1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de> 6 * 7 * Based on the lm83 driver. The LM90 is a sensor chip made by National 8 * Semiconductor. It reports up to two temperatures (its own plus up to 9 * one external one) with a 0.125 deg resolution (1 deg for local 10 * temperature) and a 3-4 deg accuracy. 11 * 12 * This driver also supports the LM89 and LM99, two other sensor chips 13 * made by National Semiconductor. Both have an increased remote 14 * temperature measurement accuracy (1 degree), and the LM99 15 * additionally shifts remote temperatures (measured and limits) by 16 16 * degrees, which allows for higher temperatures measurement. 17 * Note that there is no way to differentiate between both chips. 18 * When device is auto-detected, the driver will assume an LM99. 19 * 20 * This driver also supports the LM86, another sensor chip made by 21 * National Semiconductor. It is exactly similar to the LM90 except it 22 * has a higher accuracy. 23 * 24 * This driver also supports the ADM1032, a sensor chip made by Analog 25 * Devices. That chip is similar to the LM90, with a few differences 26 * that are not handled by this driver. Among others, it has a higher 27 * accuracy than the LM90, much like the LM86 does. 28 * 29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor 30 * chips made by Maxim. These chips are similar to the LM86. 31 * Note that there is no easy way to differentiate between the three 32 * variants. We use the device address to detect MAX6659, which will result 33 * in a detection as max6657 if it is on address 0x4c. The extra address 34 * and features of the MAX6659 are only supported if the chip is configured 35 * explicitly as max6659, or if its address is not 0x4c. 36 * These chips lack the remote temperature offset feature. 37 * 38 * This driver also supports the MAX6654 chip made by Maxim. This chip can 39 * be at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is 40 * otherwise similar to MAX6657/MAX6658/MAX6659. Extended range is available 41 * by setting the configuration register accordingly, and is done during 42 * initialization. Extended precision is only available at conversion rates 43 * of 1 Hz and slower. Note that extended precision is not enabled by 44 * default, as this driver initializes all chips to 2 Hz by design. 45 * 46 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and 47 * MAX6692 chips made by Maxim. These are again similar to the LM86, 48 * but they use unsigned temperature values and can report temperatures 49 * from 0 to 145 degrees. 50 * 51 * This driver also supports the MAX6680 and MAX6681, two other sensor 52 * chips made by Maxim. These are quite similar to the other Maxim 53 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can 54 * be treated identically. 55 * 56 * This driver also supports the MAX6695 and MAX6696, two other sensor 57 * chips made by Maxim. These are also quite similar to other Maxim 58 * chips, but support three temperature sensors instead of two. MAX6695 59 * and MAX6696 only differ in the pinout so they can be treated identically. 60 * 61 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as 62 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility 63 * and extended mode. They are mostly compatible with LM90 except for a data 64 * format difference for the temperature value registers. 65 * 66 * This driver also supports the SA56004 from Philips. This device is 67 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible. 68 * 69 * This driver also supports the G781 from GMT. This device is compatible 70 * with the ADM1032. 71 * 72 * This driver also supports TMP451 from Texas Instruments. This device is 73 * supported in both compatibility and extended mode. It's mostly compatible 74 * with ADT7461 except for local temperature low byte register and max 75 * conversion rate. 76 * 77 * Since the LM90 was the first chipset supported by this driver, most 78 * comments will refer to this chipset, but are actually general and 79 * concern all supported chipsets, unless mentioned otherwise. 80 */ 81 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/slab.h> 85 #include <linux/jiffies.h> 86 #include <linux/i2c.h> 87 #include <linux/hwmon.h> 88 #include <linux/err.h> 89 #include <linux/mutex.h> 90 #include <linux/of_device.h> 91 #include <linux/sysfs.h> 92 #include <linux/interrupt.h> 93 #include <linux/regulator/consumer.h> 94 95 /* 96 * Addresses to scan 97 * Address is fully defined internally and cannot be changed except for 98 * MAX6659, MAX6680 and MAX6681. 99 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649, 100 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c. 101 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D 102 * have address 0x4d. 103 * MAX6647 has address 0x4e. 104 * MAX6659 can have address 0x4c, 0x4d or 0x4e. 105 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 106 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e. 107 * SA56004 can have address 0x48 through 0x4F. 108 */ 109 110 static const unsigned short normal_i2c[] = { 111 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 112 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; 113 114 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680, 115 max6646, w83l771, max6696, sa56004, g781, tmp451, max6654 }; 116 117 /* 118 * The LM90 registers 119 */ 120 121 #define LM90_REG_R_MAN_ID 0xFE 122 #define LM90_REG_R_CHIP_ID 0xFF 123 #define LM90_REG_R_CONFIG1 0x03 124 #define LM90_REG_W_CONFIG1 0x09 125 #define LM90_REG_R_CONFIG2 0xBF 126 #define LM90_REG_W_CONFIG2 0xBF 127 #define LM90_REG_R_CONVRATE 0x04 128 #define LM90_REG_W_CONVRATE 0x0A 129 #define LM90_REG_R_STATUS 0x02 130 #define LM90_REG_R_LOCAL_TEMP 0x00 131 #define LM90_REG_R_LOCAL_HIGH 0x05 132 #define LM90_REG_W_LOCAL_HIGH 0x0B 133 #define LM90_REG_R_LOCAL_LOW 0x06 134 #define LM90_REG_W_LOCAL_LOW 0x0C 135 #define LM90_REG_R_LOCAL_CRIT 0x20 136 #define LM90_REG_W_LOCAL_CRIT 0x20 137 #define LM90_REG_R_REMOTE_TEMPH 0x01 138 #define LM90_REG_R_REMOTE_TEMPL 0x10 139 #define LM90_REG_R_REMOTE_OFFSH 0x11 140 #define LM90_REG_W_REMOTE_OFFSH 0x11 141 #define LM90_REG_R_REMOTE_OFFSL 0x12 142 #define LM90_REG_W_REMOTE_OFFSL 0x12 143 #define LM90_REG_R_REMOTE_HIGHH 0x07 144 #define LM90_REG_W_REMOTE_HIGHH 0x0D 145 #define LM90_REG_R_REMOTE_HIGHL 0x13 146 #define LM90_REG_W_REMOTE_HIGHL 0x13 147 #define LM90_REG_R_REMOTE_LOWH 0x08 148 #define LM90_REG_W_REMOTE_LOWH 0x0E 149 #define LM90_REG_R_REMOTE_LOWL 0x14 150 #define LM90_REG_W_REMOTE_LOWL 0x14 151 #define LM90_REG_R_REMOTE_CRIT 0x19 152 #define LM90_REG_W_REMOTE_CRIT 0x19 153 #define LM90_REG_R_TCRIT_HYST 0x21 154 #define LM90_REG_W_TCRIT_HYST 0x21 155 156 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */ 157 158 #define MAX6657_REG_R_LOCAL_TEMPL 0x11 159 #define MAX6696_REG_R_STATUS2 0x12 160 #define MAX6659_REG_R_REMOTE_EMERG 0x16 161 #define MAX6659_REG_W_REMOTE_EMERG 0x16 162 #define MAX6659_REG_R_LOCAL_EMERG 0x17 163 #define MAX6659_REG_W_LOCAL_EMERG 0x17 164 165 /* SA56004 registers */ 166 167 #define SA56004_REG_R_LOCAL_TEMPL 0x22 168 169 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */ 170 171 /* TMP451 registers */ 172 #define