1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/property.h>
14 #include <linux/sysfs.h>
15 #include <asm/unaligned.h>
16
17 #include "common.h"
18
19 #define EXTN_FLAG_SENSOR_ID BIT(7)
20
21 #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
22
23 #define OCC_STATE_SAFE 4
24 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
25
26 #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
27
28 #define OCC_TEMP_SENSOR_FAULT 0xFF
29
30 #define OCC_FRU_TYPE_VRM 3
31
32 /* OCC sensor type and version definitions */
33
34 struct temp_sensor_1 {
35 u16 sensor_id;
36 u16 value;
37 } __packed;
38
39 struct temp_sensor_2 {
40 u32 sensor_id;
41 u8 fru_type;
42 u8 value;
43 } __packed;
44
45 struct temp_sensor_10 {
46 u32 sensor_id;
47 u8 fru_type;
48 u8 value;
49 u8 throttle;
50 u8 reserved;
51 } __packed;
52
53 struct freq_sensor_1 {
54 u16 sensor_id;
55 u16 value;
56 } __packed;
57
58 struct freq_sensor_2 {
59 u32 sensor_id;
60 u16 value;
61 } __packed;
62
63 struct power_sensor_1 {
64 u16 sensor_id;
65 u32 update_tag;
66 u32 accumulator;
67 u16 value;
68 } __packed;
69
70 struct power_sensor_2 {
71 u32 sensor_id;
72 u8 function_id;
73 u8 apss_channel;
74 u16 reserved;
75 u32 update_tag;
76 u64 accumulator;
77 u16 value;
78 } __packed;
79
80 struct power_sensor_data {
81 u16 value;
82 u32 update_tag;
83 u64 accumulator;
84 } __packed;
85
86 struct power_sensor_data_and_time {
87 u16 update_time;
88 u16 value;
89 u32 update_tag;
90 u64 accumulator;
91 } __packed;
92
93 struct power_sensor_a0 {
94 u32 sensor_id;
95 struct power_sensor_data_and_time system;
96 u32 reserved;
97 struct power_sensor_data_and_time proc;
98 struct power_sensor_data vdd;
99 struct power_sensor_data vdn;
100 } __packed;
101
102 struct caps_sensor_2 {
103 u16 cap;
104 u16 system_power;
105 u16 n_cap;
106 u16 max;
107 u16 min;
108 u16 user;
109 u8 user_source;
110 } __packed;
111
112 struct caps_sensor_3 {
113 u16 cap;
114 u16 system_power;
115 u16 n_cap;
116 u16 max;
117 u16 hard_min;
118 u16 soft_min;
119 u16 user;
120 u8 user_source;
121 } __packed;
122
123 struct extended_sensor {
124 union {
125 u8 name[4];
126 u32 sensor_id;
127 };
128 u8 flags;
129 u8 reserved;
130 u8 data[6];
131 } __packed;
132
occ_poll(struct occ * occ)133 static int occ_poll(struct occ *occ)
134 {
135 int rc;
136 u8 cmd[7];
137 struct occ_poll_response_header *header;
138
139 /* big endian */
140 cmd[0] = 0; /* sequence number */
141 cmd[1] = 0; /* cmd type */
142 cmd[2] = 0; /* data length msb */
143 cmd[3] = 1; /* data length lsb */
144 cmd[4] = occ->poll_cmd_data; /* data */
145 cmd[5] = 0; /* checksum msb */
146 cmd[6] = 0; /* checksum lsb */
147
148 /* mutex should already be locked if necessary */
149 rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp));
150 if (rc) {
151 occ->last_error = rc;
152 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
153 occ->error = rc;
154
155 goto done;
156 }
157
158 /* clear error since communication was successful */
159 occ->error_count = 0;
160 occ->last_error = 0;
161 occ->error = 0;
162
163 /* check for safe state */
164 header = (struct occ_poll_response_header *)occ->resp.data;
165 if (header->occ_state == OCC_STATE_SAFE) {
166 if (occ->last_safe) {
167 if (time_after(jiffies,
168 occ->last_safe + OCC_SAFE_TIMEOUT))
169 occ->error = -EHOSTDOWN;
170 } else {
171 occ->last_safe = jiffies;
172 }
173 } else {
174 occ->last_safe = 0;
175 }
176
177 done:
178 occ_sysfs_poll_done(occ);
179 return rc;
180 }
181
occ_set_user_power_cap(struct occ * occ,u16 user_power_cap)182 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
183 {
184 int rc;
185 u8 cmd[8];
186 u8 resp[8];
187 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
188
189 cmd[0] = 0; /* sequence number */
190 cmd[1] = 0x22; /* cmd type */
191 cmd[2] = 0; /* data length msb */
