1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * nct7802 - Driver for Nuvoton NCT7802Y 4 * 5 * Copyright (C) 2014 Guenter Roeck <linux@roeck-us.net> 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/err.h> 11 #include <linux/i2c.h> 12 #include <linux/init.h> 13 #include <linux/hwmon.h> 14 #include <linux/hwmon-sysfs.h> 15 #include <linux/jiffies.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/regmap.h> 19 #include <linux/slab.h> 20 21 #define DRVNAME "nct7802" 22 23 static const u8 REG_VOLTAGE[5] = { 0x09, 0x0a, 0x0c, 0x0d, 0x0e }; 24 25 static const u8 REG_VOLTAGE_LIMIT_LSB[2][5] = { 26 { 0x46, 0x00, 0x40, 0x42, 0x44 }, 27 { 0x45, 0x00, 0x3f, 0x41, 0x43 }, 28 }; 29 30 static const u8 REG_VOLTAGE_LIMIT_MSB[5] = { 0x48, 0x00, 0x47, 0x47, 0x48 }; 31 32 static const u8 REG_VOLTAGE_LIMIT_MSB_SHIFT[2][5] = { 33 { 0, 0, 4, 0, 4 }, 34 { 2, 0, 6, 2, 6 }, 35 }; 36 37 #define REG_BANK 0x00 38 #define REG_TEMP_LSB 0x05 39 #define REG_TEMP_PECI_LSB 0x08 40 #define REG_VOLTAGE_LOW 0x0f 41 #define REG_FANCOUNT_LOW 0x13 42 #define REG_START 0x21 43 #define REG_MODE 0x22 /* 7.2.32 Mode Selection Register */ 44 #define REG_PECI_ENABLE 0x23 45 #define REG_FAN_ENABLE 0x24 46 #define REG_VMON_ENABLE 0x25 47 #define REG_PWM(x) (0x60 + (x)) 48 #define REG_SMARTFAN_EN(x) (0x64 + (x) / 2) 49 #define SMARTFAN_EN_SHIFT(x) ((x) % 2 * 4) 50 #define REG_VENDOR_ID 0xfd 51 #define REG_CHIP_ID 0xfe 52 #define REG_VERSION_ID 0xff 53 54 /* 55 * Resistance temperature detector (RTD) modes according to 7.2.32 Mode 56 * Selection Register 57 */ 58 #define RTD_MODE_CURRENT 0x1 59 #define RTD_MODE_THERMISTOR 0x2 60 #define RTD_MODE_VOLTAGE 0x3 61 62 #define MODE_RTD_MASK 0x3 63 #define MODE_LTD_EN 0x40 64 65 /* 66 * Bit offset for sensors modes in REG_MODE. 67 * Valid for index 0..2, indicating RTD1..3. 68 */ 69 #define MODE_BIT_OFFSET_RTD(index) ((index) * 2) 70 71 /* 72 * Data structures and manipulation thereof 73 */ 74 75 struct nct7802_data { 76 struct regmap *regmap; 77 struct mutex access_lock; /* for multi-byte read and write operations */ 78 u8 in_status; 79 struct mutex in_alarm_lock; 80 }; 81 82 static ssize_t temp_type_show(struct device *dev, 83 struct device_attribute *attr, char *buf) 84 { 85 struct nct7802_data *data = dev_get_drvdata(dev); 86 struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); 87 unsigned int mode; 88 int ret; 89 90 ret = regmap_read(data->regmap, REG_MODE, &mode); 91 if (ret < 0) 92 return ret; 93 94 return sprintf(buf, "%u\n", (mode >> (2 * sattr->index) & 3) + 2); 95 } 96 97 static ssize_t temp_type_store(struct device *dev, 98 struct device_attribute *attr, const char *buf, 99 size_t count) 100 { 101 struct nct7802_data *data = dev_get_drvdata(dev); 102 struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); 103 unsigned int type; 104 int err; 105 106 err = kstrtouint(buf, 0, &type); 107 if (err < 0) 108 return err; 109 if (sattr->index == 2 && type != 4) /* RD3 */ 110 return -EINVAL; 111 if (type < 3 || type > 4) 112 return -EINVAL; 113 err = regmap_update_bits(data->regmap, REG_MODE, 114 3 << 2 * sattr->index, (type - 2) << 2 * sattr->index); 115 return err ? : count; 116 } 117 118 static ssize_t pwm_mode_show(struct device *dev, 119 struct device_attribute *attr, char *buf) 120 { 121 struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); 122 struct nct7802_data *data = dev_get_drvdata(dev); 123 unsigned int regval; 124 int ret; 125 126 if (sattr->index > 1) 127 return sprintf(buf, "1\n"); 128 129 ret = regmap_read(data->regmap, 0x5E, ®val); 130 if (ret < 0) 131 return ret; 132 133 return sprintf(buf, "%u\n", !(regval & (1 << sattr->index))); 134 } 135 136 static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr, 137 char *buf) 138 { 139 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 140 struct nct7802_data *data = dev_get_drvdata(dev); 141 unsigned int val; 142 int ret; 143 144 if (!attr->index) 145 return sprintf(buf, "255\n"); 146 147 ret = regmap_read(data->regmap, attr->index, &val); 148 if (ret < 0) 149 return ret; 150 151 return sprintf(buf, "%d\n", val); 152 } 153 154 static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr, 155 const char *buf, size_t count) 156 { 157 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 158 struct nct7802_data *data = dev_get_drvdata(dev); 159 int err; 160 u8 val; 161 162 err = kstrtou8(buf, 0, &val); 163 if (err < 0) 164 return err; 165 166 err = regmap_write(data->regmap, attr->index, val); 167 return err ? : count; 168 } 169 170 static ssize_t pwm_enable_show(struct device *dev, 171 struct device_attribute *attr, char *buf) 172 { 173 struct nct7802_data *data = dev_get_drvdata(dev); 174 struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); 175 unsigned int reg, enabled; 176 int ret; 177 178 ret = regmap_read(data->regmap, REG_SMARTFAN_EN(sattr->index), ®); 179 if (ret < 0) 180 return ret; 181 enabled = reg >> SMARTFAN_EN_SHIFT(sattr->index) & 1; 182 return sprintf(buf, "%u\n", enabled + 1); 183 } 184 185 static ssize_t pwm_enable_store(struct device *dev, 186 struct device_attribute *attr, 187 const char *buf, size_t count) 188 { 189 struct nct7802_data *data = dev_get_drvdata(dev); 190 struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); 191 u8 val; 192 int ret; 193 194 ret = kstrtou8(buf, 0, &val); 195 if (ret < 0) 196 return ret; 197 if (val < 1 || val > 2) 198 return -EINVAL; 199 ret = regmap_update_bits(data->regmap, REG_SMARTFAN_EN(sattr->index), 200 1 << SMARTFAN_EN_SHIFT(sattr->index), 201 (val - 1) << SMARTFAN_EN_SHIFT(sattr->index)); 202 return ret ? : count; 203 } 204 205 static int nct7802_read_temp(struct nct7802_data *data, 206 u8 reg_temp, u8 reg_temp_low, int *temp) 207 { 208 unsigned int t1, t2 = 0; 209 int err; 210 211 *temp = 0; 212 213 mutex_lock(&data->access_lock); 214 err = regmap_read(data->regmap, reg_temp, &t1); 215 if (err < 0) 216 goto abort; 217 t1 <<= 8; 218 if (reg_temp_low) { /* 11 bit data */ 219 err = regmap_read(data->regmap, reg_temp_low, &t2); 220 if (err < 0) 221 goto abort; 222 } 223 t1 |= t2 & 0xe0; 224 *temp = (s16)t1 / 32 * 125; 225 abort: 226 mutex_unlock(&data->access_lock); 227 return err; 228 } 229 230 static int nct7802_read_fan(struct nct7802_data *data, u8 reg_fan) 231 { 232 unsigned int f1, f2; 233 int ret; 234 235 mutex_lock(&data->access_lock); 236 ret = regmap_read(data->regmap, reg_fan, &f1); 237 if (ret < 0) 238 goto abort; 239 ret = regmap_read(data->regmap, REG_FANCOUNT_LOW, &f2); 240 if (ret < 0) 241 goto abort; 242 ret = (f1 << 5) | (f2 >> 3); 243 /* convert fan count to rpm */ 244 if (ret == 0x1fff) /* maximum value, assume fan is stopped */ 245 ret = 0; 246 else if (ret) 247 ret = DIV_ROUND_CLOSEST(1350000U, ret); 248 abort: 249 mutex_unlock(&data->access_lock); 250 return ret; 251 } 252 253 static int nct7802_read_fan_min(struct nct7802_data *data, u8 reg_fan_low, 254 u8 reg_fan_high) 255 { 256 unsigned int f1, f2; 257 int ret; 258 259 mutex_lock(&data->access_lock); 260 ret = regmap_read(data->regmap, reg_fan_low, &f1); 261 if (ret < 0) 262 goto abort; 263 ret = regmap_read(data->regmap, reg_fan_high, &f2); 264 if (ret < 0) 265 goto abort; 266 ret = f1 | ((f2 & 0xf8) << 5); 267 /* convert fan count to rpm */ 268 if (ret == 0x1fff) /* maximum value, assume no limit */ 269 ret = 0; 270 else if (ret) 271 ret = DIV_ROUND_CLOSEST(1350000U, ret); 272 else 273 ret = 1350000U; 274 abort: 275 mutex_unlock(&data->access_lock); 276 return ret; 277 } 278 279 static int nct7802_write_fan_min(struct nct7802_data *data, u8 reg_fan_low, 280 u8 reg_fan_high, unsigned long limit) 281 { 282 int err; 283 284 if (limit) 285 limit = DIV_ROUND_CLOSEST(1350000U, limit); 286 else 287 limit = 0x1fff; 288 limit = clamp_val(limit, 0, 0x1fff); 289 290 mutex_lock(&data->access_lock); 291 err = regmap_write(data->regmap, reg_fan_low, limit & 0xff); 292 if (err < 0) 293 goto abort; 294 295 err = regmap_write(data->regmap, reg_fan_high, (limit & 0x1f00) >> 5); 296 abort: 297 mutex_unlock(&data->access_lock); 298 return err; 299 } 300 301 static u8 nct7802_vmul[] = { 4, 2, 2, 2, 2 }; 302 303 static int nct7802_read_voltage(struct nct7802_data *data, int nr, int index) 304 { 305 unsigned int v1, v2; 306 int ret; 307 308 mutex_lock(&data->access_lock); 309 if (index == 0) { /* voltage */ 310 ret = regmap_read(data->regmap, REG_VOLTAGE[nr], &v1); 311 if (ret < 0) 312 goto abort; 313 ret = regmap_read(data->regmap, REG_VOLTAGE_LOW, &v2); 314 if (ret < 0) 315 goto abort; 316 ret = ((v1 << 2) | (v2 >> 6)) * nct7802_vmul[nr]; 317 } else { /* limit */ 318 int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr]; 319 320 ret = regmap_read(data->regmap, 321 REG_VOLTAGE_LIMIT_LSB[index - 1][nr], &v1); 322 if (ret < 0) 323 goto abort; 324 ret = regmap_read(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr], 325 &v2); 326 if (ret < 0) 327 goto abort; 328 ret = (v1 | ((v2 << shift) & 0x300)) * nct7802_vmul[nr]; 329 } 330 abort: 331 mutex_unlock(&data->access_lock); 332 return ret; 333 } 334 335 static int nct7802_write_voltage(struct nct7802_data *data, int nr, int index, 336 unsigned long voltage) 337 { 338 int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr]; 339 int err; 340 341 voltage = clamp_val(voltage, 0, 0x3ff * nct7802_vmul[nr]); 342 voltage = DIV_ROUND_CLOSEST(voltage, nct7802_vmul[nr]); 343 344 mutex_lock(&data->access_lock); 345 err = regmap_write(data->regmap, 346 REG_VOLTAGE_LIMIT_LSB[index - 1][nr], 347 voltage & 0xff); 348 if (err < 0) 349 goto abort; 350 351 err = regmap_update_bits(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr], 352 0x0300 >> shift, (voltage & 0x0300) >> shift); 353 abort: 354 mutex_unlock(&data->access_lock); 355 return err; 356 } 357 358 static ssize_t in_show(struct device *dev, struct device_attribute *attr, 359 char *buf) 360 { 361 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 362 struct nct7802_data *data = dev_get_drvdata(dev); 363 int voltage; 364 365 voltage = nct7802_read_voltage(data, sattr->nr, sattr->index); 366 if (voltage < 0) 367 return voltage; 368 369 return sprintf(buf, "%d\n", voltage); 370 } 371 372 static ssize_t in_store(struct device *dev, struct device_attribute *attr, 373 const char *buf, size_t count) 374 { 375 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 376 struct nct7802_data *data = dev_get_drvdata(dev); 377 int index = sattr->index; 378 int nr = sattr->nr; 379 unsigned