658 		.attr = "average",
1659 	}, {
1660 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1661 		.update = true,
1662 		.attr = "input_lowest",
1663 	}, {
1664 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1665 		.update = true,
1666 		.attr = "input_highest",
1667 	}, {
1668 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1669 		.attr = "reset_history",
1670 	}, {
1671 		.reg = PMBUS_MFR_POUT_MAX,
1672 		.attr = "rated_max",
1673 	},
1674 };
1675 
1676 static const struct pmbus_sensor_attr power_attributes[] = {
1677 	{
1678 		.reg = PMBUS_READ_PIN,
1679 		.class = PSC_POWER,
1680 		.label = "pin",
1681 		.func = PMBUS_HAVE_PIN,
1682 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1683 		.sreg = PMBUS_STATUS_INPUT,
1684 		.gbit = PB_STATUS_INPUT,
1685 		.limit = pin_limit_attrs,
1686 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1687 	}, {
1688 		.reg = PMBUS_READ_POUT,
1689 		.class = PSC_POWER,
1690 		.label = "pout",
1691 		.paged = true,
1692 		.func = PMBUS_HAVE_POUT,
1693 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1694 		.sreg = PMBUS_STATUS_IOUT,
1695 		.limit = pout_limit_attrs,
1696 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1697 	}
1698 };
1699 
1700 /* Temperature atributes */
1701 
1702 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1703 	{
1704 		.reg = PMBUS_UT_WARN_LIMIT,
1705 		.low = true,
1706 		.attr = "min",
1707 		.alarm = "min_alarm",
1708 		.sbit = PB_TEMP_UT_WARNING,
1709 	}, {
1710 		.reg = PMBUS_UT_FAULT_LIMIT,
1711 		.low = true,
1712 		.attr = "lcrit",
1713 		.alarm = "lcrit_alarm",
1714 		.sbit = PB_TEMP_UT_FAULT,
1715 	}, {
1716 		.reg = PMBUS_OT_WARN_LIMIT,
1717 		.attr = "max",
1718 		.alarm = "max_alarm",
1719 		.sbit = PB_TEMP_OT_WARNING,
1720 	}, {
1721 		.reg = PMBUS_OT_FAULT_LIMIT,
1722 		.attr = "crit",
1723 		.alarm = "crit_alarm",
1724 		.sbit = PB_TEMP_OT_FAULT,
1725 	}, {
1726 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1727 		.attr = "lowest",
1728 	}, {
1729 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1730 		.attr = "average",
1731 	}, {
1732 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1733 		.attr = "highest",
1734 	}, {
1735 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1736 		.attr = "reset_history",
1737 	}, {
1738 		.reg = PMBUS_MFR_MAX_TEMP_1,
1739 		.attr = "rated_max",
1740 	},
1741 };
1742 
1743 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1744 	{
1745 		.reg = PMBUS_UT_WARN_LIMIT,
1746 		.low = true,
1747 		.attr = "min",
1748 		.alarm = "min_alarm",
1749 		.sbit = PB_TEMP_UT_WARNING,
1750 	}, {
1751 		.reg = PMBUS_UT_FAULT_LIMIT,
1752 		.low = true,
1753 		.attr = "lcrit",
1754 		.alarm = "lcrit_alarm",
1755 		.sbit = PB_TEMP_UT_FAULT,
1756 	}, {
1757 		.reg = PMBUS_OT_WARN_LIMIT,
1758 		.attr = "max",
1759 		.alarm = "max_alarm",
1760 		.sbit = PB_TEMP_OT_WARNING,
1761 	}, {
1762 		.reg = PMBUS_OT_FAULT_LIMIT,
1763 		.attr = "crit",
1764 		.alarm = "crit_alarm",
1765 		.sbit = PB_TEMP_OT_FAULT,
1766 	}, {
1767 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1768 		.attr = "lowest",
1769 	}, {
1770 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1771 		.attr = "average",
1772 	}, {
1773 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1774 		.attr = "highest",
1775 	}, {
1776 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1777 		.attr = "reset_history",
1778 	}, {
1779 		.reg = PMBUS_MFR_MAX_TEMP_2,
1780 		.attr = "rated_max",
1781 	},
1782 };
1783 
1784 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1785 	{
1786 		.reg = PMBUS_UT_WARN_LIMIT,
1787 		.low = true,
1788 		.attr = "min",
1789 		.alarm = "min_alarm",
1790 		.sbit = PB_TEMP_UT_WARNING,
1791 	}, {
1792 		.reg = PMBUS_UT_FAULT_LIMIT,
1793 		.low = true,
1794 		.attr = "lcrit",
1795 		.alarm = "lcrit_alarm",
1796 		.sbit = PB_TEMP_UT_FAULT,
1797 	}, {
1798 		.reg = PMBUS_OT_WARN_LIMIT,
1799 		.attr = "max",
1800 		.alarm = "max_alarm",