192 cmd[3] = 2; /* data length lsb */
193
194 memcpy(&cmd[4], &user_power_cap_be, 2);
195
196 cmd[6] = 0; /* checksum msb */
197 cmd[7] = 0; /* checksum lsb */
198
199 rc = mutex_lock_interruptible(&occ->lock);
200 if (rc)
201 return rc;
202
203 rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp));
204
205 mutex_unlock(&occ->lock);
206
207 return rc;
208 }
209
occ_update_response(struct occ * occ)210 int occ_update_response(struct occ *occ)
211 {
212 int rc = mutex_lock_interruptible(&occ->lock);
213
214 if (rc)
215 return rc;
216
217 /* limit the maximum rate of polling the OCC */
218 if (time_after(jiffies, occ->next_update)) {
219 rc = occ_poll(occ);
220 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
221 } else {
222 rc = occ->last_error;
223 }
224
225 mutex_unlock(&occ->lock);
226 return rc;
227 }
228
occ_show_temp_1(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t occ_show_temp_1(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 int rc;
233 u32 val = 0;
234 struct temp_sensor_1 *temp;
235 struct occ *occ = dev_get_drvdata(dev);
236 struct occ_sensors *sensors = &occ->sensors;
237 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
238
239 rc = occ_update_response(occ);
240 if (rc)
241 return rc;
242
243 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
244
245 switch (sattr->nr) {
246 case 0:
247 val = get_unaligned_be16(&temp->sensor_id);
248 break;
249 case 1:
250 /*
251 * If a sensor reading has expired and couldn't be refreshed,
252 * OCC returns 0xFFFF for that sensor.
253 */
254 if (temp->value == 0xFFFF)
255 return -EREMOTEIO;
256 val = get_unaligned_be16(&temp->value) * 1000;
257 break;
258 default:
259 return -EINVAL;
260 }
261
262 return sysfs_emit(buf, "%u\n", val);
263 }
264
occ_show_temp_2(struct device * dev,struct device_attribute * attr,char * buf)265 static ssize_t occ_show_temp_2(struct device *dev,
266 struct device_attribute *attr, char *buf)
267 {
268 int rc;
269 u32 val = 0;
270 struct temp_sensor_2 *temp;
271 struct occ *occ = dev_get_drvdata(dev);
272 struct occ_sensors *sensors = &occ->sensors;
273 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
274
275 rc = occ_update_response(occ);
276 if (rc)
277 return rc;
278
279 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
280
281 switch (sattr->nr) {
282 case 0:
283 val = get_unaligned_be32(&temp->sensor_id);
284 break;
285 case 1:
286 val = temp->value;
287 if (val == OCC_TEMP_SENSOR_FAULT)
288 return -EREMOTEIO;
289
290 /*
291 * VRM doesn't return temperature, only alarm bit. This
292 * attribute maps to tempX_alarm instead of tempX_input for
293 * VRM
294 */
295 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
296 /* sensor not ready */
297 if (val == 0)
298 return -EAGAIN;
299
300 val *= 1000;
301 }
302 break;
303 case 2:
304 val = temp->fru_type;
305 break;
306 case 3:
307 val = temp->value == OCC_TEMP_SENSOR_FAULT;
308 break;
309 default:
310 return -EINVAL;
311 }
312
313 return sysfs_emit(buf, "%u\n", val);
314 }
315
occ_show_temp_10(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t occ_show_temp_10(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 int rc;
320 u32 val = 0;
321 struct temp_sensor_10 *temp;
322 struct occ *occ = dev_get_drvdata(dev);
323 struct occ_sensors *sensors = &occ->sensors;
324 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
325
326 rc = occ_update_response(occ);
327 if (rc)
328 return rc;
329
330 temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
331
332 switch (sattr->nr) {
333 case 0:
334 val = get_unaligned_be32(&temp->sensor_id);
335 break;
336 case 1:
337 val = temp->value;
338 if (val == OCC_TEMP_SENSOR_FAULT)
339 return -EREMOTEIO;
340
341 /* sensor not ready */
342 if (val == 0)
343 return -EAGAIN;
344
345 val *= 1000;
346 break;
347 case 2:
348 val = temp->fru_type;
349 break;
350 case 3:
351 val = temp->value == OCC_TEMP_SENSOR_FAULT;
352 break;
353 case 4:
354 val = temp->throttle * 1000;
355 break;
356 default:
357 return -EINVAL;
358 }
359
360 return sysfs_emit(buf, "%u\n", val);
361 }
362
occ_show_freq_1(struct device * dev,struct device_attribute * attr,char * buf)363 static ssize_t occ_show_freq_1(struct device *dev,
364 struct device_attribute *attr, char *buf)
365 {
366 int rc;
367 u16 val = 0;
368 struct freq_sensor_1 *freq;
369 struct occ *occ = dev_get_drvdata(dev);
370 struct occ_sensors *sensors = &occ->sensors;
371 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
372
373 rc = occ_update_response(occ);
374 if (rc)
375 return rc;
376
377 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
378
379 switch (sattr->nr) {
380 case 0:
381 val = get_unaligned_be16(&freq->sensor_id);
382 break;
383 case 1:
384 val = get_unaligned_be16(&freq->value);
385 break;
386 default:
387 return -EINVAL;
388 }
389
390 return sysfs_emit(buf, "%u\n", val);
391 }
392
occ_show_freq_2(struct device * dev,struct device_attribute * attr,char * buf)393 static ssize_t occ_show_freq_2(struct device *dev,
394 struct device_attribute *attr, char *buf)
395 {
396 int rc;
397 u32 val = 0;
398 struct freq_sensor_2 *freq;
399 struct occ *occ = dev_get_drvdata(dev);
400 struct occ_sensors *sensors = &occ->sensors;
401 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
402
403 rc = occ_update_response(occ);
404 if (rc)
405 return rc;
406
407 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
408
409 switch (sattr->nr) {
410 case 0:
411 val = get_unaligned_be32(&freq->sensor_id);
412 break;
413 case 1:
414 val = get_unaligned_be16(&freq->value);
415 break;
416 default:
417 return -EINVAL;
418 }
419
420 return sysfs_emit(buf, "%u\n", val);
421 }
422
occ_show_power_1(struct device * dev,struct device_attribute * attr,char * buf)423 static ssize_t occ_show_power_1(struct device *dev,
424 struct device_attribute *attr, char *buf)
425 {
426 int rc;
427 u64 val = 0;
428 struct power_sensor_1 *power;
429 struct occ *occ = dev_get_drvdata(dev);
430 struct occ_sensors *sensors = &occ->sensors;
431 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
432
433 rc = occ_update_response(occ);
434 if (rc)
435 return rc;
436
437 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
438
439 switch (sattr->nr) {
440 case 0:
441 val = get_unaligned_be16(&power->sensor_id);
442 break;
443 case 1:
444 val = get_unaligned_be32(&power->accumulator) /
445 get_unaligned_be32(&power->update_tag);
446 val *= 1000000ULL;
447 break;
448 case 2:
449 val = (u64)get_unaligned_be32(&power->update_tag) *
450 occ->powr_sample_time_us;
451 break;
452 case 3:
453 val = get_unaligned_be16(&power->value) * 1000000ULL;
454 break;
455 default:
456 return -EINVAL;
457 }
458
459 return sysfs_emit(buf, "%llu\n", val);
460 }
461
occ_get_powr_avg(u64 * accum,u32 * samples)462 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
463 {
464 u64 divisor = get_unaligned_be32(samples);
465
466 return (divisor == 0) ? 0 :
467 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
468 }
469
occ_show_power_2(struct device * dev,struct device_attribute * attr,char * buf)470 static ssize_t occ_show_power_2(struct device *dev,
471 struct device_attribute *attr, char *buf)
472 {
473 int rc;
474 u64 val = 0;
475 struct power_sensor_2 *power;
476 struct occ *occ = dev_get_drvdata(dev);
477 struct occ_sensors *sensors = &occ->sensors;
478 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
479
480 rc = occ_update_response(occ);
481 if (rc)
482 return rc;
483
484 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
485
486 switch (sattr->nr) {
487 case 0:
488 return sysfs_emit(buf, "%u_%u_%u\n",
489 get_unaligned_be32(&power->sensor_id),
490 power->function_id, power->apss_channel);
491 case 1:
492 val = occ_get_powr_avg(&power->accumulator,
