1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright IBM Corp 2019 3 4 #include <linux/device.h> 5 #include <linux/export.h> 6 #include <linux/hwmon.h> 7 #include <linux/hwmon-sysfs.h> 8 #include <linux/jiffies.h> 9 #include <linux/kernel.h> 10 #include <linux/math64.h> 11 #include <linux/module.h> 12 #include <linux/mutex.h> 13 #include <linux/sysfs.h> 14 #include <asm/unaligned.h> 15 16 #include "common.h" 17 18 #define EXTN_FLAG_SENSOR_ID BIT(7) 19 20 #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */ 21 22 #define OCC_STATE_SAFE 4 23 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */ 24 25 #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000) 26 27 #define OCC_TEMP_SENSOR_FAULT 0xFF 28 29 #define OCC_FRU_TYPE_VRM 3 30 31 /* OCC sensor type and version definitions */ 32 33 struct temp_sensor_1 { 34 u16 sensor_id; 35 u16 value; 36 } __packed; 37 38 struct temp_sensor_2 { 39 u32 sensor_id; 40 u8 fru_type; 41 u8 value; 42 } __packed; 43 44 struct temp_sensor_10 { 45 u32 sensor_id; 46 u8 fru_type; 47 u8 value; 48 u8 throttle; 49 u8 reserved; 50 } __packed; 51 52 struct freq_sensor_1 { 53 u16 sensor_id; 54 u16 value; 55 } __packed; 56 57 struct freq_sensor_2 { 58 u32 sensor_id; 59 u16 value; 60 } __packed; 61 62 struct power_sensor_1 { 63 u16 sensor_id; 64 u32 update_tag; 65 u32 accumulator; 66 u16 value; 67 } __packed; 68 69 struct power_sensor_2 { 70 u32 sensor_id; 71 u8 function_id; 72 u8 apss_channel; 73 u16 reserved; 74 u32 update_tag; 75 u64 accumulator; 76 u16 value; 77 } __packed; 78 79 struct power_sensor_data { 80 u16 value; 81 u32 update_tag; 82 u64 accumulator; 83 } __packed; 84 85 struct power_sensor_data_and_time { 86 u16 update_time; 87 u16 value; 88 u32 update_tag; 89 u64 accumulator; 90 } __packed; 91 92 struct power_sensor_a0 { 93 u32 sensor_id; 94 struct power_sensor_data_and_time system; 95 u32 reserved; 96 struct power_sensor_data_and_time proc; 97 struct power_sensor_data vdd; 98 struct power_sensor_data vdn; 99 } __packed; 100 101 struct caps_sensor_2 { 102 u16 cap; 103 u16 system_power; 104 u16 n_cap; 105 u16 max; 106 u16 min; 107 u16 user; 108 u8 user_source; 109 } __packed; 110 111 struct caps_sensor_3 { 112 u16 cap; 113 u16 system_power; 114 u16 n_cap; 115 u16 max; 116 u16 hard_min; 117 u16 soft_min; 118 u16 user; 119 u8 user_source; 120 } __packed; 121 122 struct extended_sensor { 123 union { 124 u8 name[4]; 125 u32 sensor_id; 126 }; 127 u8 flags; 128 u8 reserved; 129 u8 data[6]; 130 } __packed; 131 132 static int occ_poll(struct occ *occ) 133 { 134 int rc; 135 u8 cmd[7]; 136 struct occ_poll_response_header *header; 137 138 /* big endian */ 139 cmd[0] = 0; /* sequence number */ 140 cmd[1] = 0; /* cmd type */ 141 cmd[2] = 0; /* data length msb */ 142 cmd[3] = 1; /* data length lsb */ 143 cmd[4] = occ->poll_cmd_data; /* data */ 144 cmd[5] = 0; /* checksum msb */ 145 cmd[6] = 0; /* checksum lsb */ 146 147 /* mutex should already be locked if necessary */ 148 rc = occ->send_cmd(occ, cmd, sizeof(cmd)); 149 if (rc) { 150 occ->last_error = rc; 151 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD) 152 occ->error = rc; 153 154 goto done; 155 } 156 157 /* clear error since communication was successful */ 158 occ->error_count = 0; 159 occ->last_error = 0; 160 occ->error = 0; 161 162 /* check for safe state */ 163 header = (struct occ_poll_response_header *)occ->resp.data; 164 if (header->occ_state == OCC_STATE_SAFE) { 165 if (occ->last_safe) { 166 if (time_after(jiffies, 167 occ->last_safe + OCC_SAFE_TIMEOUT)) 168 occ->error = -EHOSTDOWN; 169 } else { 170 occ->last_safe = jiffies; 171 } 172 } else { 173 occ->last_safe = 0; 174 } 175 176 done: 177 occ_sysfs_poll_done(occ); 178 return rc; 179 } 180 181 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap) 182 { 183 int rc; 