long val; 380 int err; 381 382 err = kstrtoul(buf, 10, &val); 383 if (err < 0) 384 return err; 385 386 err = nct7802_write_voltage(data, nr, index, val); 387 return err ? : count; 388 } 389 390 static ssize_t in_alarm_show(struct device *dev, struct device_attribute *attr, 391 char *buf) 392 { 393 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 394 struct nct7802_data *data = dev_get_drvdata(dev); 395 int volt, min, max, ret; 396 unsigned int val; 397 398 mutex_lock(&data->in_alarm_lock); 399 400 /* 401 * The SMI Voltage status register is the only register giving a status 402 * for voltages. A bit is set for each input crossing a threshold, in 403 * both direction, but the "inside" or "outside" limits info is not 404 * available. Also this register is cleared on read. 405 * Note: this is not explicitly spelled out in the datasheet, but 406 * from experiment. 407 * To deal with this we use a status cache with one validity bit and 408 * one status bit for each input. Validity is cleared at startup and 409 * each time the register reports a change, and the status is processed 410 * by software based on current input value and limits. 411 */ 412 ret = regmap_read(data->regmap, 0x1e, &val); /* SMI Voltage status */ 413 if (ret < 0) 414 goto abort; 415 416 /* invalidate cached status for all inputs crossing a threshold */ 417 data->in_status &= ~((val & 0x0f) << 4); 418 419 /* if cached status for requested input is invalid, update it */ 420 if (!(data->in_status & (0x10 << sattr->index))) { 421 ret = nct7802_read_voltage(data, sattr->nr, 0); 422 if (ret < 0) 423 goto abort; 424 volt = ret; 425 426 ret = nct7802_read_voltage(data, sattr->nr, 1); 427 if (ret < 0) 428 goto abort; 429 min = ret; 430 431 ret = nct7802_read_voltage(data, sattr->nr, 2); 432 if (ret < 0) 433 goto abort; 434 max = ret; 435 436 if (volt < min || volt > max) 437 data->in_status |= (1 << sattr->index); 438 else 439 data->in_status &= ~(1 << sattr->index); 440 441 data->in_status |= 0x10 << sattr->index; 442 } 443 444 ret = sprintf(buf, "%u\n", !!(data->in_status & (1 << sattr->index))); 445 abort: 446 mutex_unlock(&data->in_alarm_lock); 447 return ret; 448 } 449 450 static ssize_t temp_show(struct device *dev, struct device_attribute *attr, 451 char *buf) 452 { 453 struct nct7802_data *data = dev_get_drvdata(dev); 454 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 455 int err, temp; 456 457 err = nct7802_read_temp(data, sattr->nr, sattr->index, &temp); 458 if (err < 0) 459 return err; 460 461 return sprintf(buf, "%d\n", temp); 462 } 463 464 static ssize_t temp_store(struct device *dev, struct device_attribute *attr, 465 const char *buf, size_t count) 466 { 467 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 468 struct nct7802_data *data = dev_get_drvdata(dev); 469 int nr = sattr->nr; 470 long val; 471 int err; 472 473 err = kstrtol(buf, 10, &val); 474 if (err < 0) 475 return err; 476 477 val = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000); 478 479 err = regmap_write(data->regmap, nr, val & 0xff); 480 return err ? : count; 481 } 482 483 static ssize_t fan_show(struct device *dev, struct device_attribute *attr, 484 char *buf) 485 { 486 struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); 487 struct nct7802_data *data = dev_get_drvdata(dev); 488 int speed; 489 490 speed = nct7802_read_fan(data, sattr->index); 491 if (speed < 0) 492 return speed; 493 494 return sprintf(buf, "%d\n", speed); 495 } 496 497 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, 498 char *buf) 499 { 500 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 501 struct nct7802_data *data = dev_get_drvdata(dev); 502 int speed; 503 504 speed = nct7802_read_fan_min(data, sattr->nr, sattr->index); 505 if (speed < 0) 506 return speed; 507 508 return sprintf(buf, "%d\n", speed); 509 } 510 511 static ssize_t fan_min_store(struct device *dev, 512 struct device_attribute *attr, const char *buf, 513 size_t count) 514 { 515 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 516 struct nct7802_data *data = dev_get_drvdata(dev); 517 unsigned long val; 518 int err; 519 520 err = kstrtoul(buf, 10, &val); 521 if (err < 0) 522 return err; 523 524 err = nct7802_write_fan_min(data, sattr->nr, sattr->index, val); 525 return err ? : count; 526 } 527 528 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, 529 char *buf) 530 { 531 struct nct7802_data *data = dev_get_drvdata(dev); 532 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 533 int bit = sattr->index; 534 unsigned int val; 535 int ret; 536 537 ret = regmap_read(data->regmap, sattr->nr, &val); 538 if (ret < 0) 539 return ret; 540 541 return sprintf(buf, "%u\n", !!(val & (1 << bit))); 542 } 543 544 static ssize_t 545 beep_show(struct device *dev, struct device_attribute *attr, char *buf) 546 { 547 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 548 struct nct7802_data *data = dev_get_drvdata(dev); 549 unsigned int regval; 550 int err; 551 552 err = regmap_read(data->regmap, sattr->nr, ®val); 553 if (err) 554 return err; 555 556 return sprintf(buf, "%u\n", !!