493 &power->update_tag);
494 break;
495 case 2:
496 val = (u64)get_unaligned_be32(&power->update_tag) *
497 occ->powr_sample_time_us;
498 break;
499 case 3:
500 val = get_unaligned_be16(&power->value) * 1000000ULL;
501 break;
502 default:
503 return -EINVAL;
504 }
505
506 return sysfs_emit(buf, "%llu\n", val);
507 }
508
occ_show_power_a0(struct device * dev,struct device_attribute * attr,char * buf)509 static ssize_t occ_show_power_a0(struct device *dev,
510 struct device_attribute *attr, char *buf)
511 {
512 int rc;
513 u64 val = 0;
514 struct power_sensor_a0 *power;
515 struct occ *occ = dev_get_drvdata(dev);
516 struct occ_sensors *sensors = &occ->sensors;
517 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
518
519 rc = occ_update_response(occ);
520 if (rc)
521 return rc;
522
523 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
524
525 switch (sattr->nr) {
526 case 0:
527 return sysfs_emit(buf, "%u_system\n",
528 get_unaligned_be32(&power->sensor_id));
529 case 1:
530 val = occ_get_powr_avg(&power->system.accumulator,
531 &power->system.update_tag);
532 break;
533 case 2:
534 val = (u64)get_unaligned_be32(&power->system.update_tag) *
535 occ->powr_sample_time_us;
536 break;
537 case 3:
538 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
539 break;
540 case 4:
541 return sysfs_emit(buf, "%u_proc\n",
542 get_unaligned_be32(&power->sensor_id));
543 case 5:
544 val = occ_get_powr_avg(&power->proc.accumulator,
545 &power->proc.update_tag);
546 break;
547 case 6:
548 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
549 occ->powr_sample_time_us;
550 break;
551 case 7:
552 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
553 break;
554 case 8:
555 return sysfs_emit(buf, "%u_vdd\n",
556 get_unaligned_be32(&power->sensor_id));
557 case 9:
558 val = occ_get_powr_avg(&power->vdd.accumulator,
559 &power->vdd.update_tag);
560 break;
561 case 10:
562 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
563 occ->powr_sample_time_us;
564 break;
565 case 11:
566 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
567 break;
568 case 12:
569 return sysfs_emit(buf, "%u_vdn\n",
570 get_unaligned_be32(&power->sensor_id));
571 case 13:
572 val = occ_get_powr_avg(&power->vdn.accumulator,
573 &power->vdn.update_tag);
574 break;
575 case 14:
576 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
577 occ->powr_sample_time_us;
578 break;
579 case 15:
580 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
581 break;
582 default:
583 return -EINVAL;
584 }
585
586 return sysfs_emit(buf, "%llu\n", val);
587 }
588
occ_show_caps_1_2(struct device * dev,struct device_attribute * attr,char * buf)589 static ssize_t occ_show_caps_1_2(struct device *dev,
590 struct device_attribute *attr, char *buf)
591 {
592 int rc;
593 u64 val = 0;
594 struct caps_sensor_2 *caps;
595 struct occ *occ = dev_get_drvdata(dev);
596 struct occ_sensors *sensors = &occ->sensors;
597 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
598
599 rc = occ_update_response(occ);
600 if (rc)
601 return rc;
602
603 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
604
605 switch (sattr->nr) {
606 case 0:
607 return sysfs_emit(buf, "system\n");
608 case 1:
609 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
610 break;
611 case 2:
612 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
613 break;
614 case 3:
615 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
616 break;
617 case 4:
618 val = get_unaligned_be16(&caps->max) * 1000000ULL;
619 break;
620 case 5:
621 val = get_unaligned_be16(&caps->min) * 1000000ULL;
622 break;
623 case 6:
624 val = get_unaligned_be16(&caps->user) * 1000000ULL;
625 break;
626 case 7:
627 if (occ->sensors.caps.version == 1)
628 return -EINVAL;
629
630 val = caps->user_source;
631 break;
632 default:
633 return -EINVAL;
634 }
