xref: /openbmc/linux/drivers/hwmon/occ/common.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3 
4 #include <linux/device.h>
5 #include <linux/hwmon.h>
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/math64.h>
10 #include <linux/mutex.h>
11 #include <linux/sysfs.h>
12 #include <asm/unaligned.h>
13 
14 #include "common.h"
15 
16 #define EXTN_FLAG_SENSOR_ID		BIT(7)
17 
18 #define OCC_ERROR_COUNT_THRESHOLD	2	/* required by OCC spec */
19 
20 #define OCC_STATE_SAFE			4
21 #define OCC_SAFE_TIMEOUT		msecs_to_jiffies(60000) /* 1 min */
22 
23 #define OCC_UPDATE_FREQUENCY		msecs_to_jiffies(1000)
24 
25 #define OCC_TEMP_SENSOR_FAULT		0xFF
26 
27 #define OCC_FRU_TYPE_VRM		3
28 
29 /* OCC sensor type and version definitions */
30 
31 struct temp_sensor_1 {
32 	u16 sensor_id;
33 	u16 value;
34 } __packed;
35 
36 struct temp_sensor_2 {
37 	u32 sensor_id;
38 	u8 fru_type;
39 	u8 value;
40 } __packed;
41 
42 struct freq_sensor_1 {
43 	u16 sensor_id;
44 	u16 value;
45 } __packed;
46 
47 struct freq_sensor_2 {
48 	u32 sensor_id;
49 	u16 value;
50 } __packed;
51 
52 struct power_sensor_1 {
53 	u16 sensor_id;
54 	u32 update_tag;
55 	u32 accumulator;
56 	u16 value;
57 } __packed;
58 
59 struct power_sensor_2 {
60 	u32 sensor_id;
61 	u8 function_id;
62 	u8 apss_channel;
63 	u16 reserved;
64 	u32 update_tag;
65 	u64 accumulator;
66 	u16 value;
67 } __packed;
68 
69 struct power_sensor_data {
70 	u16 value;
71 	u32 update_tag;
72 	u64 accumulator;
73 } __packed;
74 
75 struct power_sensor_data_and_time {
76 	u16 update_time;
77 	u16 value;
78 	u32 update_tag;
79 	u64 accumulator;
80 } __packed;
81 
82 struct power_sensor_a0 {
83 	u32 sensor_id;
84 	struct power_sensor_data_and_time system;
85 	u32 reserved;
86 	struct power_sensor_data_and_time proc;
87 	struct power_sensor_data vdd;
88 	struct power_sensor_data vdn;
89 } __packed;
90 
91 struct caps_sensor_2 {
92 	u16 cap;
93 	u16 system_power;
94 	u16 n_cap;
95 	u16 max;
96 	u16 min;
97 	u16 user;
98 	u8 user_source;
99 } __packed;
100 
101 struct caps_sensor_3 {
102 	u16 cap;
103 	u16 system_power;
104 	u16 n_cap;
105 	u16 max;
106 	u16 hard_min;
107 	u16 soft_min;
108 	u16 user;
109 	u8 user_source;
110 } __packed;
111 
112 struct extended_sensor {
113 	union {
114 		u8 name[4];
115 		u32 sensor_id;
116 	};
117 	u8 flags;
118 	u8 reserved;
119 	u8 data[6];
120 } __packed;
121 
122 static int occ_poll(struct occ *occ)
123 {
124 	int rc;
125 	u16 checksum = occ->poll_cmd_data + 1;
126 	u8 cmd[8];
127 	struct occ_poll_response_header *header;
128 
129 	/* big endian */
130 	cmd[0] = 0;			/* sequence number */
131 	cmd[1] = 0;			/* cmd type */
132 	cmd[2] = 0;			/* data length msb */
133 	cmd[3] = 1;			/* data length lsb */
134 	cmd[4] = occ->poll_cmd_data;	/* data */
135 	cmd[5] = checksum >> 8;		/* checksum msb */
136 	cmd[6] = checksum & 0xFF;	/* checksum lsb */
137 	cmd[7] = 0;
138 
139 	/* mutex should already be locked if necessary */
140 	rc = occ->send_cmd(occ, cmd);
141 	if (rc) {
142 		if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
143 			occ->error = rc;
144 
145 		goto done;
146 	}
147 
148 	/* clear error since communication was successful */
149 	occ->error_count = 0;
150 	occ->error = 0;
151 
152 	/* check for safe state */
153 	header = (struct occ_poll_response_header *)occ->resp.data;
154 	if (header->occ_state == OCC_STATE_SAFE) {
155 		if (occ->last_safe) {
156 			if (time_after(jiffies,
157 				       occ->last_safe + OCC_SAFE_TIMEOUT))
158 				occ->error = -EHOSTDOWN;
159 		} else {