184 u8 cmd[8]; 185 __be16 user_power_cap_be = cpu_to_be16(user_power_cap); 186 187 cmd[0] = 0; /* sequence number */ 188 cmd[1] = 0x22; /* cmd type */ 189 cmd[2] = 0; /* data length msb */ 190 cmd[3] = 2; /* data length lsb */ 191 192 memcpy(&cmd[4], &user_power_cap_be, 2); 193 194 cmd[6] = 0; /* checksum msb */ 195 cmd[7] = 0; /* checksum lsb */ 196 197 rc = mutex_lock_interruptible(&occ->lock); 198 if (rc) 199 return rc; 200 201 rc = occ->send_cmd(occ, cmd, sizeof(cmd)); 202 203 mutex_unlock(&occ->lock); 204 205 return rc; 206 } 207 208 int occ_update_response(struct occ *occ) 209 { 210 int rc = mutex_lock_interruptible(&occ->lock); 211 212 if (rc) 213 return rc; 214 215 /* limit the maximum rate of polling the OCC */ 216 if (time_after(jiffies, occ->next_update)) { 217 rc = occ_poll(occ); 218 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY; 219 } else { 220 rc = occ->last_error; 221 } 222 223 mutex_unlock(&occ->lock); 224 return rc; 225 } 226 227 static ssize_t occ_show_temp_1(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 int rc; 231 u32 val = 0; 232 struct temp_sensor_1 *temp; 233 struct occ *occ = dev_get_drvdata(dev); 234 struct occ_sensors *sensors = &occ->sensors; 235 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 236 237 rc = occ_update_response(occ); 238 if (rc) 239 return rc; 240 241 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index; 242 243 switch (sattr->nr) { 244 case 0: 245 val = get_unaligned_be16(&temp->sensor_id); 246 break; 247 case 1: 248 /* 249 * If a sensor reading has expired and couldn't be refreshed, 250 * OCC returns 0xFFFF for that sensor. 251 */ 252 if (temp->value == 0xFFFF) 253 return -EREMOTEIO; 254 val = get_unaligned_be16(&temp->value) * 1000; 255 break; 256 default: 257 return -EINVAL; 258 } 259 260 return sysfs_emit(buf, "%u\n", val); 261 } 262 263 static ssize_t occ_show_temp_2(struct device *dev, 264 struct device_attribute *attr, char *buf) 265 { 266 int rc; 267 u32 val = 0; 268 struct temp_sensor_2 *temp; 269 struct occ *occ = dev_get_drvdata(dev); 270 struct occ_sensors *sensors = &occ->sensors; 271 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 272 273 rc = occ_update_response(occ); 274 if (rc) 275 return rc; 276 277 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index; 278 279 switch (sattr->nr) { 280 case 0: 281 val = get_unaligned_be32(&temp->sensor_id); 282 break; 283 case 1: 284 val = temp->value; 285 if (val == OCC_TEMP_SENSOR_FAULT) 286 return -EREMOTEIO; 287 288 /* 289 * VRM doesn't return temperature, only alarm bit. This 290 * attribute maps to tempX_alarm instead of tempX_input for 291 * VRM 292 */ 293 if (temp->fru_type != OCC_FRU_TYPE_VRM) { 294 /* sensor not ready */ 295 if (val == 0) 296 return -EAGAIN; 297 298 val *= 1000; 299 } 300 break; 301 case 2: 302 val = temp->fru_type; 303 break; 304 case 3: 305 val = temp->value == OCC_TEMP_SENSOR_FAULT; 306 break; 307 default: 308 return -EINVAL; 309 } 310 311 return sysfs_emit(buf, "%u\n", val); 312 } 313 314 static ssize_t occ_show_temp_10(struct device *dev, 315 struct device_attribute *attr, char *buf) 316 { 317 int rc; 318 u32 val = 0; 319 struct temp_sensor_10 *temp; 320 struct occ *occ = dev_get_drvdata(dev); 321 struct occ_sensors *sensors = &occ->sensors; 322 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 323 324 rc = occ_update_response(occ); 325 if (rc) 326 return rc; 327 328 temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index; 329 330 switch (sattr->nr) { 331 case 0: 332 val = get_unaligned_be32(&temp->sensor_id); 333 break; 334 case 1: 335 val = temp->value; 336 if (val == OCC_TEMP_SENSOR_FAULT) 337 return -EREMOTEIO; 338 339 /* sensor not ready */ 340 if (val == 0) 341 return -EAGAIN; 342 343 val *= 1000; 344 break; 345 case 2: 346 val = temp->fru_type; 347 break; 348 case 3: 349 val = temp->value == OCC_TEMP_SENSOR_FAULT; 350 break; 351 case 4: 352 val = temp->throttle * 1000; 353 break; 354 default: 355 return -EINVAL; 356 } 357 358 return sysfs_emit(buf, "%u\n", val); 359 } 360 361 static ssize_t occ_show_freq_1(struct device *dev, 362 struct device_attribute *attr, char *buf) 363 { 364 int rc; 365 u16 val = 0; 366 struct freq_sensor_1 *freq; 367 struct occ *occ = dev_get_drvdata(dev); 368 struct occ_sensors *sensors = &occ->sensors; 369 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 370 371 rc = occ_update_response(occ); 372 if (rc) 373 return rc; 374 375 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index; 376 377 switch (sattr->nr) { 378 case 0: 379 val = get_unaligned_be16(&freq->sensor_id); 380 break; 381 case 1: 382 val = get_unaligned_be16(&freq->value); 383 break; 384 default: 385 return -EINVAL; 386 } 387 388 return sysfs_emit(buf, "%u\n", val); 389 } 390 391 static ssize_t occ_show_freq_2(struct device *dev, 392 struct device_attribute *attr, char *buf) 393 { 394 int rc; 395 u32 val = 0; 396 struct freq_sensor_2 *freq; 397 struct occ *occ = dev_get_drvdata(dev); 398 struct occ_sensors *sensors = &occ->sensors; 399 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 400 401 rc = occ_update_response(occ); 402 if (rc) 403 return rc; 404 405 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index; 406 407 switch (sattr->nr) { 408 case 0: 409 val = get_unaligned_be32(&freq->sensor_id); 410 break; 411 case 1: 412 val = get_unaligned_be16(&freq->value); 413 break; 414 default: 415 return -EINVAL; 416 } 417 418 return sysfs_emit(buf, "%u\n", val); 419 } 420 421 static ssize_t occ_show_power_1(struct device *dev, 422 struct device_attribute *attr, char *buf) 423 { 424 int rc; 425 u64 val = 0; 426 struct power_sensor_1 *power; 427 struct occ *occ = dev_get_drvdata(dev); 428 struct occ_sensors *sensors = &occ->sensors; 429 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 430 431 rc = occ_update_response(occ); 432 if (rc) 433 return rc; 434 435 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index; 436 437 switch (sattr->nr) { 438 case 0: 439 val = get_unaligned_be16(&power->sensor_id); 440 break; 441 case 1: 442 val = get_unaligned_be32(&power->accumulator) / 443 get_unaligned_be32(&power->update_tag); 444 val *= 1000000ULL; 445 break; 446 case 2: 447 val = (u64)get_unaligned_be32(&power->update_tag) * 448 occ->powr_sample_time_us; 449 break; 450 case 3: 451 val = get_unaligned_be16(&power->value) * 1000000ULL; 452 break; 453 default: 454 return -EINVAL; 455 } 456 457 return sysfs_emit(buf, "%llu\n", val); 458 } 459 460 static u64 occ_get_powr_avg(u64 *accum, u32 *samples) 461 { 462 u64 divisor = get_unaligned_be32(samples); 463 464 return (divisor == 0) ? 0 : 465 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor); 466 } 467 468 static ssize_t occ_show_power_2(struct device *dev, 469 struct device_attribute *attr, char *buf) 470 { 471 int rc; 472 u64 val = 0; 473 struct power_sensor_2 *power; 474 struct occ *occ = dev_get_drvdata(dev); 475 struct occ_sensors *sensors = &occ->sensors; 476 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 477 478 rc = occ_update_response(occ); 479 if (rc) 480 return rc; 481 482 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index; 483 484 switch (sattr->nr) { 485 case 0: 486 return sysfs_emit(buf, "%u_%u_%u\n", 487 get_unaligned_be32(&power->sensor_id), 488 power->function_id, power->apss_channel); 489 case 1: 490 val = occ_get_powr_avg(&power->accumulator, 491 &power->update_tag); 492 break; 493 case 2: 494 val = (u64)get_unaligned_be32(&power->update_tag) * 495 occ->powr_sample_time_us; 496 break; 497 case 3: 498 val = get_unaligned_be16(&power->value) * 1000000ULL; 499 