635
636 return sysfs_emit(buf, "%llu\n", val);
637 }
638
occ_show_caps_3(struct device * dev,struct device_attribute * attr,char * buf)639 static ssize_t occ_show_caps_3(struct device *dev,
640 struct device_attribute *attr, char *buf)
641 {
642 int rc;
643 u64 val = 0;
644 struct caps_sensor_3 *caps;
645 struct occ *occ = dev_get_drvdata(dev);
646 struct occ_sensors *sensors = &occ->sensors;
647 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
648
649 rc = occ_update_response(occ);
650 if (rc)
651 return rc;
652
653 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
654
655 switch (sattr->nr) {
656 case 0:
657 return sysfs_emit(buf, "system\n");
658 case 1:
659 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
660 break;
661 case 2:
662 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
663 break;
664 case 3:
665 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
666 break;
667 case 4:
668 val = get_unaligned_be16(&caps->max) * 1000000ULL;
669 break;
670 case 5:
671 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
672 break;
673 case 6:
674 val = get_unaligned_be16(&caps->user) * 1000000ULL;
675 break;
676 case 7:
677 val = caps->user_source;
678 break;
679 case 8:
680 val = get_unaligned_be16(&caps->soft_min) * 1000000ULL;
681 break;
682 default:
683 return -EINVAL;
684 }
685
686 return sysfs_emit(buf, "%llu\n", val);
687 }
688
occ_store_caps_user(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)689 static ssize_t occ_store_caps_user(struct device *dev,
690 struct device_attribute *attr,
691 const char *buf, size_t count)
692 {
693 int rc;
694 u16 user_power_cap;
695 unsigned long long value;
696 struct occ *occ = dev_get_drvdata(dev);
697
698 rc = kstrtoull(buf, 0, &value);
699 if (rc)
700 return rc;
701
702 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
703
704 rc = occ_set_user_power_cap(occ, user_power_cap);
705 if (rc)
706 return rc;
707
708 return count;
709 }
710
occ_show_extended(struct device * dev,struct device_attribute * attr,char * buf)711 static ssize_t occ_show_extended(struct device *dev,
712 struct device_attribute *attr, char *buf)
713 {
714 int rc;
715 struct extended_sensor *extn;
716 struct occ *occ = dev_get_drvdata(dev);
717 struct occ_sensors *sensors = &occ->sensors;
718 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
719
720 rc = occ_update_response(occ);
721 if (rc)
722 return rc;
723
724 extn = ((struct extended_sensor *)sensors->extended.data) +
725 sattr->index;
726
727 switch (sattr->nr) {
728 case 0:
729 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
730 rc = sysfs_emit(buf, "%u",
731 get_unaligned_be32(&extn->sensor_id));
732 } else {
733 rc = sysfs_emit(buf, "%4phN\n", extn->name);
734 }
735 break;
736 case 1:
737 rc = sysfs_emit(buf, "%02x\n", extn->flags);
738 break;
739 case 2:
740 rc = sysfs_emit(buf, "%6phN\n", extn->data);
741 break;
742 default:
743 return -EINVAL;
744 }
745
746 return rc;
747 }
748
749 /*
750 * Some helper macros to make it easier to define an occ_attribute. Since these
751 * are dynamically allocated, we shouldn't use the existing kernel macros which
752 * stringify the name argument.
753 */
754 #define ATTR_OCC(_name, _mode, _show, _store) { \
755 .attr = { \
756 .name = _name, \
757 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
758 }, \
759 .show = _show, \
760 .store = _store, \
761 }
762
763 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
764 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
765 .index = _index, \
766 .nr = _nr, \
767 }
768
769 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
770 ((struct sensor_device_attribute_2) \
771 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
772
773 /*
774 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
775 * use our own instead of the built-in hwmon attribute types.