(regval & (1 << sattr->index))); 557 } 558 559 static ssize_t 560 beep_store(struct device *dev, struct device_attribute *attr, const char *buf, 561 size_t count) 562 { 563 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); 564 struct nct7802_data *data = dev_get_drvdata(dev); 565 unsigned long val; 566 int err; 567 568 err = kstrtoul(buf, 10, &val); 569 if (err < 0) 570 return err; 571 if (val > 1) 572 return -EINVAL; 573 574 err = regmap_update_bits(data->regmap, sattr->nr, 1 << sattr->index, 575 val ? 1 << sattr->index : 0); 576 return err ? : count; 577 } 578 579 static SENSOR_DEVICE_ATTR_RW(temp1_type, temp_type, 0); 580 static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, 0x01, REG_TEMP_LSB); 581 static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, 0x31, 0); 582 static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, 0x30, 0); 583 static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, 0x3a, 0); 584 585 static SENSOR_DEVICE_ATTR_RW(temp2_type, temp_type, 1); 586 static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, 0x02, REG_TEMP_LSB); 587 static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, 0x33, 0); 588 static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, 0x32, 0); 589 static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, 0x3b, 0); 590 591 static SENSOR_DEVICE_ATTR_RW(temp3_type, temp_type, 2); 592 static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, 0x03, REG_TEMP_LSB); 593 static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, 0x35, 0); 594 static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, 0x34, 0); 595 static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, 0x3c, 0); 596 597 static SENSOR_DEVICE_ATTR_2_RO(temp4_input, temp, 0x04, 0); 598 static SENSOR_DEVICE_ATTR_2_RW(temp4_min, temp, 0x37, 0); 599 static SENSOR_DEVICE_ATTR_2_RW(temp4_max, temp, 0x36, 0); 600 static SENSOR_DEVICE_ATTR_2_RW(temp4_crit, temp, 0x3d, 0); 601 602 static SENSOR_DEVICE_ATTR_2_RO(temp5_input, temp, 0x06, REG_TEMP_PECI_LSB); 603 static SENSOR_DEVICE_ATTR_2_RW(temp5_min, temp, 0x39, 0); 604 static SENSOR_DEVICE_ATTR_2_RW(temp5_max, temp, 0x38, 0); 605 static SENSOR_DEVICE_ATTR_2_RW(temp5_crit, temp, 0x3e, 0); 606 607 static SENSOR_DEVICE_ATTR_2_RO(temp6_input, temp, 0x07, REG_TEMP_PECI_LSB); 608 609 static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, alarm, 0x18, 0); 610 static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, alarm, 0x18, 1); 611 static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, alarm, 0x18, 2); 612 static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, alarm, 0x18, 3); 613 static SENSOR_DEVICE_ATTR_2_RO(temp5_min_alarm, alarm, 0x18, 4); 614 615 static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, alarm, 0x19, 0); 616 static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, alarm, 0x19, 1); 617 static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, alarm, 0x19, 2); 618 static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, alarm, 0x19, 3); 619 static SENSOR_DEVICE_ATTR_2_RO(temp5_max_alarm, alarm, 0x19, 4); 620 621 static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, alarm, 0x1b, 0); 622 static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, alarm, 0x1b, 1); 623 static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, alarm, 0x1b, 2); 624 static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, alarm, 0x1b, 3); 625 static SENSOR_DEVICE_ATTR_2_RO(temp5_crit_alarm, alarm, 0x1b, 4); 626 627 static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, alarm, 0x17, 0); 628 static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, alarm, 0x17, 1); 629 static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, alarm, 0x17, 2); 630 631 static SENSOR_DEVICE_ATTR_2_RW(temp1_beep, beep, 0x5c, 0); 632 static SENSOR_DEVICE_ATTR_2_RW(temp2_beep, beep, 0x5c, 1); 633 static SENSOR_DEVICE_ATTR_2_RW(temp3_beep, beep, 0x5c, 2); 634 static SENSOR_DEVICE_ATTR_2_RW(temp4_beep, beep, 0x5c, 3); 635 static SENSOR_DEVICE_ATTR_2_RW(temp5_beep, beep, 0x5c, 4); 636 static SENSOR_DEVICE_ATTR_2_RW(temp6_beep, beep, 0x5c, 5); 637 638 static struct attribute *nct7802_temp_attrs[] = { 639 &sensor_dev_attr_temp1_type.dev_attr.attr, 640 &sensor_dev_attr_temp1_input.dev_attr.attr, 641 &sensor_dev_attr_temp1_min.dev_attr.attr, 642 &sensor_dev_attr_temp1_max.dev_attr.attr, 643 &sensor_dev_attr_temp1_crit.dev_attr.attr, 644 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, 645 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, 646 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, 647 &sensor_dev_attr_temp1_fault.dev_attr.attr, 648 &sensor_dev_attr_temp1_beep.dev_attr.attr, 649 650 &sensor_dev_attr_temp2_type.dev_attr.attr, /* 10 */ 651 &sensor_dev_attr_temp2_input.dev_attr.attr, 652 &sensor_dev_attr_temp2_min.dev_attr.attr, 653 &sensor_dev_attr_temp2_max.dev_attr.attr, 654 &sensor_dev_attr_temp2_crit.dev_attr.attr, 655 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, 656 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, 657 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, 658 &sensor_dev_attr_temp2_fault.dev_attr.attr, 659 &sensor_dev_attr_temp2_beep.dev_attr.attr, 660 661 &sensor_dev_attr_temp3_type.dev_attr.attr, /* 20 */ 662 &sensor_dev_attr_temp3_input.dev_attr.attr, 