xref: /openbmc/linux/drivers/hwmon/occ/common.c (revision 2243acd5)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3 
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/property.h>
14 #include <linux/sysfs.h>
15 #include <asm/unaligned.h>
16 
17 #include "common.h"
18 
19 #define EXTN_FLAG_SENSOR_ID		BIT(7)
20 
21 #define OCC_ERROR_COUNT_THRESHOLD	2	/* required by OCC spec */
22 
23 #define OCC_STATE_SAFE			4
24 #define OCC_SAFE_TIMEOUT		msecs_to_jiffies(60000) /* 1 min */
25 
26 #define OCC_UPDATE_FREQUENCY		msecs_to_jiffies(1000)
27 
28 #define OCC_TEMP_SENSOR_FAULT		0xFF
29 
30 #define OCC_FRU_TYPE_VRM		3
31 
32 /* OCC sensor type and version definitions */
33 
34 struct temp_sensor_1 {
35 	u16 sensor_id;
36 	u16 value;
37 } __packed;
38 
39 struct temp_sensor_2 {
40 	u32 sensor_id;
41 	u8 fru_type;
42 	u8 value;
43 } __packed;
44 
45 struct temp_sensor_10 {
46 	u32 sensor_id;
47 	u8 fru_type;
48 	u8 value;
49 	u8 throttle;
50 	u8 reserved;
51 } __packed;
52 
53 struct freq_sensor_1 {
54 	u16 sensor_id;
55 	u16 value;
56 } __packed;
57 
58 struct freq_sensor_2 {
59 	u32 sensor_id;
60 	u16 value;
61 } __packed;
62 
63 struct power_sensor_1 {
64 	u16 sensor_id;
65 	u32 update_tag;
66 	u32 accumulator;
67 	u16 value;
68 } __packed;
69 
70 struct power_sensor_2 {
71 	u32 sensor_id;
72 	u8 function_id;
73 	u8 apss_channel;
74 	u16 reserved;
75 	u32 update_tag;
76 	u64 accumulator;
77 	u16 value;
78 } __packed;
79 
80 struct power_sensor_data {
81 	u16 value;
82 	u32 update_tag;
83 	u64 accumulator;
84 } __packed;
85 
86 struct power_sensor_data_and_time {
87 	u16 update_time;
88 	u16 value;
89 	u32 update_tag;
90 	u64 accumulator;
91 } __packed;
92 
93 struct power_sensor_a0 {
94 	u32 sensor_id;
95 	struct power_sensor_data_and_time system;
96 	u32 reserved;
97 	struct power_sensor_data_and_time proc;
98 	struct power_sensor_data vdd;
99 	struct power_sensor_data vdn;
100 } __packed;
101 
102 struct caps_sensor_2 {
103 	u16 cap;
104 	u16 system_power;
105 	u16 n_cap;
106 	u16 max;
107 	u16 min;
108 	u16 user;
109 	u8 user_source;
110 } __packed;
111 
112 struct caps_sensor_3 {
113 	u16 cap;
114 	u16 system_power;
115 	u16 n_cap;
116 	u16 max;
117 	u16 hard_min;
118 	u16 soft_min;
119 	u16 user;
120 	u8 user_source;
121 } __packed;
122 
123 struct extended_sensor {
124 	union {
125 		u8 name[4];
126 		u32 sensor_id;
127 	};
128 	u8 flags;
129 	u8 reserved;
130 	u8 data[6];
131 } __packed;
132 
133 static int occ_poll(struct occ *occ)
134 {
135 	int rc;
136 	u8 cmd[7];
137 	struct occ_poll_response_header *header;
138 
139 	/* big endian */
140 	cmd[0] = 0;			/* sequence number */
141 	cmd[1] = 0;			/* cmd type */
142 	cmd[2] = 0;			/* data length msb */
143 	cmd[3] = 1;			/* data length lsb */
144 	cmd[4] = occ->poll_cmd_data;	/* data */
145 	cmd[5] = 0;			/* checksum msb */
146 	cmd[6] = 0;			/* checksum lsb */
147 
148 	/* mutex should already be locked if necessary */
149 	rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp));
150 	if (rc) {
151 		occ->last_error = rc;
152 		if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
153 			occ->error = rc;
154 
155 		goto done;
156 	}
157 
158 	/* clear error since communication was successful */
159 	occ->error_count = 0;
160 	occ->last_error = 0;
161 	occ->error = 0;
162 
163 	/* check for safe state */
164 	header = (struct occ_poll_response_header *)occ->resp.data;
165 	if (header->occ_state == OCC_STATE_SAFE) {
166 		if (occ->last_safe) {
167 			if (time_after(jiffies,
168 				       occ->last_safe + OCC_SAFE_TIMEOUT))
169 				occ->error = -EHOSTDOWN;
170 		} else {
171 			occ->last_safe = jiffies;
172 		}
173 	} else {
174 		occ->last_safe = 0;
175 	}
176 
177 done:
178 	occ_sysfs_poll_done(occ);
179 	return rc;
180 }
181 
182 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
183 {
184 	int rc;
185 	u8 cmd[8];
186 	u8 resp[8];