1801 		.sbit = PB_TEMP_OT_WARNING,
1802 	}, {
1803 		.reg = PMBUS_OT_FAULT_LIMIT,
1804 		.attr = "crit",
1805 		.alarm = "crit_alarm",
1806 		.sbit = PB_TEMP_OT_FAULT,
1807 	}, {
1808 		.reg = PMBUS_MFR_MAX_TEMP_3,
1809 		.attr = "rated_max",
1810 	},
1811 };
1812 
1813 static const struct pmbus_sensor_attr temp_attributes[] = {
1814 	{
1815 		.reg = PMBUS_READ_TEMPERATURE_1,
1816 		.class = PSC_TEMPERATURE,
1817 		.paged = true,
1818 		.update = true,
1819 		.compare = true,
1820 		.func = PMBUS_HAVE_TEMP,
1821 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1822 		.sreg = PMBUS_STATUS_TEMPERATURE,
1823 		.gbit = PB_STATUS_TEMPERATURE,
1824 		.limit = temp_limit_attrs,
1825 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1826 	}, {
1827 		.reg = PMBUS_READ_TEMPERATURE_2,
1828 		.class = PSC_TEMPERATURE,
1829 		.paged = true,
1830 		.update = true,
1831 		.compare = true,
1832 		.func = PMBUS_HAVE_TEMP2,
1833 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1834 		.sreg = PMBUS_STATUS_TEMPERATURE,
1835 		.gbit = PB_STATUS_TEMPERATURE,
1836 		.limit = temp_limit_attrs2,
1837 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1838 	}, {
1839 		.reg = PMBUS_READ_TEMPERATURE_3,
1840 		.class = PSC_TEMPERATURE,
1841 		.paged = true,
1842 		.update = true,
1843 		.compare = true,
1844 		.func = PMBUS_HAVE_TEMP3,
1845 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1846 		.sreg = PMBUS_STATUS_TEMPERATURE,
1847 		.gbit = PB_STATUS_TEMPERATURE,
1848 		.limit = temp_limit_attrs3,
1849 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1850 	}
1851 };
1852 
1853 static const int pmbus_fan_registers[] = {
1854 	PMBUS_READ_FAN_SPEED_1,
1855 	PMBUS_READ_FAN_SPEED_2,
1856 	PMBUS_READ_FAN_SPEED_3,
1857 	PMBUS_READ_FAN_SPEED_4
1858 };
1859 
1860 static const int pmbus_fan_status_registers[] = {
1861 	PMBUS_STATUS_FAN_12,
1862 	PMBUS_STATUS_FAN_12,
1863 	PMBUS_STATUS_FAN_34,
1864 	PMBUS_STATUS_FAN_34
1865 };
1866 
1867 static const u32 pmbus_fan_flags[] = {
1868 	PMBUS_HAVE_FAN12,
1869 	PMBUS_HAVE_FAN12,
1870 	PMBUS_HAVE_FAN34,
1871 	PMBUS_HAVE_FAN34
1872 };
1873 
1874 static const u32 pmbus_fan_status_flags[] = {
1875 	PMBUS_HAVE_STATUS_FAN12,
1876 	PMBUS_HAVE_STATUS_FAN12,
1877 	PMBUS_HAVE_STATUS_FAN34,
1878 	PMBUS_HAVE_STATUS_FAN34
1879 };
1880 
1881 /* Fans */
1882 
1883 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
1884 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1885 		struct pmbus_data *data, int index, int page, int id,
1886 		u8 config)
1887 {
1888 	struct pmbus_sensor *sensor;
1889 
1890 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1891 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1892 				  false, false, true);
1893 
1894 	if (!sensor)
1895 		return -ENOMEM;
1896 
1897 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1898 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
1899 		return 0;
1900 
1901 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1902 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1903 				  false, false, true);
1904 
1905 	if (!sensor)
1906 		return -ENOMEM;
1907 
1908 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1909 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1910 				  true, false, false);
1911 
1912 	if (!sensor)
1913 		return -ENOMEM;
1914 
1915 	return 0;
1916 }
1917 
1918 static int pmbus_add_fan_attributes(struct i2c_client *client,
1919 				    struct pmbus_data *data)
1920 {
1921 	const struct pmbus_driver_info *info = data->info;
1922 	int index = 1;
1923 	int page;
1924 	int ret;
1925 
1926 	for (page = 0; page < info->pages; page++) {
1927 		int f;
1928 
1929 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1930 			int regval;
1931 
1932 			if (!(info->func[page] & pmbus_fan_flags[f]))
1933 				break;
1934 
1935 			if (!pmbus_check_word_register(client, page,
1936 						       pmbus_fan_registers[f]))
1937 				break;
1938 
1939 			/*
1940 			 * Skip fan if not installed.