663 &sensor_dev_attr_temp3_min.dev_attr.attr, 664 &sensor_dev_attr_temp3_max.dev_attr.attr, 665 &sensor_dev_attr_temp3_crit.dev_attr.attr, 666 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, 667 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, 668 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, 669 &sensor_dev_attr_temp3_fault.dev_attr.attr, 670 &sensor_dev_attr_temp3_beep.dev_attr.attr, 671 672 &sensor_dev_attr_temp4_input.dev_attr.attr, /* 30 */ 673 &sensor_dev_attr_temp4_min.dev_attr.attr, 674 &sensor_dev_attr_temp4_max.dev_attr.attr, 675 &sensor_dev_attr_temp4_crit.dev_attr.attr, 676 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, 677 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, 678 &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr, 679 &sensor_dev_attr_temp4_beep.dev_attr.attr, 680 681 &sensor_dev_attr_temp5_input.dev_attr.attr, /* 38 */ 682 &sensor_dev_attr_temp5_min.dev_attr.attr, 683 &sensor_dev_attr_temp5_max.dev_attr.attr, 684 &sensor_dev_attr_temp5_crit.dev_attr.attr, 685 &sensor_dev_attr_temp5_min_alarm.dev_attr.attr, 686 &sensor_dev_attr_temp5_max_alarm.dev_attr.attr, 687 &sensor_dev_attr_temp5_crit_alarm.dev_attr.attr, 688 &sensor_dev_attr_temp5_beep.dev_attr.attr, 689 690 &sensor_dev_attr_temp6_input.dev_attr.attr, /* 46 */ 691 &sensor_dev_attr_temp6_beep.dev_attr.attr, 692 693 NULL 694 }; 695 696 static umode_t nct7802_temp_is_visible(struct kobject *kobj, 697 struct attribute *attr, int index) 698 { 699 struct device *dev = kobj_to_dev(kobj); 700 struct nct7802_data *data = dev_get_drvdata(dev); 701 unsigned int reg; 702 int err; 703 704 err = regmap_read(data->regmap, REG_MODE, ®); 705 if (err < 0) 706 return 0; 707 708 if (index < 10 && 709 (reg & 03) != 0x01 && (reg & 0x03) != 0x02) /* RD1 */ 710 return 0; 711 712 if (index >= 10 && index < 20 && 713 (reg & 0x0c) != 0x04 && (reg & 0x0c) != 0x08) /* RD2 */ 714 return 0; 715 if (index >= 20 && index < 30 && (reg & 0x30) != 0x20) /* RD3 */ 716 return 0; 717 718 if (index >= 30 && index < 38) /* local */ 719 return attr->mode; 720 721 err = regmap_read(data->regmap, REG_PECI_ENABLE, ®); 722 if (err < 0) 723 return 0; 724 725 if (index >= 38 && index < 46 && !(reg & 0x01)) /* PECI 0 */ 726 return 0; 727 728 if (index >= 0x46 && (!(reg & 0x02))) /* PECI 1 */ 729 return 0; 730 731 return attr->mode; 732 } 733 734 static const struct attribute_group nct7802_temp_group = { 735 .attrs = nct7802_temp_attrs, 736 .is_visible = nct7802_temp_is_visible, 737 }; 738 739 static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, 0, 0); 740 static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, 0, 1); 741 static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, 0, 2); 742 static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, in_alarm, 0, 3); 743 static SENSOR_DEVICE_ATTR_2_RW(in0_beep, beep, 0x5a, 3); 744 745 static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, 1, 0); 746 747 static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, 2, 0); 748 static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, 2, 1); 749 static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, 2, 2); 750 static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, in_alarm, 2, 0); 751 static SENSOR_DEVICE_ATTR_2_RW(in2_beep, beep, 0x5a, 0); 752 753 static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, 3, 0); 754 static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, 3, 1); 755 static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, 3, 2); 756 static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, in_alarm, 3, 1); 757 static SENSOR_DEVICE_ATTR_2_RW(in3_beep, beep, 0x5a, 1); 758 759 static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, 4, 0); 760 static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, 4, 1); 761 static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, 4, 2); 762 static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, in_alarm, 4, 2); 763 static SENSOR_DEVICE_ATTR_2_RW(in4_beep, beep, 0x5a, 2); 764 765 static struct attribute *nct7802_in_attrs[] = { 766 &sensor_dev_attr_in0_input.dev_attr.attr, 767 &sensor_dev_attr_in0_min.dev_attr.attr, 768 &sensor_dev_attr_in0_max.dev_attr.attr, 769 &sensor_dev_attr_in0_alarm.dev_attr.attr, 770 &sensor_dev_attr_in0_beep.dev_attr.attr, 771 772 &sensor_dev_attr_in1_input.dev_attr.attr, /* 5 */ 773 774 &sensor_dev_attr_in2_input.dev_attr.attr, /* 6 */ 775 &sensor_dev_attr_in2_min.dev_attr.attr, 776 &sensor_dev_attr_in2_max.dev_attr.attr, 777 &sensor_dev_attr_in2_alarm.dev_attr.attr, 778 &sensor_dev_attr_in2_beep.dev_attr.attr, 779 780 &sensor_dev_attr_in3_input.dev_attr.attr, /* 11 */ 781 &sensor_dev_attr_in3_min.dev_attr.attr, 782 &sensor_dev_attr_in3_max.dev_attr.attr, 783 &sensor_dev_attr_in3_alarm.dev_attr.attr, 784 &sensor_dev_attr_in3_beep.dev_attr.attr, 785 786 &sensor_dev_attr_in4_input.dev_attr.attr, /* 16 */ 787 &sensor_dev_attr_in4_min.dev_attr.attr, 788 &sensor_dev_attr_in4_max.dev_attr.attr, 789 &sensor_dev_attr_in4_alarm.dev_attr.attr, 790 &sensor_dev_attr_in4_beep.dev_attr.attr, 791 792 NULL, 793 }; 794 795 static umode_t nct7802_in_is_visible(struct kobject *kobj, 796 struct attribute *attr, int index) 797 { 798 struct device *dev = kobj_to_dev(kobj); 799 struct nct7802_data *data = dev_get_drvdata(dev); 800 unsigned int reg; 801 int err; 802 803 if (index < 6) /* VCC, VCORE */ 804 return attr->mode; 805 806 err = regmap_read(data->regmap, REG_MODE, ®); 807 if (err < 0) 808 return 0; 809 810 if (index >= 6 && index < 11 && (reg & 0x03) != 0x03) /* VSEN1 */ 811 return 0; 812 if (index >= 11 && index < 16 && (reg & 0x0c) != 0x0c) /* VSEN2 */ 813 return 0; 814 if (index >= 16 && (reg & 0x30) != 0x30) /* VSEN3 */ 815 return 0; 816 817 return attr->mode; 818 } 819 820 static const struct attribute_group nct7802_in_group = { 821 .attrs = nct7802_in_attrs, 822 .is_visible = nct7802_in_is_visible, 823 }; 824 825 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0x10); 826 static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan_min, 0x49, 0x4c); 827 static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, alarm, 0x1a, 0); 828 static SENSOR_DEVICE_ATTR_2_RW(fan1_beep, beep, 0x5b, 0); 829 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 0x11); 830 static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan_min, 0x4a, 0x4d); 831 static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, alarm, 0x1a, 1); 832 static SENSOR_DEVICE_ATTR_2_RW(fan2_beep, beep, 0x5b, 1); 833 static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 0x12); 834 static SENSOR_DEVICE_ATTR_2_RW(fan3_min, fan_min, 0x4b, 0x4e); 835 static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, alarm, 0x1a, 2); 836 static SENSOR_DEVICE_ATTR_2_RW(fan3_beep, beep, 0x5b, 2); 837 838 /* 7.2.89 Fan Control Output Type */ 839 static SENSOR_DEVICE_ATTR_RO(pwm1_mode, pwm_mode, 0); 840 static SENSOR_DEVICE_ATTR_RO(pwm2_mode, pwm_mode, 1); 841 static SENSOR_DEVICE_ATTR_RO(pwm3_mode, pwm_mode, 2); 842 843 /* 7.2.91... Fan Control Output Value */ 844 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, REG_PWM(0)); 845 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, REG_PWM(1)); 846 static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, REG_PWM(2)); 847 848 /* 7.2.95... Temperature to Fan mapping Relationships Register */ 849 static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0); 850 static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1); 851 static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2); 852 853 static struct attribute *nct7802_fan_attrs[] = { 854 &sensor_dev_attr_fan1_input.dev_attr.attr, 855 &sensor_dev_attr_fan1_min.dev_attr.attr, 856 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 857 &sensor_dev_attr_fan1_beep.dev_attr.attr, 858 &sensor_dev_attr_fan2_input.dev_attr.attr, 859 &sensor_dev_attr_fan2_min.dev_attr.attr, 860 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 861 &sensor_dev_attr_fan2_beep.dev_attr.attr, 862 &sensor_dev_attr_fan3_input.dev_attr.attr, 863 &sensor_dev_attr_fan3_min.dev_attr.attr, 864 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 865 &sensor_dev_attr_fan3_beep.dev_attr.attr, 866 867 NULL 868 }; 869 870 static umode_t nct7802_fan_is_visible(struct kobject *kobj, 871 struct attribute *attr, int index) 872 { 873 struct device *dev = kobj_to_dev(kobj); 874 struct nct7802_data *data = dev_get_drvdata(dev); 875 int fan = index / 4; /* 4 attributes per fan */ 876 unsigned int reg; 877 int err; 878 879 err = regmap_read(data->regmap, REG_FAN_ENABLE, ®); 880 if (err < 0 || !(reg & (1 << fan))) 881 return 0; 882 883 return attr->mode; 884 } 885 886 static const struct attribute_group nct7802_fan_group = { 887 .attrs = nct7802_fan_attrs, 888 .is_visible = nct7802_fan_is_visible, 889 }; 890 891 static struct attribute *nct7802_pwm_attrs[] = { 892 &sensor_dev_attr_pwm1_enable.dev_attr.attr, 893 &sensor_dev_attr_pwm1_mode.dev_attr.attr, 894 &sensor_dev_attr_pwm1.dev_attr.attr, 895 &sensor_dev_attr_pwm2_enable.dev_attr.attr, 896 &sensor_dev_attr_pwm2_mode.dev_attr.attr, 897 &sensor_dev_attr_pwm2.dev_attr.attr, 898 &sensor_dev_attr_pwm3_enable.dev_attr.attr, 899 &sensor_dev_attr_pwm3_mode.dev_attr.attr, 900 &sensor_dev_attr_pwm3.dev_attr.attr, 901 NULL 902 }; 903 904 static const struct attribute_group nct7802_pwm_group = { 905 .attrs = nct7802_pwm_attrs, 906 }; 907 908 /* 7.2.115... 0x80-0x83, 0x84 Temperature (X-axis) transition */ 909 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_temp, temp, 0x80, 0); 910 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_temp, temp, 0x81, 0); 911 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_temp, temp, 0x82, 0); 912 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_temp, temp, 0x83, 0); 913 static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_temp, temp, 0x84, 0); 914 915 /* 7.2.120... 