TMP451_REG_R_LOCAL_TEMPL 0x15 173 174 /* 175 * Device flags 176 */ 177 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */ 178 /* Device features */ 179 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */ 180 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */ 181 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */ 182 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */ 183 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */ 184 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */ 185 #define LM90_PAUSE_FOR_CONFIG (1 << 8) /* Pause conversion for config */ 186 187 /* LM90 status */ 188 #define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */ 189 #define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */ 190 #define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */ 191 #define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */ 192 #define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */ 193 #define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */ 194 #define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */ 195 196 #define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */ 197 #define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */ 198 #define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */ 199 #define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */ 200 #define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */ 201 #define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */ 202 #define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */ 203 204 /* 205 * Driver data (common to all clients) 206 */ 207 208 static const struct i2c_device_id lm90_id[] = { 209 { "adm1032", adm1032 }, 210 { "adt7461", adt7461 }, 211 { "adt7461a", adt7461 }, 212 { "g781", g781 }, 213 { "lm90", lm90 }, 214 { "lm86", lm86 }, 215 { "lm89", lm86 }, 216 { "lm99", lm99 }, 217 { "max6646", max6646 }, 218 { "max6647", max6646 }, 219 { "max6649", max6646 }, 220 { "max6654", max6654 }, 221 { "max6657", max6657 }, 222 { "max6658", max6657 }, 223 { "max6659", max6659 }, 224 { "max6680", max6680 }, 225 { "max6681", max6680 }, 226 { "max6695", max6696 }, 227 { "max6696", max6696 }, 228 { "nct1008", adt7461 }, 229 { "w83l771", w83l771 }, 230 { "sa56004", sa56004 }, 231 { "tmp451", tmp451 }, 232 { } 233 }; 234 MODULE_DEVICE_TABLE(i2c, lm90_id); 235 236 static const struct of_device_id __maybe_unused lm90_of_match[] = { 237 { 238 .compatible = "adi,adm1032", 239 .data = (void *)adm1032 240 }, 241 { 242 .compatible = "adi,adt7461", 243 .data = (void *)adt7461 244 }, 245 { 246 .compatible = "adi,adt7461a", 247 .data = (void *)adt7461 248 }, 249 { 250 .compatible = "gmt,g781", 251 .data = (void *)g781 252 }, 253 { 254 .compatible = "national,lm90", 255 .data = (void *)lm90 256 }, 257 { 258 .compatible = "national,lm86", 259 .data = (void *)lm86 260 }, 261 { 262 .compatible = "national,lm89", 263 .data = (void *)lm86 264 }, 265 { 266 .compatible = "national,lm99", 267 .data = (void *)lm99 268 }, 269 { 270 .compatible = "dallas,max6646", 271 .data = (void *)max6646 272 }, 273 { 274 .compatible = "dallas,max6647", 275 .data = (void *)max6646 276 }, 277 { 278 .compatible = "dallas,max6649", 279 .data = (void *)max6646 280 }, 281 { 282 .compatible = "dallas,max6654", 283 .data = (void *)max6654 284 }, 285 { 286 .compatible = "dallas,max6657", 287 .data = (void *)max6657 288 }, 289 { 290 .compatible = "dallas,max6658", 291 .data = (void *)max6657 292 }, 293 { 294 .compatible = "dallas,max6659", 295 .data = (void *)max6659 296 }, 297 { 298 .compatible = "dallas,max6680", 299 .data = (void *)max6680 300 }, 301 { 302 .compatible = "dallas,max6681", 303 .data = (void *)max6680 304 }, 305 { 306 .compatible = "dallas,max6695", 307 .data = (void *)max6696 308 }, 309 { 310 .compatible = "dallas,max6696", 311 .data = (void *)max6696 312 }, 313 { 314 .compatible = "onnn,nct1008", 315 .data = (void *)adt7461 316 }, 317 { 318 .compatible = "winbond,w83l771", 319 .data = (void *)w83l771 320 }, 321 { 322 .compatible = "nxp,sa56004", 323 .data = (void *)sa56004 324 }, 325 { 326 .compatible = "ti,tmp451", 327 .data = (void *)tmp451 328 }, 329 { }, 330 }; 331 MODULE_DEVICE_TABLE(of, lm90_of_match); 332 333 /* 334 * chip type specific parameters 335 */ 336 struct lm90_params { 337 u32 flags; /* Capabilities */ 338 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 339 /* Upper 8 bits for max6695/96 */ 340 u8 max_convrate; /* Maximum conversion rate register value */ 341 u8 reg_local_ext; /* Extended local temp register (optional) */ 342 }; 343 344 static const struct lm90_params lm90_params[] = { 345 [adm1032] = { 346 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 347 | LM90_HAVE_BROKEN_ALERT, 348 .alert_alarms = 0x7c, 349 .max_convrate = 10, 350 }, 351 [adt7461] = { 352 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 353 | LM90_HAVE_BROKEN_ALERT, 354 .alert_alarms = 0x7c, 355 .max_convrate = 10, 356 }, 357 [g781] = { 358 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 359 | LM90_HAVE_BROKEN_ALERT, 360 .alert_alarms = 0x7c, 361 .max_convrate = 8, 362 }, 363 [lm86] = { 364 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 365 .alert_alarms = 0x7b, 366 .max_convrate = 9, 367 }, 368 [lm90] = { 369 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 370 .alert_alarms = 0x7b, 371 .max_convrate = 9, 372 }, 373 [lm99] = { 374 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 375 .alert_alarms = 0x7b, 376 .max_convrate = 9, 377 }, 378 [max6646] = { 379 .alert_alarms = 0x7c, 380 .max_convrate = 6, 381 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 382 }, 383 [max6654] = { 384 .alert_alarms = 0x7c, 385 .max_convrate = 7, 386 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 387 }, 388 [max6657] = { 389 .flags = LM90_PAUSE_FOR_CONFIG, 390 .alert_alarms = 0x7c, 391 .max_convrate = 8, 392 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 393 }, 394 [max6659] = { 395 .flags = LM90_HAVE_EMERGENCY, 396 .alert_alarms = 0x7c, 397 .max_convrate = 8, 398 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 399 }, 400 [max6680] = { 401 .flags = LM90_HAVE_OFFSET, 402 .alert_alarms = 0x7c, 403 .max_convrate = 7, 404 }, 405 [max6696] = { 406 .flags = LM90_HAVE_EMERGENCY 407 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3, 408 .alert_alarms = 0x1c7c, 409 .max_convrate = 6, 410 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 411 }, 412 [w83l771] = { 413 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 414 .alert_alarms = 0x7c, 415 .max_convrate = 8, 416 }, 417 [sa56004] = { 418 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 419 .alert_alarms = 0x7b, 420 .max_convrate = 9, 421 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL, 422 }, 423 [tmp451] = { 424 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 425 | LM90_HAVE_BROKEN_ALERT, 426 .alert_alarms = 0x7c, 427 .max_convrate = 9, 428 .reg_local_ext = TMP451_REG_R_LOCAL_TEMPL, 429 }, 430 }; 431 432 /* 433 * TEMP8 register index 434 */ 435 enum lm90_temp8_reg_index { 436 LOCAL_LOW = 0, 437 LOCAL_HIGH, 438 LOCAL_CRIT, 439 REMOTE_CRIT, 440 LOCAL_EMERG, /* max6659 and max6695/96 */ 441 REMOTE_EMERG, /* max6659 and max6695/96 */ 442 