1941 			 * Each fan configuration register covers multiple fans,
1942 			 * so we have to do some magic.
1943 			 */
1944 			regval = _pmbus_read_byte_data(client, page,
1945 				pmbus_fan_config_registers[f]);
1946 			if (regval < 0 ||
1947 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1948 				continue;
1949 
1950 			if (pmbus_add_sensor(data, "fan", "input", index,
1951 					     page, 0xff, pmbus_fan_registers[f],
1952 					     PSC_FAN, true, true, true) == NULL)
1953 				return -ENOMEM;
1954 
1955 			/* Fan control */
1956 			if (pmbus_check_word_register(client, page,
1957 					pmbus_fan_command_registers[f])) {
1958 				ret = pmbus_add_fan_ctrl(client, data, index,
1959 							 page, f, regval);
1960 				if (ret < 0)
1961 					return ret;
1962 			}
1963 
1964 			/*
1965 			 * Each fan status register covers multiple fans,
1966 			 * so we have to do some magic.
1967 			 */
1968 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1969 			    pmbus_check_byte_register(client,
1970 					page, pmbus_fan_status_registers[f])) {
1971 				int reg;
1972 
1973 				if (f > 1)	/* fan 3, 4 */
1974 					reg = PMBUS_STATUS_FAN_34;
1975 				else
1976 					reg = PMBUS_STATUS_FAN_12;
1977 				ret = pmbus_add_boolean(data, "fan",
1978 					"alarm", index, NULL, NULL, page, reg,
1979 					PB_FAN_FAN1_WARNING >> (f & 1));
1980 				if (ret)
1981 					return ret;
1982 				ret = pmbus_add_boolean(data, "fan",
1983 					"fault", index, NULL, NULL, page, reg,
1984 					PB_FAN_FAN1_FAULT >> (f & 1));
1985 				if (ret)
1986 					return ret;
1987 			}
1988 			index++;
1989 		}
1990 	}
1991 	return 0;
1992 }
1993 
1994 struct pmbus_samples_attr {
1995 	int reg;
1996 	char *name;
1997 };
1998 
1999 struct pmbus_samples_reg {
2000 	int page;
2001 	struct pmbus_samples_attr *attr;
2002 	struct device_attribute dev_attr;
2003 };
2004 
2005 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2006 	{
2007 		.reg = PMBUS_VIRT_SAMPLES,
2008 		.name = "samples",
2009 	}, {
2010 		.reg = PMBUS_VIRT_IN_SAMPLES,
2011 		.name = "in_samples",
2012 	}, {
2013 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2014 		.name = "curr_samples",
2015 	}, {
2016 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2017 		.name = "power_samples",
2018 	}, {
2019 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2020 		.name = "temp_samples",
2021 	}
2022 };
2023 
2024 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2025 
2026 static ssize_t pmbus_show_samples(struct device *dev,
2027 				  struct device_attribute *devattr, char *buf)
2028 {
2029 	int val;
2030 	struct i2c_client *client = to_i2c_client(dev->parent);
2031 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2032 	struct pmbus_data *data = i2c_get_clientdata(client);
2033 
2034 	mutex_lock(&data->update_lock);
2035 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2036 	mutex_unlock(&data->update_lock);
2037 	if (val < 0)
2038 		return val;
2039 
2040 	return sysfs_emit(buf, "%d\n", val);
2041 }
2042 
2043 static ssize_t pmbus_set_samples(struct device *dev,
2044 				 struct device_attribute *devattr,
2045 				 const char *buf, size_t count)
2046 {
2047 	int ret;
2048 	long val;
2049 	struct i2c_client *client = to_i2c_client(dev->parent);
2050 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2051 	struct pmbus_data *data = i2c_get_clientdata(client);
2052 
2053 	if (kstrtol(buf, 0, &val) < 0)
2054 		return -EINVAL;
2055 
2056 	mutex_lock(&data->update_lock);
