1 // SPDX-License-Identifier: GPL-2.0-only 2 // Copyright (c) 2018-2021 Intel Corporation 3 4 #include <linux/auxiliary_bus.h> 5 #include <linux/bitfield.h> 6 #include <linux/bitops.h> 7 #include <linux/devm-helpers.h> 8 #include <linux/hwmon.h> 9 #include <linux/jiffies.h> 10 #include <linux/module.h> 11 #include <linux/peci.h> 12 #include <linux/peci-cpu.h> 13 #include <linux/units.h> 14 #include <linux/workqueue.h> 15 16 #include "common.h" 17 18 #define DIMM_MASK_CHECK_DELAY_JIFFIES msecs_to_jiffies(5000) 19 20 /* Max number of channel ranks and DIMM index per channel */ 21 #define CHAN_RANK_MAX_ON_HSX 8 22 #define DIMM_IDX_MAX_ON_HSX 3 23 #define CHAN_RANK_MAX_ON_BDX 4 24 #define DIMM_IDX_MAX_ON_BDX 3 25 #define CHAN_RANK_MAX_ON_BDXD 2 26 #define DIMM_IDX_MAX_ON_BDXD 2 27 #define CHAN_RANK_MAX_ON_SKX 6 28 #define DIMM_IDX_MAX_ON_SKX 2 29 #define CHAN_RANK_MAX_ON_ICX 8 30 #define DIMM_IDX_MAX_ON_ICX 2 31 #define CHAN_RANK_MAX_ON_ICXD 4 32 #define DIMM_IDX_MAX_ON_ICXD 2 33 34 #define CHAN_RANK_MAX CHAN_RANK_MAX_ON_HSX 35 #define DIMM_IDX_MAX DIMM_IDX_MAX_ON_HSX 36 #define DIMM_NUMS_MAX (CHAN_RANK_MAX * DIMM_IDX_MAX) 37 38 #define CPU_SEG_MASK GENMASK(23, 16) 39 #define GET_CPU_SEG(x) (((x) & CPU_SEG_MASK) >> 16) 40 #define CPU_BUS_MASK GENMASK(7, 0) 41 #define GET_CPU_BUS(x) ((x) & CPU_BUS_MASK) 42 43 #define DIMM_TEMP_MAX GENMASK(15, 8) 44 #define DIMM_TEMP_CRIT GENMASK(23, 16) 45 #define GET_TEMP_MAX(x) (((x) & DIMM_TEMP_MAX) >> 8) 46 #define GET_TEMP_CRIT(x) (((x) & DIMM_TEMP_CRIT) >> 16) 47 48 #define NO_DIMM_RETRY_COUNT_MAX 5 49 50 struct peci_dimmtemp; 51 52 struct dimm_info { 53 int chan_rank_max; 54 int dimm_idx_max; 55 u8 min_peci_revision; 56 int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order, 57 int chan_rank, u32 *data); 58 }; 59 60 struct peci_dimm_thresholds { 61 long temp_max; 62 long temp_crit; 63 struct peci_sensor_state state; 64 }; 65 66 enum peci_dimm_threshold_type { 67 temp_max_type, 68 temp_crit_type, 69 }; 70 71 struct peci_dimmtemp { 72 struct peci_device *peci_dev; 73 struct device *dev; 74 const char *name; 75 const struct dimm_info *gen_info; 76 struct delayed_work detect_work; 77 struct { 78 struct peci_sensor_data temp; 79 struct peci_dimm_thresholds thresholds; 80 } dimm[DIMM_NUMS_MAX]; 81 char **dimmtemp_label; 82 DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX); 83 u8 no_dimm_retry_count; 84 }; 85 86 static u8 __dimm_temp(u32 reg, int dimm_order) 87 { 88 return (reg >> (dimm_order * 8)) & 0xff; 89 } 90 91 static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val) 92 { 93 int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; 94 int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; 95 int ret = 0; 96 u32 data; 97 98 mutex_lock(&priv->dimm[dimm_no].temp.state.lock); 99 if (!peci_sensor_need_update(&priv->dimm[dimm_no].temp.state)) 100 goto skip_update; 101 102 ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &data); 103 if (ret) 104 goto unlock; 105 106 priv->dimm[dimm_no].temp.value = __dimm_temp(data, dimm_order) * MILLIDEGREE_PER_DEGREE; 107 108 peci_sensor_mark_updated(&priv->dimm[dimm_no].temp.state); 109 110 skip_update: 111 *val = priv->dimm[dimm_no].temp.value; 112 unlock: 113 mutex_unlock(&priv->dimm[dimm_no].temp.state.lock); 114 return ret; 115 } 116 117 static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no) 118 { 119 int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; 120 int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; 121 u32 data; 122 int ret; 123 124 if (!peci_sensor_need_update(&priv->dimm[dimm_no].thresholds.state)) 