xref: /openbmc/linux/drivers/hwmon/lm90.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4  *          monitoring
5  * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
6  *
7  * Based on the lm83 driver. The LM90 is a sensor chip made by National
8  * Semiconductor. It reports up to two temperatures (its own plus up to
9  * one external one) with a 0.125 deg resolution (1 deg for local
10  * temperature) and a 3-4 deg accuracy.
11  *
12  * This driver also supports the LM89 and LM99, two other sensor chips
13  * made by National Semiconductor. Both have an increased remote
14  * temperature measurement accuracy (1 degree), and the LM99
15  * additionally shifts remote temperatures (measured and limits) by 16
16  * degrees, which allows for higher temperatures measurement.
17  * Note that there is no way to differentiate between both chips.
18  * When device is auto-detected, the driver will assume an LM99.
19  *
20  * This driver also supports the LM86, another sensor chip made by
21  * National Semiconductor. It is exactly similar to the LM90 except it
22  * has a higher accuracy.
23  *
24  * This driver also supports the ADM1032, a sensor chip made by Analog
25  * Devices. That chip is similar to the LM90, with a few differences
26  * that are not handled by this driver. Among others, it has a higher
27  * accuracy than the LM90, much like the LM86 does.
28  *
29  * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30  * chips made by Maxim. These chips are similar to the LM86.
31  * Note that there is no easy way to differentiate between the three
32  * variants. We use the device address to detect MAX6659, which will result
33  * in a detection as max6657 if it is on address 0x4c. The extra address
34  * and features of the MAX6659 are only supported if the chip is configured
35  * explicitly as max6659, or if its address is not 0x4c.
36  * These chips lack the remote temperature offset feature.
37  *
38  * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39  * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40  * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41  * limits. Extended range is available by setting the configuration register
42  * accordingly, and is done during initialization. Extended precision is only
43  * available at conversion rates of 1 Hz and slower. Note that extended
44  * precision is not enabled by default, as this driver initializes all chips
45  * to 2 Hz by design. The driver also supports MAX6690, which is practically
46  * identical to MAX6654.
47  *
48  * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49  * MAX6692 chips made by Maxim.  These are again similar to the LM86,
50  * but they use unsigned temperature values and can report temperatures
51  * from 0 to 145 degrees.
52  *
53  * This driver also supports the MAX6680 and MAX6681, two other sensor
54  * chips made by Maxim. These are quite similar to the other Maxim
55  * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56  * be treated identically.
57  *
58  * This driver also supports the MAX6695 and MAX6696, two other sensor
59  * chips made by Maxim. These are also quite similar to other Maxim
60  * chips, but support three temperature sensors instead of two. MAX6695
61  * and MAX6696 only differ in the pinout so they can be treated identically.
62  *
63  * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64  * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65  * and extended mode. They are mostly compatible with LM90 except for a data
66  * format difference for the temperature value registers.
67  *
68  * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69  * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70  * temperature sensors.
71  *
72  * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73  * The chips are similar to ADT7461/ADT7461A but have full PEC support
74  * (undocumented).
75  *
76  * This driver also supports the SA56004 from Philips. This device is
77  * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
78  *
79  * This driver also supports the G781 from GMT. This device is compatible
80  * with the ADM1032.
81  *
82  * This driver also supports TMP451 and TMP461 from Texas Instruments.
83  * Those devices are supported in both compatibility and extended mode.
84  * They are mostly compatible with ADT7461 except for local temperature
85  * low byte register and max conversion rate.
86  *
87  * This driver also supports MAX1617 and various clones such as G767
88  * and NE1617. Such clones will be detected as MAX1617.
89  *
90  * This driver also supports NE1618 from Philips. It is similar to NE1617
91  * but supports 11 bit external temperature values.
92  *
93  * Since the LM90 was the first chipset supported by this driver, most
94  * comments will refer to this chipset, but are actually general and
95  * concern all supported chipsets, unless mentioned otherwise.
96  */
97 
98 #include <linux/bits.h>
99 #include <linux/device.h>
100 #include <linux/err.h>
101 #include <linux/i2c.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/jiffies.h>
105 #include <linux/hwmon.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/of_device.h>
109 #include <linux/regulator/consumer.h>
110 #include <linux/slab.h>
111 #include <linux/workqueue.h>
112 
113 /* The maximum number of channels currently supported */
114 #define MAX_CHANNELS	3
115 
116 /*
117  * Addresses to scan
118  * Address is fully defined internally and cannot be changed except for
119  * MAX6659, MAX6680 and MAX6681.
120  * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
121  * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
122  * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
123  * have address 0x4d.
124  * MAX6647 has address 0x4e.
125  * MAX6659 can have address 0x4c, 0x4d or 0x4e.
126  * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
127  * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
128  * SA56004 can have address 0x48 through 0x4F.
129  */
130 
131 static const unsigned short normal_i2c[] = {
132 	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
133 	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
134 
135 enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
136 	g781, lm84, lm90, lm99,
137 	max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
138 	nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
139 };
140 
141 /*
142  * The LM90 registers
143  */
144 
145 #define LM90_REG_MAN_ID			0xFE
146 #define LM90_REG_CHIP_ID		0xFF
147 #define LM90_REG_CONFIG1		0x03
148 #define LM90_REG_CONFIG2		0xBF
149 #define LM90_REG_CONVRATE		0x04
150 #define LM90_REG_STATUS			0x02
151 #define LM90_REG_LOCAL_TEMP		0x00
152 #define LM90_REG_LOCAL_HIGH		0x05
153 #define LM90_REG_LOCAL_LOW		0x06
154 #define LM90_REG_LOCAL_CRIT		0x20
155 #define LM90_REG_REMOTE_TEMPH		0x01
156 #define LM90_REG_REMOTE_TEMPL		0x10
157 #define LM90_REG_REMOTE_OFFSH		0x11
158 #define LM90_REG_REMOTE_OFFSL		0x12
159 #define LM90_REG_REMOTE_HIGHH		0x07
160 #define LM90_REG_REMOTE_HIGHL		0x13
161 #define LM90_REG_REMOTE_LOWH		0x08
162 #define LM90_REG_REMOTE_LOWL		0x14
163 #define LM90_REG_REMOTE_CRIT		0x19
164 #define LM90_REG_TCRIT_HYST		0x21
165 
166 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
167 
168 #define MAX6657_REG_LOCAL_TEMPL		0x11
169 #define MAX6696_REG_STATUS2		0x12
170 #define MAX6659_REG_REMOTE_EMERG	0x16
171 #define MAX6659_REG_LOCAL_EMERG		0x17
172 
173 /*  SA56004 registers */
174 
175 #define SA56004_REG_LOCAL_TEMPL		0x22
176 
177 #define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
178 
179 /* TMP451/TMP461 registers */
180 #define TMP451_REG_LOCAL_TEMPL		0x15
181 #define TMP451_REG_CONALERT		0x22
182 
183 #define TMP461_REG_CHEN			0x16
184 #define TMP461_REG_DFC			0x24
185 
186 /* ADT7481 registers */
187 #define ADT7481_REG_STATUS2		0x23
188 #define ADT7481_REG_CONFIG2		0x24
189 
190 #define ADT7481_REG_MAN_ID		0x3e
191 #define ADT7481_REG_CHIP_ID		0x3d
192 
193 /* Device features */
194 #define LM90_HAVE_EXTENDED_TEMP	BIT(0)	/* extended temperature support	*/
195 #define LM90_HAVE_OFFSET	BIT(1)	/* temperature offset register	*/
196 #define LM90_HAVE_UNSIGNED_TEMP	BIT(2)	/* temperatures are unsigned	*/
197 #define LM90_HAVE_REM_LIMIT_EXT	BIT(3)	/* extended remote limit	*/
198 #define LM90_HAVE_EMERGENCY	BIT(4)	/* 3rd upper (emergency) limit	*/
199 #define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm		*/
200 #define LM90_HAVE_TEMP3		BIT(6)	/* 3rd temperature sensor	*/
201 #define LM90_HAVE_BROKEN_ALERT	BIT(7)	/* Broken alert			*/
202 #define LM90_PAUSE_FOR_CONFIG	BIT(8)	/* Pause conversion for config	*/
203 #define LM90_HAVE_CRIT		BIT(9)	/* Chip supports CRIT/OVERT register	*/
204 #define LM90_HAVE_CRIT_ALRM_SWP	BIT(10)	/* critical alarm bits swapped	*/
205 #define LM90_HAVE_PEC		BIT(11)	/* Chip supports PEC		*/
206 #define LM90_HAVE_PARTIAL_PEC	BIT(12)	/* Partial PEC support (adm1032)*/
207 #define LM90_HAVE_ALARMS	BIT(13)	/* Create 'alarms' attribute	*/
208 #define LM90_HAVE_EXT_UNSIGNED	BIT(14)	/* extended unsigned temperature*/
209 #define LM90_HAVE_LOW		BIT(15)	/* low limits			*/
210 #define LM90_HAVE_CONVRATE	BIT(16)	/* conversion rate		*/
211 #define LM90_HAVE_REMOTE_EXT	BIT(17)	/* extended remote temperature	*/
212 #define LM90_HAVE_FAULTQUEUE	BIT(18)	/* configurable samples count	*/
213 
214 /* LM90 status */
215 #define LM90_STATUS_LTHRM	BIT(0)	/* local THERM limit tripped */
216 #define LM90_STATUS_RTHRM	BIT(1)	/* remote THERM limit tripped */
217 #define LM90_STATUS_ROPEN	BIT(2)	/* remote is an open circuit */
218 #define LM90_STATUS_RLOW	BIT(3)	/* remote low temp limit tripped */
219 #define LM90_STATUS_RHIGH	BIT(4)	/* remote high temp limit tripped */
220 #define LM90_STATUS_LLOW	BIT(5)	/* local low temp limit tripped */
221 #define LM90_STATUS_LHIGH	BIT(6)	/* local high temp limit tripped */
222 #define LM90_STATUS_BUSY	BIT(7)	/* conversion is ongoing */
223 
224 /* MAX6695/6696 and ADT7481 2nd status register */
225 #define MAX6696_STATUS2_R2THRM	BIT(1)	/* remote2 THERM limit tripped */
226 #define MAX6696_STATUS2_R2OPEN	BIT(2)	/* remote2 is an open circuit */