776 */
occ_setup_sensor_attrs(struct occ * occ)777 static int occ_setup_sensor_attrs(struct occ *occ)
778 {
779 unsigned int i, s, num_attrs = 0;
780 struct device *dev = occ->bus_dev;
781 struct occ_sensors *sensors = &occ->sensors;
782 struct occ_attribute *attr;
783 struct temp_sensor_2 *temp;
784 ssize_t (*show_temp)(struct device *, struct device_attribute *,
785 char *) = occ_show_temp_1;
786 ssize_t (*show_freq)(struct device *, struct device_attribute *,
787 char *) = occ_show_freq_1;
788 ssize_t (*show_power)(struct device *, struct device_attribute *,
789 char *) = occ_show_power_1;
790 ssize_t (*show_caps)(struct device *, struct device_attribute *,
791 char *) = occ_show_caps_1_2;
792
793 switch (sensors->temp.version) {
794 case 1:
795 num_attrs += (sensors->temp.num_sensors * 2);
796 break;
797 case 2:
798 num_attrs += (sensors->temp.num_sensors * 4);
799 show_temp = occ_show_temp_2;
800 break;
801 case 0x10:
802 num_attrs += (sensors->temp.num_sensors * 5);
803 show_temp = occ_show_temp_10;
804 break;
805 default:
806 sensors->temp.num_sensors = 0;
807 }
808
809 switch (sensors->freq.version) {
810 case 2:
811 show_freq = occ_show_freq_2;
812 fallthrough;
813 case 1:
814 num_attrs += (sensors->freq.num_sensors * 2);
815 break;
816 default:
817 sensors->freq.num_sensors = 0;
818 }
819
820 switch (sensors->power.version) {
821 case 2:
822 show_power = occ_show_power_2;
823 fallthrough;
824 case 1:
825 num_attrs += (sensors->power.num_sensors * 4);
826 break;
827 case 0xA0:
828 num_attrs += (sensors->power.num_sensors * 16);
829 show_power = occ_show_power_a0;
830 break;
831 default:
832 sensors->power.num_sensors = 0;
833 }
834
835 switch (sensors->caps.version) {
836 case 1:
837 num_attrs += (sensors->caps.num_sensors * 7);
838 break;
839 case 2:
840 num_attrs += (sensors->caps.num_sensors * 8);
841 break;
842 case 3:
843 show_caps = occ_show_caps_3;
844 num_attrs += (sensors->caps.num_sensors * 9);
845 break;
846 default:
847 sensors->caps.num_sensors = 0;
848 }
849
850 switch (sensors->extended.version) {
851 case 1:
852 num_attrs += (sensors->extended.num_sensors * 3);
853 break;
854 default:
855 sensors->extended.num_sensors = 0;
856 }
857
858 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
859 GFP_KERNEL);
860 if (!occ->attrs)
861 return -ENOMEM;
862
863 /* null-terminated list */
864 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
865 num_attrs + 1, GFP_KERNEL);
866 if (!occ->group.attrs)
867 return -ENOMEM;
868
869 attr = occ->attrs;
870
871 for (i = 0; i < sensors->temp.num_sensors; ++i) {
872 s = i + 1;
873 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
874
875 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
876 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
877 0, i);
878 attr++;
879
880 if (sensors->temp.version == 2 &&
881 temp->fru_type == OCC_FRU_TYPE_VRM) {
882 snprintf(attr->name, sizeof(attr->name),
883 "temp%d_alarm", s);
884 } else {
885 snprintf(attr->name, sizeof(attr->name),
886 "temp%d_input", s);
887 }
888
889 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
890 1, i);
891 attr++;
892
893 if (sensors->temp.version > 1) {
894 snprintf(attr->name, sizeof(attr->name),
895 "temp%d_fru_type", s);
896 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
897 show_temp, NULL, 2, i);
898 attr++;
899
900 snprintf(attr->name, sizeof(attr->name),
901 "temp%d_fault", s);
902 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
903 show_temp, NULL, 3, i);
904 attr++;
905
906 if (sensors->temp.version == 0x10) {
907 snprintf(attr->name, sizeof(attr->name),
908 "temp%d_max", s);
909 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
910 show_temp, NULL,
911 4, i);
912 attr++;
913 }
914 }
915 }
916
917 for (i = 0; i < sensors->freq.num_sensors; ++i) {
918 s = i + 1;
919
920 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
921 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
922 0, i);
923 attr++;
924
925 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
926 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
927 1, i);
928 attr++;
929 }
930
931 if (sensors->power.version == 0xA0) {
932 /*
933 * Special case for many-attribute power sensor. Split it into
934 * a sensor number per power type, emulating several sensors.