break; 500 default: 501 return -EINVAL; 502 } 503 504 return sysfs_emit(buf, "%llu\n", val); 505 } 506 507 static ssize_t occ_show_power_a0(struct device *dev, 508 struct device_attribute *attr, char *buf) 509 { 510 int rc; 511 u64 val = 0; 512 struct power_sensor_a0 *power; 513 struct occ *occ = dev_get_drvdata(dev); 514 struct occ_sensors *sensors = &occ->sensors; 515 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 516 517 rc = occ_update_response(occ); 518 if (rc) 519 return rc; 520 521 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index; 522 523 switch (sattr->nr) { 524 case 0: 525 return sysfs_emit(buf, "%u_system\n", 526 get_unaligned_be32(&power->sensor_id)); 527 case 1: 528 val = occ_get_powr_avg(&power->system.accumulator, 529 &power->system.update_tag); 530 break; 531 case 2: 532 val = (u64)get_unaligned_be32(&power->system.update_tag) * 533 occ->powr_sample_time_us; 534 break; 535 case 3: 536 val = get_unaligned_be16(&power->system.value) * 1000000ULL; 537 break; 538 case 4: 539 return sysfs_emit(buf, "%u_proc\n", 540 get_unaligned_be32(&power->sensor_id)); 541 case 5: 542 val = occ_get_powr_avg(&power->proc.accumulator, 543 &power->proc.update_tag); 544 break; 545 case 6: 546 val = (u64)get_unaligned_be32(&power->proc.update_tag) * 547 occ->powr_sample_time_us; 548 break; 549 case 7: 550 val = get_unaligned_be16(&power->proc.value) * 1000000ULL; 551 break; 552 case 8: 553 return sysfs_emit(buf, "%u_vdd\n", 554 get_unaligned_be32(&power->sensor_id)); 555 case 9: 556 val = occ_get_powr_avg(&power->vdd.accumulator, 557 &power->vdd.update_tag); 558 break; 559 case 10: 560 val = (u64)get_unaligned_be32(&power->vdd.update_tag) * 561 occ->powr_sample_time_us; 562 break; 563 case 11: 564 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL; 565 break; 566 case 12: 567 return sysfs_emit(buf, "%u_vdn\n", 568 get_unaligned_be32(&power->sensor_id)); 569 case 13: 570 val = occ_get_powr_avg(&power->vdn.accumulator, 571 &power->vdn.update_tag); 572 break; 573 case 14: 574 val = (u64)get_unaligned_be32(&power->vdn.update_tag) * 575 occ->powr_sample_time_us; 576 break; 577 case 15: 578 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL; 579 break; 580 default: 581 return -EINVAL; 582 } 583 584 return sysfs_emit(buf, "%llu\n", val); 585 } 586 587 static ssize_t occ_show_caps_1_2(struct device *dev, 588 struct device_attribute *attr, char *buf) 589 { 590 int rc; 591 u64 val = 0; 592 struct caps_sensor_2 *caps; 593 struct occ *occ = dev_get_drvdata(dev); 594 struct occ_sensors *sensors = &occ->sensors; 595 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 596 597 rc = occ_update_response(occ); 598 if (rc) 599 return rc; 600 601 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index; 602 603 switch (sattr->nr) { 604 case 0: 605 return sysfs_emit(buf, "system\n"); 606 case 1: 607 val = get_unaligned_be16(&caps->cap) * 1000000ULL; 608 break; 609 case 2: 610 val = get_unaligned_be16(&caps->system_power) * 1000000ULL; 611 break; 612 case 3: 613 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL; 614 break; 615 case 4: 616 val = get_unaligned_be16(&caps->max) * 1000000ULL; 617 break; 618 case 5: 619 val = get_unaligned_be16(&caps->min) * 1000000ULL; 620 break; 621 case 6: 622 val = get_unaligned_be16(&caps->user) * 1000000ULL; 623 break; 624 case 7: 625 if (occ->sensors.caps.version == 1) 626 return -EINVAL; 627 628 val = caps->user_source; 629 break; 630 default: 631 return -EINVAL; 632 } 633 634 return sysfs_emit(buf, "%llu\n", val); 635 } 636 637 static ssize_t occ_show_caps_3(struct device *dev, 638 struct device_attribute *attr, char *buf) 639 { 640 int rc; 641 u64 val = 0; 642 struct caps_sensor_3 *caps; 643 struct occ *occ = dev_get_drvdata(dev); 644 struct occ_sensors *sensors = &occ->sensors; 