2057 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2058 	mutex_unlock(&data->update_lock);
2059 
2060 	return ret ? : count;
2061 }
2062 
2063 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2064 				  struct pmbus_samples_attr *attr)
2065 {
2066 	struct pmbus_samples_reg *reg;
2067 
2068 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2069 	if (!reg)
2070 		return -ENOMEM;
2071 
2072 	reg->attr = attr;
2073 	reg->page = page;
2074 
2075 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2076 			    pmbus_show_samples, pmbus_set_samples);
2077 
2078 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2079 }
2080 
2081 static int pmbus_add_samples_attributes(struct i2c_client *client,
2082 					struct pmbus_data *data)
2083 {
2084 	const struct pmbus_driver_info *info = data->info;
2085 	int s;
2086 
2087 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2088 		return 0;
2089 
2090 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2091 		struct pmbus_samples_attr *attr;
2092 		int ret;
2093 
2094 		attr = &pmbus_samples_registers[s];
2095 		if (!pmbus_check_word_register(client, 0, attr->reg))
2096 			continue;
2097 
2098 		ret = pmbus_add_samples_attr(data, 0, attr);
2099 		if (ret)
2100 			return ret;
2101 	}
2102 
2103 	return 0;
2104 }
2105 
2106 static int pmbus_find_attributes(struct i2c_client *client,
2107 				 struct pmbus_data *data)
2108 {
2109 	int ret;
2110 
2111 	/* Voltage sensors */
2112 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2113 				     ARRAY_SIZE(voltage_attributes));
2114 	if (ret)
2115 		return ret;
2116 
2117 	/* Current sensors */
2118 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2119 				     ARRAY_SIZE(current_attributes));
2120 	if (ret)
2121 		return ret;
2122 
2123 	/* Power sensors */
2124 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2125 				     ARRAY_SIZE(power_attributes));
2126 	if (ret)
2127 		return ret;
2128 
2129 	/* Temperature sensors */
2130 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2131 				     ARRAY_SIZE(temp_attributes));
2132 	if (ret)
2133 		return ret;
2134 
2135 	/* Fans */
2136 	ret = pmbus_add_fan_attributes(client, data);
2137 	if (ret)
2138 		return ret;
2139 
2140 	ret = pmbus_add_samples_attributes(client, data);
2141 	return ret;
2142 }
2143 
2144 /*
2145  * The pmbus_class_attr_map structure maps one sensor class to
2146  * it's corresponding sensor attributes array.
2147  */
2148 struct pmbus_class_attr_map {
2149 	enum pmbus_sensor_classes class;
2150 	int nattr;
2151 	const struct pmbus_sensor_attr *attr;
2152 };
2153 
2154 static const struct pmbus_class_attr_map class_attr_map[] = {
2155 	{
2156 		.class = PSC_VOLTAGE_IN,
2157 		.attr = voltage_attributes,
2158 		.nattr = ARRAY_SIZE(voltage_attributes),
2159 	}, {
2160 		.class = PSC_VOLTAGE_OUT,
2161 		.attr = voltage_attributes,
2162 		.nattr = ARRAY_SIZE(voltage_attributes),
2163 	}, {
2164 		.class = PSC_CURRENT_IN,
2165 		.attr = current_attributes,
2166 		.nattr = ARRAY_SIZE(current_attributes),
2167 	}, {
2168 		.class = PSC_CURRENT_OUT,
2169 		.attr = current_attributes,
2170 		.nattr = ARRAY_SIZE(current_attributes),
2171 	}, {
2172 		.class = PSC_POWER,
2173 		.attr = power_attributes,
2174 		.nattr = ARRAY_SIZE(power_attributes),
2175 	}, {
2176 		.class = PSC_TEMPERATURE,
2177 		.attr = temp_attributes,
2178 		.nattr = ARRAY_SIZE(temp_attributes),
2179 	}
2180 };
2181 
2182 /*
2183  * Read the coefficients for direct mode.
