1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020 MaxLinear, Inc.
4 *
5 * This driver is a hardware monitoring driver for PVT controller
6 * (MR75203) which is used to configure & control Moortec embedded
7 * analog IP to enable multiple embedded temperature sensor(TS),
8 * voltage monitor(VM) & process detector(PD) modules.
9 */
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/hwmon.h>
14 #include <linux/kstrtox.h>
15 #include <linux/module.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/mutex.h>
18 #include <linux/platform_device.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/reset.h>
22 #include <linux/slab.h>
23 #include <linux/units.h>
24
25 /* PVT Common register */
26 #define PVT_IP_CONFIG 0x04
27 #define TS_NUM_MSK GENMASK(4, 0)
28 #define TS_NUM_SFT 0
29 #define PD_NUM_MSK GENMASK(12, 8)
30 #define PD_NUM_SFT 8
31 #define VM_NUM_MSK GENMASK(20, 16)
32 #define VM_NUM_SFT 16
33 #define CH_NUM_MSK GENMASK(31, 24)
34 #define CH_NUM_SFT 24
35
36 #define VM_NUM_MAX (VM_NUM_MSK >> VM_NUM_SFT)
37
38 /* Macro Common Register */
39 #define CLK_SYNTH 0x00
40 #define CLK_SYNTH_LO_SFT 0
41 #define CLK_SYNTH_HI_SFT 8
42 #define CLK_SYNTH_HOLD_SFT 16
43 #define CLK_SYNTH_EN BIT(24)
44 #define CLK_SYS_CYCLES_MAX 514
45 #define CLK_SYS_CYCLES_MIN 2
46
47 #define SDIF_DISABLE 0x04
48
49 #define SDIF_STAT 0x08
50 #define SDIF_BUSY BIT(0)
51 #define SDIF_LOCK BIT(1)
52
53 #define SDIF_W 0x0c
54 #define SDIF_PROG BIT(31)
55 #define SDIF_WRN_W BIT(27)
56 #define SDIF_WRN_R 0x00
57 #define SDIF_ADDR_SFT 24
58
59 #define SDIF_HALT 0x10
60 #define SDIF_CTRL 0x14
61 #define SDIF_SMPL_CTRL 0x20
62
63 /* TS & PD Individual Macro Register */
64 #define COM_REG_SIZE 0x40
65
66 #define SDIF_DONE(n) (COM_REG_SIZE + 0x14 + 0x40 * (n))
67 #define SDIF_SMPL_DONE BIT(0)
68
69 #define SDIF_DATA(n) (COM_REG_SIZE + 0x18 + 0x40 * (n))
70 #define SAMPLE_DATA_MSK GENMASK(15, 0)
71
72 #define HILO_RESET(n) (COM_REG_SIZE + 0x2c + 0x40 * (n))
73
74 /* VM Individual Macro Register */
75 #define VM_COM_REG_SIZE 0x200
76 #define VM_SDIF_DONE(vm) (VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
77 #define VM_SDIF_DATA(vm, ch) \
78 (VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
79
80 /* SDA Slave Register */
81 #define IP_CTRL 0x00
82 #define IP_RST_REL BIT(1)
83 #define IP_RUN_CONT BIT(3)
84 #define IP_AUTO BIT(8)
85 #define IP_VM_MODE BIT(10)
86
87 #define IP_CFG 0x01
88 #define CFG0_MODE_2 BIT(0)
89 #define CFG0_PARALLEL_OUT 0
90 #define CFG0_12_BIT 0
91 #define CFG1_VOL_MEAS_MODE 0
92 #define CFG1_PARALLEL_OUT 0
93 #define CFG1_14_BIT 0
94
95 #define IP_DATA 0x03
96
97 #define IP_POLL 0x04
98 #define VM_CH_INIT BIT(20)
99 #define VM_CH_REQ BIT(21)
100
101 #define IP_TMR 0x05
102 #define POWER_DELAY_CYCLE_256 0x100
103 #define POWER_DELAY_CYCLE_64 0x40
104
105 #define PVT_POLL_DELAY_US 20
106 #define PVT_POLL_TIMEOUT_US 20000
107 #define PVT_CONV_BITS 10
108 #define PVT_N_CONST 90
109 #define PVT_R_CONST 245805
110
111 #define PVT_TEMP_MIN_mC -40000
112 #define PVT_TEMP_MAX_mC 125000
113
114 /* Temperature coefficients for series 5 */
115 #define PVT_SERIES5_H_CONST 200000
116 #define PVT_SERIES5_G_CONST 60000