645 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 646 647 rc = occ_update_response(occ); 648 if (rc) 649 return rc; 650 651 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index; 652 653 switch (sattr->nr) { 654 case 0: 655 return sysfs_emit(buf, "system\n"); 656 case 1: 657 val = get_unaligned_be16(&caps->cap) * 1000000ULL; 658 break; 659 case 2: 660 val = get_unaligned_be16(&caps->system_power) * 1000000ULL; 661 break; 662 case 3: 663 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL; 664 break; 665 case 4: 666 val = get_unaligned_be16(&caps->max) * 1000000ULL; 667 break; 668 case 5: 669 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL; 670 break; 671 case 6: 672 val = get_unaligned_be16(&caps->user) * 1000000ULL; 673 break; 674 case 7: 675 val = caps->user_source; 676 break; 677 default: 678 return -EINVAL; 679 } 680 681 return sysfs_emit(buf, "%llu\n", val); 682 } 683 684 static ssize_t occ_store_caps_user(struct device *dev, 685 struct device_attribute *attr, 686 const char *buf, size_t count) 687 { 688 int rc; 689 u16 user_power_cap; 690 unsigned long long value; 691 struct occ *occ = dev_get_drvdata(dev); 692 693 rc = kstrtoull(buf, 0, &value); 694 if (rc) 695 return rc; 696 697 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */ 698 699 rc = occ_set_user_power_cap(occ, user_power_cap); 700 if (rc) 701 return rc; 702 703 return count; 704 } 705 706 static ssize_t occ_show_extended(struct device *dev, 707 struct device_attribute *attr, char *buf) 708 { 709 int rc; 710 struct extended_sensor *extn; 711 struct occ *occ = dev_get_drvdata(dev); 712 struct occ_sensors *sensors = &occ->sensors; 713 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 714 715 rc = occ_update_response(occ); 716 if (rc) 717 return rc; 718 719 extn = ((struct extended_sensor *)sensors->extended.data) + 720 sattr->index; 721 722 switch (sattr->nr) { 723 case 0: 724 if (extn->flags & EXTN_FLAG_SENSOR_ID) { 725 rc = sysfs_emit(buf, "%u", 726 get_unaligned_be32(&extn->sensor_id)); 727 } else { 728 rc = sysfs_emit(buf, "%02x%02x%02x%02x\n", 729 extn->name[0], extn->name[1], 730 extn->name[2], extn->name[3]); 731 } 732 break; 733 case 1: 734 rc = sysfs_emit(buf, "%02x\n", extn->flags); 735 break; 736 case 2: 737 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n", 738 extn->data[0], extn->data[1], extn->data[2], 739 extn->data[3], extn->data[4], extn->data[5]); 740 break; 741 default: 742 return -EINVAL; 743 } 744 745 return rc; 746 } 747 748 /* 749 * Some helper macros to make it easier to define an occ_attribute. Since these 750 * are dynamically allocated, we shouldn't use the existing kernel macros which 751 * stringify the name argument. 752 */ 753 #define ATTR_OCC(_name, _mode, _show, _store) { \ 754 .attr = { \ 755 .name = _name, \ 756 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \ 757 }, \ 758 .show = _show, \ 759 .store = _store, \ 760 } 761 762 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \ 763 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \ 764 .index = _index, \ 765 .nr = _nr, \ 766 } 767 768 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \ 769 ((struct sensor_device_attribute_2) \ 770 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index)) 771 772 /* 773 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to 774 * use our own instead of the built-in hwmon attribute types. 