2184  */
2185 static int pmbus_read_coefficients(struct i2c_client *client,
2186 				   struct pmbus_driver_info *info,
2187 				   const struct pmbus_sensor_attr *attr)
2188 {
2189 	int rv;
2190 	union i2c_smbus_data data;
2191 	enum pmbus_sensor_classes class = attr->class;
2192 	s8 R;
2193 	s16 m, b;
2194 
2195 	data.block[0] = 2;
2196 	data.block[1] = attr->reg;
2197 	data.block[2] = 0x01;
2198 
2199 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2200 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2201 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2202 
2203 	if (rv < 0)
2204 		return rv;
2205 
2206 	if (data.block[0] != 5)
2207 		return -EIO;
2208 
2209 	m = data.block[1] | (data.block[2] << 8);
2210 	b = data.block[3] | (data.block[4] << 8);
2211 	R = data.block[5];
2212 	info->m[class] = m;
2213 	info->b[class] = b;
2214 	info->R[class] = R;
2215 
2216 	return rv;
2217 }
2218 
2219 static int pmbus_init_coefficients(struct i2c_client *client,
2220 				   struct pmbus_driver_info *info)
2221 {
2222 	int i, n, ret = -EINVAL;
2223 	const struct pmbus_class_attr_map *map;
2224 	const struct pmbus_sensor_attr *attr;
2225 
2226 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2227 		map = &class_attr_map[i];
2228 		if (info->format[map->class] != direct)
2229 			continue;
2230 		for (n = 0; n < map->nattr; n++) {
2231 			attr = &map->attr[n];
2232 			if (map->class != attr->class)
2233 				continue;
2234 			ret = pmbus_read_coefficients(client, info, attr);
2235 			if (ret >= 0)
2236 				break;
2237 		}
2238 		if (ret < 0) {
2239 			dev_err(&client->dev,
2240 				"No coefficients found for sensor class %d\n",
2241 				map->class);
2242 			return -EINVAL;
2243 		}
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 /*
2250  * Identify chip parameters.
2251  * This function is called for all chips.
2252  */
2253 static int pmbus_identify_common(struct i2c_client *client,
2254 				 struct pmbus_data *data, int page)
2255 {
2256 	int vout_mode = -1;
2257 
2258 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2259 		vout_mode = _pmbus_read_byte_data(client, page,
2260 						  PMBUS_VOUT_MODE);
2261 	if (vout_mode >= 0 && vout_mode != 0xff) {
2262 		/*
2263 		 * Not all chips support the VOUT_MODE command,
2264 		 * so a failure to read it is not an error.
2265 		 */
2266 		switch (vout_mode >> 5) {
2267 		case 0:	/* linear mode      */
2268 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2269 				return -ENODEV;
2270 
2271 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2272 			break;
2273 		case 1: /* VID mode         */
2274 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2275 				return -ENODEV;
2276 			break;
2277 		case 2:	/* direct mode      */
2278 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2279 				return -ENODEV;
2280 			break;
2281 		default:
2282 			return -ENODEV;
2283 		}
2284 	}
2285 
2286 	pmbus_clear_fault_page(client, page);
2287 	return 0;
2288 }
2289 
2290 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2291 {
2292 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2293 }
2294 
2295 static int pmbus_read_status_word(struct i2c_client *client, int page)
2296 {
2297 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2298 }
2299 
2300 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2301 			     struct pmbus_driver_info *info)
2302 {
2303 	struct device *dev = &client->dev;
2304 	int page, ret;
2305 
2306 	/*
2307 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2308 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2309 	 * Bail out if both registers are not supported.
2310 	 */
2311 	data->read_status = pmbus_read_status_word;
2312 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2313 	if (ret < 0 || ret == 0xffff) {
2314 		data->read_status = pmbus_read_status_byte;
2315 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2316 		if (ret < 0 || ret == 0xff) {
2317 			dev_err(dev, "PMBus status register not found\n");
2318 			return -ENODEV;
2319 		}
2320 	} else {
2321 		data->has_status_word = true;
2322 	}
2323 
2324 	/* Enable PEC if the controller and bus supports it */
2325 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2326 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2327 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2328 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) {
2329 				client->flags |= I2C_CLIENT_PEC;
2330 			}
2331 		}
2332 	}
2333 
2334 	/*
2335 	 * Check if the chip is write protected. If it is, we can not clear
2336 	 * faults, and we should not try it. Also, in that case, writes into
2337 	 * limit registers need to be disabled.