125 return 0; 126 127 ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data); 128 if (ret == -ENODATA) /* Use default or previous value */ 129 return 0; 130 if (ret) 131 return ret; 132 133 priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE; 134 priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE; 135 136 peci_sensor_mark_updated(&priv->dimm[dimm_no].thresholds.state); 137 138 return 0; 139 } 140 141 static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type, 142 int dimm_no, long *val) 143 { 144 int ret; 145 146 mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock); 147 ret = update_thresholds(priv, dimm_no); 148 if (ret) 149 goto unlock; 150 151 switch (type) { 152 case temp_max_type: 153 *val = priv->dimm[dimm_no].thresholds.temp_max; 154 break; 155 case temp_crit_type: 156 *val = priv->dimm[dimm_no].thresholds.temp_crit; 157 break; 158 default: 159 ret = -EOPNOTSUPP; 160 break; 161 } 162 unlock: 163 mutex_unlock(&priv->dimm[dimm_no].thresholds.state.lock); 164 165 return ret; 166 } 167 168 static int dimmtemp_read_string(struct device *dev, 169 enum hwmon_sensor_types type, 170 u32 attr, int channel, const char **str) 171 { 172 struct peci_dimmtemp *priv = dev_get_drvdata(dev); 173 174 if (attr != hwmon_temp_label) 175 return -EOPNOTSUPP; 176 177 *str = (const char *)priv->dimmtemp_label[channel]; 178 179 return 0; 180 } 181 182 static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type, 183 u32 attr, int channel, long *val) 184 { 185 struct peci_dimmtemp *priv = dev_get_drvdata(dev); 186 187 switch (attr) { 188 case hwmon_temp_input: 189 return get_dimm_temp(priv, channel, val); 190 case hwmon_temp_max: 191 return get_dimm_thresholds(priv, temp_max_type, channel, val); 192 case hwmon_temp_crit: 193 return get_dimm_thresholds(priv, temp_crit_type, channel, val); 194 default: 195 break; 196 } 197 198 return -EOPNOTSUPP; 199 } 200 201 static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type, 202 u32 attr, int channel) 203 { 204 const struct peci_dimmtemp *priv = data; 205 206 if (test_bit(channel, priv->dimm_mask)) 207 return 0444; 208 209 return 0; 210 } 211 212 static const struct hwmon_ops peci_dimmtemp_ops = { 213 .is_visible = dimmtemp_is_visible, 214 .read_string = dimmtemp_read_string, 215 .read = dimmtemp_read, 216 }; 217 218 static int check_populated_dimms(struct peci_dimmtemp *priv) 219 { 220 int chan_rank_max = priv->gen_info->chan_rank_max; 221 int dimm_idx_max = priv->gen_info->dimm_idx_max; 222 DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX); 223 DECLARE_BITMAP(chan_rank_empty, CHAN_RANK_MAX); 224 225 int chan_rank, dimm_idx, ret, i; 226 u32 pcs; 227 228 if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) { 229 WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d", 230 chan_rank_max, dimm_idx_max); 231 return -EINVAL; 232 } 233 234 bitmap_zero(dimm_mask, DIMM_NUMS_MAX); 235 bitmap_zero(chan_rank_empty, CHAN_RANK_MAX); 236 237 for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) { 238 ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &pcs); 239 if (ret) { 240 /* 241 * Overall, we expect either success or -EINVAL in 242 * order to determine whether DIMM is populated or not. 243 * For anything else we fall back to deferring the 244 * detection to be performed at a later point in time. 245 */ 246 if (ret == -EINVAL) { 247 bitmap_set(chan_rank_empty, chan_rank, 1); 248 continue; 249 } 250 251 return -EAGAIN; 252 } 253 254 for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++) 255 if (__dimm_temp(pcs, dimm_idx)) 256 bitmap_set(dimm_mask, chan_rank * dimm_idx_max + dimm_idx, 1); 257 } 258 259 /* 260 * If we got all -EINVALs, it means that the CPU doesn't have any 261 * DIMMs. Unfortunately, it may also happen at the very start of 262 * host platform boot. Retrying a couple of times lets us make sure 263 * that the state is persistent. 