187 	__be16 user_power_cap_be = cpu_to_be16(user_power_cap);
188 
189 	cmd[0] = 0;	/* sequence number */
190 	cmd[1] = 0x22;	/* cmd type */
191 	cmd[2] = 0;	/* data length msb */
192 	cmd[3] = 2;	/* data length lsb */
193 
194 	memcpy(&cmd[4], &user_power_cap_be, 2);
195 
196 	cmd[6] = 0;	/* checksum msb */
197 	cmd[7] = 0;	/* checksum lsb */
198 
199 	rc = mutex_lock_interruptible(&occ->lock);
200 	if (rc)
201 		return rc;
202 
203 	rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp));
204 
205 	mutex_unlock(&occ->lock);
206 
207 	return rc;
208 }
209 
210 int occ_update_response(struct occ *occ)
211 {
212 	int rc = mutex_lock_interruptible(&occ->lock);
213 
214 	if (rc)
215 		return rc;
216 
217 	/* limit the maximum rate of polling the OCC */
218 	if (time_after(jiffies, occ->next_update)) {
219 		rc = occ_poll(occ);
220 		occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
221 	} else {
222 		rc = occ->last_error;
223 	}
224 
225 	mutex_unlock(&occ->lock);
226 	return rc;
227 }
228 
229 static ssize_t occ_show_temp_1(struct device *dev,
230 			       struct device_attribute *attr, char *buf)
231 {
232 	int rc;
233 	u32 val = 0;
234 	struct temp_sensor_1 *temp;
235 	struct occ *occ = dev_get_drvdata(dev);
236 	struct occ_sensors *sensors = &occ->sensors;
237 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
238 
239 	rc = occ_update_response(occ);
240 	if (rc)
241 		return rc;
242 
243 	temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
244 
245 	switch (sattr->nr) {
246 	case 0:
247 		val = get_unaligned_be16(&temp->sensor_id);
248 		break;
249 	case 1:
250 		/*
251 		 * If a sensor reading has expired and couldn't be refreshed,
252 		 * OCC returns 0xFFFF for that sensor.
253 		 */
254 		if (temp->value == 0xFFFF)
255 			return -EREMOTEIO;
256 		val = get_unaligned_be16(&temp->value) * 1000;
257 		break;
258 	default:
259 		return -EINVAL;
260 	}
261 
262 	return sysfs_emit(buf, "%u\n", val);
263 }
264 
265 static ssize_t occ_show_temp_2(struct device *dev,
266 			       struct device_attribute *attr, char *buf)
267 {
268 	int rc;
269 	u32 val = 0;
270 	struct temp_sensor_2 *temp;
271 	struct occ *occ = dev_get_drvdata(dev);
272 	struct occ_sensors *sensors = &occ->sensors;
273 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
274 
275 	rc = occ_update_response(occ);
276 	if (rc)
277 		return rc;
278 
279 	temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
280 
281 	switch (sattr->nr) {
282 	case 0:
283 		val = get_unaligned_be32(&temp->sensor_id);
284 		break;
285 	case 1:
286 		val = temp->value;
287 		if (val == OCC_TEMP_SENSOR_FAULT)
288 			return -EREMOTEIO;
289 
290 		/*
291 		 * VRM doesn't return temperature, only alarm bit. This
292 		 * attribute maps to tempX_alarm instead of tempX_input for
293 		 * VRM
294 		 */
295 		if (temp->fru_type != OCC_FRU_TYPE_VRM) {
296 			/* sensor not ready */
297 			if (val == 0)
298 				return -EAGAIN;
299 
300 			val *= 1000;
301 		}
302 		break;
303 	case 2:
304 		val = temp->fru_type;
305 		break;
306 	case 3:
307 		val = temp->value == OCC_TEMP_SENSOR_FAULT;
308 		break;
309 	default:
310 		return -EINVAL;
311 	}
312 
313 	return sysfs_emit(buf, "%u\n", val);
314 }
315 
316 static ssize_t occ_show_temp_10(struct device *dev,
317 				struct device_attribute *attr, char *buf)
318 {
319 	int rc;
320 	u32 val = 0;
321 	struct temp_sensor_10 *temp;
322 	struct occ *occ = dev_get_drvdata(dev);
323 	struct occ_sensors *sensors = &occ->sensors;
324 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
325 
326 	rc = occ_update_response(occ);
327 	if (rc)
328 		return rc;
329 
330 	temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
331 
332 	switch (sattr->nr) {
333 	case 0:
334 		val = get_unaligned_be32(&temp->sensor_id);
335 		break;
336 	case 1:
337 		val = temp->value;
338 		if (val == OCC_TEMP_SENSOR_FAULT)
339 			return -EREMOTEIO;
340 
341 		/* sensor not ready */
