1 /* 2 * Hardware monitoring driver for PMBus devices 3 * 4 * Copyright (c) 2010, 2011 Ericsson AB. 5 * Copyright (c) 2012 Guenter Roeck 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/err.h> 26 #include <linux/slab.h> 27 #include <linux/i2c.h> 28 #include <linux/hwmon.h> 29 #include <linux/hwmon-sysfs.h> 30 #include <linux/jiffies.h> 31 #include <linux/i2c/pmbus.h> 32 #include "pmbus.h" 33 34 /* 35 * Number of additional attribute pointers to allocate 36 * with each call to krealloc 37 */ 38 #define PMBUS_ATTR_ALLOC_SIZE 32 39 40 /* 41 * Index into status register array, per status register group 42 */ 43 #define PB_STATUS_BASE 0 44 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) 45 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) 46 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) 47 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) 48 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) 49 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES) 50 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1) 51 52 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1) 53 54 #define PMBUS_NAME_SIZE 24 55 56 struct pmbus_sensor { 57 struct pmbus_sensor *next; 58 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 59 struct device_attribute attribute; 60 u8 page; /* page number */ 61 u16 reg; /* register */ 62 enum pmbus_sensor_classes class; /* sensor class */ 63 bool update; /* runtime sensor update needed */ 64 int data; /* Sensor data. 65 Negative if there was a read error */ 66 }; 67 #define to_pmbus_sensor(_attr) \ 68 container_of(_attr, struct pmbus_sensor, attribute) 69 70 struct pmbus_boolean { 71 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 72 struct sensor_device_attribute attribute; 73 struct pmbus_sensor *s1; 74 struct pmbus_sensor *s2; 75 }; 76 #define to_pmbus_boolean(_attr) \ 77 container_of(_attr, struct pmbus_boolean, attribute) 78 79 struct pmbus_label { 80 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 81 struct device_attribute attribute; 82 char label[PMBUS_NAME_SIZE]; /* label */ 83 }; 84 #define to_pmbus_label(_attr) \ 85 container_of(_attr, struct pmbus_label, attribute) 86 87 struct pmbus_data { 88 struct device *dev; 89 struct device *hwmon_dev; 90 91 u32 flags; /* from platform data */ 92 93 int exponent; /* linear mode: exponent for output voltages */ 94 95 const struct pmbus_driver_info *info; 96 97 int max_attributes; 98 int num_attributes; 99 struct attribute_group group; 100 const struct attribute_group *groups[2]; 101 102 struct pmbus_sensor *sensors; 103 104 struct mutex update_lock; 105 bool valid; 106 unsigned long last_updated; /* in jiffies */ 107 108 /* 109 * A single status register covers multiple attributes, 110 * so we keep them all together. 111 */ 112 u8 status[PB_NUM_STATUS_REG]; 113 u8 status_register; 114 115 u8 currpage; 116 }; 117 118 void pmbus_clear_cache(struct i2c_client *client) 119 { 120 struct pmbus_data *data = i2c_get_clientdata(client); 121 122 data->valid = false; 123 } 124 EXPORT_SYMBOL_GPL(pmbus_clear_cache); 125 126 int pmbus_set_page(struct i2c_client *client, u8 page) 127 { 128 struct pmbus_data *data = i2c_get_clientdata(client); 129 int rv = 0; 130 int newpage; 131 132 if (page != data->currpage) { 133 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 134 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 135 if (newpage != page) 136 rv = -EIO; 137 else 138 data->currpage = page; 139 } 140 return rv; 141 } 142 EXPORT_SYMBOL_GPL(pmbus_set_page); 143 144 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 145 { 146 int rv; 147 148 if (page >= 0) { 149 rv = pmbus_set_page(client, page); 150 if (rv < 0) 151 return rv; 152 } 153 154 return i2c_smbus_write_byte(client, value); 155 } 156 EXPORT_SYMBOL_GPL(pmbus_write_byte); 157 158 /* 159 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 160 * a device specific mapping function exists and calls it if necessary. 161 */ 162 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 163 { 164 struct pmbus_data *data = i2c_get_clientdata(client); 165 const struct pmbus_driver_info *info = data->info; 166 int status; 167 168 if (info->write_byte) { 169 status = info->write_byte(client, page, value); 170 if (status != -ENODATA) 171 return status; 172 } 173 return pmbus_write_byte(client, page, value); 174 } 175 176 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word) 177 { 178 int rv; 179 180 rv = pmbus_set_page(client, page); 181 if (rv < 0) 182 return rv; 183 184 return i2c_smbus_write_word_data(client, reg, word); 185 } 186 EXPORT_SYMBOL_GPL(pmbus_write_word_data); 187 188 /* 189 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 190 * a device specific mapping function exists and calls it if necessary. 191 */ 192 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 193 u16 word) 194 { 195 struct pmbus_data *data = i2c_get_clientdata(client); 196 const struct pmbus_driver_info *info = data->info; 197 int status; 198 199 if (info->write_word_data) { 200 status = info->write_word_data(client, page, reg, word); 201 if (status != -ENODATA) 202 return status; 203 } 204 if (reg >= PMBUS_VIRT_BASE) 205 return -ENXIO; 206 return pmbus_write_word_data(client, page, reg, word); 207 } 208 209 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg) 210 { 211 int rv; 212 213 rv = pmbus_set_page(client, page); 214 if (rv < 0) 215 return rv; 216 217 return i2c_smbus_read_word_data(client, reg); 218 } 219 EXPORT_SYMBOL_GPL(pmbus_read_word_data); 220 221 /* 222 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 223 * a device specific mapping function exists and calls it if necessary. 