264 */ 265 if (bitmap_full(chan_rank_empty, chan_rank_max)) { 266 if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) { 267 priv->no_dimm_retry_count++; 268 269 return -EAGAIN; 270 } 271 272 return -ENODEV; 273 } 274 275 /* 276 * It's possible that memory training is not done yet. In this case we 277 * defer the detection to be performed at a later point in time. 278 */ 279 if (bitmap_empty(dimm_mask, DIMM_NUMS_MAX)) { 280 priv->no_dimm_retry_count = 0; 281 return -EAGAIN; 282 } 283 284 for_each_set_bit(i, dimm_mask, DIMM_NUMS_MAX) { 285 dev_dbg(priv->dev, "Found DIMM%#x\n", i); 286 } 287 288 bitmap_copy(priv->dimm_mask, dimm_mask, DIMM_NUMS_MAX); 289 290 return 0; 291 } 292 293 static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan) 294 { 295 int rank = chan / priv->gen_info->dimm_idx_max; 296 int idx = chan % priv->gen_info->dimm_idx_max; 297 298 priv->dimmtemp_label[chan] = devm_kasprintf(priv->dev, GFP_KERNEL, 299 "DIMM %c%d", 'A' + rank, 300 idx + 1); 301 if (!priv->dimmtemp_label[chan]) 302 return -ENOMEM; 303 304 return 0; 305 } 306 307 static const struct hwmon_channel_info * const peci_dimmtemp_temp_info[] = { 308 HWMON_CHANNEL_INFO(temp, 309 [0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL | 310 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT), 311 NULL 312 }; 313 314 static const struct hwmon_chip_info peci_dimmtemp_chip_info = { 315 .ops = &peci_dimmtemp_ops, 316 .info = peci_dimmtemp_temp_info, 317 }; 318 319 static int create_dimm_temp_info(struct peci_dimmtemp *priv) 320 { 321 int ret, i, channels; 322 struct device *dev; 323 324 /* 325 * We expect to either find populated DIMMs and carry on with creating 326 * sensors, or find out that there are no DIMMs populated. 327 * All other states mean that the platform never reached the state that 328 * allows to check DIMM state - causing us to retry later on. 329 */ 330 ret = check_populated_dimms(priv); 331 if (ret == -ENODEV) { 332 dev_dbg(priv->dev, "No DIMMs found\n"); 333 return 0; 334 } else if (ret) { 335 schedule_delayed_work(&priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES); 336 dev_dbg(priv->dev, "Deferred populating DIMM temp info\n"); 337 return ret; 338 } 339 340 channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max; 341 342 priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL); 343 if (!priv->dimmtemp_label) 344 return -ENOMEM; 345 346 for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) { 347 ret = create_dimm_temp_label(priv, i); 348 if (ret) 349 return ret; 350 mutex_init(&priv->dimm[i].thresholds.state.lock); 351 mutex_init(&priv->dimm[i].temp.state.lock); 352 } 353 354 dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv, 355 &peci_dimmtemp_chip_info, NULL); 356 if (IS_ERR(dev)) { 357 dev_err(priv->dev, "Failed to register hwmon device\n"); 358 return PTR_ERR(dev); 359 } 360 361 dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name); 362 363 return 0; 364 } 365 366 static void create_dimm_temp_info_delayed(struct work_struct *work) 367 { 368 struct peci_dimmtemp *priv = container_of(to_delayed_work(work), 369 struct peci_dimmtemp, 370 detect_work); 371 int ret; 372 373 ret = create_dimm_temp_info(priv); 374 if (ret && ret != -EAGAIN) 375 dev_err(priv->dev, "Failed to populate