2338 	 */
2339 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2340 		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2341 		if (ret > 0 && (ret & PB_WP_ANY))
2342 			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2343 	}
2344 
2345 	if (data->info->pages)
2346 		pmbus_clear_faults(client);
2347 	else
2348 		pmbus_clear_fault_page(client, -1);
2349 
2350 	if (info->identify) {
2351 		ret = (*info->identify)(client, info);
2352 		if (ret < 0) {
2353 			dev_err(dev, "Chip identification failed\n");
2354 			return ret;
2355 		}
2356 	}
2357 
2358 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2359 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2360 		return -ENODEV;
2361 	}
2362 
2363 	for (page = 0; page < info->pages; page++) {
2364 		ret = pmbus_identify_common(client, data, page);
2365 		if (ret < 0) {
2366 			dev_err(dev, "Failed to identify chip capabilities\n");
2367 			return ret;
2368 		}
2369 	}
2370 
2371 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2372 		if (!i2c_check_functionality(client->adapter,
2373 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2374 			return -ENODEV;
2375 
2376 		ret = pmbus_init_coefficients(client, info);
2377 		if (ret < 0)
2378 			return ret;
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 #if IS_ENABLED(CONFIG_REGULATOR)
2385 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2386 {
2387 	struct device *dev = rdev_get_dev(rdev);
2388 	struct i2c_client *client = to_i2c_client(dev->parent);
2389 	u8 page = rdev_get_id(rdev);
2390 	int ret;
2391 
2392 	ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2393 	if (ret < 0)
2394 		return ret;
2395 
2396 	return !!(ret & PB_OPERATION_CONTROL_ON);
2397 }
2398 
2399 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2400 {
2401 	struct device *dev = rdev_get_dev(rdev);
2402 	struct i2c_client *client = to_i2c_client(dev->parent);
2403 	u8 page = rdev_get_id(rdev);
2404 
2405 	return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2406 				      PB_OPERATION_CONTROL_ON,
2407 				      enable ? PB_OPERATION_CONTROL_ON : 0);
2408 }
2409 
2410 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2411 {
2412 	return _pmbus_regulator_on_off(rdev, 1);
2413 }
2414 
2415 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2416 {
2417 	return _pmbus_regulator_on_off(rdev, 0);
2418 }
2419 
2420 const struct regulator_ops pmbus_regulator_ops = {
2421 	.enable = pmbus_regulator_enable,
2422 	.disable = pmbus_regulator_disable,
2423 	.is_enabled = pmbus_regulator_is_enabled,
2424 };
2425 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
2426 
2427 static int pmbus_regulator_register(struct pmbus_data *data)
2428 {
2429 	struct device *dev = data->dev;
2430 	const struct pmbus_driver_info *info = data->info;
2431 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2432 	struct regulator_dev *rdev;
2433 	int i;
2434 
2435 	for (i = 0; i < info->num_regulators; i++) {
2436 		struct regulator_config config = { };
2437 
2438 		config.dev = dev;
2439 		config.driver_data = data;
2440 
2441 		if (pdata && pdata->reg_init_data)
2442 			config.init_data = &pdata->reg_init_data[i];
2443 
2444 		rdev = devm_regulator_register(dev, &info->reg_desc[i],
2445 					       &config);
2446 		if (IS_ERR(rdev)) {
2447 			dev_err(dev, "Failed to register %s regulator\n",
2448 				info->reg_desc[i].name);
2449 			return PTR_ERR(rdev);
2450 		}
2451 	}
2452 
2453 	return 0;
2454 }
2455 #else
2456 static int pmbus_regulator_register(struct pmbus_data *data)
2457 {
2458 	return 0;
2459 }
2460 #endif
2461 
2462 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
2463 
2464 #if IS_ENABLED(CONFIG_DEBUG_FS)
2465 static int pmbus_debugfs_get(void *data, u64 *val)
2466 {
2467 	int rc;
2468 	struct pmbus_debugfs_entry *entry = data;
2469 
2470 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2471 	if (rc < 0)
2472 		return rc;
2473 
2474 	*val = rc;
2475 
2476 	return 0;
2477 }
2478 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2479 			 "0x%02llx\n");
2480 
2481 static int pmbus_debugfs_get_status(void *data, u64 *val)
2482 {
2483 	int rc;
2484 	struct pmbus_debugfs_entry *entry = data;
2485 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2486 
2487 	rc = pdata->read_status(entry->client, entry->page);
2488 	if (rc < 0)
2489 		return rc;
2490 
2491 	*val = rc;
2492 
2493 	return 0;
2494 }
2495 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2496 			 NULL, "0x%04llx\n");
2497 
2498 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2499 {
2500 	struct i2c_client *client = data;
2501 
2502 	*val = !!(client->flags & I2C_CLIENT_PEC);
2503 
2504 	return 0;
2505 }
2506 
2507 static int pmbus_debugfs_set_pec(void *data, u64 val)
2508 {
2509 	int rc;
2510 	struct i2c_client *client = data;
2511 
2512 	if (!val) {
2513 		client->flags &= ~I2C_CLIENT_PEC;
2514 		return 0;
2515 	}
2516 
2517 	if (val != 1)
2518 		return -EINVAL;
2519 
2520 	rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2521 	if (rc < 0)
2522 		return rc;
2523 
2524 	if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2525 		return -EOPNOTSUPP;
2526 
2527 	client->flags |= I2C_CLIENT_PEC;
2528 
2529 	return 0;
2530 }
2531 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2532 			 pmbus_debugfs_set_pec, "%llu\n");
2533 
2534 static void pmbus_remove_debugfs(void *data)
2535 {
2536 	struct dentry *entry = data;
2537 
2538 	debugfs_remove_recursive(entry);
2539 }
2540 
2541 static int pmbus_init_debugfs(struct i2c_client *client,
2542 			      struct pmbus_data *data)
2543 {
2544 	int i, idx = 0;
2545 	char name[PMBUS_NAME_SIZE];
2546 	struct pmbus_debugfs_entry *entries;
2547 
2548 	if (!pmbus_debugfs_dir)
2549 		return -ENODEV;
2550 
2551 	/*
2552 	 * Create the debugfs directory for this device. Use the hwmon device
2553 	 * name to avoid conflicts (hwmon numbers are globally unique).