227 #define MAX6696_STATUS2_R2LOW	BIT(3)	/* remote2 low temp limit tripped */
228 #define MAX6696_STATUS2_R2HIGH	BIT(4)	/* remote2 high temp limit tripped */
229 #define MAX6696_STATUS2_ROT2	BIT(5)	/* remote emergency limit tripped */
230 #define MAX6696_STATUS2_R2OT2	BIT(6)	/* remote2 emergency limit tripped */
231 #define MAX6696_STATUS2_LOT2	BIT(7)	/* local emergency limit tripped */
232 
233 /*
234  * Driver data (common to all clients)
235  */
236 
237 static const struct i2c_device_id lm90_id[] = {
238 	{ "adm1020", max1617 },
239 	{ "adm1021", max1617 },
240 	{ "adm1023", adm1023 },
241 	{ "adm1032", adm1032 },
242 	{ "adt7421", adt7461a },
243 	{ "adt7461", adt7461 },
244 	{ "adt7461a", adt7461a },
245 	{ "adt7481", adt7481 },
246 	{ "adt7482", adt7481 },
247 	{ "adt7483a", adt7481 },
248 	{ "g781", g781 },
249 	{ "gl523sm", max1617 },
250 	{ "lm84", lm84 },
251 	{ "lm86", lm90 },
252 	{ "lm89", lm90 },
253 	{ "lm90", lm90 },
254 	{ "lm99", lm99 },
255 	{ "max1617", max1617 },
256 	{ "max6642", max6642 },
257 	{ "max6646", max6646 },
258 	{ "max6647", max6646 },
259 	{ "max6648", max6648 },
260 	{ "max6649", max6646 },
261 	{ "max6654", max6654 },
262 	{ "max6657", max6657 },
263 	{ "max6658", max6657 },
264 	{ "max6659", max6659 },
265 	{ "max6680", max6680 },
266 	{ "max6681", max6680 },
267 	{ "max6690", max6654 },
268 	{ "max6692", max6648 },
269 	{ "max6695", max6696 },
270 	{ "max6696", max6696 },
271 	{ "mc1066", max1617 },
272 	{ "nct1008", adt7461a },
273 	{ "nct210", nct210 },
274 	{ "nct214", nct72 },
275 	{ "nct218", nct72 },
276 	{ "nct72", nct72 },
277 	{ "ne1618", ne1618 },
278 	{ "w83l771", w83l771 },
279 	{ "sa56004", sa56004 },
280 	{ "thmc10", max1617 },
281 	{ "tmp451", tmp451 },
282 	{ "tmp461", tmp461 },
283 	{ }
284 };
285 MODULE_DEVICE_TABLE(i2c, lm90_id);
286 
287 static const struct of_device_id __maybe_unused lm90_of_match[] = {
288 	{
289 		.compatible = "adi,adm1032",
290 		.data = (void *)adm1032
291 	},
292 	{
293 		.compatible = "adi,adt7461",
294 		.data = (void *)adt7461
295 	},
296 	{
297 		.compatible = "adi,adt7461a",
298 		.data = (void *)adt7461a
299 	},
300 	{
301 		.compatible = "adi,adt7481",
302 		.data = (void *)adt7481
303 	},
304 	{
305 		.compatible = "gmt,g781",
306 		.data = (void *)g781
307 	},
308 	{
309 		.compatible = "national,lm90",
310 		.data = (void *)lm90
311 	},
312 	{
313 		.compatible = "national,lm86",
314 		.data = (void *)lm90
315 	},
316 	{
317 		.compatible = "national,lm89",
318 		.data = (void *)lm90
319 	},
320 	{
321 		.compatible = "national,lm99",
322 		.data = (void *)lm99
323 	},
324 	{
325 		.compatible = "dallas,max6646",
326 		.data = (void *)max6646
327 	},
328 	{
329 		.compatible = "dallas,max6647",
330 		.data = (void *)max6646
331 	},
332 	{
333 		.compatible = "dallas,max6649",
334 		.data = (void *)max6646
335 	},
336 	{
337 		.compatible = "dallas,max6654",
338 		.data = (void *)max6654
339 	},
340 	{
341 		.compatible = "dallas,max6657",
342 		.data = (void *)max6657
343 	},
344 	{
345 		.compatible = "dallas,max6658",
346 		.data = (void *)max6657
347 	},
348 	{
349 		.compatible = "dallas,max6659",
350 		.data = (void *)max6659
351 	},
352 	{
353 		.compatible = "dallas,max6680",
354 		.data = (void *)max6680
355 	},
356 	{
357 		.compatible = "dallas,max6681",
358 		.data = (void *)max6680
359 	},
360 	{
361 		.compatible = "dallas,max6695",
362 		.data = (void *)max6696
363 	},
364 	{
365 		.compatible = "dallas,max6696",
366 		.data = (void *)max6696
367 	},
368 	{
369 		.compatible = "onnn,nct1008",
370 		.data = (void *)adt7461a
371 	},
372 	{
373 		.compatible = "onnn,nct214",
374 		.data = (void *)nct72
375 	},
376 	{
377 		.compatible = "onnn,nct218",
378 		.data = (void *)nct72
379 	},
380 	{
381 		.compatible = "onnn,nct72",
382 		.data = (void *)nct72
383 	},
384 	{
385 		.compatible = "winbond,w83l771",
386 		.data = (void *)w83l771
387 	},
388 	{
389 		.compatible = "nxp,sa56004",
390 		.data = (void *)sa56004
391 	},
392 	{
393 		.compatible = "ti,tmp451",
394 		.data = (void *)tmp451
395 	},
396 	{
397 		.compatible = "ti,tmp461",
398 		.data = (void *)tmp461
399 	},
400 	{ },
401 };
402 MODULE_DEVICE_TABLE(of, lm90_of_match);
403 
404 /*
405  * chip type specific parameters
406  */
407 struct lm90_params {
408 	u32 flags;		/* Capabilities */
409 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
410 				/* Upper 8 bits for max6695/96 */
411 	u8 max_convrate;	/* Maximum conversion rate register value */
412 	u8 resolution;		/* 16-bit resolution (default 11 bit) */
413 	u8 reg_status2;		/* 2nd status register (optional) */
414 	u8 reg_local_ext;	/* Extended local temp register (optional) */
415 	u8 faultqueue_mask;	/* fault queue bit mask */
416 	u8 faultqueue_depth;	/* fault queue depth if mask is used */
417 };
418 
419 static const struct lm90_params lm90_params[] = {
420 	[adm1023] = {
421 		.flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
422 		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
423 		  | LM90_HAVE_REMOTE_EXT,
424 		.alert_alarms = 0x7c,
425 		.resolution = 8,
426 		.max_convrate = 7,
427 	},
428 	[adm1032] = {
429 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
430 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
431 		  | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
432 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
433 		  | LM90_HAVE_FAULTQUEUE,
434 		.alert_alarms = 0x7c,
435 		.max_convrate = 10,
436 	},
437 	[adt7461] = {
438 		/*
439 		 * Standard temperature range is supposed to be unsigned,
440 		 * but that does not match reality. Negative temperatures
441 		 * are always reported.
442 		 */
443 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
444 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
445 		  | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
446 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
447 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
448 		.alert_alarms = 0x7c,
449 		.max_convrate = 10,
450 		.resolution = 10,
451 	},
452 	[adt7461a] = {
453 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
454 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
455 		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
456 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
457 		  | LM90_HAVE_FAULTQUEUE,
458 		.alert_alarms = 0x7c,
459 		.max_convrate = 10,
460 	},
461 	[adt7481] = {
462 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
463 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
464 		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
465 		  | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
466 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
467 		  | LM90_HAVE_FAULTQUEUE,
468 		.alert_alarms = 0x1c7c,
469 		.max_convrate = 11,
470 		.resolution = 10,
471 		.reg_status2 = ADT7481_REG_STATUS2,
472 	},
473 	[g781] = {
474 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
475 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
476 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
477 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
478 		.alert_alarms = 0x7c,
479 		.max_convrate = 7,
480 	},
481 	[lm84] = {
482 		.flags = LM90_HAVE_ALARMS,
483 		.resolution = 8,
484 	},
485 	[lm90] = {
486 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
487 		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
488 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
489 		  | LM90_HAVE_FAULTQUEUE,
490 		.alert_alarms = 0x7b,
491 		.max_convrate = 9,
492 		.faultqueue_mask = BIT(0),
493 		.faultqueue_depth = 3,
494 	},
495 	[lm99] = {
496 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
497 		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
498 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
499 		  | LM90_HAVE_FAULTQUEUE,
500 		.alert_alarms = 0x7b,
501 		.max_convrate = 9,
502 		.faultqueue_mask = BIT(0),
503 		.faultqueue_depth = 3,
504 	},
505 	[max1617] = {
506 		.flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
507 		  LM90_HAVE_LOW | LM90_HAVE_ALARMS,
508 		.alert_alarms = 0x78,
509 		.resolution = 8,
510 		.max_convrate = 7,
511 	},
512 	[max6642] = {
513 		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
514 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
515 		.alert_alarms = 0x50,
516 		.resolution = 10,
517 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
518 		.faultqueue_mask = BIT(4),
519 		.faultqueue_depth = 2,
520 	},
521 	[max6646] = {
522 		.flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
523 		  | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
524 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
525 		.alert_alarms = 0x7c,
526 		.max_convrate = 6,
527 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
528 	},
529 	[max6648] = {
530 		.flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
531 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
532 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
533 		.alert_alarms = 0x7c,
534 		.max_convrate = 6,
535 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
536 	},
537 	[max6654] = {
538 		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
539 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
540 		.alert_alarms = 0x7c,
541 		.max_convrate = 7,
542 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
543 	},
544 	[max6657] = {
545 		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
546 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
547 		  | LM90_HAVE_REMOTE_EXT,
548 		.alert_alarms = 0x7c,
549 		.max_convrate = 8,
550 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
551 	},
552 	[max6659] = {
553 		.flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
554 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
555 		  | LM90_HAVE_REMOTE_EXT,
556 		.alert_alarms = 0x7c,
557 		.max_convrate = 8,
558 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
559 	},
560 	[max6680] = {
561 		/*
562 		 * Apparent temperatures of 128 degrees C or higher are reported
563 		 * and treated as negative temperatures (meaning min_alarm will
564 		 * be set).