935 */
936 for (i = 0; i < sensors->power.num_sensors; ++i) {
937 unsigned int j;
938 unsigned int nr = 0;
939
940 s = (i * 4) + 1;
941
942 for (j = 0; j < 4; ++j) {
943 snprintf(attr->name, sizeof(attr->name),
944 "power%d_label", s);
945 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
946 show_power, NULL,
947 nr++, i);
948 attr++;
949
950 snprintf(attr->name, sizeof(attr->name),
951 "power%d_average", s);
952 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
953 show_power, NULL,
954 nr++, i);
955 attr++;
956
957 snprintf(attr->name, sizeof(attr->name),
958 "power%d_average_interval", s);
959 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
960 show_power, NULL,
961 nr++, i);
962 attr++;
963
964 snprintf(attr->name, sizeof(attr->name),
965 "power%d_input", s);
966 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
967 show_power, NULL,
968 nr++, i);
969 attr++;
970
971 s++;
972 }
973 }
974
975 s = (sensors->power.num_sensors * 4) + 1;
976 } else {
977 for (i = 0; i < sensors->power.num_sensors; ++i) {
978 s = i + 1;
979
980 snprintf(attr->name, sizeof(attr->name),
981 "power%d_label", s);
982 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
983 show_power, NULL, 0, i);
984 attr++;
985
986 snprintf(attr->name, sizeof(attr->name),
987 "power%d_average", s);
988 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
989 show_power, NULL, 1, i);
990 attr++;
991
992 snprintf(attr->name, sizeof(attr->name),
993 "power%d_average_interval", s);
994 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
995 show_power, NULL, 2, i);
996 attr++;
997
998 snprintf(attr->name, sizeof(attr->name),
999 "power%d_input", s);
1000 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1001 show_power, NULL, 3, i);
1002 attr++;
1003 }
1004
1005 s = sensors->power.num_sensors + 1;
1006 }
1007
1008 if (sensors->caps.num_sensors >= 1) {
1009 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1010 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1011 0, 0);
1012 attr++;
1013
1014 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1015 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1016 1, 0);
1017 attr++;
1018
1019 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1020 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1021 2, 0);
1022 attr++;
1023
1024 snprintf(attr->name, sizeof(attr->name),
1025 "power%d_cap_not_redundant", s);
1026 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1027 3, 0);
1028 attr++;
1029
1030 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1031 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1032 4, 0);
1033 attr++;
1034
1035 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1036 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1037 5, 0);
1038 attr++;
1039
1040 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1041 s);
1042 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1043 occ_store_caps_user, 6, 0);
1044 attr++;
1045
1046 if (sensors->caps.version > 1) {
1047 snprintf(attr->name, sizeof(attr->name),
1048 "power%d_cap_user_source", s);
1049 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1050 show_caps, NULL, 7, 0);
1051 attr++;
1052
1053 if (sensors->caps.version > 2) {
1054 snprintf(attr->name, sizeof(attr->name),
1055 "power%d_cap_min_soft", s);
1056 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1057 show_caps, NULL,
1058 8, 0);
1059 attr++;
1060 }
1061 }
1062 }
1063
1064 for (i = 0; i < sensors->extended.num_sensors; ++i) {
1065 s = i + 1;
1066
1067 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1068 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1069 occ_show_extended, NULL, 0, i);
1070 attr++;
1071
1072 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1073 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1074 occ_show_extended, NULL, 1, i);
1075 attr++;
1076
1077 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1078 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1079 occ_show_extended, NULL, 2, i);
1080 attr++;
1081 }
1082
1083 /* put the sensors in the group */
1084 for (i = 0; i < num_attrs; ++i) {
1085 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1086 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1087 }
1088
1089 return 0;
1090 }
1091
1092 /* only need to do this once at startup, as OCC won't change sensors on us */
occ_parse_poll_response(struct occ * occ)1093 static void occ_parse_poll_response(struct occ *occ)