160 			occ->last_safe = jiffies;
161 		}
162 	} else {
163 		occ->last_safe = 0;
164 	}
165 
166 done:
167 	occ_sysfs_poll_done(occ);
168 	return rc;
169 }
170 
171 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
172 {
173 	int rc;
174 	u8 cmd[8];
175 	u16 checksum = 0x24;
176 	__be16 user_power_cap_be = cpu_to_be16(user_power_cap);
177 
178 	cmd[0] = 0;
179 	cmd[1] = 0x22;
180 	cmd[2] = 0;
181 	cmd[3] = 2;
182 
183 	memcpy(&cmd[4], &user_power_cap_be, 2);
184 
185 	checksum += cmd[4] + cmd[5];
186 	cmd[6] = checksum >> 8;
187 	cmd[7] = checksum & 0xFF;
188 
189 	rc = mutex_lock_interruptible(&occ->lock);
190 	if (rc)
191 		return rc;
192 
193 	rc = occ->send_cmd(occ, cmd);
194 
195 	mutex_unlock(&occ->lock);
196 
197 	return rc;
198 }
199 
200 int occ_update_response(struct occ *occ)
201 {
202 	int rc = mutex_lock_interruptible(&occ->lock);
203 
204 	if (rc)
205 		return rc;
206 
207 	/* limit the maximum rate of polling the OCC */
208 	if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
209 		rc = occ_poll(occ);
210 		occ->last_update = jiffies;
211 	}
212 
213 	mutex_unlock(&occ->lock);
214 	return rc;
215 }
216 
217 static ssize_t occ_show_temp_1(struct device *dev,
218 			       struct device_attribute *attr, char *buf)
219 {
220 	int rc;
221 	u32 val = 0;
222 	struct temp_sensor_1 *temp;
223 	struct occ *occ = dev_get_drvdata(dev);
224 	struct occ_sensors *sensors = &occ->sensors;
225 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
226 
227 	rc = occ_update_response(occ);
228 	if (rc)
229 		return rc;
230 
231 	temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
232 
233 	switch (sattr->nr) {
234 	case 0:
235 		val = get_unaligned_be16(&temp->sensor_id);
236 		break;
237 	case 1:
238 		val = get_unaligned_be16(&temp->value) * 1000;
239 		break;
240 	default:
241 		return -EINVAL;
242 	}
243 
244 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
245 }
246 
247 static ssize_t occ_show_temp_2(struct device *dev,
248 			       struct device_attribute *attr, char *buf)
249 {
250 	int rc;
251 	u32 val = 0;
252 	struct temp_sensor_2 *temp;
253 	struct occ *occ = dev_get_drvdata(dev);
254 	struct occ_sensors *sensors = &occ->sensors;
255 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
256 
257 	rc = occ_update_response(occ);
258 	if (rc)
259 		return rc;
260 
261 	temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
262 
263 	switch (sattr->nr) {
264 	case 0:
265 		val = get_unaligned_be32(&temp->sensor_id);
266 		break;
267 	case 1:
268 		val = temp->value;
269 		if (val == OCC_TEMP_SENSOR_FAULT)
270 			return -EREMOTEIO;
271 
272 		/*
273 		 * VRM doesn't return temperature, only alarm bit. This
274 		 * attribute maps to tempX_alarm instead of tempX_input for
275 		 * VRM
276 		 */
277 		if (temp->fru_type != OCC_FRU_TYPE_VRM) {
278 			/* sensor not ready */
279 			if (val == 0)
280 				return -EAGAIN;
281 
282 			val *= 1000;
283 		}
284 		break;
285 	case 2:
286 		val = temp->fru_type;
287 		break;
288 	case 3:
289 		val = temp->value == OCC_TEMP_SENSOR_FAULT;
290 		break;
291 	default:
292 		return -EINVAL;
293 	}
294 
295 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
296 }
297 
298 static ssize_t occ_show_freq_1(struct device *dev,
299 			       struct device_attribute *attr, char *buf)
300 {
301 	int rc;
302 	u16 val = 0;
303 	struct freq_sensor_1 *freq;
304 	struct occ *occ = dev_get_drvdata(dev);
305 	struct occ_sensors *sensors = &occ->sensors;
306 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