REMOTE2_CRIT, /* max6695/96 only */ 443 REMOTE2_EMERG, /* max6695/96 only */ 444 TEMP8_REG_NUM 445 }; 446 447 /* 448 * TEMP11 register index 449 */ 450 enum lm90_temp11_reg_index { 451 REMOTE_TEMP = 0, 452 REMOTE_LOW, 453 REMOTE_HIGH, 454 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */ 455 LOCAL_TEMP, 456 REMOTE2_TEMP, /* max6695/96 only */ 457 REMOTE2_LOW, /* max6695/96 only */ 458 REMOTE2_HIGH, /* max6695/96 only */ 459 TEMP11_REG_NUM 460 }; 461 462 /* 463 * Client data (each client gets its own) 464 */ 465 466 struct lm90_data { 467 struct i2c_client *client; 468 u32 channel_config[4]; 469 struct hwmon_channel_info temp_info; 470 const struct hwmon_channel_info *info[3]; 471 struct hwmon_chip_info chip; 472 struct mutex update_lock; 473 bool valid; /* true if register values are valid */ 474 unsigned long last_updated; /* in jiffies */ 475 int kind; 476 u32 flags; 477 478 unsigned int update_interval; /* in milliseconds */ 479 480 u8 config; /* Current configuration register value */ 481 u8 config_orig; /* Original configuration register value */ 482 u8 convrate_orig; /* Original conversion rate register value */ 483 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 484 /* Upper 8 bits for max6695/96 */ 485 u8 max_convrate; /* Maximum conversion rate */ 486 u8 reg_local_ext; /* local extension register offset */ 487 488 /* registers values */ 489 s8 temp8[TEMP8_REG_NUM]; 490 s16 temp11[TEMP11_REG_NUM]; 491 u8 temp_hyst; 492 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */ 493 }; 494 495 /* 496 * Support functions 497 */ 498 499 /* 500 * The ADM1032 supports PEC but not on write byte transactions, so we need 501 * to explicitly ask for a transaction without PEC. 502 */ 503 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value) 504 { 505 return i2c_smbus_xfer(client->adapter, client->addr, 506 client->flags & ~I2C_CLIENT_PEC, 507 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL); 508 } 509 510 /* 511 * It is assumed that client->update_lock is held (unless we are in 512 * detection or initialization steps). This matters when PEC is enabled, 513 * because we don't want the address pointer to change between the write 514 * byte and the read byte transactions. 515 */ 516 static int lm90_read_reg(struct i2c_client *client, u8 reg) 517 { 518 int err; 519 520 if (client->flags & I2C_CLIENT_PEC) { 521 err = adm1032_write_byte(client, reg); 522 if (err >= 0) 523 err = i2c_smbus_read_byte(client); 524 } else 525 err = i2c_smbus_read_byte_data(client, reg); 526 527 return err; 528 } 529 530 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl) 531 { 532 int oldh, newh, l; 533 534 /* 535 * There is a trick here. We have to read two registers to have the 536 * sensor temperature, but we have to beware a conversion could occur 537 * between the readings. The datasheet says we should either use 538 * the one-shot conversion register, which we don't want to do 539 * (disables hardware monitoring) or monitor the busy bit, which is 540 * impossible (we can't read the values and monitor that bit at the 541 * exact same time). So the solution used here is to read the high 542 * byte once, then the low byte, then the high byte again. If the new 543 * high byte matches the old one, then we have a valid reading. Else 544 * we have to read the low byte again, and now we believe we have a 545 * correct reading. 546 */ 547 oldh = lm90_read_reg(client, regh); 548 if (oldh < 0) 549 return oldh; 550 l = lm90_read_reg(client, regl); 551 if (l < 0) 552 return l; 553 newh = lm90_read_reg(client, regh); 554 if (newh < 0) 555 return newh; 556 if (oldh != newh) { 557 l = lm90_read_reg(client, regl); 558 if (l < 0) 559 return l; 560 } 561 return (newh << 8) | l; 562 } 563 564 static int lm90_update_confreg(struct lm90_data *data, u8 config) 565 { 566 if (data->config != config) { 567 int err; 568 569 err = i2c_smbus_write_byte_data(data->client, 570 LM90_REG_W_CONFIG1, 571 config); 572 if (err) 573 return err; 574 data->config = config; 575 } 576 return 0; 577 } 578 579 /* 580 * client->update_lock must be held when calling this function (unless we are 581 * in detection or initialization steps), and while a remote channel other 582 * than channel 0 is selected. Also, calling code must make sure to re-select 583 * external channel 0 before releasing the lock. This is necessary because 584 * various registers have different meanings as a result of selecting a 585 * non-default remote channel. 586 */ 587 static int lm90_select_remote_channel(struct lm90_data *data, int channel) 588 { 589 int err = 0; 590 591 if (data->kind == max6696) { 592 u8 config = data->config & ~0x08; 593 594 if (channel) 595 config |= 0x08; 596 err = lm90_update_confreg(data, config); 597 } 598 return err; 599 } 600 601 static int lm90_write_convrate(struct lm90_data *data, int val) 602 { 603 u8 config = data->config; 604 int err; 605 606 /* Save config and pause conversion */ 607 if (data->flags & LM90_PAUSE_FOR_CONFIG) { 608 err = lm90_update_confreg(data, config | 0x40); 609 if (err < 0) 610 return err; 611 } 612 613 /* Set conv rate */ 614 err = i2c_smbus_write_byte_data(data->client, LM90_REG_W_CONVRATE, val); 615 616 /* Revert change to config */ 617 lm90_update_confreg(data, config); 618 619 return err; 620 } 621 622 /* 623 * Set conversion rate. 624 * client->update_lock must be held when calling this function (unless we are 625 * in detection or initialization steps). 626 */ 627 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data, 628 unsigned int interval) 629 { 630 unsigned int update_interval; 631 int i, err; 632 633 /* Shift calculations to avoid rounding errors */ 634 interval <<= 6; 635 636 /* find the nearest update rate */ 637 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6; 638 i < data->max_convrate; i++, update_interval >>= 1) 639 if (interval >= update_interval * 3 / 4) 640 break; 641 642 err = lm90_write_convrate(data, i); 643 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64); 644 return err; 645 } 646 647 static int lm90_update_limits(struct device *dev) 648 { 649 struct lm90_data *data = dev_get_drvdata(dev); 650 struct i2c_client *client = data->client; 651 int val; 652 653 val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT); 654 if (val < 0) 655 return val; 656 data->temp8[LOCAL_CRIT] = val; 657 658 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT); 659 if (val < 0) 660 return val; 661 data->temp8[REMOTE_CRIT] = val; 662 663 val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST); 664 if (val < 0) 665 return val; 666 data->temp_hyst = val; 667 668 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH); 669 if (val < 0) 670 return val; 671 data->temp11[REMOTE_LOW] = val << 8; 672 673 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) { 674 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL); 675 if (val < 0) 676 return val; 677 data->temp11[REMOTE_LOW] |= val; 678 } 679 680 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH); 681 if (val < 0) 682 return val; 683 data->temp11[REMOTE_HIGH] = val << 8; 684 685 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) { 686 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL); 687 if (val < 0) 688 return val; 689 data->temp11[REMOTE_HIGH] |= val; 690 } 691 692 if (data->flags & LM90_HAVE_OFFSET) { 693 val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH, 694 LM90_REG_R_REMOTE_OFFSL); 695 if (val < 0) 696 return val; 697 data->temp11[REMOTE_OFFSET] = val; 698 } 699 700 if (data->flags & LM90_HAVE_EMERGENCY) { 701 val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG); 702 if (val < 0) 703 return val; 704 data->temp8[LOCAL_EMERG] = val; 705 706 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG); 707 if (val < 0) 708 return val; 709 data->temp8[REMOTE_EMERG] = val; 710 } 711 712 if (data->kind == max6696) { 713 val = lm90_select_remote_channel(data, 1); 714 if (val < 0) 715 return val; 716 717 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT); 718 if (val < 0) 719 return val; 720 data->temp8[REMOTE2_CRIT] = val; 721 722 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG); 723 if (val < 0) 724 return val; 725 data->temp8[REMOTE2_EMERG] = val; 726 727 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH); 728 if (val < 0) 729 return val; 730 data->temp11[REMOTE2_LOW] = val << 8; 731 732 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH); 733 if (val < 0) 734 return val; 735 data->temp11[REMOTE2_HIGH] = val << 8; 736 737 lm90_select_remote_channel(data, 0); 738 } 739 740 return 0; 741 } 742 743 static int lm90_update_device(struct device *dev) 744 { 745 struct lm90_data *data = dev_get_drvdata(dev); 746 struct i2c_client *client = data->client; 747 unsigned long next_update; 748 int val; 749 750 if (!data->valid) { 751 val = lm90_update_limits(dev); 752 if (val < 0) 753 return val; 754 } 755 756 next_update = data->last_updated + 757 msecs_to_jiffies(data->update_interval); 758 if (time_after(jiffies, next_update) || !data->valid) { 759 dev_dbg(&client->dev, "Updating lm90 data.\n"); 760 761 data->valid = false; 762 763 val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW); 764 if (val < 0) 765 return val; 766 data->temp8[LOCAL_LOW] = val; 767 768 val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH); 769 if (val < 0) 770 return val; 771 data->temp8[LOCAL_HIGH] = val; 772 773 if (data->reg_local_ext) { 774 val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP, 775 data->reg_local_ext); 776 if (val < 0) 777 return val; 778 data->temp11[LOCAL_TEMP] = val; 779 } else { 780 val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP); 781 if (val < 0) 782 return val; 783 data->temp11[LOCAL_TEMP] = val << 8; 784 } 785 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, 786 LM90_REG_R_REMOTE_TEMPL); 787 if (val < 0) 788 return val; 789 data->temp11[REMOTE_TEMP] = val; 790 791 val = lm90_read_reg(client, LM90_REG_R_STATUS); 792 if (val < 0) 793 return val; 794 data->alarms = val; /* lower 8 bit of alarms */ 795 796 if (data->kind == max6696) { 797 val = lm90_select_remote_channel(data, 1); 798 if (val < 0) 799 return val; 800 801 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, 802 LM90_REG_R_REMOTE_TEMPL); 803 if (val < 0) { 804 lm90_select_remote_channel(data, 0); 805 return val; 806 } 807 data->temp11[REMOTE2_TEMP] = val; 808 809 lm90_select_remote_channel(data, 0); 810 811 val = lm90_read_reg(client, MAX6696_REG_R_STATUS2); 812 if (val < 0) 813 return val; 814 data->alarms |= val << 8; 815 } 816 817 /* 818 * Re-enable ALERT# output if it was originally enabled and 819 * relevant alarms are all clear 820 */ 821 if (!(data->config_orig & 0x80) && 822 !(data->alarms & data->alert_alarms)) { 823 if (data->config & 0x80) { 824 dev_dbg(&client->dev, "Re-enabling ALERT#\n"); 825 lm90_update_confreg(data, data->config & ~0x80); 826 } 827 } 828 829 data->last_updated = jiffies; 830 data->valid = true; 831 } 832 833 return 0; 834 } 835 836 /* 837 * Conversions 838 * For local temperatures and limits, critical limits and the hysteresis 839 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius. 840 * For remote temperatures and limits, it uses signed 11-bit values with 841 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some 842 * Maxim chips use unsigned values. 843 */ 844 845 static inline int temp_from_s8(s8 val) 846 { 847 return val * 1000; 848 } 849 850 static inline int temp_from_u8(u8 val) 851 { 852 return val * 1000; 853 } 854 855 static inline int temp_from_s16(s16 val) 856 { 857 return val / 32 * 125; 858 } 859 860 static inline int temp_from_u16(u16 val) 861 { 862 return val / 32 * 125; 863 } 864 865 static s8 temp_to_s8(long val) 866 { 867 if (val <= -128000) 868 return -128; 869 if (val >= 127000) 870 return 127; 871 if (val < 0) 872 return (val - 500) / 1000; 873 return (val + 500) / 1000; 874 } 875 876 static u8 temp_to_u8(long val) 877 { 878 if (val <= 0) 879 return 0; 880 if (val >= 255000) 881 return 255; 882 return (val + 500) / 1000; 883 } 884 885 static s16 temp_to_s16(long val) 886 { 887 if (val <= -128000) 888 return 0x8000; 889 if (val >= 127875) 890 return 0x7FE0; 891 if (val < 0) 892 return (val - 62) / 125 * 32; 893 return (val + 62) / 125 * 32; 894 } 895 896 static u8 hyst_to_reg(long val) 897 { 898 if (val <= 0) 899 return 0; 900 if (val >= 30500) 901 return 31; 902 return (val + 500) / 1000; 903 } 904 905 /* 906 * ADT7461 in compatibility mode is almost identical to LM90 except that 907 * attempts to write values that are outside the range 0 < temp < 127 are 908 * treated as the boundary value. 909 * 910 * ADT7461 in "extended mode" operation uses unsigned integers offset by 911 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC. 912 */ 913 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val) 914 { 915 if (data->flags & LM90_FLAG_ADT7461_EXT) 916 return (val - 64) * 1000; 917 return temp_from_s8(val); 918 } 919 920 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val) 921 { 922 if (data->flags & LM90_FLAG_ADT7461_EXT) 923 return (val - 0x4000) / 64 * 250; 924 return temp_from_s16(val); 925 } 926 927 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val) 928 { 929 if (data->flags & LM90_FLAG_ADT7461_EXT) { 930 if (val <= -64000) 931 return 0; 932 if (val >= 191000) 933 return 0xFF; 934 return (val + 500 + 64000) / 1000; 935 } 936 if (val <= 0) 937 return 0; 938 if (val >= 127000) 939 return 127; 940 return (val + 500) / 1000; 941 } 942 943 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val) 944 { 945 if (data->flags & LM90_FLAG_ADT7461_EXT) { 946 if (val <= -64000) 947 return 0; 948 if (val >= 191750) 949 return 0xFFC0; 950 return (val + 64000 + 125) / 250 * 64; 951 } 952 if (val <= 0) 953 return 0; 954 if (val >= 127750) 955 return 0x7FC0; 956 return (val + 125) / 250 * 64; 957 } 958 959 /* pec used for ADM1032 only */ 960 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy, 961 char *buf) 962 { 963 struct i2c_client *client = to_i2c_client(dev); 964 965 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); 966 } 967 968 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy, 969 const char *buf, size_t count) 970 { 971 struct i2c_client *client = to_i2c_client(dev); 972 long val; 973 int err; 974 975 err = kstrtol(buf, 10, &val); 976 if (err < 0) 977 return err; 978 979 switch (val) { 980 case 0: 981 client->flags &= ~I2C_CLIENT_PEC; 982 break; 983 