342 		if (val == 0)
343 			return -EAGAIN;
344 
345 		val *= 1000;
346 		break;
347 	case 2:
348 		val = temp->fru_type;
349 		break;
350 	case 3:
351 		val = temp->value == OCC_TEMP_SENSOR_FAULT;
352 		break;
353 	case 4:
354 		val = temp->throttle * 1000;
355 		break;
356 	default:
357 		return -EINVAL;
358 	}
359 
360 	return sysfs_emit(buf, "%u\n", val);
361 }
362 
363 static ssize_t occ_show_freq_1(struct device *dev,
364 			       struct device_attribute *attr, char *buf)
365 {
366 	int rc;
367 	u16 val = 0;
368 	struct freq_sensor_1 *freq;
369 	struct occ *occ = dev_get_drvdata(dev);
370 	struct occ_sensors *sensors = &occ->sensors;
371 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
372 
373 	rc = occ_update_response(occ);
374 	if (rc)
375 		return rc;
376 
377 	freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
378 
379 	switch (sattr->nr) {
380 	case 0:
381 		val = get_unaligned_be16(&freq->sensor_id);
382 		break;
383 	case 1:
384 		val = get_unaligned_be16(&freq->value);
385 		break;
386 	default:
387 		return -EINVAL;
388 	}
389 
390 	return sysfs_emit(buf, "%u\n", val);
391 }
392 
393 static ssize_t occ_show_freq_2(struct device *dev,
394 			       struct device_attribute *attr, char *buf)
395 {
396 	int rc;
397 	u32 val = 0;
398 	struct freq_sensor_2 *freq;
399 	struct occ *occ = dev_get_drvdata(dev);
400 	struct occ_sensors *sensors = &occ->sensors;
401 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
402 
403 	rc = occ_update_response(occ);
404 	if (rc)
405 		return rc;
406 
407 	freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
408 
409 	switch (sattr->nr) {
410 	case 0:
411 		val = get_unaligned_be32(&freq->sensor_id);
412 		break;
413 	case 1:
414 		val = get_unaligned_be16(&freq->value);
415 		break;
416 	default:
417 		return -EINVAL;
418 	}
419 
420 	return sysfs_emit(buf, "%u\n", val);
421 }
422 
423 static ssize_t occ_show_power_1(struct device *dev,
424 				struct device_attribute *attr, char *buf)
425 {
426 	int rc;
427 	u64 val = 0;
428 	struct power_sensor_1 *power;
429 	struct occ *occ = dev_get_drvdata(dev);
430 	struct occ_sensors *sensors = &occ->sensors;
431 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
432 
433 	rc = occ_update_response(occ);
434 	if (rc)
435 		return rc;
436 
437 	power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
438 
439 	switch (sattr->nr) {
440 	case 0:
441 		val = get_unaligned_be16(&power->sensor_id);
442 		break;
443 	case 1:
444 		val = get_unaligned_be32(&power->accumulator) /
445 			get_unaligned_be32(&power->update_tag);
446 		val *= 1000000ULL;
447 		break;
448 	case 2:
449 		val = (u64)get_unaligned_be32(&power->update_tag) *
450 			   occ->powr_sample_time_us;
451 		break;
452 	case 3:
453 		val = get_unaligned_be16(&power->value) * 1000000ULL;
454 		break;
455 	default:
456 		return -EINVAL;
457 	}
458 
459 	return sysfs_emit(buf, "%llu\n", val);
460 }
461 
462 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
463 {
464 	u64 divisor = get_unaligned_be32(samples);
465 
466 	return (divisor == 0) ? 0 :
467 		div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
468 }
469 
470 static ssize_t occ_show_power_2(struct device *dev,
471 				struct device_attribute *attr, char *buf)
472 {
473 	int rc;
474 	u64 val = 0;
475 	struct power_sensor_2 *power;
476 	struct occ *occ = dev_get_drvdata(dev);
477 	struct occ_sensors *sensors = &occ->sensors;
478 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
479 
480 	rc = occ_update_response(occ);
481 	if (rc)
482 		return rc;
483 
484 	power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
485 
486 	switch (sattr->nr) {
487 	case 0:
488 		return sysfs_emit(buf, "%u_%u_%u\n",
489 				  get_unaligned_be32(&power->sensor_id),
490 				  power->function_id, power->apss_channel);
491 	case 1:
492 		val = occ_get_powr_avg(&power->accumulator,