117 #define PVT_SERIES5_J_CONST -100
118 #define PVT_SERIES5_CAL5_CONST 4094
119
120 /* Temperature coefficients for series 6 */
121 #define PVT_SERIES6_H_CONST 249400
122 #define PVT_SERIES6_G_CONST 57400
123 #define PVT_SERIES6_J_CONST 0
124 #define PVT_SERIES6_CAL5_CONST 4096
125
126 #define TEMPERATURE_SENSOR_SERIES_5 5
127 #define TEMPERATURE_SENSOR_SERIES_6 6
128
129 #define PRE_SCALER_X1 1
130 #define PRE_SCALER_X2 2
131
132 /**
133 * struct voltage_device - VM single input parameters.
134 * @vm_map: Map channel number to VM index.
135 * @ch_map: Map channel number to channel index.
136 * @pre_scaler: Pre scaler value (1 or 2) used to normalize the voltage output
137 * result.
138 *
139 * The structure provides mapping between channel-number (0..N-1) to VM-index
140 * (0..num_vm-1) and channel-index (0..ch_num-1) where N = num_vm * ch_num.
141 * It also provides normalization factor for the VM equation.
142 */
143 struct voltage_device {
144 u32 vm_map;
145 u32 ch_map;
146 u32 pre_scaler;
147 };
148
149 /**
150 * struct voltage_channels - VM channel count.
151 * @total: Total number of channels in all VMs.
152 * @max: Maximum number of channels among all VMs.
153 *
154 * The structure provides channel count information across all VMs.
155 */
156 struct voltage_channels {
157 u32 total;
158 u8 max;
159 };
160
161 struct temp_coeff {
162 u32 h;
163 u32 g;
164 u32 cal5;
165 s32 j;
166 };
167
168 struct pvt_device {
169 struct regmap *c_map;
170 struct regmap *t_map;
171 struct regmap *p_map;
172 struct regmap *v_map;
173 struct clk *clk;
174 struct reset_control *rst;
175 struct dentry *dbgfs_dir;
176 struct voltage_device *vd;
177 struct voltage_channels vm_channels;
178 struct temp_coeff ts_coeff;
179 u32 t_num;
180 u32 p_num;
181 u32 v_num;
182 u32 ip_freq;
183 };
184
pvt_ts_coeff_j_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)185 static ssize_t pvt_ts_coeff_j_read(struct file *file, char __user *user_buf,
186 size_t count, loff_t *ppos)
187 {
188 struct pvt_device *pvt = file->private_data;
189 unsigned int len;
190 char buf[13];
191
192 len = scnprintf(buf, sizeof(buf), "%d\n", pvt->ts_coeff.j);
193
194 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
195 }
196
pvt_ts_coeff_j_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)197 static ssize_t pvt_ts_coeff_j_write(struct file *file,
198 const char __user *user_buf,
199 size_t count, loff_t *ppos)
200 {
201 struct pvt_device *pvt = file->private_data;
202 int ret;
203
204 ret = kstrtos32_from_user(user_buf, count, 0, &pvt->ts_coeff.j);
205 if (ret)
206 return ret;
207
208 return count;
209 }
210
211 static const struct file_operations pvt_ts_coeff_j_fops = {
212 .read = pvt_ts_coeff_j_read,
213 .write = pvt_ts_coeff_j_write,
214 .open = simple_open,
215 .owner = THIS_MODULE,
216 .llseek = default_llseek,
217 };
218
devm_pvt_ts_dbgfs_remove(void * data)219 static void devm_pvt_ts_dbgfs_remove(void *data)
220 {
221 struct pvt_device *pvt = (struct pvt_device *)data;
222
223 debugfs_remove_recursive(pvt->dbgfs_dir);
224 pvt->dbgfs_dir = NULL;
225 }
226
pvt_ts_dbgfs_create(struct pvt_device * pvt,struct device * dev)227 static int pvt_ts_dbgfs_create(struct pvt_device *pvt, struct device *dev)