224 */ 225 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg) 226 { 227 struct pmbus_data *data = i2c_get_clientdata(client); 228 const struct pmbus_driver_info *info = data->info; 229 int status; 230 231 if (info->read_word_data) { 232 status = info->read_word_data(client, page, reg); 233 if (status != -ENODATA) 234 return status; 235 } 236 if (reg >= PMBUS_VIRT_BASE) 237 return -ENXIO; 238 return pmbus_read_word_data(client, page, reg); 239 } 240 241 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 242 { 243 int rv; 244 245 if (page >= 0) { 246 rv = pmbus_set_page(client, page); 247 if (rv < 0) 248 return rv; 249 } 250 251 return i2c_smbus_read_byte_data(client, reg); 252 } 253 EXPORT_SYMBOL_GPL(pmbus_read_byte_data); 254 255 /* 256 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 257 * a device specific mapping function exists and calls it if necessary. 258 */ 259 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 260 { 261 struct pmbus_data *data = i2c_get_clientdata(client); 262 const struct pmbus_driver_info *info = data->info; 263 int status; 264 265 if (info->read_byte_data) { 266 status = info->read_byte_data(client, page, reg); 267 if (status != -ENODATA) 268 return status; 269 } 270 return pmbus_read_byte_data(client, page, reg); 271 } 272 273 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 274 { 275 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 276 } 277 278 void pmbus_clear_faults(struct i2c_client *client) 279 { 280 struct pmbus_data *data = i2c_get_clientdata(client); 281 int i; 282 283 for (i = 0; i < data->info->pages; i++) 284 pmbus_clear_fault_page(client, i); 285 } 286 EXPORT_SYMBOL_GPL(pmbus_clear_faults); 287 288 static int pmbus_check_status_cml(struct i2c_client *client) 289 { 290 struct pmbus_data *data = i2c_get_clientdata(client); 291 int status, status2; 292 293 status = _pmbus_read_byte_data(client, -1, data->status_register); 294 if (status < 0 || (status & PB_STATUS_CML)) { 295 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 296 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 297 return -EIO; 298 } 299 return 0; 300 } 301 302 static bool pmbus_check_register(struct i2c_client *client, 303 int (*func)(struct i2c_client *client, 304 int page, int reg), 305 int page, int reg) 306 { 307 int rv; 308 struct pmbus_data *data = i2c_get_clientdata(client); 309 310 rv = func(client, page, reg); 311 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 312 rv = pmbus_check_status_cml(client); 313 pmbus_clear_fault_page(client, -1); 314 return rv >= 0; 315 } 316 317 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 318 { 319 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 320 } 321 EXPORT_SYMBOL_GPL(pmbus_check_byte_register); 322 323 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 324 { 325 return pmbus_check_register(client, _pmbus_read_word_data, page, reg); 326 } 327 EXPORT_SYMBOL_GPL(pmbus_check_word_register); 328 329 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 330 { 331 struct pmbus_data *data = i2c_get_clientdata(client); 332 333 return data->info; 334 } 335 EXPORT_SYMBOL_GPL(pmbus_get_driver_info); 336 337 static struct _pmbus_status { 338 u32 func; 339 u16 base; 340 u16 reg; 341 } pmbus_status[] = { 342 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT }, 343 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT }, 344 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE, 345 PMBUS_STATUS_TEMPERATURE }, 346 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 }, 347 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 }, 348 }; 349 350 static struct pmbus_data *pmbus_update_device(struct device *dev) 351 { 352 struct i2c_client *client = to_i2c_client(dev->parent); 353 struct pmbus_data *data = i2c_get_clientdata(client); 354 const struct pmbus_driver_info *info = data->info; 355 struct pmbus_sensor *sensor; 356 357 mutex_lock(&data->update_lock); 358 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 359 int i, j; 360 361 for (i = 0; i < info->pages; i++) { 362 data->status[PB_STATUS_BASE + i] 363 = _pmbus_read_byte_data(client, i, 364 data->status_register); 365 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) { 366 struct _pmbus_status *s = &pmbus_status[j]; 367 368 if (!(info->func[i] & s->func)) 369 continue; 370 data->status[s->base + i] 371 = _pmbus_read_byte_data(client, i, 372 s->reg); 373 } 374 } 375 376 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) 377 data->status[PB_STATUS_INPUT_BASE] 378 = _pmbus_read_byte_data(client, 0, 379 PMBUS_STATUS_INPUT); 380 381 if (info->func[0] & PMBUS_HAVE_STATUS_VMON) 382 data->status[PB_STATUS_VMON_BASE] 383 = _pmbus_read_byte_data(client, 0, 384 PMBUS_VIRT_STATUS_VMON); 385 386 for (sensor = data->sensors; sensor; sensor = sensor->next) { 387 if (!data->valid || sensor->update) 388 sensor->data 389 = _pmbus_read_word_data(client, 390 sensor->page, 391 sensor->reg); 392 } 393 pmbus_clear_faults(client); 394 data->last_updated = jiffies; 395 data->valid = 1; 396 } 397 mutex_unlock(&data->update_lock); 398 return data; 399 } 400 401 /* 402 * Convert linear sensor values to milli- or micro-units 403 * depending on sensor type. 404 */ 405 static long pmbus_reg2data_linear(struct pmbus_data *data, 406 struct pmbus_sensor *sensor) 407 { 408 s16 exponent; 409 s32 mantissa; 410 long val; 411 412 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 413 exponent = data->exponent; 414 mantissa = (u16) sensor->data; 415 } else { /* LINEAR11 */ 416 exponent = ((s16)sensor->data) >> 11; 417 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 418 } 419 420 val = mantissa; 421 422 /* scale result to milli-units for all sensors except fans */ 423 if (sensor->class != PSC_FAN) 424 val = val * 1000L; 425 426 /* scale result to micro-units for power sensors */ 427 if (sensor->class == PSC_POWER) 428 val = val * 1000L; 429 430 if (exponent >= 0) 431 val <<= exponent; 432 else 433 val >>= -exponent; 434 435 return val; 436 } 437 438 /* 439 * Convert direct sensor values to milli- or micro-units 440 * depending on sensor type. 441 */ 442 static long pmbus_reg2data_direct(struct pmbus_data *data, 443 struct pmbus_sensor *sensor) 444 { 445 long val = (s16) sensor->data; 446 long m, b, R; 447 448 m = data->info->m[sensor->class]; 449 b = data->info->b[sensor->class]; 450 R = data->info->R[sensor->class]; 451 452 if (m == 0) 453 return 0; 454 455 /* X = 1/m * (Y * 10^-R - b) */ 456 R = -R; 457 /* scale result to milli-units for everything but fans */ 458 if (sensor->class != PSC_FAN) { 459 R += 3; 460 b *= 1000; 461 } 462 463 /* scale result to micro-units for power sensors */ 464 if (sensor->class == PSC_POWER) { 465 R += 3; 466 b *= 1000; 467 } 468 469 while (R > 0) { 470 val *= 10; 471 R--; 472 } 473 while (R < 0) { 474 val = DIV_ROUND_CLOSEST(val, 10); 475 R++; 476 } 477 478 return (val - b) / m; 479 } 480 481 /* 482 * Convert VID sensor values to milli- or micro-units 483 * depending on sensor type. 484 * We currently only support VR11. 