case 1: 984 client->flags |= I2C_CLIENT_PEC; 985 break; 986 default: 987 return -EINVAL; 988 } 989 990 return count; 991 } 992 993 static DEVICE_ATTR_RW(pec); 994 995 static int lm90_get_temp11(struct lm90_data *data, int index) 996 { 997 s16 temp11 = data->temp11[index]; 998 int temp; 999 1000 if (data->kind == adt7461 || data->kind == tmp451) 1001 temp = temp_from_u16_adt7461(data, temp11); 1002 else if (data->kind == max6646) 1003 temp = temp_from_u16(temp11); 1004 else 1005 temp = temp_from_s16(temp11); 1006 1007 /* +16 degrees offset for temp2 for the LM99 */ 1008 if (data->kind == lm99 && index <= 2) 1009 temp += 16000; 1010 1011 return temp; 1012 } 1013 1014 static int lm90_set_temp11(struct lm90_data *data, int index, long val) 1015 { 1016 static struct reg { 1017 u8 high; 1018 u8 low; 1019 } reg[] = { 1020 [REMOTE_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL }, 1021 [REMOTE_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL }, 1022 [REMOTE_OFFSET] = { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL }, 1023 [REMOTE2_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL }, 1024 [REMOTE2_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL } 1025 }; 1026 struct i2c_client *client = data->client; 1027 struct reg *regp = ®[index]; 1028 int err; 1029 1030 /* +16 degrees offset for temp2 for the LM99 */ 1031 if (data->kind == lm99 && index <= 2) 1032 val -= 16000; 1033 1034 if (data->kind == adt7461 || data->kind == tmp451) 1035 data->temp11[index] = temp_to_u16_adt7461(data, val); 1036 else if (data->kind == max6646) 1037 data->temp11[index] = temp_to_u8(val) << 8; 1038 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT) 1039 data->temp11[index] = temp_to_s16(val); 1040 else 1041 data->temp11[index] = temp_to_s8(val) << 8; 1042 1043 lm90_select_remote_channel(data, index >= 3); 1044 err = i2c_smbus_write_byte_data(client, regp->high, 1045 data->temp11[index] >> 8); 1046 if (err < 0) 1047 return err; 1048 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) 1049 err = i2c_smbus_write_byte_data(client, regp->low, 1050 data->temp11[index] & 0xff); 1051 1052 lm90_select_remote_channel(data, 0); 1053 return err; 1054 } 1055 1056 static int lm90_get_temp8(struct lm90_data *data, int index) 1057 { 1058 s8 temp8 = data->temp8[index]; 1059 int temp; 1060 1061 if (data->kind == adt7461 || data->kind == tmp451) 1062 temp = temp_from_u8_adt7461(data, temp8); 1063 else if (data->kind == max6646) 1064 temp = temp_from_u8(temp8); 1065 else 1066 temp = temp_from_s8(temp8); 1067 1068 /* +16 degrees offset for temp2 for the LM99 */ 1069 if (data->kind == lm99 && index == 3) 1070 temp += 16000; 1071 1072 return temp; 1073 } 1074 1075 static int lm90_set_temp8(struct lm90_data *data, int index, long val) 1076 { 1077 static const u8 reg[TEMP8_REG_NUM] = { 1078 LM90_REG_W_LOCAL_LOW, 1079 LM90_REG_W_LOCAL_HIGH, 1080 LM90_REG_W_LOCAL_CRIT, 1081 LM90_REG_W_REMOTE_CRIT, 1082 MAX6659_REG_W_LOCAL_EMERG, 1083 MAX6659_REG_W_REMOTE_EMERG, 1084 LM90_REG_W_REMOTE_CRIT, 1085 MAX6659_REG_W_REMOTE_EMERG, 1086 }; 1087 struct i2c_client *client = data->client; 1088 int err; 1089 1090 /* +16 degrees offset for temp2 for the LM99 */ 1091 if (data->kind == lm99 && index == 3) 1092 val -= 16000; 1093 1094 if (data->kind == adt7461 || data->kind == tmp451) 1095 data->temp8[index] = temp_to_u8_adt7461(data, val); 1096 else if (data->kind == max6646) 1097 data->temp8[index] = temp_to_u8(val); 1098 else 1099 data->temp8[index] = temp_to_s8(val); 1100 1101 lm90_select_remote_channel(data, index >= 6); 1102 err = i2c_smbus_write_byte_data(client, reg[index], data->temp8[index]); 1103 lm90_select_remote_channel(data, 0); 1104 1105 return err; 1106 } 1107 1108 static int lm90_get_temphyst(struct lm90_data *data, int index) 1109 { 1110 int temp; 1111 1112 if (data->kind == adt7461 || data->kind == tmp451) 1113 temp = temp_from_u8_adt7461(data, data->temp8[index]); 1114 else if (data->kind == max6646) 1115 temp = temp_from_u8(data->temp8[index]); 1116 else 1117 temp = temp_from_s8(data->temp8[index]); 1118 1119 /* +16 degrees offset for temp2 for the LM99 */ 1120 if (data->kind == lm99 && index == 3) 1121 temp += 16000; 1122 1123 return temp - temp_from_s8(data->temp_hyst); 1124 } 1125 1126 static int lm90_set_temphyst(struct lm90_data *data, long val) 1127 { 1128 struct i2c_client *client = data->client; 1129 int temp; 1130 int err; 1131 1132 if (data->kind == adt7461 || data->kind == tmp451) 1133 temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]); 1134 else if (data->kind == max6646) 1135 temp = temp_from_u8(data->temp8[LOCAL_CRIT]); 1136 else 1137 temp = temp_from_s8(data->temp8[LOCAL_CRIT]); 1138 1139 data->temp_hyst = hyst_to_reg(temp - val); 1140 err = i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST, 1141 data->temp_hyst); 1142 return err; 1143 } 1144 1145 static const u8 lm90_temp_index[3] = { 1146 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP 1147 }; 1148 1149 static const u8 lm90_temp_min_index[3] = { 1150 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW 1151 }; 1152 1153 static const u8 lm90_temp_max_index[3] = { 1154 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH 1155 }; 1156 1157 static const u8 lm90_temp_crit_index[3] = { 1158 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT 1159 }; 1160 1161 static const u8 lm90_temp_emerg_index[3] = { 1162 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG 1163 }; 1164 1165 static const u8 lm90_min_alarm_bits[3] = { 5, 3, 11 }; 1166 static const u8 lm90_max_alarm_bits[3] = { 6, 4, 12 }; 1167 static const u8 lm90_crit_alarm_bits[3] = { 0, 1, 9 }; 1168 static const u8 lm90_emergency_alarm_bits[3] = { 15, 13, 14 }; 1169 static const u8 lm90_fault_bits[3] = { 0, 2, 10 }; 1170 1171 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val) 1172 { 1173 struct lm90_data *data = dev_get_drvdata(dev); 1174 int err; 1175 1176 mutex_lock(&data->update_lock); 1177 err = lm90_update_device(dev); 1178 mutex_unlock(&data->update_lock); 1179 if (err) 1180 return err; 1181 1182 switch (attr) { 1183 case hwmon_temp_input: 1184 *val = lm90_get_temp11(data, lm90_temp_index[channel]); 1185 break; 1186 case hwmon_temp_min_alarm: 1187 *val = (data->alarms >> lm90_min_alarm_bits[channel]) & 1; 1188 break; 1189 case hwmon_temp_max_alarm: 1190 *val = (data->alarms >> lm90_max_alarm_bits[channel]) & 1; 1191 break; 1192 case hwmon_temp_crit_alarm: 1193 *val = (data->alarms >> lm90_crit_alarm_bits[channel]) & 1; 1194 break; 1195 case hwmon_temp_emergency_alarm: 1196 *val = (data->alarms >> lm90_emergency_alarm_bits[channel]) & 1; 1197 break; 1198 case hwmon_temp_fault: 1199 *val = (data->alarms >> lm90_fault_bits[channel]) & 1; 1200 break; 1201 case hwmon_temp_min: 1202 if (channel == 0) 1203 *val = lm90_get_temp8(data, 1204 lm90_temp_min_index[channel]); 1205 else 1206 *val = lm90_get_temp11(data, 1207 lm90_temp_min_index[channel]); 1208 break; 1209 case hwmon_temp_max: 1210 if (channel == 0) 1211 *val = lm90_get_temp8(data, 1212 lm90_temp_max_index[channel]); 1213 else 1214 *val = lm90_get_temp11(data, 1215 lm90_temp_max_index[channel]); 1216 break; 1217 case hwmon_temp_crit: 1218 *val = lm90_get_temp8(data, lm90_temp_crit_index[channel]); 