228 {
229 pvt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
230
231 debugfs_create_u32("ts_coeff_h", 0644, pvt->dbgfs_dir,
232 &pvt->ts_coeff.h);
233 debugfs_create_u32("ts_coeff_g", 0644, pvt->dbgfs_dir,
234 &pvt->ts_coeff.g);
235 debugfs_create_u32("ts_coeff_cal5", 0644, pvt->dbgfs_dir,
236 &pvt->ts_coeff.cal5);
237 debugfs_create_file("ts_coeff_j", 0644, pvt->dbgfs_dir, pvt,
238 &pvt_ts_coeff_j_fops);
239
240 return devm_add_action_or_reset(dev, devm_pvt_ts_dbgfs_remove, pvt);
241 }
242
pvt_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)243 static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
244 u32 attr, int channel)
245 {
246 switch (type) {
247 case hwmon_temp:
248 if (attr == hwmon_temp_input)
249 return 0444;
250 break;
251 case hwmon_in:
252 if (attr == hwmon_in_input)
253 return 0444;
254 break;
255 default:
256 break;
257 }
258 return 0;
259 }
260
pvt_calc_temp(struct pvt_device * pvt,u32 nbs)261 static long pvt_calc_temp(struct pvt_device *pvt, u32 nbs)
262 {
263 /*
264 * Convert the register value to degrees centigrade temperature:
265 * T = G + H * (n / cal5 - 0.5) + J * F
266 */
267 struct temp_coeff *ts_coeff = &pvt->ts_coeff;
268
269 s64 tmp = ts_coeff->g +
270 div_s64(ts_coeff->h * (s64)nbs, ts_coeff->cal5) -
271 ts_coeff->h / 2 +
272 div_s64(ts_coeff->j * (s64)pvt->ip_freq, HZ_PER_MHZ);
273
274 return clamp_val(tmp, PVT_TEMP_MIN_mC, PVT_TEMP_MAX_mC);
275 }
276
pvt_read_temp(struct device * dev,u32 attr,int channel,long * val)277 static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
278 {
279 struct pvt_device *pvt = dev_get_drvdata(dev);
280 struct regmap *t_map = pvt->t_map;
281 u32 stat, nbs;
282 int ret;
283
284 switch (attr) {
285 case hwmon_temp_input:
286 ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
287 stat, stat & SDIF_SMPL_DONE,
288 PVT_POLL_DELAY_US,
289 PVT_POLL_TIMEOUT_US);
290 if (ret)
291 return ret;
292
293 ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
294 if (ret < 0)
295 return ret;
296
297 nbs &= SAMPLE_DATA_MSK;
298
299 /*
300 * Convert the register value to
301 * degrees centigrade temperature
302 */
303 *val = pvt_calc_temp(pvt, nbs);
304
305 return 0;
306 default:
307 return -EOPNOTSUPP;
308 }
309 }
310
pvt_read_in(struct device * dev,u32 attr,int channel,long * val)311 static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
312 {
313 struct pvt_device *pvt = dev_get_drvdata(dev);
314 struct regmap *v_map = pvt->v_map;
315 u32 n, stat, pre_scaler;
316 u8 vm_idx, ch_idx;
317 int ret;
318
319 if (channel >= pvt->vm_channels.total)
320 return -EINVAL;
321
322 vm_idx = pvt->vd[channel].vm_map;
323 ch_idx = pvt->vd[channel].ch_map;
324
325 switch (attr) {
326 case hwmon_in_input:
327 ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
328 stat, stat & SDIF_SMPL_DONE,
329 PVT_POLL_DELAY_US,
330 PVT_POLL_TIMEOUT_US);
331 if (ret)
332 return ret;
333
334 ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
335 if (ret < 0)
336 return ret;
337
338 n &= SAMPLE_DATA_MSK;
339 pre_scaler = pvt->vd[channel].pre_scaler;
340 /*
341 * Convert the N bitstream count into voltage.