565 		 */
566 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
567 		  | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
568 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
569 		  | LM90_HAVE_REMOTE_EXT,
570 		.alert_alarms = 0x7c,
571 		.max_convrate = 7,
572 	},
573 	[max6696] = {
574 		.flags = LM90_HAVE_EMERGENCY
575 		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
576 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
577 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
578 		.alert_alarms = 0x1c7c,
579 		.max_convrate = 6,
580 		.reg_status2 = MAX6696_REG_STATUS2,
581 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
582 		.faultqueue_mask = BIT(5),
583 		.faultqueue_depth = 4,
584 	},
585 	[nct72] = {
586 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
587 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
588 		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
589 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
590 		  | LM90_HAVE_FAULTQUEUE,
591 		.alert_alarms = 0x7c,
592 		.max_convrate = 10,
593 		.resolution = 10,
594 	},
595 	[nct210] = {
596 		.flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
597 		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
598 		  | LM90_HAVE_REMOTE_EXT,
599 		.alert_alarms = 0x7c,
600 		.resolution = 11,
601 		.max_convrate = 7,
602 	},
603 	[ne1618] = {
604 		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
605 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
606 		.alert_alarms = 0x7c,
607 		.resolution = 11,
608 		.max_convrate = 7,
609 	},
610 	[w83l771] = {
611 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
612 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
613 		  | LM90_HAVE_REMOTE_EXT,
614 		.alert_alarms = 0x7c,
615 		.max_convrate = 8,
616 	},
617 	[sa56004] = {
618 		/*
619 		 * Apparent temperatures of 128 degrees C or higher are reported
620 		 * and treated as negative temperatures (meaning min_alarm will
621 		 * be set).
622 		 */
623 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
624 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
625 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
626 		.alert_alarms = 0x7b,
627 		.max_convrate = 9,
628 		.reg_local_ext = SA56004_REG_LOCAL_TEMPL,
629 		.faultqueue_mask = BIT(0),
630 		.faultqueue_depth = 3,
631 	},
632 	[tmp451] = {
633 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
634 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
635 		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
636 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
637 		.alert_alarms = 0x7c,
638 		.max_convrate = 9,
639 		.resolution = 12,
640 		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
641 	},
642 	[tmp461] = {
643 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
644 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
645 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
646 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
647 		.alert_alarms = 0x7c,
648 		.max_convrate = 9,
649 		.resolution = 12,
650 		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
651 	},
652 };
653 
654 /*
655  * temperature register index
656  */
657 enum lm90_temp_reg_index {
658 	LOCAL_LOW = 0,
659 	LOCAL_HIGH,
660 	LOCAL_CRIT,
661 	REMOTE_CRIT,
662 	LOCAL_EMERG,	/* max6659 and max6695/96 */
663 	REMOTE_EMERG,	/* max6659 and max6695/96 */
664 	REMOTE2_CRIT,	/* max6695/96 only */
665 	REMOTE2_EMERG,	/* max6695/96 only */
666 
667 	REMOTE_TEMP,
668 	REMOTE_LOW,
669 	REMOTE_HIGH,
670 	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
671 	LOCAL_TEMP,
672 	REMOTE2_TEMP,	/* max6695/96 only */
673 	REMOTE2_LOW,	/* max6695/96 only */
674 	REMOTE2_HIGH,	/* max6695/96 only */
675 	REMOTE2_OFFSET,
676 
677 	TEMP_REG_NUM
678 };
679 
680 /*
681  * Client data (each client gets its own)
682  */
683 
684 struct lm90_data {
685 	struct i2c_client *client;
686 	struct device *hwmon_dev;
687 	u32 chip_config[2];
688 	u32 channel_config[MAX_CHANNELS + 1];
689 	const char *channel_label[MAX_CHANNELS];
690 	struct hwmon_channel_info chip_info;
691 	struct hwmon_channel_info temp_info;
692 	const struct hwmon_channel_info *info[3];
693 	struct hwmon_chip_info chip;
694 	struct mutex update_lock;
695 	struct delayed_work alert_work;
696 	struct work_struct report_work;
697 	bool valid;		/* true if register values are valid */
698 	bool alarms_valid;	/* true if status register values are valid */
699 	unsigned long last_updated; /* in jiffies */
700 	unsigned long alarms_updated; /* in jiffies */
701 	int kind;
702 	u32 flags;
703 
704 	unsigned int update_interval; /* in milliseconds */
705 
706 	u8 config;		/* Current configuration register value */
707 	u8 config_orig;		/* Original configuration register value */
708 	u8 convrate_orig;	/* Original conversion rate register value */
709 	u8 resolution;		/* temperature resolution in bit */
710 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
711 				/* Upper 8 bits for max6695/96 */
712 	u8 max_convrate;	/* Maximum conversion rate */
713 	u8 reg_status2;		/* 2nd status register (optional) */
714 	u8 reg_local_ext;	/* local extension register offset */
715 	u8 reg_remote_ext;	/* remote temperature low byte */
716 	u8 faultqueue_mask;	/* fault queue mask */
717 	u8 faultqueue_depth;	/* fault queue mask */
718 
719 	/* registers values */
720 	u16 temp[TEMP_REG_NUM];
721 	u8 temp_hyst;
722 	u8 conalert;
723 	u16 reported_alarms;	/* alarms reported as sysfs/udev events */
724 	u16 current_alarms;	/* current alarms, reported by chip */
725 	u16 alarms;		/* alarms not yet reported to user */
726 };
727 
728 /*
729  * Support functions
730  */
731 
732 /*
733  * If the chip supports PEC but not on write byte transactions, we need
734  * to explicitly ask for a transaction without PEC.
735  */
736 static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
737 {
738 	return i2c_smbus_xfer(client->adapter, client->addr,
739 			      client->flags & ~I2C_CLIENT_PEC,
740 			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
741 }
742 
743 /*
744  * It is assumed that client->update_lock is held (unless we are in
745  * detection or initialization steps). This matters when PEC is enabled
746  * for chips with partial PEC support, because we don't want the address
747  * pointer to change between the write byte and the read byte transactions.
748  */
749 static int lm90_read_reg(struct i2c_client *client, u8 reg)
750 {
751 	struct lm90_data *data = i2c_get_clientdata(client);
752 	bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
753 			(data->flags & LM90_HAVE_PARTIAL_PEC);
754 	int err;
755 
756 	if (partial_pec) {
757 		err = lm90_write_no_pec(client, reg);
758 		if (err)
759 			return err;
760 		return i2c_smbus_read_byte(client);
761 	}
762 	return i2c_smbus_read_byte_data(client, reg);
763 }
764 
765 /*
766  * Return register write address
767  *
768  * The write address for registers 0x03 .. 0x08 is the read address plus 6.
769  * For other registers the write address matches the read address.
770  */
771 static u8 lm90_write_reg_addr(u8 reg)
772 {
773 	if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
774 		return reg + 6;
775 	return reg;
776 }
777 
778 /*
779  * Write into LM90 register.
780  * Convert register address to write address if needed, then execute the
781  * operation.
782  */
783 static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
784 {
785 	return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
786 }
787 
788 /*
789  * Write into 16-bit LM90 register.
790  * Convert register addresses to write address if needed, then execute the
791  * operation.
792  */
793 static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
794 {
795 	int ret;
796 
797 	ret = lm90_write_reg(client, regh, val >> 8);
798 	if (ret < 0 || !regl)
799 		return ret;
800 	return lm90_write_reg(client, regl, val & 0xff);
801 }
802 
803 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
804 		       bool is_volatile)
805 {
806 	int oldh, newh, l;
807 
808 	oldh = lm90_read_reg(client, regh);
809 	if (oldh < 0)
810 		return oldh;
811 
812 	if (!regl)
813 		return oldh << 8;
814 
815 	l = lm90_read_reg(client, regl);
816 	if (l < 0)
817 		return l;
818 
819 	if (!is_volatile)
820 		return (oldh << 8) | l;
821 
822 	/*
823 	 * For volatile registers we have to use a trick.
824 	 * We have to read two registers to have the sensor temperature,
825 	 * but we have to beware a conversion could occur between the
826 	 * readings. The datasheet says we should either use
827 	 * the one-shot conversion register, which we don't want to do
828 	 * (disables hardware monitoring) or monitor the busy bit, which is
829 	 * impossible (we can't read the values and monitor that bit at the
830 	 * exact same time). So the solution used here is to read the high
831 	 * the high byte again. If the new high byte matches the old one,
832 	 * then we have a valid reading. Otherwise we have to read the low
833 	 * byte again, and now we believe we have a correct reading.
834 	 */
835 	newh = lm90_read_reg(client, regh);
836 	if (newh < 0)
837 		return newh;
838 	if (oldh != newh) {
839 		l = lm90_read_reg(client, regl);
840 		if (l < 0)
841 			return l;
842 	}
843 	return (newh << 8) | l;
844 }
845 
846 static int lm90_update_confreg(struct lm90_data *data, u8 config)
847 {
848 	if (data->config != config) {
849 		int err;
850 
851 		err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
852 		if (err)
853 			return err;
854 		data->config = config;
855 	}
856 	return 0;
857 }
858 
859 /*
860  * client->update_lock must be held when calling this function (unless we are
861  * in detection or initialization steps), and while a remote channel other
862  * than channel 0 is selected. Also, calling code must make sure to re-select
863  * external channel 0 before releasing the lock. This is necessary because
864  * various registers have different meanings as a result of selecting a
865  * non-default remote channel.
866  */
867 static int lm90_select_remote_channel(struct lm90_data *data, bool second)
868 {
869 	u8 config = data->config & ~0x08;
870 
871 	if (second)
872 		config |= 0x08;
873 
874 	return lm90_update_confreg(data, config);
875 }
876 
877 static int lm90_write_convrate(struct lm90_data *data, int val)
878 {
879 	u8 config = data->config;
880 	int err;
881 
882 	/* Save config and pause conversion */
883 	if (data->flags & LM90_PAUSE_FOR_CONFIG) {
884 		err = lm90_update_confreg(data, config | 0x40);
885 		if (err < 0)
886 			return err;
887 	}
888 
889 	/* Set conv rate */
890 	err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
891 
892 	/* Revert change to config */
893 	lm90_update_confreg(data, config);
894 
895 	return err;
896 }
897 
898 /*
899  * Set conversion rate.
900  * client->update_lock must be held when calling this function (unless we are
901  * in detection or initialization steps).