493 				       &power->update_tag);
494 		break;
495 	case 2:
496 		val = (u64)get_unaligned_be32(&power->update_tag) *
497 			   occ->powr_sample_time_us;
498 		break;
499 	case 3:
500 		val = get_unaligned_be16(&power->value) * 1000000ULL;
501 		break;
502 	default:
503 		return -EINVAL;
504 	}
505 
506 	return sysfs_emit(buf, "%llu\n", val);
507 }
508 
509 static ssize_t occ_show_power_a0(struct device *dev,
510 				 struct device_attribute *attr, char *buf)
511 {
512 	int rc;
513 	u64 val = 0;
514 	struct power_sensor_a0 *power;
515 	struct occ *occ = dev_get_drvdata(dev);
516 	struct occ_sensors *sensors = &occ->sensors;
517 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
518 
519 	rc = occ_update_response(occ);
520 	if (rc)
521 		return rc;
522 
523 	power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
524 
525 	switch (sattr->nr) {
526 	case 0:
527 		return sysfs_emit(buf, "%u_system\n",
528 				  get_unaligned_be32(&power->sensor_id));
529 	case 1:
530 		val = occ_get_powr_avg(&power->system.accumulator,
531 				       &power->system.update_tag);
532 		break;
533 	case 2:
534 		val = (u64)get_unaligned_be32(&power->system.update_tag) *
535 			   occ->powr_sample_time_us;
536 		break;
537 	case 3:
538 		val = get_unaligned_be16(&power->system.value) * 1000000ULL;
539 		break;
540 	case 4:
541 		return sysfs_emit(buf, "%u_proc\n",
542 				  get_unaligned_be32(&power->sensor_id));
543 	case 5:
544 		val = occ_get_powr_avg(&power->proc.accumulator,
545 				       &power->proc.update_tag);
546 		break;
547 	case 6:
548 		val = (u64)get_unaligned_be32(&power->proc.update_tag) *
549 			   occ->powr_sample_time_us;
550 		break;
551 	case 7:
552 		val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
553 		break;
554 	case 8:
555 		return sysfs_emit(buf, "%u_vdd\n",
556 				  get_unaligned_be32(&power->sensor_id));
557 	case 9:
558 		val = occ_get_powr_avg(&power->vdd.accumulator,
559 				       &power->vdd.update_tag);
560 		break;
561 	case 10:
562 		val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
563 			   occ->powr_sample_time_us;
564 		break;
565 	case 11:
566 		val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
567 		break;
568 	case 12:
569 		return sysfs_emit(buf, "%u_vdn\n",
570 				  get_unaligned_be32(&power->sensor_id));
571 	case 13:
572 		val = occ_get_powr_avg(&power->vdn.accumulator,
573 				       &power->vdn.update_tag);
574 		break;
575 	case 14:
576 		val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
577 			   occ->powr_sample_time_us;
578 		break;
579 	case 15:
580 		val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
581 		break;
582 	default:
583 		return -EINVAL;
584 	}
585 
586 	return sysfs_emit(buf, "%llu\n", val);
587 }
588 
589 static ssize_t occ_show_caps_1_2(struct device *dev,
590 				 struct device_attribute *attr, char *buf)
591 {
592 	int rc;
593 	u64 val = 0;
594 	struct caps_sensor_2 *caps;
595 	struct occ *occ = dev_get_drvdata(dev);
596 	struct occ_sensors *sensors = &occ->sensors;
597 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
598 
599 	rc = occ_update_response(occ);
600 	if (rc)
601 		return rc;
602 
603 	caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
604 
605 	switch (sattr->nr) {
606 	case 0:
607 		return sysfs_emit(buf, "system\n");
608 	case 1:
609 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
610 		break;
611 	case 2:
612 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
613 		break;
614 	case 3:
615 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
616 		break;
617 	case 4:
618 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
619 		break;
620 	case 5:
621 		val = get_unaligned_be16(&caps->min) * 1000000ULL;
622 		break;
623 	case 6:
624 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
625 		break;
626 	case 7:
627 		if (occ->sensors.caps.version == 1)
628 			return -EINVAL;
629 
630 		val = caps->user_source;