775 */ 776 static int occ_setup_sensor_attrs(struct occ *occ) 777 { 778 unsigned int i, s, num_attrs = 0; 779 struct device *dev = occ->bus_dev; 780 struct occ_sensors *sensors = &occ->sensors; 781 struct occ_attribute *attr; 782 struct temp_sensor_2 *temp; 783 ssize_t (*show_temp)(struct device *, struct device_attribute *, 784 char *) = occ_show_temp_1; 785 ssize_t (*show_freq)(struct device *, struct device_attribute *, 786 char *) = occ_show_freq_1; 787 ssize_t (*show_power)(struct device *, struct device_attribute *, 788 char *) = occ_show_power_1; 789 ssize_t (*show_caps)(struct device *, struct device_attribute *, 790 char *) = occ_show_caps_1_2; 791 792 switch (sensors->temp.version) { 793 case 1: 794 num_attrs += (sensors->temp.num_sensors * 2); 795 break; 796 case 2: 797 num_attrs += (sensors->temp.num_sensors * 4); 798 show_temp = occ_show_temp_2; 799 break; 800 case 0x10: 801 num_attrs += (sensors->temp.num_sensors * 5); 802 show_temp = occ_show_temp_10; 803 break; 804 default: 805 sensors->temp.num_sensors = 0; 806 } 807 808 switch (sensors->freq.version) { 809 case 2: 810 show_freq = occ_show_freq_2; 811 fallthrough; 812 case 1: 813 num_attrs += (sensors->freq.num_sensors * 2); 814 break; 815 default: 816 sensors->freq.num_sensors = 0; 817 } 818 819 switch (sensors->power.version) { 820 case 2: 821 show_power = occ_show_power_2; 822 fallthrough; 823 case 1: 824 num_attrs += (sensors->power.num_sensors * 4); 825 break; 826 case 0xA0: 827 num_attrs += (sensors->power.num_sensors * 16); 828 show_power = occ_show_power_a0; 829 break; 830 default: 831 sensors->power.num_sensors = 0; 832 } 833 834 switch (sensors->caps.version) { 835 case 1: 836 num_attrs += (sensors->caps.num_sensors * 7); 837 break; 838 case 3: 839 show_caps = occ_show_caps_3; 840 fallthrough; 841 case 2: 842 num_attrs += (sensors->caps.num_sensors * 8); 843 break; 844 default: 845 sensors->caps.num_sensors = 0; 846 } 847 848 switch (sensors->extended.version) { 849 case 1: 850 num_attrs += (sensors->extended.num_sensors * 3); 851 break; 852 default: 853 sensors->extended.num_sensors = 0; 854 } 855 856 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs, 857 GFP_KERNEL); 858 if (!occ->attrs) 859 return -ENOMEM; 860 861 /* null-terminated list */ 862 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) * 863 num_attrs + 1, GFP_KERNEL); 864 if (!occ->group.attrs) 865 return -ENOMEM; 866 867 attr = occ->attrs; 868 869 for (i = 0; i < sensors->temp.num_sensors; ++i) { 870 s = i + 1; 871 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i; 872 873 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s); 874 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 875 0, i); 876 attr++; 877 878 if (sensors->temp.version == 2 && 879 temp->fru_type == OCC_FRU_TYPE_VRM) { 880 snprintf(attr->name, sizeof(attr->name), 881 "temp%d_alarm", s); 882 } else { 883 snprintf(attr->name, sizeof(attr->name), 884 "temp%d_input", s); 885 } 886 887 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 888 1, i); 889 attr++; 890 891 if (sensors->temp.version > 1) { 892 snprintf(attr->name, sizeof(attr->name), 893 "temp%d_fru_type", s); 894 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 895 show_temp, NULL, 2, i); 896 attr++; 897 898 snprintf(attr->name, sizeof(attr->name), 899 "temp%d_fault", s); 900 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 901 show_temp, NULL, 3, i); 902 attr++; 903 904 if (sensors->temp.version == 0x10) { 905 snprintf(attr->name, sizeof(attr->name), 906 "temp%d_max", s); 907 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 908 show_temp, NULL, 909 4, i); 910 attr++; 911 } 912 } 913 } 914 915 for (i = 0; i < sensors->freq.num_sensors; ++i) { 916 s = i + 1; 917 918 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s); 919 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL, 920 0, i); 921 attr++; 922 923 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s); 924 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL, 925 1, i); 926 attr++; 927 } 928 929 if (sensors->power.version == 0xA0) { 930 /* 931 * Special case for many-attribute power sensor. Split it into 932 * a sensor number per power type, emulating several sensors. 