902  */
903 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
904 			     unsigned int interval)
905 {
906 	unsigned int update_interval;
907 	int i, err;
908 
909 	/* Shift calculations to avoid rounding errors */
910 	interval <<= 6;
911 
912 	/* find the nearest update rate */
913 	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
914 	     i < data->max_convrate; i++, update_interval >>= 1)
915 		if (interval >= update_interval * 3 / 4)
916 			break;
917 
918 	err = lm90_write_convrate(data, i);
919 	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
920 	return err;
921 }
922 
923 static int lm90_set_faultqueue(struct i2c_client *client,
924 			       struct lm90_data *data, int val)
925 {
926 	int err;
927 
928 	if (data->faultqueue_mask) {
929 		err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
930 					  data->config & ~data->faultqueue_mask :
931 					  data->config | data->faultqueue_mask);
932 	} else {
933 		static const u8 values[4] = {0, 2, 6, 0x0e};
934 
935 		data->conalert = (data->conalert & 0xf1) | values[val - 1];
936 		err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
937 				     data->conalert);
938 	}
939 
940 	return err;
941 }
942 
943 static int lm90_update_limits(struct device *dev)
944 {
945 	struct lm90_data *data = dev_get_drvdata(dev);
946 	struct i2c_client *client = data->client;
947 	int val;
948 
949 	if (data->flags & LM90_HAVE_CRIT) {
950 		val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
951 		if (val < 0)
952 			return val;
953 		data->temp[LOCAL_CRIT] = val << 8;
954 
955 		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
956 		if (val < 0)
957 			return val;
958 		data->temp[REMOTE_CRIT] = val << 8;
959 
960 		val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
961 		if (val < 0)
962 			return val;
963 		data->temp_hyst = val;
964 	}
965 	if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
966 		val = lm90_read_reg(client, TMP451_REG_CONALERT);
967 		if (val < 0)
968 			return val;
969 		data->conalert = val;
970 	}
971 
972 	val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
973 			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
974 			  false);
975 	if (val < 0)
976 		return val;
977 	data->temp[REMOTE_LOW] = val;
978 
979 	val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
980 			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
981 			  false);
982 	if (val < 0)
983 		return val;
984 	data->temp[REMOTE_HIGH] = val;
985 
986 	if (data->flags & LM90_HAVE_OFFSET) {
987 		val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
988 				  LM90_REG_REMOTE_OFFSL, false);
989 		if (val < 0)
990 			return val;
991 		data->temp[REMOTE_OFFSET] = val;
992 	}
993 
994 	if (data->flags & LM90_HAVE_EMERGENCY) {
995 		val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
996 		if (val < 0)
997 			return val;
998 		data->temp[LOCAL_EMERG] = val << 8;
999 
1000 		val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1001 		if (val < 0)
1002 			return val;
1003 		data->temp[REMOTE_EMERG] = val << 8;
1004 	}
1005 
1006 	if (data->flags & LM90_HAVE_TEMP3) {
1007 		val = lm90_select_remote_channel(data, true);
1008 		if (val < 0)
1009 			return val;
1010 
1011 		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1012 		if (val < 0)
1013 			return val;
1014 		data->temp[REMOTE2_CRIT] = val << 8;
1015 
1016 		if (data->flags & LM90_HAVE_EMERGENCY) {
1017 			val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1018 			if (val < 0)
1019 				return val;
1020 			data->temp[REMOTE2_EMERG] = val << 8;
1021 		}
1022 
1023 		val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1024 		if (val < 0)
1025 			return val;
1026 		data->temp[REMOTE2_LOW] = val << 8;
1027 
1028 		val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1029 		if (val < 0)
1030 			return val;
1031 		data->temp[REMOTE2_HIGH] = val << 8;
1032 
1033 		if (data->flags & LM90_HAVE_OFFSET) {
1034 			val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1035 					  LM90_REG_REMOTE_OFFSL, false);
1036 			if (val < 0)
1037 				return val;
1038 			data->temp[REMOTE2_OFFSET] = val;
1039 		}
1040 
1041 		lm90_select_remote_channel(data, false);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static void lm90_report_alarms(struct work_struct *work)
1048 {
1049 	struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1050 	u16 cleared_alarms, new_alarms, current_alarms;
1051 	struct device *hwmon_dev = data->hwmon_dev;
1052 	struct device *dev = &data->client->dev;
1053 	int st, st2;
1054 
1055 	current_alarms = data->current_alarms;
1056 	cleared_alarms = data->reported_alarms & ~current_alarms;
1057 	new_alarms = current_alarms & ~data->reported_alarms;
1058 
1059 	if (!cleared_alarms && !new_alarms)
1060 		return;
1061 
1062 	st = new_alarms & 0xff;
1063 	st2 = new_alarms >> 8;
1064 
1065 	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1066 	    (st2 & MAX6696_STATUS2_LOT2))
1067 		dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1068 	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1069 	    (st2 & MAX6696_STATUS2_ROT2))
1070 		dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1071 	if (st & LM90_STATUS_ROPEN)
1072 		dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1073 	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1074 		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1075 		dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1076 	if (st2 & MAX6696_STATUS2_R2OPEN)
1077 		dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1078 
1079 	st |= cleared_alarms & 0xff;
1080 	st2 |= cleared_alarms >> 8;
1081 
1082 	if (st & LM90_STATUS_LLOW)
1083 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1084 	if (st & LM90_STATUS_RLOW)
1085 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1086 	if (st2 & MAX6696_STATUS2_R2LOW)
1087 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1088 
1089 	if (st & LM90_STATUS_LHIGH)
1090 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1091 	if (st & LM90_STATUS_RHIGH)
1092 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1093 	if (st2 & MAX6696_STATUS2_R2HIGH)
1094 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1095 
1096 	if (st & LM90_STATUS_LTHRM)
1097 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1098 	if (st & LM90_STATUS_RTHRM)
1099 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1100 	if (st2 & MAX6696_STATUS2_R2THRM)
1101 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1102 
1103 	if (st2 & MAX6696_STATUS2_LOT2)
1104 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1105 	if (st2 & MAX6696_STATUS2_ROT2)
1106 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1107 	if (st2 & MAX6696_STATUS2_R2OT2)
1108 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1109 
1110 	data->reported_alarms = current_alarms;
1111 }
1112 
1113 static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1114 {
1115 	if (force || !data->alarms_valid ||
1116 	    time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1117 		struct i2c_client *client = data->client;
1118 		bool check_enable;
1119 		u16 alarms;
1120 		int val;
1121 
1122 		data->alarms_valid = false;
1123 
1124 		val = lm90_read_reg(client, LM90_REG_STATUS);
1125 		if (val < 0)
1126 			return val;
1127 		alarms = val & ~LM90_STATUS_BUSY;
1128 
1129 		if (data->reg_status2) {
1130 			val = lm90_read_reg(client, data->reg_status2);
1131 			if (val < 0)
1132 				return val;
1133 			alarms |= val << 8;
1134 		}
1135 		/*
1136 		 * If the update is forced (called from interrupt or alert
1137 		 * handler) and alarm data is valid, the alarms may have been
1138 		 * updated after the last update interval, and the status
1139 		 * register may still be cleared. Only add additional alarms
1140 		 * in this case. Alarms will be cleared later if appropriate.
1141 		 */
1142 		if (force && data->alarms_valid)
1143 			data->current_alarms |= alarms;
1144 		else
1145 			data->current_alarms = alarms;
1146 		data->alarms |= alarms;
1147 
1148 		check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1149 			(data->config & 0x80);
1150 
1151 		if (force || check_enable)
1152 			schedule_work(&data->report_work);
1153 
1154 		/*
1155 		 * Re-enable ALERT# output if it was originally enabled, relevant
1156 		 * alarms are all clear, and alerts are currently disabled.
1157 		 * Otherwise (re)schedule worker if needed.
1158 		 */
1159 		if (check_enable) {
1160 			if (!(data->current_alarms & data->alert_alarms)) {
1161 				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1162 				lm90_update_confreg(data, data->config & ~0x80);
1163 				/*
1164 				 * We may have been called from the update handler.
1165 				 * If so, the worker, if scheduled, is no longer
1166 				 * needed. Cancel it. Don't synchronize because
1167 				 * it may already be running.
1168 				 */
1169 				cancel_delayed_work(&data->alert_work);
1170 			} else {
1171 				schedule_delayed_work(&data->alert_work,
1172 					max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1173 			}
1174 		}
1175 		data->alarms_updated = jiffies;
1176 		data->alarms_valid = true;
1177 	}
1178 	return 0;
1179 }
1180 
1181 static int lm90_update_alarms(struct lm90_data *data, bool force)
1182 {
1183 	int err;
1184 
1185 	mutex_lock(&data->update_lock);
1186 	err = lm90_update_alarms_locked(data, force);
1187 	mutex_unlock(&data->update_lock);
1188 
1189 	return err;
1190 }
1191 
1192 static void lm90_alert_work(struct work_struct *__work)
1193 {
1194 	struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1195 	struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1196 
1197 	/* Nothing to do if alerts are enabled */
1198 	if (!(data->config & 0x80))
1199 		return;
1200 
1201 	lm90_update_alarms(data, true);
1202 }
1203 
1204 static int lm90_update_device(struct device *dev)
1205 {
1206 	struct lm90_data *data = dev_get_drvdata(dev);
1207 	struct i2c_client *client = data->client;
1208 	unsigned long next_update;
1209 	int val;
1210 
1211 	if (!data->valid) {
1212 		val = lm90_update_limits(dev);
1213 		if (val < 0)
1214 			return val;
1215 	}
1216 
1217 	next_update = data->last_updated +
1218 		      msecs_to_jiffies(data->update_interval);
1219 	if (time_after(jiffies, next_update) || !data->valid) {
1220 		dev_dbg(&client->dev, "Updating lm90 data.\n");
1221 
1222 		data->valid = false;
1223 
1224 		val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1225 		if (val < 0)
1226 			return val;
1227 		data->temp[LOCAL_LOW] = val << 8;
1228 
1229 		val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1230 		if (val < 0)
1231 			return val;
1232 		data->temp[LOCAL_HIGH] = val << 8;
1233 
1234 		val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1235 				  data->reg_local_ext, true);
1236 		if (val < 0)
1237 			return val;
1238 		data->temp[LOCAL_TEMP] = val;
1239 		val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1240 				  data->reg_remote_ext, true);
1241 		if (val < 0)
1242 			return val;
1243 		data->temp[REMOTE_TEMP] = val;
1244 
1245 		if (data->flags & LM90_HAVE_TEMP3) {
1246 			val = lm90_select_remote_channel(data, true);
1247 			if (val < 0)
1248 				return val;
1249 
1250 			val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1251 					  data->reg_remote_ext, true);
1252 			if (val < 0) {
1253 				lm90_select_remote_channel(data, false);
1254 				return val;
1255 			}
1256 			data->temp[REMOTE2_TEMP] = val;
1257 
1258 			lm90_select_remote_channel(data, false);
1259 		}
1260 
1261 		val = lm90_update_alarms_locked(data, false);
1262 		if (val < 0)
1263 			return val;
1264 
1265 		data->last_updated = jiffies;
1266 		data->valid = true;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /* pec used for devices with PEC support */
1273 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
1274 			char *buf)
1275 {
1276 	struct i2c_client *client = to_i2c_client(dev);
1277 
1278 	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1279 }
1280 
1281 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
1282 			 const char *buf, size_t count)
1283 {
1284 	struct i2c_client *client = to_i2c_client(dev);
1285 	long val;
1286 	int err;
1287 
1288 	err = kstrtol(buf, 10, &val);
1289 	if (err < 0)
1290 		return err;
1291 
1292 	switch (val) {
1293 	case 0:
1294 		client->flags &= ~I2C_CLIENT_PEC;
1295 		break;
1296 	case 1:
1297 		client->flags |= I2C_CLIENT_PEC;
1298 		break;
1299 	default:
1300 		return -EINVAL;
1301 	}
1302 
1303 	return count;
1304 }
1305 
1306 static DEVICE_ATTR_RW(pec);
1307 
1308 static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1309 {
1310 	switch (index) {
1311 	case REMOTE_TEMP:
1312 		if (data->reg_remote_ext)
1313 			return data->resolution;
1314 		return 8;
1315 	case REMOTE_OFFSET:
1316 	case REMOTE2_OFFSET:
1317 	case REMOTE2_TEMP:
1318 		return data->resolution;
1319 	case LOCAL_TEMP:
1320 		if (data->reg_local_ext)
1321 			return data->resolution;
1322 		return 8;
1323 	case REMOTE_LOW:
1324 	case REMOTE_HIGH:
1325 	case REMOTE2_LOW:
1326 	case REMOTE2_HIGH:
1327 		if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1328 			return data->resolution;
1329 		return 8;
1330 	default:
1331 		return 8;
1332 	}
1333 }
1334 
1335 static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1336 {
1337 	int val;
1338 
1339 	if (flags & LM90_HAVE_EXTENDED_TEMP)
1340 		val = regval - 0x4000;
1341 	else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1342 		val = regval;
1343 	else
1344 		val = (s16)regval;
1345 
1346 	return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1347 }
1348 
1349 static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1350 {
1351 	int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1352 				      lm90_temp_get_resolution(data, index));
1353 
1354 	/* +16 degrees offset for remote temperature on LM99 */
1355 	if (data->kind == lm99 && channel)
1356 		temp += 16000;
1357 
1358 	return temp;
1359 }
1360 
1361 static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1362 {
1363 	int fraction = resolution > 8 ?