631 		break;
632 	default:
633 		return -EINVAL;
634 	}
635 
636 	return sysfs_emit(buf, "%llu\n", val);
637 }
638 
639 static ssize_t occ_show_caps_3(struct device *dev,
640 			       struct device_attribute *attr, char *buf)
641 {
642 	int rc;
643 	u64 val = 0;
644 	struct caps_sensor_3 *caps;
645 	struct occ *occ = dev_get_drvdata(dev);
646 	struct occ_sensors *sensors = &occ->sensors;
647 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
648 
649 	rc = occ_update_response(occ);
650 	if (rc)
651 		return rc;
652 
653 	caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
654 
655 	switch (sattr->nr) {
656 	case 0:
657 		return sysfs_emit(buf, "system\n");
658 	case 1:
659 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
660 		break;
661 	case 2:
662 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
663 		break;
664 	case 3:
665 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
666 		break;
667 	case 4:
668 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
669 		break;
670 	case 5:
671 		val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
672 		break;
673 	case 6:
674 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
675 		break;
676 	case 7:
677 		val = caps->user_source;
678 		break;
679 	case 8:
680 		val = get_unaligned_be16(&caps->soft_min) * 1000000ULL;
681 		break;
682 	default:
683 		return -EINVAL;
684 	}
685 
686 	return sysfs_emit(buf, "%llu\n", val);
687 }
688 
689 static ssize_t occ_store_caps_user(struct device *dev,
690 				   struct device_attribute *attr,
691 				   const char *buf, size_t count)
692 {
693 	int rc;
694 	u16 user_power_cap;
695 	unsigned long long value;
696 	struct occ *occ = dev_get_drvdata(dev);
697 
698 	rc = kstrtoull(buf, 0, &value);
699 	if (rc)
700 		return rc;
701 
702 	user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
703 
704 	rc = occ_set_user_power_cap(occ, user_power_cap);
705 	if (rc)
706 		return rc;
707 
708 	return count;
709 }
710 
711 static ssize_t occ_show_extended(struct device *dev,
712 				 struct device_attribute *attr, char *buf)
713 {
714 	int rc;
715 	struct extended_sensor *extn;
716 	struct occ *occ = dev_get_drvdata(dev);
717 	struct occ_sensors *sensors = &occ->sensors;
718 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
719 
720 	rc = occ_update_response(occ);
721 	if (rc)
722 		return rc;
723 
724 	extn = ((struct extended_sensor *)sensors->extended.data) +
725 		sattr->index;
726 
727 	switch (sattr->nr) {
728 	case 0:
729 		if (extn->flags & EXTN_FLAG_SENSOR_ID) {
730 			rc = sysfs_emit(buf, "%u",
731 					get_unaligned_be32(&extn->sensor_id));
732 		} else {
733 			rc = sysfs_emit(buf, "%4phN\n", extn->name);
734 		}
735 		break;
736 	case 1:
737 		rc = sysfs_emit(buf, "%02x\n", extn->flags);
738 		break;
739 	case 2:
740 		rc = sysfs_emit(buf, "%6phN\n", extn->data);
741 		break;
742 	default:
743 		return -EINVAL;
744 	}
745 
746 	return rc;
747 }
748 
749 /*
750  * Some helper macros to make it easier to define an occ_attribute. Since these
751  * are dynamically allocated, we shouldn't use the existing kernel macros which
752  * stringify the name argument.
753  */
754 #define ATTR_OCC(_name, _mode, _show, _store) {				\
755 	.attr	= {							\
756 		.name = _name,						\
757 		.mode = VERIFY_OCTAL_PERMISSIONS(_mode),		\
758 	},								\
759 	.show	= _show,						\
760 	.store	= _store,						\
761 }
762 
763 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {	\
764 	.dev_attr	= ATTR_OCC(_name, _mode, _show, _store),	\
765 	.index		= _index,					\
766 	.nr		= _nr,						\
767 }
768 
769 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)		\
770 	((struct sensor_device_attribute_2)				\
771 		SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
772 
773 /*
774  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
775  * use our own instead of the built-in hwmon attribute types.