DIMM temp info\n"); 376 } 377 378 static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) 379 { 380 struct device *dev = &adev->dev; 381 struct peci_device *peci_dev = to_peci_device(dev->parent); 382 struct peci_dimmtemp *priv; 383 int ret; 384 385 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 386 if (!priv) 387 return -ENOMEM; 388 389 priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_dimmtemp.cpu%d", 390 peci_dev->info.socket_id); 391 if (!priv->name) 392 return -ENOMEM; 393 394 priv->dev = dev; 395 priv->peci_dev = peci_dev; 396 priv->gen_info = (const struct dimm_info *)id->driver_data; 397 398 /* 399 * This is just a sanity check. Since we're using commands that are 400 * guaranteed to be supported on a given platform, we should never see 401 * revision lower than expected. 402 */ 403 if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision) 404 dev_warn(priv->dev, 405 "Unexpected PECI revision %#x, some features may be unavailable\n", 406 peci_dev->info.peci_revision); 407 408 ret = devm_delayed_work_autocancel(priv->dev, &priv->detect_work, 409 create_dimm_temp_info_delayed); 410 if (ret) 411 return ret; 412 413 ret = create_dimm_temp_info(priv); 414 if (ret && ret != -EAGAIN) { 415 dev_err(dev, "Failed to populate DIMM temp info\n"); 416 return ret; 417 } 418 419 return 0; 420 } 421 422 static int 423 read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) 424 { 425 u8 dev, func; 426 u16 reg; 427 int ret; 428 429 /* 430 * Device 20, Function 0: IMC 0 channel 0 -> rank 0 431 * Device 20, Function 1: IMC 0 channel 1 -> rank 1 432 * Device 21, Function 0: IMC 0 channel 2 -> rank 2 433 * Device 21, Function 1: IMC 0 channel 3 -> rank 3 434 * Device 23, Function 0: IMC 1 channel 0 -> rank 4 435 * Device 23, Function 1: IMC 1 channel 1 -> rank 5 436 * Device 24, Function 0: IMC 1 channel 2 -> rank 6 437 * Device 24, Function 1: IMC 1 channel 3 -> rank 7 438 */ 439 dev = 20 + chan_rank / 2 + chan_rank / 4; 440 func = chan_rank % 2; 441 reg = 0x120 + dimm_order * 4; 442 443 ret = peci_pci_local_read(priv->peci_dev, 1, dev, func, reg, data); 444 if (ret) 445 return ret; 446 447 return 0; 448 } 449 450 static int 451 read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) 452 { 453 u8 dev, func; 454 u16 reg; 455 int ret; 456 457 /* 458 * Device 10, Function 2: IMC 0 channel 0 -> rank 0 459 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 460 * Device 12, Function 2: IMC 1 channel 0 -> rank 2 461 * Device 12, Function 6: IMC 1 channel 1 -> rank 3 462 */ 463 dev = 10 + chan_rank / 2 * 2; 464 func = (chan_rank % 2) ? 6 : 2; 465 reg = 0x120 + dimm_order * 4; 466 467 ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); 468 if (ret) 469 return ret; 470 471 return 0; 472 } 473 474 static int 475 read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) 476 { 477 u8 dev, func; 478 u16 reg; 479 int ret; 480 481 /* 482 * Device 10, Function 2: IMC 0 channel 0 -> rank 0 483 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 484 * Device 11, Function 2: IMC 0 channel 2 -> rank 2 485 * Device 12, Function 2: IMC 1 channel 0 -> rank 3 486 * Device 12, Function 6: IMC 1 channel 1 -> rank 4 487 * Device 13, Function 2: IMC 1 channel 2 -> rank 5 488 */ 489 dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0); 490 func = chan_rank % 3 == 1 ? 6 : 2; 491 reg = 0x120 + dimm_order * 4; 492 493 ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); 494 if (ret) 495 return ret; 496 497 return 0; 498 } 499 500 static int 501 read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) 502 { 503 u32 reg_val; 504 u64 offset; 505 int ret; 506 u8 dev; 507 508 ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd4, ®_val); 509 if (ret || !