307 
308 	rc = occ_update_response(occ);
309 	if (rc)
310 		return rc;
311 
312 	freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
313 
314 	switch (sattr->nr) {
315 	case 0:
316 		val = get_unaligned_be16(&freq->sensor_id);
317 		break;
318 	case 1:
319 		val = get_unaligned_be16(&freq->value);
320 		break;
321 	default:
322 		return -EINVAL;
323 	}
324 
325 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
326 }
327 
328 static ssize_t occ_show_freq_2(struct device *dev,
329 			       struct device_attribute *attr, char *buf)
330 {
331 	int rc;
332 	u32 val = 0;
333 	struct freq_sensor_2 *freq;
334 	struct occ *occ = dev_get_drvdata(dev);
335 	struct occ_sensors *sensors = &occ->sensors;
336 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
337 
338 	rc = occ_update_response(occ);
339 	if (rc)
340 		return rc;
341 
342 	freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
343 
344 	switch (sattr->nr) {
345 	case 0:
346 		val = get_unaligned_be32(&freq->sensor_id);
347 		break;
348 	case 1:
349 		val = get_unaligned_be16(&freq->value);
350 		break;
351 	default:
352 		return -EINVAL;
353 	}
354 
355 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
356 }
357 
358 static ssize_t occ_show_power_1(struct device *dev,
359 				struct device_attribute *attr, char *buf)
360 {
361 	int rc;
362 	u64 val = 0;
363 	struct power_sensor_1 *power;
364 	struct occ *occ = dev_get_drvdata(dev);
365 	struct occ_sensors *sensors = &occ->sensors;
366 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
367 
368 	rc = occ_update_response(occ);
369 	if (rc)
370 		return rc;
371 
372 	power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
373 
374 	switch (sattr->nr) {
375 	case 0:
376 		val = get_unaligned_be16(&power->sensor_id);
377 		break;
378 	case 1:
379 		val = get_unaligned_be32(&power->accumulator) /
380 			get_unaligned_be32(&power->update_tag);
381 		val *= 1000000ULL;
382 		break;
383 	case 2:
384 		val = (u64)get_unaligned_be32(&power->update_tag) *
385 			   occ->powr_sample_time_us;
386 		break;
387 	case 3:
388 		val = get_unaligned_be16(&power->value) * 1000000ULL;
389 		break;
390 	default:
391 		return -EINVAL;
392 	}
393 
394 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
395 }
396 
397 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
398 {
399 	return div64_u64(get_unaligned_be64(accum) * 1000000ULL,
400 			 get_unaligned_be32(samples));
401 }
402 
403 static ssize_t occ_show_power_2(struct device *dev,
404 				struct device_attribute *attr, char *buf)
405 {
406 	int rc;
407 	u64 val = 0;
408 	struct power_sensor_2 *power;
409 	struct occ *occ = dev_get_drvdata(dev);
410 	struct occ_sensors *sensors = &occ->sensors;
411 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
412 
413 	rc = occ_update_response(occ);
414 	if (rc)
415 		return rc;
416 
417 	power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
418 
419 	switch (sattr->nr) {
420 	case 0:
421 		return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
422 				get_unaligned_be32(&power->sensor_id),
423 				power->function_id, power->apss_channel);
424 	case 1:
425 		val = occ_get_powr_avg(&power->accumulator,
426 				       &power->update_tag);
427 		break;
428 	case 2:
429 		val = (u64)get_unaligned_be32(&power->update_tag) *
430 			   occ->powr_sample_time_us;
431 		break;
432 	case 3:
433 		val = get_unaligned_be16(&power->value) * 1000000ULL;
434 		break;
435 	default:
436 		return -EINVAL;
437 	}
438 
439 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