776  */
777 static int occ_setup_sensor_attrs(struct occ *occ)
778 {
779 	unsigned int i, s, num_attrs = 0;
780 	struct device *dev = occ->bus_dev;
781 	struct occ_sensors *sensors = &occ->sensors;
782 	struct occ_attribute *attr;
783 	struct temp_sensor_2 *temp;
784 	ssize_t (*show_temp)(struct device *, struct device_attribute *,
785 			     char *) = occ_show_temp_1;
786 	ssize_t (*show_freq)(struct device *, struct device_attribute *,
787 			     char *) = occ_show_freq_1;
788 	ssize_t (*show_power)(struct device *, struct device_attribute *,
789 			      char *) = occ_show_power_1;
790 	ssize_t (*show_caps)(struct device *, struct device_attribute *,
791 			     char *) = occ_show_caps_1_2;
792 
793 	switch (sensors->temp.version) {
794 	case 1:
795 		num_attrs += (sensors->temp.num_sensors * 2);
796 		break;
797 	case 2:
798 		num_attrs += (sensors->temp.num_sensors * 4);
799 		show_temp = occ_show_temp_2;
800 		break;
801 	case 0x10:
802 		num_attrs += (sensors->temp.num_sensors * 5);
803 		show_temp = occ_show_temp_10;
804 		break;
805 	default:
806 		sensors->temp.num_sensors = 0;
807 	}
808 
809 	switch (sensors->freq.version) {
810 	case 2:
811 		show_freq = occ_show_freq_2;
812 		fallthrough;
813 	case 1:
814 		num_attrs += (sensors->freq.num_sensors * 2);
815 		break;
816 	default:
817 		sensors->freq.num_sensors = 0;
818 	}
819 
820 	switch (sensors->power.version) {
821 	case 2:
822 		show_power = occ_show_power_2;
823 		fallthrough;
824 	case 1:
825 		num_attrs += (sensors->power.num_sensors * 4);
826 		break;
827 	case 0xA0:
828 		num_attrs += (sensors->power.num_sensors * 16);
829 		show_power = occ_show_power_a0;
830 		break;
831 	default:
832 		sensors->power.num_sensors = 0;
833 	}
834 
835 	switch (sensors->caps.version) {
836 	case 1:
837 		num_attrs += (sensors->caps.num_sensors * 7);
838 		break;
839 	case 2:
840 		num_attrs += (sensors->caps.num_sensors * 8);
841 		break;
842 	case 3:
843 		show_caps = occ_show_caps_3;
844 		num_attrs += (sensors->caps.num_sensors * 9);
845 		break;
846 	default:
847 		sensors->caps.num_sensors = 0;
848 	}
849 
850 	switch (sensors->extended.version) {
851 	case 1:
852 		num_attrs += (sensors->extended.num_sensors * 3);
853 		break;
854 	default:
855 		sensors->extended.num_sensors = 0;
856 	}
857 
858 	occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
859 				  GFP_KERNEL);
860 	if (!occ->attrs)
861 		return -ENOMEM;
862 
863 	/* null-terminated list */
864 	occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
865 					num_attrs + 1, GFP_KERNEL);
866 	if (!occ->group.attrs)
867 		return -ENOMEM;
868 
869 	attr = occ->attrs;
870 
871 	for (i = 0; i < sensors->temp.num_sensors; ++i) {
872 		s = i + 1;
873 		temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
874 
875 		snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
876 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
877 					     0, i);
878 		attr++;
879 
880 		if (sensors->temp.version == 2 &&
881 		    temp->fru_type == OCC_FRU_TYPE_VRM) {
882 			snprintf(attr->name, sizeof(attr->name),
883 				 "temp%d_alarm", s);
884 		} else {
885 			snprintf(attr->name, sizeof(attr->name),
886 				 "temp%d_input", s);
887 		}
888 
889 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
890 					     1, i);
891 		attr++;
892 
893 		if (sensors->temp.version > 1) {
894 			snprintf(attr->name, sizeof(attr->name),
895 				 "temp%d_fru_type", s);
896 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
897 						     show_temp, NULL, 2, i);
898 			attr++;
899 
900 			snprintf(attr->name, sizeof(attr->name),
901 				 "temp%d_fault", s);
902 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
903 						     show_temp, NULL, 3, i);
904 			attr++;
905 
906 			if (sensors->temp.version == 0x10) {
907 				snprintf(attr->name, sizeof(attr->name),
908 					 "temp%d_max", s);
909 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
910 							     show_temp, NULL,
911 							     4, i);
912 				attr++;
913 			}
914 		}
915 	}
916 
917 	for (i = 0; i < sensors->freq.num_sensors; ++i) {
918 		s = i + 1;
919 
920 		snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
921 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
922 					     0, i);
923 		attr++;
924 
925 		snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
926 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
927 					     1, i);
928 		attr++;
929 	}
930 
931 	if (sensors->power.version == 0xA0) {
932 		/*
933 		 * Special case for many-attribute power sensor. Split it into
934 		 * a sensor number per power type, emulating several sensors.