2554 	 */
2555 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2556 					   pmbus_debugfs_dir);
2557 	if (IS_ERR_OR_NULL(data->debugfs)) {
2558 		data->debugfs = NULL;
2559 		return -ENODEV;
2560 	}
2561 
2562 	/* Allocate the max possible entries we need. */
2563 	entries = devm_kcalloc(data->dev,
2564 			       data->info->pages * 10, sizeof(*entries),
2565 			       GFP_KERNEL);
2566 	if (!entries)
2567 		return -ENOMEM;
2568 
2569 	debugfs_create_file("pec", 0664, data->debugfs, client,
2570 			    &pmbus_debugfs_ops_pec);
2571 
2572 	for (i = 0; i < data->info->pages; ++i) {
2573 		/* Check accessibility of status register if it's not page 0 */
2574 		if (!i || pmbus_check_status_register(client, i)) {
2575 			/* No need to set reg as we have special read op. */
2576 			entries[idx].client = client;
2577 			entries[idx].page = i;
2578 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2579 			debugfs_create_file(name, 0444, data->debugfs,
2580 					    &entries[idx++],
2581 					    &pmbus_debugfs_ops_status);
2582 		}
2583 
2584 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2585 			entries[idx].client = client;
2586 			entries[idx].page = i;
2587 			entries[idx].reg = PMBUS_STATUS_VOUT;
2588 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2589 			debugfs_create_file(name, 0444, data->debugfs,
2590 					    &entries[idx++],
2591 					    &pmbus_debugfs_ops);
2592 		}
2593 
2594 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2595 			entries[idx].client = client;
2596 			entries[idx].page = i;
2597 			entries[idx].reg = PMBUS_STATUS_IOUT;
2598 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2599 			debugfs_create_file(name, 0444, data->debugfs,
2600 					    &entries[idx++],
2601 					    &pmbus_debugfs_ops);
2602 		}
2603 
2604 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2605 			entries[idx].client = client;
2606 			entries[idx].page = i;
2607 			entries[idx].reg = PMBUS_STATUS_INPUT;
2608 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2609 			debugfs_create_file(name, 0444, data->debugfs,
2610 					    &entries[idx++],
2611 					    &pmbus_debugfs_ops);
2612 		}
2613 
2614 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2615 			entries[idx].client = client;
2616 			entries[idx].page = i;
2617 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2618 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2619 			debugfs_create_file(name, 0444, data->debugfs,
2620 					    &entries[idx++],
2621 					    &pmbus_debugfs_ops);
2622 		}
2623 
2624 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2625 			entries[idx].client = client;
2626 			entries[idx].page = i;
2627 			entries[idx].reg = PMBUS_STATUS_CML;
2628 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2629 			debugfs_create_file(name, 0444, data->debugfs,
2630 					    &entries[idx++],
2631 					    &pmbus_debugfs_ops);
2632 		}
2633 
2634 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2635 			entries[idx].client = client;
2636 			entries[idx].page = i;
2637 			entries[idx].reg = PMBUS_STATUS_OTHER;
2638 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2639 			debugfs_create_file(name, 0444, data->debugfs,
2640 					    &entries[idx++],
2641 					    &pmbus_debugfs_ops);
2642 		}
2643 
2644 		if (pmbus_check_byte_register(client, i,
2645 					      PMBUS_STATUS_MFR_SPECIFIC)) {
2646 			entries[idx].client = client;
2647 			entries[idx].page = i;
2648 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2649 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2650 			debugfs_create_file(name, 0444, data->debugfs,
2651 					    &entries[idx++],
2652 					    &pmbus_debugfs_ops);
2653 		}
2654 
2655 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2656 			entries[idx].client = client;
2657 			entries[idx].page = i;
2658 			entries[idx].reg = PMBUS_STATUS_FAN_12;