1219 break; 1220 case hwmon_temp_crit_hyst: 1221 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel]); 1222 break; 1223 case hwmon_temp_emergency: 1224 *val = lm90_get_temp8(data, lm90_temp_emerg_index[channel]); 1225 break; 1226 case hwmon_temp_emergency_hyst: 1227 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel]); 1228 break; 1229 case hwmon_temp_offset: 1230 *val = lm90_get_temp11(data, REMOTE_OFFSET); 1231 break; 1232 default: 1233 return -EOPNOTSUPP; 1234 } 1235 return 0; 1236 } 1237 1238 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val) 1239 { 1240 struct lm90_data *data = dev_get_drvdata(dev); 1241 int err; 1242 1243 mutex_lock(&data->update_lock); 1244 1245 err = lm90_update_device(dev); 1246 if (err) 1247 goto error; 1248 1249 switch (attr) { 1250 case hwmon_temp_min: 1251 if (channel == 0) 1252 err = lm90_set_temp8(data, 1253 lm90_temp_min_index[channel], 1254 val); 1255 else 1256 err = lm90_set_temp11(data, 1257 lm90_temp_min_index[channel], 1258 val); 1259 break; 1260 case hwmon_temp_max: 1261 if (channel == 0) 1262 err = lm90_set_temp8(data, 1263 lm90_temp_max_index[channel], 1264 val); 1265 else 1266 err = lm90_set_temp11(data, 1267 lm90_temp_max_index[channel], 1268 val); 1269 break; 1270 case hwmon_temp_crit: 1271 err = lm90_set_temp8(data, lm90_temp_crit_index[channel], val); 1272 break; 1273 case hwmon_temp_crit_hyst: 1274 err = lm90_set_temphyst(data, val); 1275 break; 1276 case hwmon_temp_emergency: 1277 err = lm90_set_temp8(data, lm90_temp_emerg_index[channel], val); 1278 break; 1279 case hwmon_temp_offset: 1280 err = lm90_set_temp11(data, REMOTE_OFFSET, val); 1281 break; 1282 default: 1283 err = -EOPNOTSUPP; 1284 break; 1285 } 1286 error: 1287 mutex_unlock(&data->update_lock); 1288 1289 return err; 1290 } 1291 1292 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel) 1293 { 1294 switch (attr) { 1295 case hwmon_temp_input: 1296 case hwmon_temp_min_alarm: 1297 case hwmon_temp_max_alarm: 1298 case hwmon_temp_crit_alarm: 1299 case hwmon_temp_emergency_alarm: 1300 case hwmon_temp_emergency_hyst: 1301 case hwmon_temp_fault: 1302 return 0444; 1303 case hwmon_temp_min: 1304 case hwmon_temp_max: 1305 case hwmon_temp_crit: 1306 case hwmon_temp_emergency: 1307 case hwmon_temp_offset: 1308 return 0644; 1309 case hwmon_temp_crit_hyst: 1310 if (channel == 0) 1311 return 0644; 1312 return 0444; 1313 default: 1314 return 0; 1315 } 1316 } 1317 1318 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val) 1319 { 1320 struct lm90_data *data = dev_get_drvdata(dev); 1321 int err; 1322 1323 mutex_lock(&data->update_lock); 1324 err = lm90_update_device(dev); 1325 mutex_unlock(&data->update_lock); 1326 if (err) 1327 return err; 1328 1329 switch (attr) { 1330 case hwmon_chip_update_interval: 1331 *val = data->update_interval; 1332 break; 1333 case hwmon_chip_alarms: 1334 *val = data->alarms; 1335 break; 1336 default: 1337 return -EOPNOTSUPP; 1338 } 1339 1340 return 0; 1341 } 1342 1343 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val) 1344 { 1345 struct lm90_data *data = dev_get_drvdata(dev); 1346 struct i2c_client *client = data->client; 1347 int err; 1348 1349 mutex_lock(&data->update_lock); 1350 1351 err = lm90_update_device(dev); 1352 if (err) 1353 goto error; 1354 1355 switch (attr) { 1356 case hwmon_chip_update_interval: 1357 err = lm90_set_convrate(client, data, 1358 clamp_val(val, 0, 100000)); 1359 break; 1360 default: 1361 err = -EOPNOTSUPP; 1362 break; 1363 } 1364 error: 1365 mutex_unlock(&data->update_lock); 1366 1367 return err; 1368 } 1369 1370 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel) 1371 { 1372 switch (attr) { 1373 case hwmon_chip_update_interval: 1374 return 0644; 1375 case hwmon_chip_alarms: 1376 return 0444; 1377 default: 1378 return 0; 1379 } 1380 } 1381 1382 static int lm90_read(struct device *dev, enum hwmon_sensor_types type, 1383 u32 attr, int channel, long *val) 1384 { 1385 switch (type) { 1386 case hwmon_chip: 1387 return lm90_chip_read(dev, attr, channel, val); 1388 case hwmon_temp: 1389 return lm90_temp_read(dev, attr, channel, val); 1390 default: 1391 return -EOPNOTSUPP; 1392 } 1393 } 1394 1395 static int lm90_write(struct device *dev, enum hwmon_sensor_types type, 1396 u32 attr, int channel, long val) 1397 { 1398 switch (type) { 1399 case hwmon_chip: 1400 return lm90_chip_write(dev, attr, channel, val); 1401 case hwmon_temp: 1402 return lm90_temp_write(dev, attr, channel, val); 1403 default: 1404 return -EOPNOTSUPP; 1405 } 1406 } 1407 1408 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type, 1409 u32 attr, int channel) 1410 { 1411 switch (type) { 1412 case hwmon_chip: 1413 return lm90_chip_is_visible(data, attr, channel); 1414 case hwmon_temp: 1415 return lm90_temp_is_visible(data, attr, channel); 1416 default: 1417 return 0; 1418 } 1419 } 1420 1421 /* Return 0 if detection is successful, -ENODEV otherwise */ 1422 static int lm90_detect(struct i2c_client *client, 1423 struct i2c_board_info *info) 1424 { 1425 struct i2c_adapter *adapter = client->adapter; 1426 int address = client->addr; 1427 const char *name = NULL; 1428 int man_id, chip_id, config1, config2, convrate; 1429 1430 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1431 return -ENODEV; 1432 1433 /* detection and identification */ 1434 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID); 1435 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID); 1436 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1); 1437 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE); 1438 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0) 1439 return -ENODEV; 1440 1441 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) { 1442 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2); 1443 if (config2 < 0) 1444 return -ENODEV; 1445 } else 1446 config2 = 0; /* Make compiler happy */ 1447 1448 if ((address == 0x4C || address == 0x4D) 1449 && man_id == 0x01) { /* National Semiconductor */ 1450 if ((config1 & 0x2A) == 0x00 1451 && (config2 & 0xF8) == 0x00 1452 && convrate <= 0x09) { 1453 if (address == 0x4C 1454 && (chip_id & 0xF0) == 0x20) { /* LM90 */ 1455 name = "lm90"; 1456 } else 1457 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */ 1458 name = "lm99"; 1459 dev_info(&adapter->dev, 1460 "Assuming LM99 chip at 0x%02x\n", 1461 address); 1462 dev_info(&adapter->dev, 1463 "If it is an LM89, instantiate it " 1464 "with the new_device sysfs " 1465 "interface\n"); 1466 } else 1467 if (address == 0x4C 1468 && (chip_id & 0xF0) == 0x10) { /* LM86 */ 1469 name = "lm86"; 1470 } 1471 } 1472 } else 1473 if ((address == 0x4C || address == 0x4D) 1474 && man_id == 0x41) { /* Analog Devices */ 1475 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */ 1476 && (config1 & 0x3F) == 0x00 1477 && convrate <= 0x0A) { 1478 name = "adm1032"; 1479 /* 1480 * The ADM1032 supports PEC, but only if combined 1481 * transactions are not used. 1482 */ 1483 if (i2c_check_functionality(adapter, 1484 I2C_FUNC_SMBUS_BYTE)) 1485 info->flags |= I2C_CLIENT_PEC; 1486 } else 1487 if (chip_id == 0x51 /* ADT7461 */ 1488 && (config1 & 0x1B) == 0x00 1489 && convrate <= 0x0A) { 1490 name = "adt7461"; 1491 } else 1492 if (chip_id == 0x57 /* ADT7461A, NCT1008 */ 1493 && (config1 & 0x1B) == 0x00 1494 && convrate <= 0x0A) { 1495 name = "adt7461a"; 1496 } 1497 } else 1498 if (man_id == 0x4D) { /* Maxim */ 1499 int emerg, emerg2, status2; 1500 1501 /* 1502 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read 1503 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG 1504 * exists, both readings will reflect the same value. Otherwise, 1505 * the readings will be different. 