342 * To support negative voltage calculation for 64bit machines
343 * n must be cast to long, since n and *val differ both in
344 * signedness and in size.
345 * Division is used instead of right shift, because for signed
346 * numbers, the sign bit is used to fill the vacated bit
347 * positions, and if the number is negative, 1 is used.
348 * BIT(x) may not be used instead of (1 << x) because it's
349 * unsigned.
350 */
351 *val = pre_scaler * (PVT_N_CONST * (long)n - PVT_R_CONST) /
352 (1 << PVT_CONV_BITS);
353
354 return 0;
355 default:
356 return -EOPNOTSUPP;
357 }
358 }
359
pvt_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)360 static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
361 u32 attr, int channel, long *val)
362 {
363 switch (type) {
364 case hwmon_temp:
365 return pvt_read_temp(dev, attr, channel, val);
366 case hwmon_in:
367 return pvt_read_in(dev, attr, channel, val);
368 default:
369 return -EOPNOTSUPP;
370 }
371 }
372
373 static struct hwmon_channel_info pvt_temp = {
374 .type = hwmon_temp,
375 };
376
377 static struct hwmon_channel_info pvt_in = {
378 .type = hwmon_in,
379 };
380
381 static const struct hwmon_ops pvt_hwmon_ops = {
382 .is_visible = pvt_is_visible,
383 .read = pvt_read,
384 };
385
386 static struct hwmon_chip_info pvt_chip_info = {
387 .ops = &pvt_hwmon_ops,
388 };
389
pvt_init(struct pvt_device * pvt)390 static int pvt_init(struct pvt_device *pvt)
391 {
392 u16 sys_freq, key, middle, low = 4, high = 8;
393 struct regmap *t_map = pvt->t_map;
394 struct regmap *p_map = pvt->p_map;
395 struct regmap *v_map = pvt->v_map;
396 u32 t_num = pvt->t_num;
397 u32 p_num = pvt->p_num;
398 u32 v_num = pvt->v_num;
399 u32 clk_synth, val;
400 int ret;
401
402 sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
403 while (high >= low) {
404 middle = (low + high + 1) / 2;
405 key = DIV_ROUND_CLOSEST(sys_freq, middle);
406 if (key > CLK_SYS_CYCLES_MAX) {
407 low = middle + 1;
408 continue;
409 } else if (key < CLK_SYS_CYCLES_MIN) {
410 high = middle - 1;
411 continue;
412 } else {
413 break;
414 }
415 }
416
417 /*
418 * The system supports 'clk_sys' to 'clk_ip' frequency ratios
419 * from 2:1 to 512:1
420 */
421 key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
422
423 clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
424 (key >> 1) << CLK_SYNTH_HI_SFT |
425 (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
426
427 pvt->ip_freq = clk_get_rate(pvt->clk) / (key + 2);
428
429 if (t_num) {
430 ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
431 if (ret < 0)
432 return ret;
433
434 ret = regmap_write(t_map, SDIF_HALT, 0x0);
435 if (ret < 0)
436 return ret;
437
438 ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
439 if (ret < 0)
440 return ret;
441
442 ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
443 if (ret < 0)
444 return ret;
445
446 ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
447 val, !(val & SDIF_BUSY),
448 PVT_POLL_DELAY_US,
449 PVT_POLL_TIMEOUT_US);
450 if (ret)
451 return ret;
452
453 val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
454 IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
455 ret = regmap_write(t_map, SDIF_W, val);
456 if (ret < 0)