1364 			1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1365 
1366 	if (flags & LM90_HAVE_EXTENDED_TEMP) {
1367 		val = clamp_val(val, -64000, 191000 + fraction);
1368 		val += 64000;
1369 	} else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1370 		val = clamp_val(val, 0, 255000 + fraction);
1371 	} else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1372 		val = clamp_val(val, 0, 127000 + fraction);
1373 	} else {
1374 		val = clamp_val(val, -128000, 127000 + fraction);
1375 	}
1376 
1377 	return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1378 }
1379 
1380 static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1381 {
1382 	static const u8 regs[] = {
1383 		[LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1384 		[LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1385 		[LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1386 		[REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1387 		[LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1388 		[REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1389 		[REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1390 		[REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1391 		[REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1392 		[REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1393 		[REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1394 		[REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1395 	};
1396 	struct i2c_client *client = data->client;
1397 	u8 regh = regs[index];
1398 	u8 regl = 0;
1399 	int err;
1400 
1401 	if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1402 		if (index == REMOTE_LOW || index == REMOTE2_LOW)
1403 			regl = LM90_REG_REMOTE_LOWL;
1404 		else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1405 			regl = LM90_REG_REMOTE_HIGHL;
1406 	}
1407 
1408 	/* +16 degrees offset for remote temperature on LM99 */
1409 	if (data->kind == lm99 && channel) {
1410 		/* prevent integer underflow */
1411 		val = max(val, -128000l);
1412 		val -= 16000;
1413 	}
1414 
1415 	data->temp[index] = lm90_temp_to_reg(data->flags, val,
1416 					     lm90_temp_get_resolution(data, index));
1417 
1418 	if (channel > 1)
1419 		lm90_select_remote_channel(data, true);
1420 
1421 	err = lm90_write16(client, regh, regl, data->temp[index]);
1422 
1423 	if (channel > 1)
1424 		lm90_select_remote_channel(data, false);
1425 
1426 	return err;
1427 }
1428 
1429 static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1430 {
1431 	int temp = lm90_get_temp(data, index, channel);
1432 
1433 	return temp - data->temp_hyst * 1000;
1434 }
1435 
1436 static int lm90_set_temphyst(struct lm90_data *data, long val)
1437 {
1438 	int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1439 
1440 	/* prevent integer overflow/underflow */
1441 	val = clamp_val(val, -128000l, 255000l);
1442 	data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1443 
1444 	return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1445 }
1446 
1447 static int lm90_get_temp_offset(struct lm90_data *data, int index)
1448 {
1449 	int res = lm90_temp_get_resolution(data, index);
1450 
1451 	return lm90_temp_from_reg(0, data->temp[index], res);
1452 }
1453 
1454 static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1455 {
1456 	int err;
1457 
1458 	val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1459 
1460 	/* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1461 	if (channel > 1)
1462 		lm90_select_remote_channel(data, true);
1463 
1464 	err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1465 
1466 	if (channel > 1)
1467 		lm90_select_remote_channel(data, false);
1468 
1469 	if (err)
1470 		return err;
1471 
1472 	data->temp[index] = val;
1473 
1474 	return 0;
1475 }
1476 
1477 static const u8 lm90_temp_index[MAX_CHANNELS] = {
1478 	LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1479 };
1480 
1481 static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1482 	LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1483 };
1484 
1485 static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1486 	LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1487 };
1488 
1489 static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1490 	LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1491 };
1492 
1493 static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1494 	LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1495 };
1496 
1497 static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1498 	-1, REMOTE_OFFSET, REMOTE2_OFFSET
1499 };
1500 
1501 static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1502 static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1503 static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1504 static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1505 static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1506 static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1507 
1508 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1509 {
1510 	struct lm90_data *data = dev_get_drvdata(dev);
1511 	int err;
1512 	u16 bit;
1513 
1514 	mutex_lock(&data->update_lock);
1515 	err = lm90_update_device(dev);
1516 	mutex_unlock(&data->update_lock);
1517 	if (err)
1518 		return err;
1519 
1520 	switch (attr) {
1521 	case hwmon_temp_input:
1522 		*val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1523 		break;
1524 	case hwmon_temp_min_alarm:
1525 	case hwmon_temp_max_alarm:
1526 	case hwmon_temp_crit_alarm:
1527 	case hwmon_temp_emergency_alarm:
1528 	case hwmon_temp_fault:
1529 		switch (attr) {
1530 		case hwmon_temp_min_alarm:
1531 			bit = lm90_min_alarm_bits[channel];
1532 			break;
1533 		case hwmon_temp_max_alarm:
1534 			bit = lm90_max_alarm_bits[channel];
1535 			break;
1536 		case hwmon_temp_crit_alarm:
1537 			if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1538 				bit = lm90_crit_alarm_bits_swapped[channel];
1539 			else
1540 				bit = lm90_crit_alarm_bits[channel];
1541 			break;
1542 		case hwmon_temp_emergency_alarm:
1543 			bit = lm90_emergency_alarm_bits[channel];
1544 			break;
1545 		case hwmon_temp_fault:
1546 			bit = lm90_fault_bits[channel];
1547 			break;
1548 		}
1549 		*val = !!(data->alarms & bit);
1550 		data->alarms &= ~bit;
1551 		data->alarms |= data->current_alarms;
1552 		break;
1553 	case hwmon_temp_min:
1554 		*val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1555 		break;
1556 	case hwmon_temp_max:
1557 		*val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1558 		break;
1559 	case hwmon_temp_crit:
1560 		*val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1561 		break;
1562 	case hwmon_temp_crit_hyst:
1563 		*val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1564 		break;
1565 	case hwmon_temp_emergency:
1566 		*val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1567 		break;
1568 	case hwmon_temp_emergency_hyst:
1569 		*val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1570 		break;
1571 	case hwmon_temp_offset:
1572 		*val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1573 		break;
1574 	default:
1575 		return -EOPNOTSUPP;
1576 	}
1577 	return 0;
1578 }
1579 
1580 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1581 {
1582 	struct lm90_data *data = dev_get_drvdata(dev);
1583 	int err;
1584 
1585 	mutex_lock(&data->update_lock);
1586 
1587 	err = lm90_update_device(dev);
1588 	if (err)
1589 		goto error;
1590 
1591 	switch (attr) {
1592 	case hwmon_temp_min:
1593 		err = lm90_set_temp(data, lm90_temp_min_index[channel],
1594 				    channel, val);
1595 		break;
1596 	case hwmon_temp_max:
1597 		err = lm90_set_temp(data, lm90_temp_max_index[channel],
1598 				    channel, val);
1599 		break;
1600 	case hwmon_temp_crit:
1601 		err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1602 				    channel, val);
1603 		break;
1604 	case hwmon_temp_crit_hyst:
1605 		err = lm90_set_temphyst(data, val);
1606 		break;
1607 	case hwmon_temp_emergency:
1608 		err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1609 				    channel, val);
1610 		break;
1611 	case hwmon_temp_offset:
1612 		err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1613 					   channel, val);
1614 		break;
1615 	default:
1616 		err = -EOPNOTSUPP;
1617 		break;
1618 	}
1619 error:
1620 	mutex_unlock(&data->update_lock);
1621 
1622 	return err;
1623 }
1624 
1625 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1626 {
1627 	switch (attr) {
1628 	case hwmon_temp_input:
1629 	case hwmon_temp_min_alarm:
1630 	case hwmon_temp_max_alarm:
1631 	case hwmon_temp_crit_alarm:
1632 	case hwmon_temp_emergency_alarm:
1633 	case hwmon_temp_emergency_hyst:
1634 	case hwmon_temp_fault:
1635 	case hwmon_temp_label:
1636 		return 0444;
1637 	case hwmon_temp_min:
1638 	case hwmon_temp_max:
1639 	case hwmon_temp_crit:
1640 	case hwmon_temp_emergency:
1641 	case hwmon_temp_offset:
1642 		return 0644;
1643 	case hwmon_temp_crit_hyst:
1644 		if (channel == 0)
1645 			return 0644;
1646 		return 0444;
1647 	default:
1648 		return 0;
1649 	}
1650 }
1651 
1652 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1653 {
1654 	struct lm90_data *data = dev_get_drvdata(dev);
1655 	int err;
1656 
1657 	mutex_lock(&data->update_lock);
1658 	err = lm90_update_device(dev);
1659 	mutex_unlock(&data->update_lock);
1660 	if (err)
1661 		return err;
1662 
1663 	switch (attr) {
1664 	case hwmon_chip_update_interval:
1665 		*val = data->update_interval;
1666 		break;
1667 	case hwmon_chip_alarms:
1668 		*val = data->alarms;
1669 		break;
1670 	case hwmon_chip_temp_samples:
1671 		if (data->faultqueue_mask) {
1672 			*val = (data->config & data->faultqueue_mask) ?