485 */ 486 static long pmbus_reg2data_vid(struct pmbus_data *data, 487 struct pmbus_sensor *sensor) 488 { 489 long val = sensor->data; 490 491 if (val < 0x02 || val > 0xb2) 492 return 0; 493 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 494 } 495 496 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 497 { 498 long val; 499 500 switch (data->info->format[sensor->class]) { 501 case direct: 502 val = pmbus_reg2data_direct(data, sensor); 503 break; 504 case vid: 505 val = pmbus_reg2data_vid(data, sensor); 506 break; 507 case linear: 508 default: 509 val = pmbus_reg2data_linear(data, sensor); 510 break; 511 } 512 return val; 513 } 514 515 #define MAX_MANTISSA (1023 * 1000) 516 #define MIN_MANTISSA (511 * 1000) 517 518 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 519 enum pmbus_sensor_classes class, long val) 520 { 521 s16 exponent = 0, mantissa; 522 bool negative = false; 523 524 /* simple case */ 525 if (val == 0) 526 return 0; 527 528 if (class == PSC_VOLTAGE_OUT) { 529 /* LINEAR16 does not support negative voltages */ 530 if (val < 0) 531 return 0; 532 533 /* 534 * For a static exponents, we don't have a choice 535 * but to adjust the value to it. 536 */ 537 if (data->exponent < 0) 538 val <<= -data->exponent; 539 else 540 val >>= data->exponent; 541 val = DIV_ROUND_CLOSEST(val, 1000); 542 return val & 0xffff; 543 } 544 545 if (val < 0) { 546 negative = true; 547 val = -val; 548 } 549 550 /* Power is in uW. Convert to mW before converting. */ 551 if (class == PSC_POWER) 552 val = DIV_ROUND_CLOSEST(val, 1000L); 553 554 /* 555 * For simplicity, convert fan data to milli-units 556 * before calculating the exponent. 557 */ 558 if (class == PSC_FAN) 559 val = val * 1000; 560 561 /* Reduce large mantissa until it fits into 10 bit */ 562 while (val >= MAX_MANTISSA && exponent < 15) { 563 exponent++; 564 val >>= 1; 565 } 566 /* Increase small mantissa to improve precision */ 567 while (val < MIN_MANTISSA && exponent > -15) { 568 exponent--; 569 val <<= 1; 570 } 571 572 /* Convert mantissa from milli-units to units */ 573 mantissa = DIV_ROUND_CLOSEST(val, 1000); 574 575 /* Ensure that resulting number is within range */ 576 if (mantissa > 0x3ff) 577 mantissa = 0x3ff; 578 579 /* restore sign */ 580 if (negative) 581 mantissa = -mantissa; 582 583 /* Convert to 5 bit exponent, 11 bit mantissa */ 584 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 585 } 586 587 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 588 enum pmbus_sensor_classes class, long val) 589 { 590 long m, b, R; 591 592 m = data->info->m[class]; 593 b = data->info->b[class]; 594 R = data->info->R[class]; 595 596 /* Power is in uW. Adjust R and b. */ 597 if (class == PSC_POWER) { 598 R -= 3; 599 b *= 1000; 600 } 601 602 /* Calculate Y = (m * X + b) * 10^R */ 603 if (class != PSC_FAN) { 604 R -= 3; /* Adjust R and b for data in milli-units */ 605 b *= 1000; 606 } 607 val = val * m + b; 608 609 while (R > 0) { 610 val *= 10; 611 R--; 612 } 613 while (R < 0) { 614 val = DIV_ROUND_CLOSEST(val, 10); 615 R++; 616 } 617 618 return val; 619 } 620 621 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 622 enum pmbus_sensor_classes class, long val) 623 { 624 val = clamp_val(val, 500, 1600); 625 626 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625); 627 } 628 629 static u16 pmbus_data2reg(struct pmbus_data *data, 630 enum pmbus_sensor_classes class, long val) 631 { 632 u16 regval; 633 634 switch (data->info->format[class]) { 635 case direct: 636 regval = pmbus_data2reg_direct(data, class, val); 637 break; 638 case vid: 639 regval = pmbus_data2reg_vid(data, class, val); 640 break; 641 case linear: 642 default: 643 regval = pmbus_data2reg_linear(data, class, val); 644 break; 645 } 646 return regval; 647 } 648 649 /* 650 * Return boolean calculated from converted data. 651 * <index> defines a status register index and mask. 652 * The mask is in the lower 8 bits, the register index is in bits 8..23. 653 * 654 * The associated pmbus_boolean structure contains optional pointers to two 655 * sensor attributes. If specified, those attributes are compared against each 656 * other to determine if a limit has been exceeded. 657 * 658 * If the sensor attribute pointers are NULL, the function returns true if 659 * (status[reg] & mask) is true. 660 * 661 * If sensor attribute pointers are provided, a comparison against a specified 662 * limit has to be performed to determine the boolean result. 663 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 664 * sensor values referenced by sensor attribute pointers s1 and s2). 665 * 666 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 667 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 668 * 669 * If a negative value is stored in any of the referenced registers, this value 670 * reflects an error code which will be returned. 671 */ 672 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b, 673 int index) 674 { 675 struct pmbus_sensor *s1 = b->s1; 676 struct pmbus_sensor *s2 = b->s2; 677 u16 reg = (index >> 8) & 0xffff; 678 u8 mask = index & 0xff; 679 int ret, status; 680 u8 regval; 681 682 status = data->status[reg]; 683 if (status < 0) 684 return status; 685 686 regval = status & mask; 687 if (!s1 && !s2) { 688 ret = !!regval; 689 } else if (!s1 || !s2) { 690 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2); 691 return 0; 692 } else { 693 long v1, v2; 694 695 if (s1->data < 0) 696 return s1->data; 697 if (s2->data < 0) 698 return s2->data; 699 700 v1 = pmbus_reg2data(data, s1); 701 v2 = pmbus_reg2data(data, s2); 702 ret = !!