933 */ 934 for (i = 0; i < sensors->power.num_sensors; ++i) { 935 unsigned int j; 936 unsigned int nr = 0; 937 938 s = (i * 4) + 1; 939 940 for (j = 0; j < 4; ++j) { 941 snprintf(attr->name, sizeof(attr->name), 942 "power%d_label", s); 943 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 944 show_power, NULL, 945 nr++, i); 946 attr++; 947 948 snprintf(attr->name, sizeof(attr->name), 949 "power%d_average", s); 950 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 951 show_power, NULL, 952 nr++, i); 953 attr++; 954 955 snprintf(attr->name, sizeof(attr->name), 956 "power%d_average_interval", s); 957 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 958 show_power, NULL, 959 nr++, i); 960 attr++; 961 962 snprintf(attr->name, sizeof(attr->name), 963 "power%d_input", s); 964 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 965 show_power, NULL, 966 nr++, i); 967 attr++; 968 969 s++; 970 } 971 } 972 973 s = (sensors->power.num_sensors * 4) + 1; 974 } else { 975 for (i = 0; i < sensors->power.num_sensors; ++i) { 976 s = i + 1; 977 978 snprintf(attr->name, sizeof(attr->name), 979 "power%d_label", s); 980 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 981 show_power, NULL, 0, i); 982 attr++; 983 984 snprintf(attr->name, sizeof(attr->name), 985 "power%d_average", s); 986 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 987 show_power, NULL, 1, i); 988 attr++; 989 990 snprintf(attr->name, sizeof(attr->name), 991 "power%d_average_interval", s); 992 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 993 show_power, NULL, 2, i); 994 attr++; 995 996 snprintf(attr->name, sizeof(attr->name), 997 "power%d_input", s); 998 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 999 show_power, NULL, 3, i); 1000 attr++; 1001 } 1002 1003 s = sensors->power.num_sensors + 1; 1004 } 1005 1006 if (sensors->caps.num_sensors >= 1) { 1007 snprintf(attr->name, sizeof(attr->name), "power%d_label", s); 1008 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1009 0, 0); 1010 attr++; 1011 1012 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s); 1013 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1014 1, 0); 1015 attr++; 1016 1017 snprintf(attr->name, sizeof(attr->name), "power%d_input", s); 1018 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1019 2, 0); 1020 attr++; 1021 1022 snprintf(attr->name, sizeof(attr->name), 1023 "power%d_cap_not_redundant", s); 1024 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1025 3, 0); 1026 attr++; 1027 1028 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s); 1029 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1030 4, 0); 1031 attr++; 1032 1033 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s); 1034 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1035 5, 0); 1036 attr++; 1037 1038 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user", 1039 s); 1040 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps, 1041 occ_store_caps_user, 6, 0); 1042 attr++; 1043 1044 if (sensors->caps.version > 1) { 1045 snprintf(attr->name, sizeof(attr->name), 1046 "power%d_cap_user_source", s); 1047 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 1048 show_caps, NULL, 7, 0); 1049 attr++; 1050 } 1051 } 1052 1053 for (i = 0; i < sensors->extended.num_sensors; ++i) { 1054 s = i + 1; 1055 1056 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s); 1057 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 1058 occ_show_extended, NULL, 0, i); 1059 attr++; 1060 1061 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s); 1062 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 1063 occ_show_extended, NULL, 1, i); 1064 attr++; 1065 1066 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s); 1067 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, 