1506 */ 1507 emerg = i2c_smbus_read_byte_data(client, 1508 MAX6659_REG_R_REMOTE_EMERG); 1509 man_id = i2c_smbus_read_byte_data(client, 1510 LM90_REG_R_MAN_ID); 1511 emerg2 = i2c_smbus_read_byte_data(client, 1512 MAX6659_REG_R_REMOTE_EMERG); 1513 status2 = i2c_smbus_read_byte_data(client, 1514 MAX6696_REG_R_STATUS2); 1515 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0) 1516 return -ENODEV; 1517 1518 /* 1519 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id 1520 * register. Reading from that address will return the last 1521 * read value, which in our case is those of the man_id 1522 * register. Likewise, the config1 register seems to lack a 1523 * low nibble, so the value will be those of the previous 1524 * read, so in our case those of the man_id register. 1525 * MAX6659 has a third set of upper temperature limit registers. 1526 * Those registers also return values on MAX6657 and MAX6658, 1527 * thus the only way to detect MAX6659 is by its address. 1528 * For this reason it will be mis-detected as MAX6657 if its 1529 * address is 0x4C. 1530 */ 1531 if (chip_id == man_id 1532 && (address == 0x4C || address == 0x4D || address == 0x4E) 1533 && (config1 & 0x1F) == (man_id & 0x0F) 1534 && convrate <= 0x09) { 1535 if (address == 0x4C) 1536 name = "max6657"; 1537 else 1538 name = "max6659"; 1539 } else 1540 /* 1541 * Even though MAX6695 and MAX6696 do not have a chip ID 1542 * register, reading it returns 0x01. Bit 4 of the config1 1543 * register is unused and should return zero when read. Bit 0 of 1544 * the status2 register is unused and should return zero when 1545 * read. 1546 * 1547 * MAX6695 and MAX6696 have an additional set of temperature 1548 * limit registers. We can detect those chips by checking if 1549 * one of those registers exists. 1550 */ 1551 if (chip_id == 0x01 1552 && (config1 & 0x10) == 0x00 1553 && (status2 & 0x01) == 0x00 1554 && emerg == emerg2 1555 && convrate <= 0x07) { 1556 name = "max6696"; 1557 } else 1558 /* 1559 * The chip_id register of the MAX6680 and MAX6681 holds the 1560 * revision of the chip. The lowest bit of the config1 register 1561 * is unused and should return zero when read, so should the 1562 * second to last bit of config1 (software reset). 1563 */ 1564 if (chip_id == 0x01 1565 && (config1 & 0x03) == 0x00 1566 && convrate <= 0x07) { 1567 name = "max6680"; 1568 } else 1569 /* 1570 * The chip_id register of the MAX6646/6647/6649 holds the 1571 * revision of the chip. The lowest 6 bits of the config1 1572 * register are unused and should return zero when read. 1573 */ 1574 if (chip_id == 0x59 1575 && (config1 & 0x3f) == 0x00 1576 && convrate <= 0x07) { 1577 name = "max6646"; 1578 } else 1579 /* 1580 * The chip_id of the MAX6654 holds the revision of the chip. 1581 * The lowest 3 bits of the config1 register are unused and 1582 * should return zero when read. 1583 */ 1584 if (chip_id == 0x08 1585 && (config1 & 0x07) == 0x00 1586 && convrate <= 0x07) { 1587 name = "max6654"; 1588 } 1589 } else 1590 if (address == 0x4C 1591 && man_id == 0x5C) { /* Winbond/Nuvoton */ 1592 if ((config1 & 0x2A) == 0x00 1593 && (config2 & 0xF8) == 0x00) { 1594 if (chip_id == 0x01 /* W83L771W/G */ 1595 && convrate <= 0x09) { 1596 name = "w83l771"; 1597 } else 1598 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */ 1599 && convrate <= 0x08) { 1600 name = "w83l771"; 1601 } 1602 } 1603 } else 1604 if (address >= 0x48 && address <= 0x4F 1605 && man_id == 0xA1) { /* NXP Semiconductor/Philips */ 1606 if (chip_id == 0x00 1607 && (config1 & 0x2A) == 0x00 1608 && (config2 & 0xFE) == 0x00 1609 && convrate <= 0x09) { 1610 name = "sa56004"; 1611 } 1612 } else 1613 if ((address == 0x4C || address == 0x4D) 1614 && man_id == 0x47) { /* GMT */ 1615 if (chip_id == 0x01 /* G781 */ 1616 && (config1 & 0x3F) == 0x00 1617 && convrate <= 0x08) 1618 name = "g781"; 1619 } else 1620 if (address == 0x4C 1621 && man_id == 0x55) { /* Texas Instruments */ 1622 int local_ext; 1623 1624 local_ext = i2c_smbus_read_byte_data(client, 1625 TMP451_REG_R_LOCAL_TEMPL); 1626 1627 if (chip_id == 0x00 /* TMP451 */ 1628 && (config1 & 0x1B) == 0x00 1629 && convrate <= 0x09 1630 && (local_ext & 0x0F) == 0x00) 1631 name = "tmp451"; 1632 } 1633 1634 if (!name) { /* identification failed */ 1635 dev_dbg(&adapter->dev, 1636 "Unsupported chip at 0x%02x (man_id=0x%02X, " 1637 "chip_id=0x%02X)\n", address, man_id, chip_id); 1638 return -ENODEV; 1639 } 1640 1641 strlcpy(info->type, name, I2C_NAME_SIZE); 1642 1643 return 0; 1644 } 1645 1646 static void lm90_restore_conf(void *_data) 1647 { 1648 struct lm90_data *data = _data; 1649 struct i2c_client *client = data->client; 1650 1651 /* Restore initial configuration */ 1652 lm90_write_convrate(data, data->convrate_orig); 1653 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, 1654 data->config_orig); 1655 } 1656 1657 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data) 1658 { 1659 int config, convrate; 1660 1661 convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE); 1662 if (convrate < 0) 1663 return convrate; 1664 data->convrate_orig = convrate; 1665 1666 /* 1667 * Start the conversions. 1668 */ 1669 config = lm90_read_reg(client, LM90_REG_R_CONFIG1); 1670 if (config < 0) 1671 return config; 1672 data->config_orig = config; 1673 data->config = config; 1674 1675 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */ 1676 1677 /* Check Temperature Range Select */ 1678 if (data->kind == adt7461 || data->kind == tmp451) { 1679 if (config & 0x04) 1680 data->flags |= LM90_FLAG_ADT7461_EXT; 1681 } 1682 1683 /* 1684 * Put MAX6680/MAX8881 into extended resolution (bit 0x10, 1685 * 0.125 degree resolution) and range (0x08, extend range 1686 * to -64 degree) mode for the remote temperature sensor. 1687 */ 1688 if (data->kind == max6680) 1689 config |= 0x18; 1690 1691 /* 1692 * Put MAX6654 into extended range (0x20, extend minimum range from 1693 * 0 degrees to -64 degrees). Note that extended resolution is not 1694 * possible on the MAX6654 unless conversion rate is set to 1 Hz or 1695 * slower, which is intentionally not done by default. 1696 */ 1697 if (data->kind == max6654) 1698 config |= 0x20; 1699 1700 /* 1701 * Select external channel 0 for max6695/96 1702 */ 1703 if (data->kind == max6696) 1704 config &= ~0x08; 1705 1706 config &= 0xBF; /* run */ 1707 lm90_update_confreg(data, config); 1708 1709 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data); 1710 } 1711 1712 static bool lm90_is_tripped(struct i2c_client *client, u16 *status) 1713 { 1714 struct lm90_data *data = i2c_get_clientdata(client); 1715 int st, st2 = 0; 1716 1717 st = lm90_read_reg(client, LM90_REG_R_STATUS); 1718 if (st < 0) 1719 return false; 1720 1721 if (data->kind == max6696) { 1722 st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2); 1723 if (st2 < 0) 1724 return false; 1725 } 1726 1727 *status = st | (st2 << 8); 1728 1729 if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0) 1730 return false; 1731 1732 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) || 1733 (st2 & MAX6696_STATUS2_LOT2)) 1734 dev_warn(&client->dev, 1735 "temp%d out of range, please check!