(regval && v1 >= v2); 703 } 704 return ret; 705 } 706 707 static ssize_t pmbus_show_boolean(struct device *dev, 708 struct device_attribute *da, char *buf) 709 { 710 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 711 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 712 struct pmbus_data *data = pmbus_update_device(dev); 713 int val; 714 715 val = pmbus_get_boolean(data, boolean, attr->index); 716 if (val < 0) 717 return val; 718 return snprintf(buf, PAGE_SIZE, "%d\n", val); 719 } 720 721 static ssize_t pmbus_show_sensor(struct device *dev, 722 struct device_attribute *devattr, char *buf) 723 { 724 struct pmbus_data *data = pmbus_update_device(dev); 725 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 726 727 if (sensor->data < 0) 728 return sensor->data; 729 730 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor)); 731 } 732 733 static ssize_t pmbus_set_sensor(struct device *dev, 734 struct device_attribute *devattr, 735 const char *buf, size_t count) 736 { 737 struct i2c_client *client = to_i2c_client(dev->parent); 738 struct pmbus_data *data = i2c_get_clientdata(client); 739 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 740 ssize_t rv = count; 741 long val = 0; 742 int ret; 743 u16 regval; 744 745 if (kstrtol(buf, 10, &val) < 0) 746 return -EINVAL; 747 748 mutex_lock(&data->update_lock); 749 regval = pmbus_data2reg(data, sensor->class, val); 750 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 751 if (ret < 0) 752 rv = ret; 753 else 754 sensor->data = regval; 755 mutex_unlock(&data->update_lock); 756 return rv; 757 } 758 759 static ssize_t pmbus_show_label(struct device *dev, 760 struct device_attribute *da, char *buf) 761 { 762 struct pmbus_label *label = to_pmbus_label(da); 763 764 return snprintf(buf, PAGE_SIZE, "%s\n", label->label); 765 } 766 767 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 768 { 769 if (data->num_attributes >= data->max_attributes - 1) { 770 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 771 void *new_attrs = krealloc(data->group.attrs, 772 new_max_attrs * sizeof(void *), 773 GFP_KERNEL); 774 if (!new_attrs) 775 return -ENOMEM; 776 data->group.attrs = new_attrs; 777 data->max_attributes = new_max_attrs; 778 } 779 780 data->group.attrs[data->num_attributes++] = attr; 781 data->group.attrs[data->num_attributes] = NULL; 782 return 0; 783 } 784 785 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 786 const char *name, 787 umode_t mode, 788 ssize_t (*show)(struct device *dev, 789 struct device_attribute *attr, 790 char *buf), 791 ssize_t (*store)(struct device *dev, 792 struct device_attribute *attr, 793 const char *buf, size_t count)) 794 { 795 sysfs_attr_init(&dev_attr->attr); 796 dev_attr->attr.name = name; 797 dev_attr->attr.mode = mode; 798 dev_attr->show = show; 799 dev_attr->store = store; 800 } 801 802 static void pmbus_attr_init(struct sensor_device_attribute *a, 803 const char *name, 804 umode_t mode, 805 ssize_t (*show)(struct device *dev, 806 struct device_attribute *attr, 807 char *buf), 808 ssize_t (*store)(struct device *dev, 809 struct device_attribute *attr, 810 const char *buf, size_t count), 811 int idx) 812 { 813 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 814 a->index = idx; 815 } 816 817 static int pmbus_add_boolean(struct pmbus_data *data, 818 const char *name, const char *type, int seq, 819 struct pmbus_sensor *s1, 820 struct pmbus_sensor *s2, 821 u16 reg, u8 mask) 822 { 823 struct pmbus_boolean *boolean; 824 struct sensor_device_attribute *a; 825 826 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 827 if (!boolean) 828 return -ENOMEM; 829 830 a = &boolean->attribute; 831 832 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 833 name, seq, type); 834 boolean->s1 = s1; 835 boolean->s2 = s2; 836 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL, 837 (reg << 8) | mask); 838 839 return pmbus_add_attribute(data, &a->dev_attr.attr); 840 } 841 842 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 843 const char *name, const char *type, 844 int seq, int page, int reg, 845 enum pmbus_sensor_classes class, 846 bool update, bool readonly) 847 { 848 struct pmbus_sensor *sensor; 849 struct device_attribute *a; 850 851 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 852 if (!sensor) 853 return NULL; 854 a = &sensor->attribute; 855 856 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 857 name, seq, type); 858 sensor->page = page; 859 sensor->reg = reg; 860 sensor->class = class; 861 sensor->update = update; 862 pmbus_dev_attr_init(a, sensor->name, 863 readonly ? S_IRUGO : S_IRUGO | S_IWUSR, 864 pmbus_show_sensor, pmbus_set_sensor); 865 866 if (pmbus_add_attribute(data, &a->attr)) 867 return NULL; 868 869 sensor->next = data->sensors; 870 data->sensors = sensor; 871 872 return sensor; 873 } 874 875 static int pmbus_add_label(struct pmbus_data *data, 876 const char *name, int seq, 877 const char *lstring, int index) 878 { 879 struct pmbus_label *label; 880 struct device_attribute *a; 881 882 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 883 if (!label) 884 return -ENOMEM; 885 886 a = &label->attribute; 887 888 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 889 if (!index) 890 strncpy(label->label, lstring, sizeof(label->label) - 1); 891 else 892 snprintf(label->label, sizeof(label->label), "%s%d", lstring, 893 index); 894 895 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL); 896 return pmbus_add_attribute(data, &a->attr); 897 } 898 899 /* 900 * Search for attributes. Allocate sensors, booleans, and labels as needed. 901 */ 902 903 /* 904 * The pmbus_limit_attr structure describes a single limit attribute 905 * and its associated alarm attribute. 906 */ 907 struct pmbus_limit_attr { 908 u16 reg; /* Limit register */ 909 u16 sbit; /* Alarm attribute status bit */ 910 bool update; /* True if register needs updates */ 911 bool low; /* True if low limit; for limits with compare 912 functions only */ 913 const char *attr; /* Attribute name */ 914 const char *alarm; /* Alarm attribute name */ 915 }; 916 917 /* 918 * The pmbus_sensor_attr structure describes one sensor attribute. This 919 * description includes a reference to the associated limit attributes. 