440 }
441 
442 static ssize_t occ_show_power_a0(struct device *dev,
443 				 struct device_attribute *attr, char *buf)
444 {
445 	int rc;
446 	u64 val = 0;
447 	struct power_sensor_a0 *power;
448 	struct occ *occ = dev_get_drvdata(dev);
449 	struct occ_sensors *sensors = &occ->sensors;
450 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
451 
452 	rc = occ_update_response(occ);
453 	if (rc)
454 		return rc;
455 
456 	power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
457 
458 	switch (sattr->nr) {
459 	case 0:
460 		return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
461 				get_unaligned_be32(&power->sensor_id));
462 	case 1:
463 		val = occ_get_powr_avg(&power->system.accumulator,
464 				       &power->system.update_tag);
465 		break;
466 	case 2:
467 		val = (u64)get_unaligned_be32(&power->system.update_tag) *
468 			   occ->powr_sample_time_us;
469 		break;
470 	case 3:
471 		val = get_unaligned_be16(&power->system.value) * 1000000ULL;
472 		break;
473 	case 4:
474 		return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
475 				get_unaligned_be32(&power->sensor_id));
476 	case 5:
477 		val = occ_get_powr_avg(&power->proc.accumulator,
478 				       &power->proc.update_tag);
479 		break;
480 	case 6:
481 		val = (u64)get_unaligned_be32(&power->proc.update_tag) *
482 			   occ->powr_sample_time_us;
483 		break;
484 	case 7:
485 		val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
486 		break;
487 	case 8:
488 		return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
489 				get_unaligned_be32(&power->sensor_id));
490 	case 9:
491 		val = occ_get_powr_avg(&power->vdd.accumulator,
492 				       &power->vdd.update_tag);
493 		break;
494 	case 10:
495 		val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
496 			   occ->powr_sample_time_us;
497 		break;
498 	case 11:
499 		val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
500 		break;
501 	case 12:
502 		return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
503 				get_unaligned_be32(&power->sensor_id));
504 	case 13:
505 		val = occ_get_powr_avg(&power->vdn.accumulator,
506 				       &power->vdn.update_tag);
507 		break;
508 	case 14:
509 		val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
510 			   occ->powr_sample_time_us;
511 		break;
512 	case 15:
513 		val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
514 		break;
515 	default:
516 		return -EINVAL;
517 	}
518 
519 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
520 }
521 
522 static ssize_t occ_show_caps_1_2(struct device *dev,
523 				 struct device_attribute *attr, char *buf)
524 {
525 	int rc;
526 	u64 val = 0;
527 	struct caps_sensor_2 *caps;
528 	struct occ *occ = dev_get_drvdata(dev);
529 	struct occ_sensors *sensors = &occ->sensors;
530 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
531 
532 	rc = occ_update_response(occ);
533 	if (rc)
534 		return rc;
535 
536 	caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
537 
538 	switch (sattr->nr) {
539 	case 0:
540 		return snprintf(buf, PAGE_SIZE - 1, "system\n");
541 	case 1:
542 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
543 		break;
544 	case 2:
545 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
546 		break;
547 	case 3:
548 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
549 		break;
550 	case 4:
551 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
552 		break;
553 	case 5:
554 		val = get_unaligned_be16(&caps->min) * 1000000ULL;
555 		break;
556 	case 6:
557 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
558 		break;
559 	case 7:
560 		if (occ->sensors.caps.version == 1)
561 			return -EINVAL;
562 
563 		val = caps->user_source;
564 		break;
565 	default:
566 		return -EINVAL;
567 	}
568 
569 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
570 }
571 
572 static ssize_t occ_show_caps_3(struct device *dev,
573 			       struct device_attribute *attr, char *buf)
574 {
575 	int rc;
576 	u64 val = 0;
577 	struct caps_sensor_3 *caps;
578 	struct occ *occ = dev_get_drvdata(dev);
579 	struct occ_sensors *sensors = &occ->sensors;
580 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
581 
582 	rc = occ_update_response(occ);
583 	if (rc)
584 		return rc;
585 
586 	caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
587 
588 	switch (sattr->nr) {
589 	case 0:
590 		return snprintf(buf, PAGE_SIZE - 1, "system\n");
591 	case 1:
592 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
593 		break;
594 	case 2:
595 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
596 		break;
597 	case 3:
598 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
599 		break;
600 	case 4:
601 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
602 		break;
603 	case 5:
604 		val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
605 		break;
606 	case 6:
607 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
608 		break;
609 	case 7:
610 		val = caps->user_source;
611 		break;
612 	default:
613 		return -EINVAL;
614 	}
615 
616 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
617 }
618 
619 static ssize_t occ_store_caps_user(struct device *dev,
620 				   struct device_attribute *attr,
621 				   const char *buf, size_t count)
622 {
623 	int rc;
624 	u16 user_power_cap;
625 	unsigned long long value;
626 	struct occ *occ = dev_get_drvdata(dev);
627 
628 	rc = kstrtoull(buf, 0, &value);
629 	if (rc)
630 		return rc;
631 
632 	user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
633 
634 	rc = occ_set_user_power_cap(occ, user_power_cap);
635 	if (rc)
636 		return rc;
637 
638 	return count;
639 }
640 
641 static ssize_t occ_show_extended(struct device *dev,
642 				 struct device_attribute *attr, char *buf)
643 {
644 	int rc;
645 	struct extended_sensor *extn;
646 	struct occ *occ = dev_get_drvdata(dev);
647 	struct occ_sensors *sensors = &occ->sensors;
648 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
649 
650 	rc = occ_update_response(occ);
651 	if (rc)
652 		return rc;
653 
654 	extn = ((struct extended_sensor *)sensors->extended.data) +
655 		sattr->index;
656 
657 	switch (sattr->nr) {
658 	case 0:
659 		if (extn->flags & EXTN_FLAG_SENSOR_ID)
660 			rc = snprintf(buf, PAGE_SIZE - 1, "%u",
661 				      get_unaligned_be32(&extn->sensor_id));
662 		else
663 			rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
664 				      extn->name[0], extn->name[1],
665 				      extn->name[2], extn->name[3]);
666 		break;
667 	case 1:
668 		rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
669 		break;
670 	case 2:
671 		rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
672 			      extn->data[0], extn->data[1], extn->data[2],
673 			      extn->data[3], extn->data[4], extn->data[5]);
674 		break;
675 	default:
676 		return -EINVAL;
677 	}
678 
679 	return rc;
680 }
681 
682 /*
683  * Some helper macros to make it easier to define an occ_attribute. Since these
684  * are dynamically allocated, we shouldn't use the existing kernel macros which
685  * stringify the name argument.