2659 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2660 			debugfs_create_file(name, 0444, data->debugfs,
2661 					    &entries[idx++],
2662 					    &pmbus_debugfs_ops);
2663 		}
2664 
2665 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2666 			entries[idx].client = client;
2667 			entries[idx].page = i;
2668 			entries[idx].reg = PMBUS_STATUS_FAN_34;
2669 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2670 			debugfs_create_file(name, 0444, data->debugfs,
2671 					    &entries[idx++],
2672 					    &pmbus_debugfs_ops);
2673 		}
2674 	}
2675 
2676 	return devm_add_action_or_reset(data->dev,
2677 					pmbus_remove_debugfs, data->debugfs);
2678 }
2679 #else
2680 static int pmbus_init_debugfs(struct i2c_client *client,
2681 			      struct pmbus_data *data)
2682 {
2683 	return 0;
2684 }
2685 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
2686 
2687 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2688 {
2689 	struct device *dev = &client->dev;
2690 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2691 	struct pmbus_data *data;
2692 	size_t groups_num = 0;
2693 	int ret;
2694 	char *name;
2695 
2696 	if (!info)
2697 		return -ENODEV;
2698 
2699 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2700 				     | I2C_FUNC_SMBUS_BYTE_DATA
2701 				     | I2C_FUNC_SMBUS_WORD_DATA))
2702 		return -ENODEV;
2703 
2704 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2705 	if (!data)
2706 		return -ENOMEM;
2707 
2708 	if (info->groups)
2709 		while (info->groups[groups_num])
2710 			groups_num++;
2711 
2712 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
2713 				    GFP_KERNEL);
2714 	if (!data->groups)
2715 		return -ENOMEM;
2716 
2717 	i2c_set_clientdata(client, data);
2718 	mutex_init(&data->update_lock);
2719 	data->dev = dev;
2720 
2721 	if (pdata)
2722 		data->flags = pdata->flags;
2723 	data->info = info;
2724 	data->currpage = -1;
2725 	data->currphase = -1;
2726 
2727 	ret = pmbus_init_common(client, data, info);
2728 	if (ret < 0)
2729 		return ret;
2730 
2731 	ret = pmbus_find_attributes(client, data);
2732 	if (ret)
2733 		return ret;
2734 
2735 	/*
2736 	 * If there are no attributes, something is wrong.
2737 	 * Bail out instead of trying to register nothing.
2738 	 */
2739 	if (!data->num_attributes) {
2740 		dev_err(dev, "No attributes found\n");
2741 		return -ENODEV;
2742 	}
2743 
2744 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
2745 	if (!name)
2746 		return -ENOMEM;
2747 	strreplace(name, '-', '_');
2748 
2749 	data->groups[0] = &data->group;
2750 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
2751 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
2752 					name, data, data->groups);
2753 	if (IS_ERR(data->hwmon_dev)) {
2754 		dev_err(dev, "Failed to register hwmon device\n");
2755 		return PTR_ERR(data->hwmon_dev);
2756 	}
2757 
2758 	ret = pmbus_regulator_register(data);
2759 	if (ret)
2760 		return ret;
2761 
2762 	ret = pmbus_init_debugfs(client, data);
2763 	if (ret)
2764 		dev_warn(dev, "Failed to register debugfs\n");
2765 
2766 	return 0;
2767 }
2768 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
2769 
2770 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2771 {
2772 	struct pmbus_data *data = i2c_get_clientdata(client);
2773 
2774 	return data->debugfs;
2775 }
2776 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
2777 
2778 static int __init pmbus_core_init(void)
2779 {
2780 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2781 	if (IS_ERR(pmbus_debugfs_dir))
2782 		pmbus_debugfs_dir = NULL;
2783 
2784 	return 0;
2785 }
2786 
2787 static void __exit pmbus_core_exit(void)
2788 {
2789 	debugfs_remove_recursive(pmbus_debugfs_dir);
2790 }
2791 
2792 module_init(pmbus_core_init);
2793 module_exit(pmbus_core_exit);
2794 
2795 MODULE_AUTHOR("Guenter Roeck");
2796 MODULE_DESCRIPTION("PMBus core driver");
2797 MODULE_LICENSE("GPL");
2798