\n", 1); 1736 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) || 1737 (st2 & MAX6696_STATUS2_ROT2)) 1738 dev_warn(&client->dev, 1739 "temp%d out of range, please check!\n", 2); 1740 if (st & LM90_STATUS_ROPEN) 1741 dev_warn(&client->dev, 1742 "temp%d diode open, please check!\n", 2); 1743 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH | 1744 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2)) 1745 dev_warn(&client->dev, 1746 "temp%d out of range, please check!\n", 3); 1747 if (st2 & MAX6696_STATUS2_R2OPEN) 1748 dev_warn(&client->dev, 1749 "temp%d diode open, please check!\n", 3); 1750 1751 return true; 1752 } 1753 1754 static irqreturn_t lm90_irq_thread(int irq, void *dev_id) 1755 { 1756 struct i2c_client *client = dev_id; 1757 u16 status; 1758 1759 if (lm90_is_tripped(client, &status)) 1760 return IRQ_HANDLED; 1761 else 1762 return IRQ_NONE; 1763 } 1764 1765 static void lm90_remove_pec(void *dev) 1766 { 1767 device_remove_file(dev, &dev_attr_pec); 1768 } 1769 1770 static void lm90_regulator_disable(void *regulator) 1771 { 1772 regulator_disable(regulator); 1773 } 1774 1775 1776 static const struct hwmon_ops lm90_ops = { 1777 .is_visible = lm90_is_visible, 1778 .read = lm90_read, 1779 .write = lm90_write, 1780 }; 1781 1782 static int lm90_probe(struct i2c_client *client) 1783 { 1784 struct device *dev = &client->dev; 1785 struct i2c_adapter *adapter = client->adapter; 1786 struct hwmon_channel_info *info; 1787 struct regulator *regulator; 1788 struct device *hwmon_dev; 1789 struct lm90_data *data; 1790 int err; 1791 1792 regulator = devm_regulator_get(dev, "vcc"); 1793 if (IS_ERR(regulator)) 1794 return PTR_ERR(regulator); 1795 1796 err = regulator_enable(regulator); 1797 if (err < 0) { 1798 dev_err(dev, "Failed to enable regulator: %d\n", err); 1799 return err; 1800 } 1801 1802 err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator); 1803 if (err) 1804 return err; 1805 1806 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL); 1807 if (!data) 1808 return -ENOMEM; 1809 1810 data->client = client; 1811 i2c_set_clientdata(client, data); 1812 mutex_init(&data->update_lock); 1813 1814 /* Set the device type */ 1815 if (client->dev.of_node) 1816 data->kind = (enum chips)of_device_get_match_data(&client->dev); 1817 else 1818 data->kind = i2c_match_id(lm90_id, client)->driver_data; 1819 if (data->kind == adm1032) { 1820 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) 1821 client->flags &= ~I2C_CLIENT_PEC; 1822 } 1823 1824 /* 1825 * Different devices have different alarm bits triggering the 1826 * ALERT# output 1827 */ 1828 data->alert_alarms = lm90_params[data->kind].alert_alarms; 1829 1830 /* Set chip capabilities */ 1831 data->flags = lm90_params[data->kind].flags; 1832 1833 data->chip.ops = &lm90_ops; 1834 data->chip.info = data->info; 1835 1836 data->info[0] = HWMON_CHANNEL_INFO(chip, 1837 HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL | HWMON_C_ALARMS); 1838 data->info[1] = &data->temp_info; 1839 1840 info = &data->temp_info; 1841 info->type = hwmon_temp; 1842 info->config = data->channel_config; 1843 1844 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | 1845 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | 1846 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM; 1847 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | 1848 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | 1849 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT; 1850 1851 if (data->flags & LM90_HAVE_OFFSET) 1852 data->channel_config[1] |= HWMON_T_OFFSET; 1853 1854 if (data->flags & LM90_HAVE_EMERGENCY) { 1855 data->channel_config[0] |= HWMON_T_EMERGENCY | 1856 HWMON_T_EMERGENCY_HYST; 1857 data->channel_config[1] |= HWMON_T_EMERGENCY | 1858 HWMON_T_EMERGENCY_HYST; 1859 } 1860 1861 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) { 1862 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM; 1863 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM; 1864 } 1865 1866 if (data->flags & LM90_HAVE_TEMP3) { 1867 data->channel_config[2] = HWMON_T_INPUT | 1868 HWMON_T_MIN | HWMON_T_MAX | 1869 HWMON_T_CRIT | HWMON_T_CRIT_HYST | 1870 HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST | 1871 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | 1872 HWMON_T_CRIT_ALARM | HWMON_T_EMERGENCY_ALARM | 1873 HWMON_T_FAULT; 1874 } 1875 1876 data->reg_local_ext = lm90_params[data->kind].reg_local_ext; 1877 1878 /* Set maximum conversion rate */ 1879 data->max_convrate = lm90_params[data->kind].max_convrate; 1880 1881 /* Initialize the LM90 chip */ 1882 err = lm90_init_client(client, data); 1883 if (err < 0) { 1884 dev_err(dev, "Failed to initialize device\n"); 1885 return err; 1886 } 1887 1888 /* 1889 * The 'pec' attribute is attached to the i2c device and thus created 1890 * separately. 1891 */ 1892 if (client->flags & I2C_CLIENT_PEC) { 1893 err = device_create_file(dev, &dev_attr_pec); 1894 if (err) 1895 return err; 1896 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev); 1897 if (err) 1898 return err; 1899 } 1900 1901 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, 1902 data, &data->chip, 1903 NULL); 1904 if (IS_ERR(hwmon_dev)) 1905 return PTR_ERR(hwmon_dev); 1906 1907 if (client->irq) { 1908 dev_dbg(dev, "IRQ: %d\n", client->irq); 1909 err = devm_request_threaded_irq(dev, client->irq, 1910 NULL, lm90_irq_thread, 1911 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 1912 "lm90", client); 1913 if (err < 0) { 1914 dev_err(dev, "cannot request IRQ %d\n", client->irq); 1915 return err; 1916 } 1917 } 1918 1919 return 0; 1920 } 1921 1922 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type, 1923 unsigned int flag) 1924 { 1925 u16 alarms; 1926 1927 if (type != I2C_PROTOCOL_SMBUS_ALERT) 1928 return; 1929 1930 if (lm90_is_tripped(client, &alarms)) { 1931 /* 1932 * Disable ALERT# output, because these chips don't implement 1933 * SMBus alert correctly; they should only hold the alert line 1934 * low briefly. 1935 */ 1936 struct lm90_data *data = i2c_get_clientdata(client); 1937 1938 if ((data->flags & LM90_HAVE_BROKEN_ALERT) && 1939 (alarms & data->alert_alarms)) { 1940 dev_dbg(&client->dev, "Disabling ALERT#\n"); 1941 lm90_update_confreg(data, data->config | 0x80); 1942 } 1943 } else { 1944 dev_info(&client->dev, "Everything OK\n"); 1945 } 1946 } 1947 1948 static struct i2c_driver lm90_driver = { 1949 .class = I2C_CLASS_HWMON, 1950 .driver = { 1951 .name = "lm90", 1952 .of_match_table = of_match_ptr(lm90_of_match), 1953 }, 1954 .probe_new = lm90_probe, 1955 .alert = lm90_alert, 1956 .id_table = lm90_id, 1957 .detect = lm90_detect, 1958 .address_list = normal_i2c, 1959 }; 1960 1961 module_i2c_driver(lm90_driver); 1962 1963 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); 1964 MODULE_DESCRIPTION("LM90/ADM1032 driver"); 1965 MODULE_LICENSE("GPL"); 1966