686  */
687 #define ATTR_OCC(_name, _mode, _show, _store) {				\
688 	.attr	= {							\
689 		.name = _name,						\
690 		.mode = VERIFY_OCTAL_PERMISSIONS(_mode),		\
691 	},								\
692 	.show	= _show,						\
693 	.store	= _store,						\
694 }
695 
696 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {	\
697 	.dev_attr	= ATTR_OCC(_name, _mode, _show, _store),	\
698 	.index		= _index,					\
699 	.nr		= _nr,						\
700 }
701 
702 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)		\
703 	((struct sensor_device_attribute_2)				\
704 		SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
705 
706 /*
707  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
708  * use our own instead of the built-in hwmon attribute types.
709  */
710 static int occ_setup_sensor_attrs(struct occ *occ)
711 {
712 	unsigned int i, s, num_attrs = 0;
713 	struct device *dev = occ->bus_dev;
714 	struct occ_sensors *sensors = &occ->sensors;
715 	struct occ_attribute *attr;
716 	struct temp_sensor_2 *temp;
717 	ssize_t (*show_temp)(struct device *, struct device_attribute *,
718 			     char *) = occ_show_temp_1;
719 	ssize_t (*show_freq)(struct device *, struct device_attribute *,
720 			     char *) = occ_show_freq_1;
721 	ssize_t (*show_power)(struct device *, struct device_attribute *,
722 			      char *) = occ_show_power_1;
723 	ssize_t (*show_caps)(struct device *, struct device_attribute *,
724 			     char *) = occ_show_caps_1_2;
725 
726 	switch (sensors->temp.version) {
727 	case 1:
728 		num_attrs += (sensors->temp.num_sensors * 2);
729 		break;
730 	case 2:
731 		num_attrs += (sensors->temp.num_sensors * 4);
732 		show_temp = occ_show_temp_2;
733 		break;
734 	default:
735 		sensors->temp.num_sensors = 0;
736 	}
737 
738 	switch (sensors->freq.version) {
739 	case 2:
740 		show_freq = occ_show_freq_2;
741 		/* fall through */
742 	case 1:
743 		num_attrs += (sensors->freq.num_sensors * 2);
744 		break;
745 	default:
746 		sensors->freq.num_sensors = 0;
747 	}
748 
749 	switch (sensors->power.version) {
750 	case 2:
751 		show_power = occ_show_power_2;
752 		/* fall through */
753 	case 1:
754 		num_attrs += (sensors->power.num_sensors * 4);
755 		break;
756 	case 0xA0:
757 		num_attrs += (sensors->power.num_sensors * 16);
758 		show_power = occ_show_power_a0;
759 		break;
760 	default:
761 		sensors->power.num_sensors = 0;
762 	}
763 
764 	switch (sensors->caps.version) {
765 	case 1:
766 		num_attrs += (sensors->caps.num_sensors * 7);
767 		break;
768 	case 3:
769 		show_caps = occ_show_caps_3;
770 		/* fall through */
771 	case 2:
772 		num_attrs += (sensors->caps.num_sensors * 8);
773 		break;
774 	default:
775 		sensors->caps.num_sensors = 0;
776 	}
777 
778 	switch (sensors->extended.version) {
779 	case 1:
780 		num_attrs += (sensors->extended.num_sensors * 3);
781 		break;
782 	default:
783 		sensors->extended.num_sensors = 0;
784 	}
785 
786 	occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
787 				  GFP_KERNEL);
788 	if (!occ->attrs)
789 		return -ENOMEM;
790 
791 	/* null-terminated list */
792 	occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
793 					num_attrs + 1, GFP_KERNEL);
794 	if (!occ->group.attrs)
795 		return -ENOMEM;
796 
797 	attr = occ->attrs;
798 
799 	for (i = 0; i < sensors->temp.num_sensors; ++i) {
800 		s = i + 1;
801 		temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
802 
803 		snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
804 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
805 					     0, i);
806 		attr++;
807 
808 		if (sensors->temp.version > 1 &&
809 		    temp->fru_type == OCC_FRU_TYPE_VRM) {
810 			snprintf(attr->name, sizeof(attr->name),
811 				 "temp%d_alarm", s);
812 		} else {
813 			snprintf(attr->name, sizeof(attr->name),
814 				 "temp%d_input", s);
815 		}
816 
817 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
818 					     1, i);
819 		attr++;
820 
821 		if (sensors->temp.version > 1) {
822 			snprintf(attr->name, sizeof(attr->name),
823 				 "temp%d_fru_type", s);
824 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
825 						     show_temp, NULL, 2, i);
826 			attr++;
827 
828 			snprintf(attr->name, sizeof(attr->name),
829 				 "temp%d_fault", s);
830 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
831 						     show_temp, NULL, 3, i);
832 			attr++;
833 		}
834 	}
835 
836 	for (i = 0; i < sensors->freq.num_sensors; ++i) {
837 		s = i + 1;
838 
839 		snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
840 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
841 					     0, i);
842 		attr++;
843 
844 		snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
845 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
846 					     1, i);
847 		attr++;
848 	}
849 
850 	if (sensors->power.version == 0xA0) {
851 		/*
852 		 * Special case for many-attribute power sensor. Split it into
853 		 * a sensor number per power type, emulating several sensors.