920 */ 921 struct pmbus_sensor_attr { 922 u16 reg; /* sensor register */ 923 u8 gbit; /* generic status bit */ 924 u8 nlimit; /* # of limit registers */ 925 enum pmbus_sensor_classes class;/* sensor class */ 926 const char *label; /* sensor label */ 927 bool paged; /* true if paged sensor */ 928 bool update; /* true if update needed */ 929 bool compare; /* true if compare function needed */ 930 u32 func; /* sensor mask */ 931 u32 sfunc; /* sensor status mask */ 932 int sbase; /* status base register */ 933 const struct pmbus_limit_attr *limit;/* limit registers */ 934 }; 935 936 /* 937 * Add a set of limit attributes and, if supported, the associated 938 * alarm attributes. 939 * returns 0 if no alarm register found, 1 if an alarm register was found, 940 * < 0 on errors. 941 */ 942 static int pmbus_add_limit_attrs(struct i2c_client *client, 943 struct pmbus_data *data, 944 const struct pmbus_driver_info *info, 945 const char *name, int index, int page, 946 struct pmbus_sensor *base, 947 const struct pmbus_sensor_attr *attr) 948 { 949 const struct pmbus_limit_attr *l = attr->limit; 950 int nlimit = attr->nlimit; 951 int have_alarm = 0; 952 int i, ret; 953 struct pmbus_sensor *curr; 954 955 for (i = 0; i < nlimit; i++) { 956 if (pmbus_check_word_register(client, page, l->reg)) { 957 curr = pmbus_add_sensor(data, name, l->attr, index, 958 page, l->reg, attr->class, 959 attr->update || l->update, 960 false); 961 if (!curr) 962 return -ENOMEM; 963 if (l->sbit && (info->func[page] & attr->sfunc)) { 964 ret = pmbus_add_boolean(data, name, 965 l->alarm, index, 966 attr->compare ? l->low ? curr : base 967 : NULL, 968 attr->compare ? l->low ? base : curr 969 : NULL, 970 attr->sbase + page, l->sbit); 971 if (ret) 972 return ret; 973 have_alarm = 1; 974 } 975 } 976 l++; 977 } 978 return have_alarm; 979 } 980 981 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 982 struct pmbus_data *data, 983 const struct pmbus_driver_info *info, 984 const char *name, 985 int index, int page, 986 const struct pmbus_sensor_attr *attr) 987 { 988 struct pmbus_sensor *base; 989 int ret; 990 991 if (attr->label) { 992 ret = pmbus_add_label(data, name, index, attr->label, 993 attr->paged ? page + 1 : 0); 994 if (ret) 995 return ret; 996 } 997 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg, 998 attr->class, true, true); 999 if (!base) 1000 return -ENOMEM; 1001 if (attr->sfunc) { 1002 ret = pmbus_add_limit_attrs(client, data, info, name, 1003 index, page, base, attr); 1004 if (ret < 0) 1005 return ret; 1006 /* 1007 * Add generic alarm attribute only if there are no individual 1008 * alarm attributes, if there is a global alarm bit, and if 1009 * the generic status register for this page is accessible. 1010 */ 1011 if (!ret && attr->gbit && 1012 pmbus_check_byte_register(client, page, 1013 data->status_register)) { 1014 ret = pmbus_add_boolean(data, name, "alarm", index, 1015 NULL, NULL, 1016 PB_STATUS_BASE + page, 1017 attr->gbit); 1018 if (ret) 1019 return ret; 1020 } 1021 } 1022 return 0; 1023 } 1024 1025 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1026 struct pmbus_data *data, 1027 const char *name, 1028 const struct pmbus_sensor_attr *attrs, 1029 int nattrs) 1030 { 1031 const struct pmbus_driver_info *info = data->info; 1032 int index, i; 1033 int ret; 1034 1035 index = 1; 1036 for (i = 0; i < nattrs; i++) { 1037 int page, pages; 1038 1039 pages = attrs->paged ? info->pages : 1; 1040 for (page = 0; page < pages; page++) { 1041 if (!(info->func[page] & attrs->func)) 1042 continue; 1043 ret = pmbus_add_sensor_attrs_one(client, data, info, 1044 name, index, page, 1045 attrs); 1046 if (ret) 1047 return ret; 1048 index++; 1049 } 1050 attrs++; 1051 } 1052 return 0; 1053 } 1054 1055 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1056 { 1057 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1058 .attr = "min", 1059 .alarm = "min_alarm", 1060 .sbit = PB_VOLTAGE_UV_WARNING, 1061 }, { 1062 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1063 .attr = "lcrit", 1064 .alarm = "lcrit_alarm", 1065 .sbit = PB_VOLTAGE_UV_FAULT, 1066 }, { 1067 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1068 .attr = "max", 1069 .alarm = "max_alarm", 1070 .sbit = PB_VOLTAGE_OV_WARNING, 1071 }, { 1072 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1073 .attr = "crit", 1074 .alarm = "crit_alarm", 1075 .sbit = PB_VOLTAGE_OV_FAULT, 1076 }, { 1077 .reg = PMBUS_VIRT_READ_VIN_AVG, 1078 .update = true, 1079 .attr = "average", 1080 }, { 1081 .reg = PMBUS_VIRT_READ_VIN_MIN, 1082 .update = true, 1083 .attr = "lowest", 1084 }, { 1085 .reg = PMBUS_VIRT_READ_VIN_MAX, 1086 .update = true, 1087 .attr = "highest", 1088 }, { 1089 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1090 .attr = "reset_history", 1091 }, 1092 }; 1093 1094 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1095 { 1096 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1097 .attr = "min", 1098 .alarm = "min_alarm", 1099 .sbit = PB_VOLTAGE_UV_WARNING, 1100 }, { 1101 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1102 .attr = "lcrit", 1103 .alarm = "lcrit_alarm", 1104 .sbit = PB_VOLTAGE_UV_FAULT, 1105 }, { 1106 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1107 .attr = "max", 1108 .alarm = "max_alarm", 1109 .sbit = PB_VOLTAGE_OV_WARNING, 1110 }, { 1111 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1112 .attr = "crit", 1113 .alarm = "crit_alarm", 1114 .sbit = PB_VOLTAGE_OV_FAULT, 1115 } 1116 }; 1117 1118 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1119 { 1120 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1121 .attr = "min", 1122 .alarm = "min_alarm", 1123 .sbit = PB_VOLTAGE_UV_WARNING, 1124 }, { 1125 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1126 .attr = "lcrit", 1127 .alarm = "lcrit_alarm", 1128 .sbit = PB_VOLTAGE_UV_FAULT, 1129 }, { 1130 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1131 .attr = "max", 1132 .alarm = "max_alarm", 1133 .sbit = PB_VOLTAGE_OV_WARNING, 1134 }, { 1135 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1136 .attr = "crit", 1137 .alarm = "crit_alarm", 1138 .sbit = PB_VOLTAGE_OV_FAULT, 1139 }, { 1140 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1141 .update = true, 1142 .attr = "average", 1143 }, { 1144 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1145 .update = true, 1146 .attr = "lowest", 1147 }, { 1148 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1149 .update = true, 1150 .attr = "highest", 1151 }, { 1152 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1153 .attr = "reset_history", 1154 } 1155 }; 1156 1157 static const struct pmbus_sensor_attr voltage_attributes[] = { 1158 { 1159 .reg = PMBUS_READ_VIN, 1160 .class = PSC_VOLTAGE_IN, 1161 .label = "vin", 1162 .func = PMBUS_HAVE_VIN, 1163 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1164 .sbase = PB_STATUS_INPUT_BASE, 1165 .gbit = PB_STATUS_VIN_UV, 1166 .limit = vin_limit_attrs, 1167 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1168 }, { 1169 .reg = PMBUS_VIRT_READ_VMON, 1170 .class = PSC_VOLTAGE_IN, 1171 .label = "vmon", 1172 .func = PMBUS_HAVE_VMON, 1173 .sfunc = PMBUS_HAVE_STATUS_VMON, 1174 .sbase = PB_STATUS_VMON_BASE, 1175 .limit = vmon_limit_attrs, 1176 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1177 }, { 1178 .reg = PMBUS_READ_VCAP, 1179 .class = PSC_VOLTAGE_IN, 1180 .label = "vcap", 1181 .func = PMBUS_HAVE_VCAP, 1182 }, { 1183 .reg = PMBUS_READ_VOUT, 1184 .class = PSC_VOLTAGE_OUT, 1185 .label = "vout", 1186 .paged = true, 1187 .func = PMBUS_HAVE_VOUT, 1188 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1189 .sbase = PB_STATUS_VOUT_BASE, 1190 .gbit = PB_STATUS_VOUT_OV, 1191 .limit = vout_limit_attrs, 1192 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1193 } 1194 }; 1195 1196 /* Current attributes */ 1197 1198 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1199 { 1200 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1201 .attr = "max", 1202 .alarm = "max_alarm", 1203 .sbit = PB_IIN_OC_WARNING, 1204 }, { 1205 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1206 .attr = "crit", 1207 .alarm = "crit_alarm", 1208 .sbit = PB_IIN_OC_FAULT, 1209 }, { 1210 .reg = PMBUS_VIRT_READ_IIN_AVG, 1211 .update = true, 1212 .attr = "average", 1213 }, { 1214 .reg = PMBUS_VIRT_READ_IIN_MIN, 1215 .update = true, 1216 .attr = "lowest", 1217 }, { 1218 .reg = PMBUS_VIRT_READ_IIN_MAX, 1219 .update = true, 1220 .attr = "highest", 1221 }, { 1222 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1223 .attr = "reset_history", 1224 } 1225 }; 1226 1227 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1228 { 1229 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1230 .attr = "max", 1231 .alarm = "max_alarm", 1232 .sbit = PB_IOUT_OC_WARNING, 1233 }, { 1234 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1235 .attr = "lcrit", 1236 .alarm = "lcrit_alarm", 1237 .sbit = PB_IOUT_UC_FAULT, 1238 }, { 1239 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1240 .attr = "crit", 1241 .alarm = "crit_alarm", 1242 .sbit = PB_IOUT_OC_FAULT, 1243 }, { 1244 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1245 .update = true, 1246 .attr = "average", 1247 }, { 1248 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1249 .update = true, 1250 .attr = "lowest", 1251 }, { 1252 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1253 .update = true, 1254 .attr = "highest", 1255 }, { 1256 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1257 .attr = "reset_history", 1258 } 1259 }; 1260 1261 static const struct pmbus_sensor_attr current_attributes[] = { 1262 { 1263 .reg = PMBUS_READ_IIN, 1264 .class = PSC_CURRENT_IN, 1265 .label = "iin", 1266 .func = PMBUS_HAVE_IIN, 1267 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1268 .sbase = PB_STATUS_INPUT_BASE, 1269 .limit = iin_limit_attrs, 1270 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1271 }, { 1272 .reg = PMBUS_READ_IOUT, 1273 .class = PSC_CURRENT_OUT, 1274 .label = "iout", 1275 .paged = true, 1276 .func = PMBUS_HAVE_IOUT, 1277 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1278 .sbase = PB_STATUS_IOUT_BASE, 1279 .gbit = PB_STATUS_IOUT_OC, 1280 .limit = iout_limit_attrs, 1281 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1282 } 1283 }; 1284 1285 /* Power attributes */ 1286 1287 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1288 { 1289 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1290 .attr = "max", 1291 .alarm = "alarm", 1292 .sbit = PB_PIN_OP_WARNING, 1293 }, { 1294 .reg = PMBUS_VIRT_READ_PIN_AVG, 1295 .update = true, 1296 .attr = "average", 1297 }, { 1298 .reg = PMBUS_VIRT_READ_PIN_MAX, 1299 .update = true, 1300 .attr = "input_highest", 1301 }, { 1302 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1303 .attr = "reset_history", 1304 } 1305 }; 1306 1307 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1308 { 1309 .reg = PMBUS_POUT_MAX, 1310 .attr = "cap", 1311 .alarm = "cap_alarm", 1312 .sbit = PB_POWER_LIMITING, 1313 }, { 1314 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1315 .attr = "max", 1316 .alarm = "max_alarm", 1317 .sbit = PB_POUT_OP_WARNING, 1318 }, { 1319 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1320 .attr = "crit", 1321 .alarm = "crit_alarm", 1322 .sbit = PB_POUT_OP_FAULT, 1323 }, { 1324 .reg = PMBUS_VIRT_READ_POUT_AVG, 1325 .update = true, 1326 .attr = "average", 1327 }, { 1328 .reg = PMBUS_VIRT_READ_POUT_MAX, 1329 .update = true, 1330 .attr = "input_highest", 1331 }, { 1332 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1333 .attr = "reset_history", 1334 } 1335 }; 1336 1337 static const struct pmbus_sensor_attr power_attributes[] = { 1338 { 1339 .reg = PMBUS_READ_PIN, 1340 .class = PSC_POWER, 1341 .label = "pin", 1342 .func = PMBUS_HAVE_PIN, 1343 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1344 .sbase = PB_STATUS_INPUT_BASE, 1345 .limit = pin_limit_attrs, 