457 return ret;
458
459 ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
460 val, !(val & SDIF_BUSY),
461 PVT_POLL_DELAY_US,
462 PVT_POLL_TIMEOUT_US);
463 if (ret)
464 return ret;
465
466 val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
467 SDIF_WRN_W | SDIF_PROG;
468 ret = regmap_write(t_map, SDIF_W, val);
469 if (ret < 0)
470 return ret;
471
472 ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
473 val, !(val & SDIF_BUSY),
474 PVT_POLL_DELAY_US,
475 PVT_POLL_TIMEOUT_US);
476 if (ret)
477 return ret;
478
479 val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
480 IP_CTRL << SDIF_ADDR_SFT |
481 SDIF_WRN_W | SDIF_PROG;
482 ret = regmap_write(t_map, SDIF_W, val);
483 if (ret < 0)
484 return ret;
485 }
486
487 if (p_num) {
488 ret = regmap_write(p_map, SDIF_HALT, 0x0);
489 if (ret < 0)
490 return ret;
491
492 ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
493 if (ret < 0)
494 return ret;
495
496 ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
497 if (ret < 0)
498 return ret;
499 }
500
501 if (v_num) {
502 ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
503 if (ret < 0)
504 return ret;
505
506 ret = regmap_write(v_map, SDIF_HALT, 0x0);
507 if (ret < 0)
508 return ret;
509
510 ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
511 if (ret < 0)
512 return ret;
513
514 ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
515 if (ret < 0)
516 return ret;
517
518 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
519 val, !(val & SDIF_BUSY),
520 PVT_POLL_DELAY_US,
521 PVT_POLL_TIMEOUT_US);
522 if (ret)
523 return ret;
524
525 val = (BIT(pvt->vm_channels.max) - 1) | VM_CH_INIT |
526 IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
527 ret = regmap_write(v_map, SDIF_W, val);
528 if (ret < 0)
529 return ret;
530
531 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
532 val, !(val & SDIF_BUSY),
533 PVT_POLL_DELAY_US,
534 PVT_POLL_TIMEOUT_US);
535 if (ret)
536 return ret;
537
538 val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
539 CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
540 SDIF_WRN_W | SDIF_PROG;
541 ret = regmap_write(v_map, SDIF_W, val);
542 if (ret < 0)
543 return ret;
544
545 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
546 val, !(val & SDIF_BUSY),
547 PVT_POLL_DELAY_US,
548 PVT_POLL_TIMEOUT_US);
549 if (ret)
550 return ret;
551
552 val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
553 SDIF_WRN_W | SDIF_PROG;
554 ret = regmap_write(v_map, SDIF_W, val);
555 if (ret < 0)
556 return ret;
557
558 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
559 val, !(val & SDIF_BUSY),
560 PVT_POLL_DELAY_US,
561 PVT_POLL_TIMEOUT_US);
562 if (ret)
563 return ret;
564
565 val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
566 IP_CTRL << SDIF_ADDR_SFT |
567 SDIF_WRN_W | SDIF_PROG;
568 ret = regmap_write(v_map, SDIF_W, val);
569 if (ret < 0)
570 return ret;
571 }
572
573 return 0;
574 }
575
576 static struct regmap_config pvt_regmap_config = {
577 .reg_bits = 32,
578 .reg_stride = 4,
579 .val_bits = 32,
580 };
581
pvt_get_regmap(struct platform_device * pdev,char * reg_name,struct pvt_device * pvt)582 static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