1673 				data->faultqueue_depth : 1;
1674 		} else {
1675 			switch (data->conalert & 0x0e) {
1676 			case 0x0:
1677 			default:
1678 				*val = 1;
1679 				break;
1680 			case 0x2:
1681 				*val = 2;
1682 				break;
1683 			case 0x6:
1684 				*val = 3;
1685 				break;
1686 			case 0xe:
1687 				*val = 4;
1688 				break;
1689 			}
1690 		}
1691 		break;
1692 	default:
1693 		return -EOPNOTSUPP;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1700 {
1701 	struct lm90_data *data = dev_get_drvdata(dev);
1702 	struct i2c_client *client = data->client;
1703 	int err;
1704 
1705 	mutex_lock(&data->update_lock);
1706 
1707 	err = lm90_update_device(dev);
1708 	if (err)
1709 		goto error;
1710 
1711 	switch (attr) {
1712 	case hwmon_chip_update_interval:
1713 		err = lm90_set_convrate(client, data,
1714 					clamp_val(val, 0, 100000));
1715 		break;
1716 	case hwmon_chip_temp_samples:
1717 		err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1718 		break;
1719 	default:
1720 		err = -EOPNOTSUPP;
1721 		break;
1722 	}
1723 error:
1724 	mutex_unlock(&data->update_lock);
1725 
1726 	return err;
1727 }
1728 
1729 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1730 {
1731 	switch (attr) {
1732 	case hwmon_chip_update_interval:
1733 	case hwmon_chip_temp_samples:
1734 		return 0644;
1735 	case hwmon_chip_alarms:
1736 		return 0444;
1737 	default:
1738 		return 0;
1739 	}
1740 }
1741 
1742 static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1743 		     u32 attr, int channel, long *val)
1744 {
1745 	switch (type) {
1746 	case hwmon_chip:
1747 		return lm90_chip_read(dev, attr, channel, val);
1748 	case hwmon_temp:
1749 		return lm90_temp_read(dev, attr, channel, val);
1750 	default:
1751 		return -EOPNOTSUPP;
1752 	}
1753 }
1754 
1755 static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1756 			    u32 attr, int channel, const char **str)
1757 {
1758 	struct lm90_data *data = dev_get_drvdata(dev);
1759 
1760 	*str = data->channel_label[channel];
1761 
1762 	return 0;
1763 }
1764 
1765 static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1766 		      u32 attr, int channel, long val)
1767 {
1768 	switch (type) {
1769 	case hwmon_chip:
1770 		return lm90_chip_write(dev, attr, channel, val);
1771 	case hwmon_temp:
1772 		return lm90_temp_write(dev, attr, channel, val);
1773 	default:
1774 		return -EOPNOTSUPP;
1775 	}
1776 }
1777 
1778 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1779 			       u32 attr, int channel)
1780 {
1781 	switch (type) {
1782 	case hwmon_chip:
1783 		return lm90_chip_is_visible(data, attr, channel);
1784 	case hwmon_temp:
1785 		return lm90_temp_is_visible(data, attr, channel);
1786 	default:
1787 		return 0;
1788 	}
1789 }
1790 
1791 static const char *lm90_detect_lm84(struct i2c_client *client)
1792 {
1793 	static const u8 regs[] = {
1794 		LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1795 		LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1796 	};
1797 	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1798 	int reg1, reg2, reg3, reg4;
1799 	bool nonzero = false;
1800 	u8 ff = 0xff;
1801 	int i;
1802 
1803 	if (status < 0 || (status & 0xab))
1804 		return NULL;
1805 
1806 	/*
1807 	 * For LM84, undefined registers return the most recent value.
1808 	 * Repeat several times, each time checking against a different
1809 	 * (presumably) existing register.
1810 	 */
1811 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
1812 		reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1813 		reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1814 		reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1815 		reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1816 
1817 		if (reg1 < 0)
1818 			return NULL;
1819 
1820 		/* If any register has a different value, this is not an LM84 */
1821 		if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1822 			return NULL;
1823 
1824 		nonzero |= reg1 || reg2 || reg3 || reg4;
1825 		ff &= reg1;
1826 	}
1827 	/*
1828 	 * If all registers always returned 0 or 0xff, all bets are off,
1829 	 * and we can not make any predictions about the chip type.
1830 	 */
1831 	return nonzero && ff != 0xff ? "lm84" : NULL;
1832 }
1833 
1834 static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1835 {
1836 	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1837 	int llo, rlo, lhi, rhi;
1838 
1839 	if (status < 0 || (status & 0x03))
1840 		return NULL;
1841 
1842 	if (config1 & 0x3f)
1843 		return NULL;
1844 
1845 	/*
1846 	 * Fail if unsupported registers return anything but 0xff.
1847 	 * The calling code already checked man_id and chip_id.
1848 	 * A byte read operation repeats the most recent read operation
1849 	 * and should also return 0xff.
1850 	 */
1851 	if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1852 	    i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1853 	    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1854 	    i2c_smbus_read_byte(client) != 0xff)
1855 		return NULL;
1856 
1857 	llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1858 	rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1859 
1860 	lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1861 	rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1862 
1863 	if (llo < 0 || rlo < 0)
1864 		return NULL;
1865 
1866 	/*
1867 	 * A byte read operation repeats the most recent read and should
1868 	 * return the same value.
1869 	 */
1870 	if (i2c_smbus_read_byte(client) != rhi)
1871 		return NULL;
1872 
1873 	/*
1874 	 * The following two checks are marginal since the checked values
1875 	 * are strictly speaking valid.
1876 	 */
1877 
1878 	/* fail for negative high limits; this also catches read errors */
1879 	if ((s8)lhi < 0 || (s8)rhi < 0)
1880 		return NULL;
1881 
1882 	/* fail if low limits are larger than or equal to high limits */
1883 	if ((s8)llo >= lhi || (s8)rlo >= rhi)
1884 		return NULL;
1885 
1886 	if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1887 		/*
1888 		 * Word read operations return 0xff in second byte
1889 		 */
1890 		if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1891 						0xffff)
1892 			return NULL;
1893 		if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1894 						(config1 | 0xff00))
1895 			return NULL;
1896 		if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1897 						(lhi | 0xff00))
1898 			return NULL;
1899 	}
1900 
1901 	return "max1617";
1902 }
1903 
1904 static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1905 					int config1, int convrate)
1906 {
1907 	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1908 	int address = client->addr;
1909 	const char *name = NULL;
1910 
1911 	if (config2 < 0)
1912 		return NULL;
1913 
1914 	if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1915 		return NULL;
1916 
1917 	if (address != 0x4c && address != 0x4d)
1918 		return NULL;
1919 
1920 	switch (chip_id & 0xf0) {
1921 	case 0x10:	/* LM86 */
1922 		if (address == 0x4c)
1923 			name = "lm86";
1924 		break;
1925 	case 0x20:	/* LM90 */
1926 		if (address == 0x4c)
1927 			name = "lm90";
1928 		break;
1929 	case 0x30:	/* LM89/LM99 */
1930 		name = "lm99";	/* detect LM89 as LM99 */
1931 		break;
1932 	default:
1933 		break;
1934 	}
1935 
1936 	return name;
1937 }
1938 
1939 static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1940 				  int convrate)
1941 {
1942 	int address = client->addr;
1943 	const char *name = NULL;
1944 
1945 	switch (chip_id) {
1946 	case 0xca:		/* NCT218 */
1947 		if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1948 		    convrate <= 0x0a)
1949 			name = "nct218";
1950 		break;
1951 	default:
1952 		break;
1953 	}
1954 	return name;
1955 }
1956 
1957 static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1958 				      int chip_id, int config1, int convrate)
1959 {
1960 	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1961 	int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1962 	int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1963 	int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1964 	int address = client->addr;
1965 	const char *name = NULL;
1966 
1967 	if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1968 		return NULL;
1969 
1970 	/*
1971 	 * The following chips should be detected by this function. Known
1972 	 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1973 	 * for most of the chips, yet appear to return a well defined value.
1974 	 * Register 0xff is undocumented for some of the chips. Register 0x3f
1975 	 * is undocumented for all chips, but also returns a well defined value.
1976 	 * Values are as reported from real chips unless mentioned otherwise.
1977 	 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1978 	 * but not for register 0x3f.
1979 	 *
1980 	 * Chip			Register
1981 	 *		3d	3e	3f	fe	ff	Notes
1982 	 * ----------------------------------------------------------
1983 	 * adm1020	00	00	00	41	39
1984 	 * adm1021	00	00	00	41	03
1985 	 * adm1021a	00	00	00	41	3c
1986 	 * adm1023	00	00	00	41	3c	same as adm1021a
1987 	 * adm1032	00	00	00	41	42
1988 	 *
1989 	 * adt7421	21	41	04	41	04
1990 	 * adt7461	00	00	00	41	51
1991 	 * adt7461a	61	41	05	41	57
1992 	 * adt7481	81	41	02	41	62
1993 	 * adt7482	-	-	-	41	65	datasheet
1994 	 *		82	41	05	41	75	real chip
1995 	 * adt7483	83	41	04	41	94
1996 	 *
1997 	 * nct72	61	41	07	41	55
1998 	 * nct210	00	00	00	41	3f
1999 	 * nct214	61	41	08	41	5a
2000 	 * nct1008	-	-	-	41	57	datasheet rev. 3
2001 	 *		61	41	06	41	54	real chip
2002 	 *
2003 	 * nvt210	-	-	-	41	-	datasheet
2004 	 * nvt211	-	-	-	41	-	datasheet
2005 	 */
2006 	switch (chip_id) {
2007 	case 0x00 ... 0x03:	/* ADM1021 */
2008 	case 0x05 ... 0x0f:
2009 		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2010 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2011 			name = "adm1021";
2012 		break;
2013 	case 0x04:		/* ADT7421 (undocumented) */
2014 		if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2015 		    (address == 0x4c || address == 0x4d) &&
2016 		    (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2017 			name = "adt7421";
2018 		break;
2019 	case 0x30 ... 0x38:	/* ADM1021A, ADM1023 */
2020 	case 0x3a ... 0x3e:
2021 		/*
2022 		 * ADM1021A and compatible chips will be mis-detected as
2023 		 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2024 		 * found to have a Chip ID of 0x3c.