935 		 */
936 		for (i = 0; i < sensors->power.num_sensors; ++i) {
937 			unsigned int j;
938 			unsigned int nr = 0;
939 
940 			s = (i * 4) + 1;
941 
942 			for (j = 0; j < 4; ++j) {
943 				snprintf(attr->name, sizeof(attr->name),
944 					 "power%d_label", s);
945 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
946 							     show_power, NULL,
947 							     nr++, i);
948 				attr++;
949 
950 				snprintf(attr->name, sizeof(attr->name),
951 					 "power%d_average", s);
952 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
953 							     show_power, NULL,
954 							     nr++, i);
955 				attr++;
956 
957 				snprintf(attr->name, sizeof(attr->name),
958 					 "power%d_average_interval", s);
959 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
960 							     show_power, NULL,
961 							     nr++, i);
962 				attr++;
963 
964 				snprintf(attr->name, sizeof(attr->name),
965 					 "power%d_input", s);
966 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
967 							     show_power, NULL,
968 							     nr++, i);
969 				attr++;
970 
971 				s++;
972 			}
973 		}
974 
975 		s = (sensors->power.num_sensors * 4) + 1;
976 	} else {
977 		for (i = 0; i < sensors->power.num_sensors; ++i) {
978 			s = i + 1;
979 
980 			snprintf(attr->name, sizeof(attr->name),
981 				 "power%d_label", s);
982 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
983 						     show_power, NULL, 0, i);
984 			attr++;
985 
986 			snprintf(attr->name, sizeof(attr->name),
987 				 "power%d_average", s);
988 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
989 						     show_power, NULL, 1, i);
990 			attr++;
991 
992 			snprintf(attr->name, sizeof(attr->name),
993 				 "power%d_average_interval", s);
994 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
995 						     show_power, NULL, 2, i);
996 			attr++;
997 
998 			snprintf(attr->name, sizeof(attr->name),
999 				 "power%d_input", s);
1000 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1001 						     show_power, NULL, 3, i);
1002 			attr++;
1003 		}
1004 
1005 		s = sensors->power.num_sensors + 1;
1006 	}
1007 
1008 	if (sensors->caps.num_sensors >= 1) {
1009 		snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1010 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1011 					     0, 0);
1012 		attr++;
1013 
1014 		snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1015 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1016 					     1, 0);
1017 		attr++;
1018 
1019 		snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1020 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1021 					     2, 0);
1022 		attr++;
1023 
1024 		snprintf(attr->name, sizeof(attr->name),
1025 			 "power%d_cap_not_redundant", s);
1026 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1027 					     3, 0);
1028 		attr++;
1029 
1030 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1031 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1032 					     4, 0);
1033 		attr++;
1034 
1035 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1036 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1037 					     5, 0);
1038 		attr++;
1039 
1040 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1041 			 s);
1042 		attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1043 					     occ_store_caps_user, 6, 0);
1044 		attr++;
1045 
1046 		if (sensors->caps.version > 1) {
1047 			snprintf(attr->name, sizeof(attr->name),
1048 				 "power%d_cap_user_source", s);
1049 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1050 						     show_caps, NULL, 7, 0);
1051 			attr++;
1052 
1053 			if (sensors->caps.version > 2) {
1054 				snprintf(attr->name, sizeof(attr->name),
1055 					 "power%d_cap_min_soft", s);
1056 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1057 							     show_caps, NULL,
1058 							     8, 0);
1059 				attr++;
1060 			}
1061 		}
1062 	}
1063 
1064 	for (i = 0; i < sensors->extended.num_sensors; ++i) {
1065 		s = i + 1;
1066 
1067 		snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1068 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1069 					     occ_show_extended, NULL, 0, i);
1070 		attr++;
1071 
1072 		snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1073 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1074 					     occ_show_extended, NULL, 1, i);
1075 		attr++;
1076 
1077 		snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1078 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1079 					     occ_show_extended, NULL, 2, i);
1080 		attr++;
1081 	}
1082 
1083 	/* put the sensors in the group */
1084 	for (i = 0; i < num_attrs; ++i) {