583 struct pvt_device *pvt)
584 {
585 struct device *dev = &pdev->dev;
586 struct regmap **reg_map;
587 void __iomem *io_base;
588
589 if (!strcmp(reg_name, "common"))
590 reg_map = &pvt->c_map;
591 else if (!strcmp(reg_name, "ts"))
592 reg_map = &pvt->t_map;
593 else if (!strcmp(reg_name, "pd"))
594 reg_map = &pvt->p_map;
595 else if (!strcmp(reg_name, "vm"))
596 reg_map = &pvt->v_map;
597 else
598 return -EINVAL;
599
600 io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
601 if (IS_ERR(io_base))
602 return PTR_ERR(io_base);
603
604 pvt_regmap_config.name = reg_name;
605 *reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
606 if (IS_ERR(*reg_map)) {
607 dev_err(dev, "failed to init register map\n");
608 return PTR_ERR(*reg_map);
609 }
610
611 return 0;
612 }
613
pvt_reset_control_assert(void * data)614 static void pvt_reset_control_assert(void *data)
615 {
616 struct pvt_device *pvt = data;
617
618 reset_control_assert(pvt->rst);
619 }
620
pvt_reset_control_deassert(struct device * dev,struct pvt_device * pvt)621 static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
622 {
623 int ret;
624
625 ret = reset_control_deassert(pvt->rst);
626 if (ret)
627 return ret;
628
629 return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
630 }
631
pvt_get_active_channel(struct device * dev,struct pvt_device * pvt,u32 vm_num,u32 ch_num,u8 * vm_idx)632 static int pvt_get_active_channel(struct device *dev, struct pvt_device *pvt,
633 u32 vm_num, u32 ch_num, u8 *vm_idx)
634 {
635 u8 vm_active_ch[VM_NUM_MAX];
636 int ret, i, j, k;
637
638 ret = device_property_read_u8_array(dev, "moortec,vm-active-channels",
639 vm_active_ch, vm_num);
640 if (ret) {
641 /*
642 * Incase "moortec,vm-active-channels" property is not defined,
643 * we assume each VM sensor has all of its channels active.
644 */
645 memset(vm_active_ch, ch_num, vm_num);
646 pvt->vm_channels.max = ch_num;
647 pvt->vm_channels.total = ch_num * vm_num;
648 } else {
649 for (i = 0; i < vm_num; i++) {
650 if (vm_active_ch[i] > ch_num) {
651 dev_err(dev, "invalid active channels: %u\n",
652 vm_active_ch[i]);
653 return -EINVAL;
654 }
655
656 pvt->vm_channels.total += vm_active_ch[i];
657
658 if (vm_active_ch[i] > pvt->vm_channels.max)
659 pvt->vm_channels.max = vm_active_ch[i];
660 }
661 }
662
663 /*
664 * Map between the channel-number to VM-index and channel-index.
665 * Example - 3 VMs, "moortec,vm_active_ch" = <5 2 4>:
666 * vm_map = [0 0 0 0 0 1 1 2 2 2 2]
667 * ch_map = [0 1 2 3 4 0 1 0 1 2 3]
668 */
669 pvt->vd = devm_kcalloc(dev, pvt->vm_channels.total, sizeof(*pvt->vd),
670 GFP_KERNEL);
671 if (!pvt->vd)
672 return -ENOMEM;
673
674 k = 0;
675 for (i = 0; i < vm_num; i++) {
676 for (j = 0; j < vm_active_ch[i]; j++) {
677 pvt->vd[k].vm_map = vm_idx[i];
678 pvt->vd[k].ch_map = j;
679 k++;
680 }
681 }
682
683 return 0;
684 }
685
pvt_get_pre_scaler(struct device * dev,struct pvt_device * pvt)686 static int pvt_get_pre_scaler(struct device *dev, struct pvt_device *pvt)
687 {
688 u8 *pre_scaler_ch_list;
689 int i, ret, num_ch;
690 u32 channel;
691
692 /* Set default pre-scaler value to be 1. */
693 for (i = 0; i < pvt->vm_channels.total; i++)
694 pvt->vd[i].pre_scaler = PRE_SCALER_X1;