2025 		 * ADM1021A does not officially support low byte registers
2026 		 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2027 		 * Official support for the temperature offset high byte
2028 		 * register (0x11) was added to revision F of the ADM1021A
2029 		 * datasheet.
2030 		 * It is currently unknown if there is a means to distinguish
2031 		 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2032 		 * which differ in functionality from ADM1023.
2033 		 */
2034 		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2035 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2036 			name = "adm1023";
2037 		break;
2038 	case 0x39:		/* ADM1020 (undocumented) */
2039 		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2040 		    (address == 0x4c || address == 0x4d || address == 0x4e) &&
2041 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2042 			name = "adm1020";
2043 		break;
2044 	case 0x3f:		/* NCT210 */
2045 		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2046 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2047 			name = "nct210";
2048 		break;
2049 	case 0x40 ... 0x4f:	/* ADM1032 */
2050 		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2051 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2052 		    convrate <= 0x0a)
2053 			name = "adm1032";
2054 		break;
2055 	case 0x51:	/* ADT7461 */
2056 		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2057 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2058 		    convrate <= 0x0a)
2059 			name = "adt7461";
2060 		break;
2061 	case 0x54:	/* NCT1008 */
2062 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2063 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2064 		    convrate <= 0x0a)
2065 			name = "nct1008";
2066 		break;
2067 	case 0x55:	/* NCT72 */
2068 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2069 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2070 		    convrate <= 0x0a)
2071 			name = "nct72";
2072 		break;
2073 	case 0x57:	/* ADT7461A, NCT1008 (datasheet rev. 3) */
2074 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2075 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2076 		    convrate <= 0x0a)
2077 			name = "adt7461a";
2078 		break;
2079 	case 0x5a:	/* NCT214 */
2080 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2081 		    common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2082 			name = "nct214";
2083 		break;
2084 	case 0x62:	/* ADT7481, undocumented */
2085 		if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2086 		    (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2087 		    !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2088 			name = "adt7481";
2089 		}
2090 		break;
2091 	case 0x65:	/* ADT7482, datasheet */
2092 	case 0x75:	/* ADT7482, real chip */
2093 		if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2094 		    address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2095 		    convrate <= 0x0a)
2096 			name = "adt7482";
2097 		break;
2098 	case 0x94:	/* ADT7483 */
2099 		if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2100 		    common_address &&
2101 		    ((address >= 0x18 && address <= 0x1a) ||
2102 		     (address >= 0x29 && address <= 0x2b) ||
2103 		     (address >= 0x4c && address <= 0x4e)) &&
2104 		    !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2105 			name = "adt7483a";
2106 		break;
2107 	default:
2108 		break;
2109 	}
2110 
2111 	return name;
2112 }
2113 
2114 static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2115 				     int chip_id, int config1, int convrate)
2116 {
2117 	int man_id, emerg, emerg2, status2;
2118 	int address = client->addr;
2119 	const char *name = NULL;
2120 
2121 	switch (chip_id) {
2122 	case 0x01:
2123 		if (!common_address)
2124 			break;
2125 
2126 		/*
2127 		 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2128 		 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2129 		 * exists, both readings will reflect the same value. Otherwise,
2130 		 * the readings will be different.
2131 		 */
2132 		emerg = i2c_smbus_read_byte_data(client,
2133 						 MAX6659_REG_REMOTE_EMERG);
2134 		man_id = i2c_smbus_read_byte_data(client,
2135 						  LM90_REG_MAN_ID);
2136 		emerg2 = i2c_smbus_read_byte_data(client,
2137 						  MAX6659_REG_REMOTE_EMERG);
2138 		status2 = i2c_smbus_read_byte_data(client,
2139 						   MAX6696_REG_STATUS2);
2140 		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2141 			return NULL;
2142 
2143 		/*
2144 		 * Even though MAX6695 and MAX6696 do not have a chip ID
2145 		 * register, reading it returns 0x01. Bit 4 of the config1
2146 		 * register is unused and should return zero when read. Bit 0 of
2147 		 * the status2 register is unused and should return zero when
2148 		 * read.
2149 		 *
2150 		 * MAX6695 and MAX6696 have an additional set of temperature
2151 		 * limit registers. We can detect those chips by checking if
2152 		 * one of those registers exists.
2153 		 */
2154 		if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2155 		    convrate <= 0x07)
2156 			name = "max6696";
2157 		/*
2158 		 * The chip_id register of the MAX6680 and MAX6681 holds the
2159 		 * revision of the chip. The lowest bit of the config1 register
2160 		 * is unused and should return zero when read, so should the
2161 		 * second to last bit of config1 (software reset). Register
2162 		 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2163 		 * should differ from emerg2, and emerg2 should match man_id
2164 		 * since it does not exist.
2165 		 */
2166 		else if (!(config1 & 0x03) && convrate <= 0x07 &&
2167 			 emerg2 == man_id && emerg2 != status2)
2168 			name = "max6680";
2169 		/*
2170 		 * MAX1617A does not have any extended registers (register
2171 		 * address 0x10 or higher) except for manufacturer and
2172 		 * device ID registers. Unlike other chips of this series,
2173 		 * unsupported registers were observed to return a fixed value
2174 		 * of 0x01.
2175 		 * Note: Multiple chips with different markings labeled as
2176 		 * "MAX1617" (no "A") were observed to report manufacturer ID
2177 		 * 0x4d and device ID 0x01. It is unknown if other variants of
2178 		 * MAX1617/MAX617A with different behavior exist. The detection
2179 		 * code below works for those chips.
2180 		 */
2181 		else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2182 			 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2183 			name = "max1617";
2184 		break;
2185 	case 0x08:
2186 		/*
2187 		 * The chip_id of the MAX6654 holds the revision of the chip.
2188 		 * The lowest 3 bits of the config1 register are unused and
2189 		 * should return zero when read.
2190 		 */
2191 		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2192 			name = "max6654";
2193 		break;
2194 	case 0x09:
2195 		/*
2196 		 * The chip_id of the MAX6690 holds the revision of the chip.
2197 		 * The lowest 3 bits of the config1 register are unused and
2198 		 * should return zero when read.
2199 		 * Note that MAX6654 and MAX6690 are practically the same chips.
2200 		 * The only diference is the rated accuracy. Rev. 1 of the
2201 		 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2202 		 * MAX6654 was observed to have a chip ID of 0x09.
2203 		 */
2204 		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2205 			name = "max6690";
2206 		break;
2207 	case 0x4d:
2208 		/*
2209 		 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2210 		 * register. Reading from that address will return the last
2211 		 * read value, which in our case is those of the man_id
2212 		 * register, or 0x4d.
2213 		 * MAX6642 does not have a conversion rate register, nor low
2214 		 * limit registers. Reading from those registers returns the
2215 		 * last read value.
2216 		 *
2217 		 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2218 		 * a low nibble, so the value will be those of the previous
2219 		 * read, so in our case again those of the man_id register.
2220 		 * MAX6659 has a third set of upper temperature limit registers.
2221 		 * Those registers also return values on MAX6657 and MAX6658,
2222 		 * thus the only way to detect MAX6659 is by its address.
2223 		 * For this reason it will be mis-detected as MAX6657 if its
2224 		 * address is 0x4c.
2225 		 */
2226 		if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2227 		    !(config1 & 0x0f)) {
2228 			int regval;
2229 
2230 			/*
2231 			 * We know that this is not a MAX6657/58/59 because its
2232 			 * configuration register has the wrong value and it does
2233 			 * not appear to have a conversion rate register.
2234 			 */
2235 
2236 			/* re-read manufacturer ID to have a good baseline */
2237 			if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2238 				break;
2239 
2240 			/* check various non-existing registers */
2241 			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2242 			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2243 			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2244 				break;
2245 
2246 			/* check for unused status register bits */
2247 			regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2248 			if (regval < 0 || (regval & 0x2b))
2249 				break;
2250 
2251 			/* re-check unsupported registers */
2252 			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2253 			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2254 			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2255 				break;
2256 
2257 			name = "max6642";
2258 		} else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2259 			   (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2260 			if (address == 0x4c)
2261 				name = "max6657";
2262 			else
2263 				name = "max6659";
2264 		}
2265 		break;
2266 	case 0x59:
2267 		/*
2268 		 * The chip_id register of the MAX6646/6647/6649 holds the
2269 		 * revision of the chip. The lowest 6 bits of the config1
2270 		 * register are unused and should return zero when read.
2271 		 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2272 		 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2273 		 * and MAX6649 is at address 0x4c. A slight difference between
2274 		 * the two sets of chips is that the remote temperature register
2275 		 * reports different values if the DXP pin is open or shorted.
2276 		 * We can use that information to help distinguish between the
2277 		 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2278 		 * diode is connected, but there isn't really anything we can
2279 		 * do about that.
2280 		 */
2281 		if (!(config1 & 0x3f) && convrate <= 0x07) {
2282 			int temp;
2283 
2284 			switch (address) {
2285 			case 0x4c:
2286 				/*
2287 				 * MAX6649 reports an external temperature
2288 				 * value of 0xff if DXP is open or shorted.
2289 				 * MAX6648 reports 0x80 in that case.
2290 				 */
2291 				temp = i2c_smbus_read_byte_data(client,
2292 								LM90_REG_REMOTE_TEMPH);
2293 				if (temp == 0x80)
2294 					name = "max6648";
2295 				else
2296 					name = "max6649";
2297 				break;
2298 			case 0x4d:
2299 				name = "max6646";
2300 				break;
2301 			case 0x4e:
2302 				name = "max6647";
2303 				break;
2304 			default:
2305 				break;
2306 			}
2307 		}
2308 		break;
2309 	default:
2310 		break;
2311 	}
2312 
2313 	return name;
2314 }
2315 
2316 static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2317 				       int config1, int convrate)
2318 {
2319 	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2320 	int address = client->addr;
2321 	const char *name = NULL;
2322 
2323 	if (config2 < 0)
2324 		return NULL;
2325 
2326 	if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2327 		if (chip_id == 0x01 && convrate <= 0x09) {
2328 			/* W83L771W/G */
2329 			name = "w83l771";
2330 		} else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2331 			/* W83L771AWG/ASG */
2332 			name = "w83l771";
2333 		}
2334 	}
2335 	return name;
2336 }
2337 
2338 static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2339 				   int chip_id, int config1, int convrate)
2340 {
2341 	int address = client->addr;
2342 	const char *name = NULL;
2343 	int config2;
2344 
2345 	switch (chip_id) {
2346 	case 0x00:
2347 		config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2348 		if (config2 < 0)
2349 			return NULL;
2350 		if (address >= 0x48 && address <= 0x4f &&
2351 		    !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2352 			name = "sa56004";
2353 		break;
2354 	case 0x80:
2355 		if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2356 			name = "ne1618";
2357 		break;
2358 	default:
2359 		break;
2360 	}
2361 	return name;
2362 }
2363 
2364 static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2365 				   int config1, int convrate)
2366 {
2367 	int address = client->addr;
2368 
2369 	/*
2370 	 * According to the datasheet, G781 is supposed to be at I2C Address
2371 	 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2372 	 * address 0x4d and have a chip ID of 0x03. However, when support
2373 	 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2374 	 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2375 	 * chip ID 0x03.