1094 {
1095 unsigned int i, old_offset, offset = 0, size = 0;
1096 struct occ_sensor *sensor;
1097 struct occ_sensors *sensors = &occ->sensors;
1098 struct occ_response *resp = &occ->resp;
1099 struct occ_poll_response *poll =
1100 (struct occ_poll_response *)&resp->data[0];
1101 struct occ_poll_response_header *header = &poll->header;
1102 struct occ_sensor_data_block *block = &poll->block;
1103
1104 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1105 header->occ_code_level);
1106
1107 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1108 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1109 old_offset = offset;
1110 offset = (block->header.num_sensors *
1111 block->header.sensor_length) + sizeof(block->header);
1112 size += offset;
1113
1114 /* validate all the length/size fields */
1115 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1116 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1117 return;
1118 }
1119
1120 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1121 old_offset, offset - 1, block->header.eye_catcher,
1122 block->header.num_sensors);
1123
1124 /* match sensor block type */
1125 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1126 sensor = &sensors->temp;
1127 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1128 sensor = &sensors->freq;
1129 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1130 sensor = &sensors->power;
1131 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1132 sensor = &sensors->caps;
1133 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1134 sensor = &sensors->extended;
1135 else {
1136 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1137 block->header.eye_catcher);
1138 continue;
1139 }
1140
1141 sensor->num_sensors = block->header.num_sensors;
1142 sensor->version = block->header.sensor_format;
1143 sensor->data = &block->data;
1144 }
1145
1146 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1147 sizeof(*header), size + sizeof(*header));
1148 }
1149
occ_active(struct occ * occ,bool active)1150 int occ_active(struct occ *occ, bool active)
1151 {
1152 int rc = mutex_lock_interruptible(&occ->lock);
1153
1154 if (rc)
1155 return rc;
1156
1157 if (active) {
1158 if (occ->active) {
1159 rc = -EALREADY;
1160 goto unlock;
1161 }
1162
1163 occ->error_count = 0;
1164 occ->last_safe = 0;
1165
1166 rc = occ_poll(occ);
1167 if (rc < 0) {
1168 dev_err(occ->bus_dev,
1169 "failed to get OCC poll response=%02x: %d\n",
1170 occ->resp.return_status, rc);
1171 goto unlock;
1172 }
1173
1174 occ->active = true;
1175 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1176 occ_parse_poll_response(occ);
1177
1178 rc = occ_setup_sensor_attrs(occ);
1179 if (rc) {
1180 dev_err(occ->bus_dev,
1181 "failed to setup sensor attrs: %d\n", rc);
1182 goto unlock;
1183 }
1184
1185 occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev,
1186 "occ", occ,
1187 occ->groups);
1188 if (IS_ERR(occ->hwmon)) {
1189 rc = PTR_ERR(occ->hwmon);
1190 occ->hwmon = NULL;
1191 dev_err(occ->bus_dev,
1192 "failed to register hwmon device: %d\n", rc);
1193 goto unlock;
1194 }
1195 } else {
1196 if (!occ->active) {
1197 rc = -EALREADY;
1198 goto unlock;
1199 }
1200
1201 if (occ->hwmon)
1202 hwmon_device_unregister(occ->hwmon);
1203 occ->active = false;
1204 occ->hwmon = NULL;
1205 }
1206
1207 unlock:
1208 mutex_unlock(&occ->lock);
1209 return rc;
1210 }
1211
occ_setup(struct occ * occ)1212 int occ_setup(struct occ *occ)
1213 {
1214 int rc;
1215
1216 mutex_init(&occ->lock);
1217 occ->groups[0] = &occ->group;
1218
1219 rc = occ_setup_sysfs(occ);
1220 if (rc) {
1221 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1222 return rc;
1223 }
1224
1225 if (!device_property_read_bool(occ->bus_dev, "ibm,no-poll-on-init")) {
1226 rc = occ_active(occ, true);
1227 if (rc)
1228 occ_shutdown_sysfs(occ);
1229 }
1230
1231 return rc;
1232 }
1233 EXPORT_SYMBOL_GPL(occ_setup);
1234
occ_shutdown(struct occ * occ)1235 void occ_shutdown(struct occ *occ)
1236 {
1237 mutex_lock(&occ->lock);
1238
1239 occ_shutdown_sysfs(occ);
1240
1241 if (occ->hwmon)
1242 hwmon_device_unregister(occ->hwmon);
1243 occ->hwmon = NULL;
1244
1245 mutex_unlock(&occ->lock);
1246 }
1247 EXPORT_SYMBOL_GPL(occ_shutdown);
1248
1249 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1250 MODULE_DESCRIPTION("Common OCC hwmon code");
1251 MODULE_LICENSE("GPL");
1252