695
696 /* Get number of channels configured in "moortec,vm-pre-scaler-x2". */
697 num_ch = device_property_count_u8(dev, "moortec,vm-pre-scaler-x2");
698 if (num_ch <= 0)
699 return 0;
700
701 pre_scaler_ch_list = kcalloc(num_ch, sizeof(*pre_scaler_ch_list),
702 GFP_KERNEL);
703 if (!pre_scaler_ch_list)
704 return -ENOMEM;
705
706 /* Get list of all channels that have pre-scaler of 2. */
707 ret = device_property_read_u8_array(dev, "moortec,vm-pre-scaler-x2",
708 pre_scaler_ch_list, num_ch);
709 if (ret)
710 goto out;
711
712 for (i = 0; i < num_ch; i++) {
713 channel = pre_scaler_ch_list[i];
714 pvt->vd[channel].pre_scaler = PRE_SCALER_X2;
715 }
716
717 out:
718 kfree(pre_scaler_ch_list);
719
720 return ret;
721 }
722
pvt_set_temp_coeff(struct device * dev,struct pvt_device * pvt)723 static int pvt_set_temp_coeff(struct device *dev, struct pvt_device *pvt)
724 {
725 struct temp_coeff *ts_coeff = &pvt->ts_coeff;
726 u32 series;
727 int ret;
728
729 /* Incase ts-series property is not defined, use default 5. */
730 ret = device_property_read_u32(dev, "moortec,ts-series", &series);
731 if (ret)
732 series = TEMPERATURE_SENSOR_SERIES_5;
733
734 switch (series) {
735 case TEMPERATURE_SENSOR_SERIES_5:
736 ts_coeff->h = PVT_SERIES5_H_CONST;
737 ts_coeff->g = PVT_SERIES5_G_CONST;
738 ts_coeff->j = PVT_SERIES5_J_CONST;
739 ts_coeff->cal5 = PVT_SERIES5_CAL5_CONST;
740 break;
741 case TEMPERATURE_SENSOR_SERIES_6:
742 ts_coeff->h = PVT_SERIES6_H_CONST;
743 ts_coeff->g = PVT_SERIES6_G_CONST;
744 ts_coeff->j = PVT_SERIES6_J_CONST;
745 ts_coeff->cal5 = PVT_SERIES6_CAL5_CONST;
746 break;
747 default:
748 dev_err(dev, "invalid temperature sensor series (%u)\n",
749 series);
750 return -EINVAL;
751 }
752
753 dev_dbg(dev, "temperature sensor series = %u\n", series);
754
755 /* Override ts-coeff-h/g/j/cal5 if they are defined. */
756 device_property_read_u32(dev, "moortec,ts-coeff-h", &ts_coeff->h);
757 device_property_read_u32(dev, "moortec,ts-coeff-g", &ts_coeff->g);
758 device_property_read_u32(dev, "moortec,ts-coeff-j", &ts_coeff->j);
759 device_property_read_u32(dev, "moortec,ts-coeff-cal5", &ts_coeff->cal5);
760
761 dev_dbg(dev, "ts-coeff: h = %u, g = %u, j = %d, cal5 = %u\n",
762 ts_coeff->h, ts_coeff->g, ts_coeff->j, ts_coeff->cal5);
763
764 return 0;
765 }
766
mr75203_probe(struct platform_device * pdev)767 static int mr75203_probe(struct platform_device *pdev)
768 {
769 u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
770 const struct hwmon_channel_info **pvt_info;
771 struct device *dev = &pdev->dev;
772 u32 *temp_config, *in_config;
773 struct device *hwmon_dev;
774 struct pvt_device *pvt;
775 int ret;
776
777 pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
778 if (!pvt)
779 return -ENOMEM;
780
781 ret = pvt_get_regmap(pdev, "common", pvt);
782 if (ret)
783 return ret;
784
785 pvt->clk = devm_clk_get_enabled(dev, NULL);
786 if (IS_ERR(pvt->clk))
787 return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
788
789 pvt->rst = devm_reset_control_get_optional_exclusive(dev, NULL);
790 if (IS_ERR(pvt->rst))
791 return dev_err_probe(dev, PTR_ERR(pvt->rst),
792 "failed to get reset control\n");
793
794 if (pvt->rst) {