854 		 */
855 		for (i = 0; i < sensors->power.num_sensors; ++i) {
856 			unsigned int j;
857 			unsigned int nr = 0;
858 
859 			s = (i * 4) + 1;
860 
861 			for (j = 0; j < 4; ++j) {
862 				snprintf(attr->name, sizeof(attr->name),
863 					 "power%d_label", s);
864 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
865 							     show_power, NULL,
866 							     nr++, i);
867 				attr++;
868 
869 				snprintf(attr->name, sizeof(attr->name),
870 					 "power%d_average", s);
871 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
872 							     show_power, NULL,
873 							     nr++, i);
874 				attr++;
875 
876 				snprintf(attr->name, sizeof(attr->name),
877 					 "power%d_average_interval", s);
878 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
879 							     show_power, NULL,
880 							     nr++, i);
881 				attr++;
882 
883 				snprintf(attr->name, sizeof(attr->name),
884 					 "power%d_input", s);
885 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
886 							     show_power, NULL,
887 							     nr++, i);
888 				attr++;
889 
890 				s++;
891 			}
892 		}
893 	} else {
894 		for (i = 0; i < sensors->power.num_sensors; ++i) {
895 			s = i + 1;
896 
897 			snprintf(attr->name, sizeof(attr->name),
898 				 "power%d_label", s);
899 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
900 						     show_power, NULL, 0, i);
901 			attr++;
902 
903 			snprintf(attr->name, sizeof(attr->name),
904 				 "power%d_average", s);
905 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
906 						     show_power, NULL, 1, i);
907 			attr++;
908 
909 			snprintf(attr->name, sizeof(attr->name),
910 				 "power%d_average_interval", s);
911 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
912 						     show_power, NULL, 2, i);
913 			attr++;
914 
915 			snprintf(attr->name, sizeof(attr->name),
916 				 "power%d_input", s);
917 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
918 						     show_power, NULL, 3, i);
919 			attr++;
920 		}
921 	}
922 
923 	if (sensors->caps.num_sensors >= 1) {
924 		s = sensors->power.num_sensors + 1;
925 
926 		snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
927 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
928 					     0, 0);
929 		attr++;
930 
931 		snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
932 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
933 					     1, 0);
934 		attr++;
935 
936 		snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
937 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
938 					     2, 0);
939 		attr++;
940 
941 		snprintf(attr->name, sizeof(attr->name),
942 			 "power%d_cap_not_redundant", s);
943 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
944 					     3, 0);
945 		attr++;
946 
947 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
948 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
949 					     4, 0);
950 		attr++;
951 
952 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
953 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
954 					     5, 0);
955 		attr++;
956 
957 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
958 			 s);
959 		attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
960 					     occ_store_caps_user, 6, 0);
961 		attr++;
962 
963 		if (sensors->caps.version > 1) {
964 			snprintf(attr->name, sizeof(attr->name),
965 				 "power%d_cap_user_source", s);
966 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
967 						     show_caps, NULL, 7, 0);
968 			attr++;
969 		}
970 	}
971 
972 	for (i = 0; i < sensors->extended.num_sensors; ++i) {
973 		s = i + 1;
974 
975 		snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
976 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
977 					     occ_show_extended, NULL, 0, i);
978 		attr++;
979 
980 		snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