(reg_val & BIT(31))) 510 return -ENODATA; /* Use default or previous value */ 511 512 ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd0, ®_val); 513 if (ret) 514 return -ENODATA; /* Use default or previous value */ 515 516 /* 517 * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0 518 * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1 519 * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2 520 * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3 521 * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4 522 * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5 523 * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6 524 * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7 525 */ 526 dev = 26 + chan_rank / 2; 527 offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000; 528 529 ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val), 530 dev, 0, offset, data); 531 if (ret) 532 return ret; 533 534 return 0; 535 } 536 537 static const struct dimm_info dimm_hsx = { 538 .chan_rank_max = CHAN_RANK_MAX_ON_HSX, 539 .dimm_idx_max = DIMM_IDX_MAX_ON_HSX, 540 .min_peci_revision = 0x33, 541 .read_thresholds = &read_thresholds_hsx, 542 }; 543 544 static const struct dimm_info dimm_bdx = { 545 .chan_rank_max = CHAN_RANK_MAX_ON_BDX, 546 .dimm_idx_max = DIMM_IDX_MAX_ON_BDX, 547 .min_peci_revision = 0x33, 548 .read_thresholds = &read_thresholds_hsx, 549 }; 550 551 static const struct dimm_info dimm_bdxd = { 552 .chan_rank_max = CHAN_RANK_MAX_ON_BDXD, 553 .dimm_idx_max = DIMM_IDX_MAX_ON_BDXD, 554 .min_peci_revision = 0x33, 555 .read_thresholds = &read_thresholds_bdxd, 556 }; 557 558 static const struct dimm_info dimm_skx = { 559 .chan_rank_max = CHAN_RANK_MAX_ON_SKX, 560 .dimm_idx_max = DIMM_IDX_MAX_ON_SKX, 561 .min_peci_revision = 0x33, 562 .read_thresholds = &read_thresholds_skx, 563 }; 564 565 static const struct dimm_info dimm_icx = { 566 .chan_rank_max = CHAN_RANK_MAX_ON_ICX, 567 .dimm_idx_max = DIMM_IDX_MAX_ON_ICX, 568 .min_peci_revision = 0x40, 569 .read_thresholds = &read_thresholds_icx, 570 }; 571 572 static const struct dimm_info dimm_icxd = { 573 .chan_rank_max = CHAN_RANK_MAX_ON_ICXD, 574 .dimm_idx_max = DIMM_IDX_MAX_ON_ICXD, 575 .min_peci_revision = 0x40, 576 .read_thresholds = &read_thresholds_icx, 577 }; 578 579 static const struct auxiliary_device_id peci_dimmtemp_ids[] = { 580 { 581 .name = "peci_cpu.dimmtemp.hsx", 582 .driver_data = (kernel_ulong_t)&dimm_hsx, 583 }, 584 { 585 .name = "peci_cpu.dimmtemp.bdx", 586 .driver_data = (kernel_ulong_t)&dimm_bdx, 587 }, 588 { 589 .name = "peci_cpu.dimmtemp.bdxd", 590 .driver_data = (kernel_ulong_t)&dimm_bdxd, 591 }, 592 { 593 .name = "peci_cpu.dimmtemp.skx", 594 .driver_data = (kernel_ulong_t)&dimm_skx, 595 }, 596 { 597 .name = "peci_cpu.dimmtemp.icx", 598 .driver_data = (kernel_ulong_t)&dimm_icx, 599 }, 600 { 601 .name = "peci_cpu.dimmtemp.icxd", 602 .driver_data = (kernel_ulong_t)&dimm_icxd, 603 }, 604 { } 605 }; 606 MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids); 607 608 static struct auxiliary_driver peci_dimmtemp_driver = { 609 .probe = peci_dimmtemp_probe, 610 .id_table = peci_dimmtemp_ids, 611 }; 612 613 module_auxiliary_driver(peci_dimmtemp_driver); 614 615 MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>"); 616 MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>"); 617 MODULE_DESCRIPTION("PECI dimmtemp driver"); 618 MODULE_LICENSE("GPL"); 619 MODULE_IMPORT_NS(PECI_CPU); 620