795 ret = pvt_reset_control_deassert(dev, pvt);
796 if (ret)
797 return dev_err_probe(dev, ret,
798 "cannot deassert reset control\n");
799 }
800
801 ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
802 if (ret < 0)
803 return ret;
804
805 ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
806 pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
807 vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
808 ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
809 pvt->t_num = ts_num;
810 pvt->p_num = pd_num;
811 pvt->v_num = vm_num;
812 val = 0;
813 if (ts_num)
814 val++;
815 if (vm_num)
816 val++;
817 if (!val)
818 return -ENODEV;
819
820 pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
821 if (!pvt_info)
822 return -ENOMEM;
823 pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
824 index = 1;
825
826 if (ts_num) {
827 ret = pvt_get_regmap(pdev, "ts", pvt);
828 if (ret)
829 return ret;
830
831 ret = pvt_set_temp_coeff(dev, pvt);
832 if (ret)
833 return ret;
834
835 temp_config = devm_kcalloc(dev, ts_num + 1,
836 sizeof(*temp_config), GFP_KERNEL);
837 if (!temp_config)
838 return -ENOMEM;
839
840 memset32(temp_config, HWMON_T_INPUT, ts_num);
841 pvt_temp.config = temp_config;
842 pvt_info[index++] = &pvt_temp;
843
844 pvt_ts_dbgfs_create(pvt, dev);
845 }
846
847 if (pd_num) {
848 ret = pvt_get_regmap(pdev, "pd", pvt);
849 if (ret)
850 return ret;
851 }
852
853 if (vm_num) {
854 u8 vm_idx[VM_NUM_MAX];
855
856 ret = pvt_get_regmap(pdev, "vm", pvt);
857 if (ret)
858 return ret;
859
860 ret = device_property_read_u8_array(dev, "intel,vm-map", vm_idx,
861 vm_num);
862 if (ret) {
863 /*
864 * Incase intel,vm-map property is not defined, we
865 * assume incremental channel numbers.
866 */
867 for (i = 0; i < vm_num; i++)
868 vm_idx[i] = i;
869 } else {
870 for (i = 0; i < vm_num; i++)
871 if (vm_idx[i] >= vm_num || vm_idx[i] == 0xff) {
872 pvt->v_num = i;
873 vm_num = i;
874 break;
875 }
876 }
877
878 ret = pvt_get_active_channel(dev, pvt, vm_num, ch_num, vm_idx);
879 if (ret)
880 return ret;
881
882 ret = pvt_get_pre_scaler(dev, pvt);
883 if (ret)
884 return ret;
885
886 in_config = devm_kcalloc(dev, pvt->vm_channels.total + 1,
887 sizeof(*in_config), GFP_KERNEL);
888 if (!in_config)
889 return -ENOMEM;
890
891 memset32(in_config, HWMON_I_INPUT, pvt->vm_channels.total);
892 in_config[pvt->vm_channels.total] = 0;
893 pvt_in.config = in_config;
894
895 pvt_info[index++] = &pvt_in;
896 }
897
898 ret = pvt_init(pvt);
899 if (ret) {
900 dev_err(dev, "failed to init pvt: %d\n", ret);
901 return ret;
902 }
903
904 pvt_chip_info.info = pvt_info;
905 hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
906 pvt,
907 &pvt_chip_info,
908 NULL);
909
910 return PTR_ERR_OR_ZERO(hwmon_dev);
911 }
912
913 static const struct of_device_id moortec_pvt_of_match[] = {
914 { .compatible = "moortec,mr75203" },
915 { }
916 };
917 MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
918
919 static struct platform_driver moortec_pvt_driver = {
920 .driver = {
921 .name = "moortec-pvt",
922 .of_match_table = moortec_pvt_of_match,
923 },
924 .probe = mr75203_probe,
925 };
926 module_platform_driver(moortec_pvt_driver);
927
928 MODULE_LICENSE("GPL v2");
929