981 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
982 					     occ_show_extended, NULL, 1, i);
983 		attr++;
984 
985 		snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
986 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
987 					     occ_show_extended, NULL, 2, i);
988 		attr++;
989 	}
990 
991 	/* put the sensors in the group */
992 	for (i = 0; i < num_attrs; ++i) {
993 		sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
994 		occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
995 	}
996 
997 	return 0;
998 }
999 
1000 /* only need to do this once at startup, as OCC won't change sensors on us */
1001 static void occ_parse_poll_response(struct occ *occ)
1002 {
1003 	unsigned int i, old_offset, offset = 0, size = 0;
1004 	struct occ_sensor *sensor;
1005 	struct occ_sensors *sensors = &occ->sensors;
1006 	struct occ_response *resp = &occ->resp;
1007 	struct occ_poll_response *poll =
1008 		(struct occ_poll_response *)&resp->data[0];
1009 	struct occ_poll_response_header *header = &poll->header;
1010 	struct occ_sensor_data_block *block = &poll->block;
1011 
1012 	dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1013 		 header->occ_code_level);
1014 
1015 	for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1016 		block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1017 		old_offset = offset;
1018 		offset = (block->header.num_sensors *
1019 			  block->header.sensor_length) + sizeof(block->header);
1020 		size += offset;
1021 
1022 		/* validate all the length/size fields */
1023 		if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1024 			dev_warn(occ->bus_dev, "exceeded response buffer\n");
1025 			return;
1026 		}
1027 
1028 		dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1029 			old_offset, offset - 1, block->header.eye_catcher,
1030 			block->header.num_sensors);
1031 
1032 		/* match sensor block type */
1033 		if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1034 			sensor = &sensors->temp;
1035 		else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1036 			sensor = &sensors->freq;
1037 		else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1038 			sensor = &sensors->power;
1039 		else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1040 			sensor = &sensors->caps;
1041 		else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1042 			sensor = &sensors->extended;
1043 		else {
1044 			dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1045 				 block->header.eye_catcher);
1046 			continue;
1047 		}
1048 
1049 		sensor->num_sensors = block->header.num_sensors;
1050 		sensor->version = block->header.sensor_format;
1051 		sensor->data = &block->data;
1052 	}
1053 
1054 	dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1055 		sizeof(*header), size + sizeof(*header));
1056 }
1057 
1058 int occ_setup(struct occ *occ, const char *name)
1059 {
1060 	int rc;
1061 
1062 	mutex_init(&occ->lock);
1063 	occ->groups[0] = &occ->group;
1064 
1065 	/* no need to lock */
1066 	rc = occ_poll(occ);
1067 	if (rc == -ESHUTDOWN) {
1068 		dev_info(occ->bus_dev, "host is not ready\n");
1069 		return rc;
1070 	} else if (rc < 0) {
1071 		dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1072 			rc);
1073 		return rc;
1074 	}
1075 
1076 	occ_parse_poll_response(occ);
1077 
1078 	rc = occ_setup_sensor_attrs(occ);
1079 	if (rc) {
1080 		dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1081 			rc);
1082 		return rc;
1083 	}
1084 
1085 	occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1086 							    occ, occ->groups);
1087 	if (IS_ERR(occ->hwmon)) {
1088 		rc = PTR_ERR(occ->hwmon);
1089 		dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1090 			rc);
1091 		return rc;
1092 	}
1093 
1094 	rc = occ_setup_sysfs(occ);
1095 	if (rc)
1096 		dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1097 
1098 	return rc;
1099 }
1100