0x85-0x88 PWM (Y-axis) transition */ 916 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm, 0x85); 917 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm, 0x86); 918 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_pwm, pwm, 0x87); 919 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_pwm, pwm, 0x88); 920 static SENSOR_DEVICE_ATTR_RO(pwm1_auto_point5_pwm, pwm, 0); 921 922 /* 7.2.124 Table 2 X-axis Transition Point 1 Register */ 923 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_temp, temp, 0x90, 0); 924 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_temp, temp, 0x91, 0); 925 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_temp, temp, 0x92, 0); 926 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_temp, temp, 0x93, 0); 927 static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_temp, temp, 0x94, 0); 928 929 /* 7.2.129 Table 2 Y-axis Transition Point 1 Register */ 930 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm, 0x95); 931 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm, 0x96); 932 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point3_pwm, pwm, 0x97); 933 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point4_pwm, pwm, 0x98); 934 static SENSOR_DEVICE_ATTR_RO(pwm2_auto_point5_pwm, pwm, 0); 935 936 /* 7.2.133 Table 3 X-axis Transition Point 1 Register */ 937 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_temp, temp, 0xA0, 0); 938 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_temp, temp, 0xA1, 0); 939 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_temp, temp, 0xA2, 0); 940 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_temp, temp, 0xA3, 0); 941 static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_temp, temp, 0xA4, 0); 942 943 /* 7.2.138 Table 3 Y-axis Transition Point 1 Register */ 944 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm, 0xA5); 945 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm, 0xA6); 946 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point3_pwm, pwm, 0xA7); 947 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point4_pwm, pwm, 0xA8); 948 static SENSOR_DEVICE_ATTR_RO(pwm3_auto_point5_pwm, pwm, 0); 949 950 static struct attribute *nct7802_auto_point_attrs[] = { 951 &sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr, 952 &sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr, 953 &sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr, 954 &sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr, 955 &sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr, 956 957 &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr, 958 &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr, 959 &sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr, 960 &sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr, 961 &sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr, 962 963 &sensor_dev_attr_pwm2_auto_point1_temp.dev_attr.attr, 964 &sensor_dev_attr_pwm2_auto_point2_temp.dev_attr.attr, 965 &sensor_dev_attr_pwm2_auto_point3_temp.dev_attr.attr, 966 &sensor_dev_attr_pwm2_auto_point4_temp.dev_attr.attr, 967 &sensor_dev_attr_pwm2_auto_point5_temp.dev_attr.attr, 968 969 &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr, 970 &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr, 971 &sensor_dev_attr_pwm2_auto_point3_pwm.dev_attr.attr, 972 &sensor_dev_attr_pwm2_auto_point4_pwm.dev_attr.attr, 973 &sensor_dev_attr_pwm2_auto_point5_pwm.dev_attr.attr, 974 975 &sensor_dev_attr_pwm3_auto_point1_temp.dev_attr.attr, 976 &sensor_dev_attr_pwm3_auto_point2_temp.dev_attr.attr, 977 &sensor_dev_attr_pwm3_auto_point3_temp.dev_attr.attr, 978 &sensor_dev_attr_pwm3_auto_point4_temp.dev_attr.attr, 979 &sensor_dev_attr_pwm3_auto_point5_temp.dev_attr.attr, 980 981 &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr, 982 &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr, 983 &sensor_dev_attr_pwm3_auto_point3_pwm.dev_attr.attr, 984 &sensor_dev_attr_pwm3_auto_point4_pwm.dev_attr.attr, 985 &sensor_dev_attr_pwm3_auto_point5_pwm.dev_attr.attr, 986 987 NULL 988 }; 989 990 static const struct attribute_group nct7802_auto_point_group = { 991 .attrs = nct7802_auto_point_attrs, 992 }; 993 994 static const struct attribute_group *nct7802_groups[] = { 995 &nct7802_temp_group, 996 &nct7802_in_group, 997 &nct7802_fan_group, 998 &nct7802_pwm_group, 999 &nct7802_auto_point_group, 1000 NULL 1001 }; 1002 1003 static int nct7802_detect(struct i2c_client *client, 1004 struct i2c_board_info *info) 1005 { 1006 int reg; 1007 1008 /* 1009 * Chip identification registers are only available in bank 0, 1010 * so only attempt chip detection if bank 0 is selected 1011 */ 1012 reg = i2c_smbus_read_byte_data(client, REG_BANK); 1013 if (reg != 0x00) 1014 return -ENODEV; 1015 1016 reg = i2c_smbus_read_byte_data(client, REG_VENDOR_ID); 1017 if (reg != 0x50) 1018 return -ENODEV; 1019 1020 reg = i2c_smbus_read_byte_data(client, REG_CHIP_ID); 1021 if (reg != 0xc3) 1022 return -ENODEV; 1023 1024 reg = i2c_smbus_read_byte_data(client, REG_VERSION_ID); 1025 if (reg < 0 || (reg & 0xf0) != 0x20) 1026 return -ENODEV; 1027 1028 /* Also validate lower bits of voltage and temperature registers */ 1029 reg = i2c_smbus_read_byte_data(client, REG_TEMP_LSB); 1030 if (reg < 0 || (reg & 0x1f)) 1031 return -ENODEV; 1032 1033 reg = i2c_smbus_read_byte_data(client, REG_TEMP_PECI_LSB); 1034 if (reg < 0 || (reg & 0x3f)) 1035 return -ENODEV; 1036 1037 reg = i2c_smbus_read_byte_data(client, REG_VOLTAGE_LOW); 1038 if (reg < 0 || (reg & 0x3f)) 1039 return -ENODEV; 1040 1041 strscpy(info->type, "nct7802", I2C_NAME_SIZE); 1042 return 0; 1043 } 1044 1045 static bool nct7802_regmap_is_volatile(struct device *dev, unsigned