1068 occ_show_extended, NULL, 2, i); 1069 attr++; 1070 } 1071 1072 /* put the sensors in the group */ 1073 for (i = 0; i < num_attrs; ++i) { 1074 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr); 1075 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr; 1076 } 1077 1078 return 0; 1079 } 1080 1081 /* only need to do this once at startup, as OCC won't change sensors on us */ 1082 static void occ_parse_poll_response(struct occ *occ) 1083 { 1084 unsigned int i, old_offset, offset = 0, size = 0; 1085 struct occ_sensor *sensor; 1086 struct occ_sensors *sensors = &occ->sensors; 1087 struct occ_response *resp = &occ->resp; 1088 struct occ_poll_response *poll = 1089 (struct occ_poll_response *)&resp->data[0]; 1090 struct occ_poll_response_header *header = &poll->header; 1091 struct occ_sensor_data_block *block = &poll->block; 1092 1093 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n", 1094 header->occ_code_level); 1095 1096 for (i = 0; i < header->num_sensor_data_blocks; ++i) { 1097 block = (struct occ_sensor_data_block *)((u8 *)block + offset); 1098 old_offset = offset; 1099 offset = (block->header.num_sensors * 1100 block->header.sensor_length) + sizeof(block->header); 1101 size += offset; 1102 1103 /* validate all the length/size fields */ 1104 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) { 1105 dev_warn(occ->bus_dev, "exceeded response buffer\n"); 1106 return; 1107 } 1108 1109 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n", 1110 old_offset, offset - 1, block->header.eye_catcher, 1111 block->header.num_sensors); 1112 1113 /* match sensor block type */ 1114 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0) 1115 sensor = &sensors->temp; 1116 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0) 1117 sensor = &sensors->freq; 1118 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0) 1119 sensor = &sensors->power; 1120 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0) 1121 sensor = &sensors->caps; 1122 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0) 1123 sensor = &sensors->extended; 1124 else { 1125 dev_warn(occ->bus_dev, "sensor not supported %.4s\n", 1126 block->header.eye_catcher); 1127 continue; 1128 } 1129 1130 sensor->num_sensors = block->header.num_sensors; 1131 sensor->version = block->header.sensor_format; 1132 sensor->data = &block->data; 1133 } 1134 1135 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size, 1136 sizeof(*header), size + sizeof(*header)); 1137 } 1138 1139 int occ_setup(struct occ *occ, const char *name) 1140 { 1141 int rc; 1142 1143 mutex_init(&occ->lock); 1144 occ->groups[0] = &occ->group; 1145 1146 /* no need to lock */ 1147 rc = occ_poll(occ); 1148 if (rc == -ESHUTDOWN) { 1149 dev_info(occ->bus_dev, "host is not ready\n"); 1150 return rc; 1151 } else if (rc < 0) { 1152 dev_err(occ->bus_dev, 1153 "failed to get OCC poll response=%02x: %d\n", 1154 occ->resp.return_status, rc); 1155 return rc; 1156 } 1157 1158 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY; 1159 occ_parse_poll_response(occ); 1160 1161 rc = occ_setup_sensor_attrs(occ); 1162 if (rc) { 1163 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n", 1164 rc); 1165 return rc; 1166 } 1167 1168 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name, 1169 occ, occ->groups); 1170 if (IS_ERR(occ->hwmon)) { 1171 rc = PTR_ERR(occ->hwmon); 1172 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n", 1173 rc); 1174 return rc; 1175 } 1176 1177 rc = occ_setup_sysfs(occ); 1178 if (rc) 1179 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc); 1180 1181 return rc; 1182 } 1183 EXPORT_SYMBOL_GPL(occ_setup); 1184 1185 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>"); 1186 MODULE_DESCRIPTION("Common OCC hwmon code"); 1187 MODULE_LICENSE("GPL"); 1188