1346 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1347 }, { 1348 .reg = PMBUS_READ_POUT, 1349 .class = PSC_POWER, 1350 .label = "pout", 1351 .paged = true, 1352 .func = PMBUS_HAVE_POUT, 1353 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1354 .sbase = PB_STATUS_IOUT_BASE, 1355 .limit = pout_limit_attrs, 1356 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1357 } 1358 }; 1359 1360 /* Temperature atributes */ 1361 1362 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1363 { 1364 .reg = PMBUS_UT_WARN_LIMIT, 1365 .low = true, 1366 .attr = "min", 1367 .alarm = "min_alarm", 1368 .sbit = PB_TEMP_UT_WARNING, 1369 }, { 1370 .reg = PMBUS_UT_FAULT_LIMIT, 1371 .low = true, 1372 .attr = "lcrit", 1373 .alarm = "lcrit_alarm", 1374 .sbit = PB_TEMP_UT_FAULT, 1375 }, { 1376 .reg = PMBUS_OT_WARN_LIMIT, 1377 .attr = "max", 1378 .alarm = "max_alarm", 1379 .sbit = PB_TEMP_OT_WARNING, 1380 }, { 1381 .reg = PMBUS_OT_FAULT_LIMIT, 1382 .attr = "crit", 1383 .alarm = "crit_alarm", 1384 .sbit = PB_TEMP_OT_FAULT, 1385 }, { 1386 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1387 .attr = "lowest", 1388 }, { 1389 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1390 .attr = "average", 1391 }, { 1392 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1393 .attr = "highest", 1394 }, { 1395 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1396 .attr = "reset_history", 1397 } 1398 }; 1399 1400 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1401 { 1402 .reg = PMBUS_UT_WARN_LIMIT, 1403 .low = true, 1404 .attr = "min", 1405 .alarm = "min_alarm", 1406 .sbit = PB_TEMP_UT_WARNING, 1407 }, { 1408 .reg = PMBUS_UT_FAULT_LIMIT, 1409 .low = true, 1410 .attr = "lcrit", 1411 .alarm = "lcrit_alarm", 1412 .sbit = PB_TEMP_UT_FAULT, 1413 }, { 1414 .reg = PMBUS_OT_WARN_LIMIT, 1415 .attr = "max", 1416 .alarm = "max_alarm", 1417 .sbit = PB_TEMP_OT_WARNING, 1418 }, { 1419 .reg = PMBUS_OT_FAULT_LIMIT, 1420 .attr = "crit", 1421 .alarm = "crit_alarm", 1422 .sbit = PB_TEMP_OT_FAULT, 1423 }, { 1424 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1425 .attr = "lowest", 1426 }, { 1427 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1428 .attr = "average", 1429 }, { 1430 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1431 .attr = "highest", 1432 }, { 1433 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1434 .attr = "reset_history", 1435 } 1436 }; 1437 1438 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1439 { 1440 .reg = PMBUS_UT_WARN_LIMIT, 1441 .low = true, 1442 .attr = "min", 1443 .alarm = "min_alarm", 1444 .sbit = PB_TEMP_UT_WARNING, 1445 }, { 1446 .reg = PMBUS_UT_FAULT_LIMIT, 1447 .low = true, 1448 .attr = "lcrit", 1449 .alarm = "lcrit_alarm", 1450 .sbit = PB_TEMP_UT_FAULT, 1451 }, { 1452 .reg = PMBUS_OT_WARN_LIMIT, 1453 .attr = "max", 1454 .alarm = "max_alarm", 1455 .sbit = PB_TEMP_OT_WARNING, 1456 }, { 1457 .reg = PMBUS_OT_FAULT_LIMIT, 1458 .attr = "crit", 1459 .alarm = "crit_alarm", 1460 .sbit = PB_TEMP_OT_FAULT, 1461 } 1462 }; 1463 1464 static const struct pmbus_sensor_attr temp_attributes[] = { 1465 { 1466 .reg = PMBUS_READ_TEMPERATURE_1, 1467 .class = PSC_TEMPERATURE, 1468 .paged = true, 1469 .update = true, 1470 .compare = true, 1471 .func = PMBUS_HAVE_TEMP, 1472 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1473 .sbase = PB_STATUS_TEMP_BASE, 1474 .gbit = PB_STATUS_TEMPERATURE, 1475 .limit = temp_limit_attrs, 1476 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1477 }, { 1478 .reg = PMBUS_READ_TEMPERATURE_2, 1479 .class = PSC_TEMPERATURE, 1480 .paged = true, 1481 .update = true, 1482 .compare = true, 1483 .func = PMBUS_HAVE_TEMP2, 1484 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1485 .sbase = PB_STATUS_TEMP_BASE, 1486 .gbit = PB_STATUS_TEMPERATURE, 1487 .limit = temp_limit_attrs2, 1488 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1489 }, { 1490 .reg = PMBUS_READ_TEMPERATURE_3, 1491 .class = PSC_TEMPERATURE, 1492 .paged = true, 1493 .update = true, 1494 .compare = true, 1495 .func = PMBUS_HAVE_TEMP3, 1496 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1497 .sbase = PB_STATUS_TEMP_BASE, 1498 .gbit = PB_STATUS_TEMPERATURE, 1499 .limit = temp_limit_attrs3, 1500 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1501 } 1502 }; 1503 1504 static const int pmbus_fan_registers[] = { 1505 PMBUS_READ_FAN_SPEED_1, 1506 PMBUS_READ_FAN_SPEED_2, 1507 PMBUS_READ_FAN_SPEED_3, 1508 PMBUS_READ_FAN_SPEED_4 1509 }; 1510 1511 static const int pmbus_fan_config_registers[] = { 1512 PMBUS_FAN_CONFIG_12, 1513 PMBUS_FAN_CONFIG_12, 1514 PMBUS_FAN_CONFIG_34, 1515 PMBUS_FAN_CONFIG_34 1516 }; 1517 1518 static const int pmbus_fan_status_registers[] = { 1519 PMBUS_STATUS_FAN_12, 1520 PMBUS_STATUS_FAN_12, 1521 PMBUS_STATUS_FAN_34, 1522 PMBUS_STATUS_FAN_34 1523 }; 1524 1525 static const u32 pmbus_fan_flags[] = { 1526 PMBUS_HAVE_FAN12, 1527 PMBUS_HAVE_FAN12, 1528 PMBUS_HAVE_FAN34, 1529 PMBUS_HAVE_FAN34 1530 }; 1531 1532 static const u32 pmbus_fan_status_flags[] = { 1533 PMBUS_HAVE_STATUS_FAN12, 1534 PMBUS_HAVE_STATUS_FAN12, 1535 PMBUS_HAVE_STATUS_FAN34, 1536 PMBUS_HAVE_STATUS_FAN34 1537 }; 1538 1539 /* Fans */ 1540 static int pmbus_add_fan_attributes(struct i2c_client *client, 1541 struct pmbus_data *data) 1542 { 1543 const struct pmbus_driver_info *info = data->info; 1544 int index = 1; 1545 int page; 1546 int ret; 1547 1548 for (page = 0; page < info->pages; page++) { 1549 int f; 1550 1551 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1552 int regval; 1553 1554 if (!(info->func[page] & pmbus_fan_flags[f])) 1555 break; 1556 1557 if (!pmbus_check_word_register(client, page, 1558 pmbus_fan_registers[f])) 1559 break; 1560 1561 /* 1562 * Skip fan if not installed. 1563 * Each fan configuration register covers multiple fans, 1564 * so we have to do some magic. 1565 */ 1566 regval = _pmbus_read_byte_data(client, page, 1567 pmbus_fan_config_registers[f]); 1568 if (regval < 0 || 1569 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1570 continue; 1571 1572 if (pmbus_add_sensor(data, "fan", "input", index, 1573 page, pmbus_fan_registers[f], 1574 PSC_FAN, true, true) == NULL) 1575 return -ENOMEM; 1576 1577 /* 1578 * Each fan status register covers multiple fans, 1579 * so we have to do some magic. 