int reg) 1046 { 1047 return (reg != REG_BANK && reg <= 0x20) || 1048 (reg >= REG_PWM(0) && reg <= REG_PWM(2)); 1049 } 1050 1051 static const struct regmap_config nct7802_regmap_config = { 1052 .reg_bits = 8, 1053 .val_bits = 8, 1054 .cache_type = REGCACHE_RBTREE, 1055 .volatile_reg = nct7802_regmap_is_volatile, 1056 }; 1057 1058 static int nct7802_get_channel_config(struct device *dev, 1059 struct device_node *node, u8 *mode_mask, 1060 u8 *mode_val) 1061 { 1062 u32 reg; 1063 const char *type_str, *md_str; 1064 u8 md; 1065 1066 if (!node->name || of_node_cmp(node->name, "channel")) 1067 return 0; 1068 1069 if (of_property_read_u32(node, "reg", ®)) { 1070 dev_err(dev, "Could not read reg value for '%s'\n", 1071 node->full_name); 1072 return -EINVAL; 1073 } 1074 1075 if (reg > 3) { 1076 dev_err(dev, "Invalid reg (%u) in '%s'\n", reg, 1077 node->full_name); 1078 return -EINVAL; 1079 } 1080 1081 if (reg == 0) { 1082 if (!of_device_is_available(node)) 1083 *mode_val &= ~MODE_LTD_EN; 1084 else 1085 *mode_val |= MODE_LTD_EN; 1086 *mode_mask |= MODE_LTD_EN; 1087 return 0; 1088 } 1089 1090 /* At this point we have reg >= 1 && reg <= 3 */ 1091 1092 if (!of_device_is_available(node)) { 1093 *mode_val &= ~(MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1)); 1094 *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1); 1095 return 0; 1096 } 1097 1098 if (of_property_read_string(node, "sensor-type", &type_str)) { 1099 dev_err(dev, "No type for '%s'\n", node->full_name); 1100 return -EINVAL; 1101 } 1102 1103 if (!strcmp(type_str, "voltage")) { 1104 *mode_val |= (RTD_MODE_VOLTAGE & MODE_RTD_MASK) 1105 << MODE_BIT_OFFSET_RTD(reg - 1); 1106 *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1); 1107 return 0; 1108 } 1109 1110 if (strcmp(type_str, "temperature")) { 1111 dev_err(dev, "Invalid type '%s' for '%s'\n", type_str, 1112 node->full_name); 1113 return -EINVAL; 1114 } 1115 1116 if (reg == 3) { 1117 /* RTD3 only supports thermistor mode */ 1118 md = RTD_MODE_THERMISTOR; 1119 } else { 1120 if (of_property_read_string(node, "temperature-mode", 1121 &md_str)) { 1122 dev_err(dev, "No mode for '%s'\n", node->full_name); 1123 return -EINVAL; 1124 } 1125 1126 if (!strcmp(md_str, "thermal-diode")) 1127 md = RTD_MODE_CURRENT; 1128 else if (!strcmp(md_str, "thermistor")) 1129 md = RTD_MODE_THERMISTOR; 1130 else { 1131 dev_err(dev, "Invalid mode '%s' for '%s'\n", md_str, 1132 node->full_name); 1133 return -EINVAL; 1134 } 1135 } 1136 1137 *mode_val |= (md & MODE_RTD_MASK) << MODE_BIT_OFFSET_RTD(reg - 1); 1138 *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1); 1139 1140 return 0; 1141 } 1142 1143 static int nct7802_configure_channels(struct device *dev, 1144 struct nct7802_data *data) 1145 { 1146 /* Enable local temperature sensor by default */ 1147 u8 mode_mask = MODE_LTD_EN, mode_val = MODE_LTD_EN; 1148 struct device_node *node; 1149 int err; 1150 1151 if (dev->of_node) { 1152 for_each_child_of_node(dev->of_node, node) { 1153 err = nct7802_get_channel_config(dev, node, &mode_mask, 1154 &mode_val); 1155 if (err) { 1156 of_node_put(node); 1157 return err; 1158 } 1159 } 1160 } 1161 1162 return regmap_update_bits(data->regmap, REG_MODE, mode_mask, mode_val); 1163 } 1164 1165 static int nct7802_init_chip(struct device *dev, struct nct7802_data *data) 1166 { 1167 int err; 1168 1169 /* Enable ADC */ 1170 err = regmap_update_bits(data->regmap, REG_START, 0x01, 0x01); 1171 if (err) 1172 return err; 1173 1174 err = nct7802_configure_channels(dev, data); 1175 if (err) 1176 return err; 1177 1178 /* Enable Vcore and VCC voltage monitoring */ 1179 return regmap_update_bits(data->regmap, REG_VMON_ENABLE, 0x03, 0x03); 1180 } 1181 1182 static int nct7802_probe(struct i2c_client *client) 1183 { 1184 struct device *dev = &client->dev; 1185 struct nct7802_data *data; 1186 struct device *hwmon_dev; 1187 int ret; 1188 1189 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 1190 if (data == NULL) 1191 return -ENOMEM; 1192 1193 data->regmap = devm_regmap_init_i2c(client, &nct7802_regmap_config); 1194 if (IS_ERR(data->regmap)) 1195 return PTR_ERR(data->regmap); 1196 1197 mutex_init(&data->access_lock); 1198 mutex_init(&data->in_alarm_lock); 1199 1200 ret = nct7802_init_chip(dev, data); 1201 if (ret < 0) 1202 return ret; 1203 1204 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 1205 data, 1206 nct7802_groups); 1207 return PTR_ERR_OR_ZERO(hwmon_dev); 1208 } 1209 1210 static const unsigned short nct7802_address_list[] = { 1211 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END 1212 }; 1213 1214 static const struct i2c_device_id nct7802_idtable[] = { 1215 { "nct7802", 0 }, 1216 { } 1217 }; 1218 MODULE_DEVICE_TABLE(i2c, nct7802_idtable); 1219 1220 static struct i2c_driver nct7802_driver = { 1221 .class = I2C_CLASS_HWMON, 1222 .driver = { 1223 .name = DRVNAME, 1224 }, 1225 .detect = nct7802_detect, 1226 .probe = nct7802_probe, 1227 .id_table = nct7802_idtable, 1228 .address_list = nct7802_address_list, 1229 }; 1230 1231 module_i2c_driver(nct7802_driver); 1232 1233 MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>"); 1234 MODULE_DESCRIPTION("NCT7802Y Hardware Monitoring Driver"); 1235 MODULE_LICENSE("GPL v2"); 1236