1085 		sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1086 		occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /* only need to do this once at startup, as OCC won't change sensors on us */
1093 static void occ_parse_poll_response(struct occ *occ)
1094 {
1095 	unsigned int i, old_offset, offset = 0, size = 0;
1096 	struct occ_sensor *sensor;
1097 	struct occ_sensors *sensors = &occ->sensors;
1098 	struct occ_response *resp = &occ->resp;
1099 	struct occ_poll_response *poll =
1100 		(struct occ_poll_response *)&resp->data[0];
1101 	struct occ_poll_response_header *header = &poll->header;
1102 	struct occ_sensor_data_block *block = &poll->block;
1103 
1104 	dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1105 		 header->occ_code_level);
1106 
1107 	for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1108 		block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1109 		old_offset = offset;
1110 		offset = (block->header.num_sensors *
1111 			  block->header.sensor_length) + sizeof(block->header);
1112 		size += offset;
1113 
1114 		/* validate all the length/size fields */
1115 		if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1116 			dev_warn(occ->bus_dev, "exceeded response buffer\n");
1117 			return;
1118 		}
1119 
1120 		dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1121 			old_offset, offset - 1, block->header.eye_catcher,
1122 			block->header.num_sensors);
1123 
1124 		/* match sensor block type */
1125 		if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1126 			sensor = &sensors->temp;
1127 		else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1128 			sensor = &sensors->freq;
1129 		else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1130 			sensor = &sensors->power;
1131 		else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1132 			sensor = &sensors->caps;
1133 		else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1134 			sensor = &sensors->extended;
1135 		else {
1136 			dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1137 				 block->header.eye_catcher);
1138 			continue;
1139 		}
1140 
1141 		sensor->num_sensors = block->header.num_sensors;
1142 		sensor->version = block->header.sensor_format;
1143 		sensor->data = &block->data;
1144 	}
1145 
1146 	dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1147 		sizeof(*header), size + sizeof(*header));
1148 }
1149 
1150 int occ_active(struct occ *occ, bool active)
1151 {
1152 	int rc = mutex_lock_interruptible(&occ->lock);
1153 
1154 	if (rc)
1155 		return rc;
1156 
1157 	if (active) {
1158 		if (occ->active) {
1159 			rc = -EALREADY;
1160 			goto unlock;
1161 		}
1162 
1163 		occ->error_count = 0;
1164 		occ->last_safe = 0;
1165 
1166 		rc = occ_poll(occ);
1167 		if (rc < 0) {
1168 			dev_err(occ->bus_dev,
1169 				"failed to get OCC poll response=%02x: %d\n",
1170 				occ->resp.return_status, rc);
1171 			goto unlock;
1172 		}
1173 
1174 		occ->active = true;
1175 		occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1176 		occ_parse_poll_response(occ);
1177 
1178 		rc = occ_setup_sensor_attrs(occ);
1179 		if (rc) {
1180 			dev_err(occ->bus_dev,
1181 				"failed to setup sensor attrs: %d\n", rc);
1182 			goto unlock;
1183 		}
1184 
1185 		occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev,
1186 							       "occ", occ,
1187 							       occ->groups);
1188 		if (IS_ERR(occ->hwmon)) {
1189 			rc = PTR_ERR(occ->hwmon);
1190 			occ->hwmon = NULL;
1191 			dev_err(occ->bus_dev,
1192 				"failed to register hwmon device: %d\n", rc);
1193 			goto unlock;
1194 		}
1195 	} else {
1196 		if (!occ->active) {
1197 			rc = -EALREADY;
1198 			goto unlock;
1199 		}
1200 
1201 		if (occ->hwmon)
1202 			hwmon_device_unregister(occ->hwmon);
1203 		occ->active = false;
1204 		occ->hwmon = NULL;
1205 	}
1206 
1207 unlock:
1208 	mutex_unlock(&occ->lock);
1209 	return rc;
1210 }
1211 
1212 int occ_setup(struct occ *occ)
1213 {
1214 	int rc;
1215 
1216 	mutex_init(&occ->lock);
1217 	occ->groups[0] = &occ->group;
1218 
1219 	rc = occ_setup_sysfs(occ);
1220 	if (rc) {
1221 		dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1222 		return rc;
1223 	}
1224 
1225 	if (!device_property_read_bool(occ->bus_dev, "ibm,no-poll-on-init")) {
1226 		rc = occ_active(occ, true);
1227 		if (rc)
1228 			occ_shutdown_sysfs(occ);
1229 	}
1230 
1231 	return rc;
1232 }
1233 EXPORT_SYMBOL_GPL(occ_setup);
1234 
1235 void occ_shutdown(struct occ *occ)
1236 {
1237 	mutex_lock(&occ->lock);
1238 
1239 	occ_shutdown_sysfs(occ);
1240 
1241 	if (occ->hwmon)
1242 		hwmon_device_unregister(occ->hwmon);
1243 	occ->hwmon = NULL;
1244 
1245 	mutex_unlock(&occ->lock);
1246 }
1247 EXPORT_SYMBOL_GPL(occ_shutdown);
1248 
1249 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1250 MODULE_DESCRIPTION("Common OCC hwmon code");
1251 MODULE_LICENSE("GPL");
1252