1580 */ 1581 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1582 pmbus_check_byte_register(client, 1583 page, pmbus_fan_status_registers[f])) { 1584 int base; 1585 1586 if (f > 1) /* fan 3, 4 */ 1587 base = PB_STATUS_FAN34_BASE + page; 1588 else 1589 base = PB_STATUS_FAN_BASE + page; 1590 ret = pmbus_add_boolean(data, "fan", 1591 "alarm", index, NULL, NULL, base, 1592 PB_FAN_FAN1_WARNING >> (f & 1)); 1593 if (ret) 1594 return ret; 1595 ret = pmbus_add_boolean(data, "fan", 1596 "fault", index, NULL, NULL, base, 1597 PB_FAN_FAN1_FAULT >> (f & 1)); 1598 if (ret) 1599 return ret; 1600 } 1601 index++; 1602 } 1603 } 1604 return 0; 1605 } 1606 1607 static int pmbus_find_attributes(struct i2c_client *client, 1608 struct pmbus_data *data) 1609 { 1610 int ret; 1611 1612 /* Voltage sensors */ 1613 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 1614 ARRAY_SIZE(voltage_attributes)); 1615 if (ret) 1616 return ret; 1617 1618 /* Current sensors */ 1619 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 1620 ARRAY_SIZE(current_attributes)); 1621 if (ret) 1622 return ret; 1623 1624 /* Power sensors */ 1625 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 1626 ARRAY_SIZE(power_attributes)); 1627 if (ret) 1628 return ret; 1629 1630 /* Temperature sensors */ 1631 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 1632 ARRAY_SIZE(temp_attributes)); 1633 if (ret) 1634 return ret; 1635 1636 /* Fans */ 1637 ret = pmbus_add_fan_attributes(client, data); 1638 return ret; 1639 } 1640 1641 /* 1642 * Identify chip parameters. 1643 * This function is called for all chips. 1644 */ 1645 static int pmbus_identify_common(struct i2c_client *client, 1646 struct pmbus_data *data) 1647 { 1648 int vout_mode = -1; 1649 1650 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE)) 1651 vout_mode = _pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE); 1652 if (vout_mode >= 0 && vout_mode != 0xff) { 1653 /* 1654 * Not all chips support the VOUT_MODE command, 1655 * so a failure to read it is not an error. 1656 */ 1657 switch (vout_mode >> 5) { 1658 case 0: /* linear mode */ 1659 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 1660 return -ENODEV; 1661 1662 data->exponent = ((s8)(vout_mode << 3)) >> 3; 1663 break; 1664 case 1: /* VID mode */ 1665 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 1666 return -ENODEV; 1667 break; 1668 case 2: /* direct mode */ 1669 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 1670 return -ENODEV; 1671 break; 1672 default: 1673 return -ENODEV; 1674 } 1675 } 1676 1677 pmbus_clear_fault_page(client, 0); 1678 return 0; 1679 } 1680 1681 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 1682 struct pmbus_driver_info *info) 1683 { 1684 struct device *dev = &client->dev; 1685 int ret; 1686 1687 /* 1688 * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try 1689 * to use PMBUS_STATUS_WORD instead if that is the case. 1690 * Bail out if both registers are not supported. 1691 */ 1692 data->status_register = PMBUS_STATUS_BYTE; 1693 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 1694 if (ret < 0 || ret == 0xff) { 1695 data->status_register = PMBUS_STATUS_WORD; 1696 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 1697 if (ret < 0 || ret == 0xffff) { 1698 dev_err(dev, "PMBus status register not found\n"); 1699 return -ENODEV; 1700 } 1701 } 1702 1703 pmbus_clear_faults(client); 1704 1705 if (info->identify) { 1706 ret = (*info->identify)(client, info); 1707 if (ret < 0) { 1708 dev_err(dev, "Chip identification failed\n"); 1709 return ret; 1710 } 1711 } 1712 1713 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 1714 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 1715 return -ENODEV; 1716 } 1717 1718 ret = pmbus_identify_common(client, data); 1719 if (ret < 0) { 1720 dev_err(dev, "Failed to identify chip capabilities\n"); 1721 return ret; 1722 } 1723 return 0; 1724 } 1725 1726 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, 1727 struct pmbus_driver_info *info) 1728 { 1729 struct device *dev = &client->dev; 1730 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 1731 struct pmbus_data *data; 1732 int ret; 1733 1734 if (!info) 1735 return -ENODEV; 1736 1737 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 1738 | I2C_FUNC_SMBUS_BYTE_DATA 1739 | I2C_FUNC_SMBUS_WORD_DATA)) 1740 return -ENODEV; 1741 1742 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 1743 if (!data) 1744 return -ENOMEM; 1745 1746 i2c_set_clientdata(client, data); 1747 mutex_init(&data->update_lock); 1748 data->dev = dev; 1749 1750 if (pdata) 1751 data->flags = pdata->flags; 1752 data->info = info; 1753 1754 ret = pmbus_init_common(client, data, info); 1755 if (ret < 0) 1756 return ret; 1757 1758 ret = pmbus_find_attributes(client, data); 1759 if (ret) 1760 goto out_kfree; 1761 1762 /* 1763 * If there are no attributes, something is wrong. 1764 * Bail out instead of trying to register nothing. 1765 */ 1766 if (!data->num_attributes) { 1767 dev_err(dev, "No attributes found\n"); 1768 ret = -ENODEV; 1769 goto out_kfree; 1770 } 1771 1772 data->groups[0] = &data->group; 1773 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name, 1774 data, data->groups); 1775 if (IS_ERR(data->hwmon_dev)) { 1776 ret = PTR_ERR(data->hwmon_dev); 1777 dev_err(dev, "Failed to register hwmon device\n"); 1778 goto out_kfree; 1779 } 1780 return 0; 1781 1782 out_kfree: 1783 kfree(data->group.attrs); 1784 return ret; 1785 } 1786 EXPORT_SYMBOL_GPL(pmbus_do_probe); 1787 1788 int pmbus_do_remove(struct i2c_client *client) 1789 { 1790 struct pmbus_data *data = i2c_get_clientdata(client); 1791 hwmon_device_unregister(data->hwmon_dev); 1792 kfree(data->group.attrs); 1793 return 0; 1794 } 1795 EXPORT_SYMBOL_GPL(pmbus_do_remove); 1796 1797 MODULE_AUTHOR("Guenter Roeck"); 1798 MODULE_DESCRIPTION("PMBus core driver"); 1799 MODULE_LICENSE("GPL"); 1800