2376 	 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2377 	 * addresses.
2378 	 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2379 	 * datasheet is not available. Extensive testing suggests that
2380 	 * the chip appears to be fully compatible with G781.
2381 	 * Available register dumps show that G751 also reports manufacturer
2382 	 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2383 	 * support those registers. This makes chip detection somewhat
2384 	 * vulnerable. To improve detection quality, read the offset low byte
2385 	 * and alert fault queue registers and verify that only expected bits
2386 	 * are set.
2387 	 */
2388 	if ((chip_id == 0x01 || chip_id == 0x03) &&
2389 	    (address == 0x4c || address == 0x4d) &&
2390 	    !(config1 & 0x3f) && convrate <= 0x08) {
2391 		int reg;
2392 
2393 		reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2394 		if (reg < 0 || reg & 0x1f)
2395 			return NULL;
2396 		reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2397 		if (reg < 0 || reg & 0xf1)
2398 			return NULL;
2399 
2400 		return "g781";
2401 	}
2402 
2403 	return NULL;
2404 }
2405 
2406 static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2407 				    int chip_id, int config1, int convrate)
2408 {
2409 	if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2410 		/* THMC10: Unsupported registers return 0xff */
2411 		if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2412 		    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2413 			return "thmc10";
2414 	}
2415 	return NULL;
2416 }
2417 
2418 static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2419 				  int config1, int convrate)
2420 {
2421 	int address = client->addr;
2422 	const char *name = NULL;
2423 
2424 	if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2425 		int local_ext, conalert, chen, dfc;
2426 
2427 		local_ext = i2c_smbus_read_byte_data(client,
2428 						     TMP451_REG_LOCAL_TEMPL);
2429 		conalert = i2c_smbus_read_byte_data(client,
2430 						    TMP451_REG_CONALERT);
2431 		chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2432 		dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2433 
2434 		if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2435 		    (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2436 			if (address == 0x4c && !(chen & 0x03))
2437 				name = "tmp451";
2438 			else if (address >= 0x48 && address <= 0x4f)
2439 				name = "tmp461";
2440 		}
2441 	}
2442 
2443 	return name;
2444 }
2445 
2446 /* Return 0 if detection is successful, -ENODEV otherwise */
2447 static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2448 {
2449 	struct i2c_adapter *adapter = client->adapter;
2450 	int man_id, chip_id, config1, convrate, lhigh;
2451 	const char *name = NULL;
2452 	int address = client->addr;
2453 	bool common_address =
2454 			(address >= 0x18 && address <= 0x1a) ||
2455 			(address >= 0x29 && address <= 0x2b) ||
2456 			(address >= 0x4c && address <= 0x4e);
2457 
2458 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2459 		return -ENODEV;
2460 
2461 	/*
2462 	 * Get well defined register value for chips with neither man_id nor
2463 	 * chip_id registers.
2464 	 */
2465 	lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2466 
2467 	/* detection and identification */
2468 	man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2469 	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2470 	config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2471 	convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2472 	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2473 		return -ENODEV;
2474 
2475 	/* Bail out immediately if all register report the same value */
2476 	if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2477 		return -ENODEV;
2478 
2479 	/*
2480 	 * If reading man_id and chip_id both return the same value as lhigh,
2481 	 * the chip may not support those registers and return the most recent read
2482 	 * value. Check again with a different register and handle accordingly.
2483 	 */
2484 	if (man_id == lhigh && chip_id == lhigh) {
2485 		convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2486 		man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2487 		chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2488 		if (convrate < 0 || man_id < 0 || chip_id < 0)
2489 			return -ENODEV;
2490 		if (man_id == convrate && chip_id == convrate)
2491 			man_id = -1;
2492 	}
2493 	switch (man_id) {
2494 	case -1:	/* Chip does not support man_id / chip_id */
2495 		if (common_address && !convrate && !(config1 & 0x7f))
2496 			name = lm90_detect_lm84(client);
2497 		break;
2498 	case 0x01:	/* National Semiconductor */
2499 		name = lm90_detect_national(client, chip_id, config1, convrate);
2500 		break;
2501 	case 0x1a:	/* ON */
2502 		name = lm90_detect_on(client, chip_id, config1, convrate);
2503 		break;
2504 	case 0x23:	/* Genesys Logic */
2505 		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2506 			name = "gl523sm";
2507 		break;
2508 	case 0x41:	/* Analog Devices */
2509 		name = lm90_detect_analog(client, common_address, chip_id, config1,
2510 					  convrate);
2511 		break;
2512 	case 0x47:	/* GMT */
2513 		name = lm90_detect_gmt(client, chip_id, config1, convrate);
2514 		break;
2515 	case 0x49:	/* TI */
2516 		name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2517 		break;
2518 	case 0x4d:	/* Maxim Integrated */
2519 		name = lm90_detect_maxim(client, common_address, chip_id,
2520 					 config1, convrate);
2521 		break;
2522 	case 0x54:	/* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2523 		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2524 			name = "mc1066";
2525 		break;
2526 	case 0x55:	/* TI */
2527 		name = lm90_detect_ti(client, chip_id, config1, convrate);
2528 		break;
2529 	case 0x5c:	/* Winbond/Nuvoton */
2530 		name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2531 		break;
2532 	case 0xa1:	/*  NXP Semiconductor/Philips */
2533 		name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2534 		break;
2535 	case 0xff:	/* MAX1617, G767, NE1617 */
2536 		if (common_address && chip_id == 0xff && convrate < 8)
2537 			name = lm90_detect_max1617(client, config1);
2538 		break;
2539 	default:
2540 		break;
2541 	}
2542 
2543 	if (!name) {	/* identification failed */
2544 		dev_dbg(&adapter->dev,
2545 			"Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2546 			client->addr, man_id, chip_id);
2547 		return -ENODEV;
2548 	}
2549 
2550 	strscpy(info->type, name, I2C_NAME_SIZE);
2551 
2552 	return 0;
2553 }
2554 
2555 static void lm90_restore_conf(void *_data)
2556 {
2557 	struct lm90_data *data = _data;
2558 	struct i2c_client *client = data->client;
2559 
2560 	cancel_delayed_work_sync(&data->alert_work);
2561 	cancel_work_sync(&data->report_work);
2562 
2563 	/* Restore initial configuration */
2564 	if (data->flags & LM90_HAVE_CONVRATE)
2565 		lm90_write_convrate(data, data->convrate_orig);
2566 	lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2567 }
2568 
2569 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2570 {
2571 	struct device_node *np = client->dev.of_node;
2572 	int config, convrate;
2573 
2574 	if (data->flags & LM90_HAVE_CONVRATE) {
2575 		convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2576 		if (convrate < 0)
2577 			return convrate;
2578 		data->convrate_orig = convrate;
2579 		lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2580 	} else {
2581 		data->update_interval = 500;
2582 	}
2583 
2584 	/*
2585 	 * Start the conversions.
2586 	 */
2587 	config = lm90_read_reg(client, LM90_REG_CONFIG1);
2588 	if (config < 0)
2589 		return config;
2590 	data->config_orig = config;
2591 	data->config = config;
2592 
2593 	/* Check Temperature Range Select */
2594 	if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2595 		if (of_property_read_bool(np, "ti,extended-range-enable"))
2596 			config |= 0x04;
2597 		if (!(config & 0x04))
2598 			data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2599 	}
2600 
2601 	/*
2602 	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2603 	 * 0.125 degree resolution) and range (0x08, extend range
2604 	 * to -64 degree) mode for the remote temperature sensor.
2605 	 * Note that expeciments with an actual chip do not show a difference
2606 	 * if bit 3 is set or not.
2607 	 */
2608 	if (data->kind == max6680)
2609 		config |= 0x18;
2610 
2611 	/*
2612 	 * Put MAX6654 into extended range (0x20, extend minimum range from
2613 	 * 0 degrees to -64 degrees). Note that extended resolution is not
2614 	 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2615 	 * slower, which is intentionally not done by default.
2616 	 */
2617 	if (data->kind == max6654)
2618 		config |= 0x20;
2619 
2620 	/*
2621 	 * Select external channel 0 for devices with three sensors
2622 	 */
2623 	if (data->flags & LM90_HAVE_TEMP3)
2624 		config &= ~0x08;
2625 
2626 	/*
2627 	 * Interrupt is enabled by default on reset, but it may be disabled
2628 	 * by bootloader, unmask it.
2629 	 */
2630 	if (client->irq)
2631 		config &= ~0x80;
2632 
2633 	config &= 0xBF;	/* run */
2634 	lm90_update_confreg(data, config);
2635 
2636 	return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2637 }
2638 
2639 static bool lm90_is_tripped(struct i2c_client *client)
2640 {
2641 	struct lm90_data *data = i2c_get_clientdata(client);
2642 	int ret;
2643 
2644 	ret = lm90_update_alarms(data, true);
2645 	if (ret < 0)
2646 		return false;
2647 
2648 	return !!data->current_alarms;
2649 }
2650 
2651 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2652 {
2653 	struct i2c_client *client = dev_id;
2654 
2655 	if (lm90_is_tripped(client))
2656 		return IRQ_HANDLED;
2657 	else
2658 		return IRQ_NONE;
2659 }
2660 
2661 static void lm90_remove_pec(void *dev)
2662 {
2663 	device_remove_file(dev, &dev_attr_pec);
2664 }
2665 
2666 static void lm90_regulator_disable(void *regulator)
2667 {
2668 	regulator_disable(regulator);
2669 }
2670 
2671 static int lm90_probe_channel_from_dt(struct i2c_client *client,
2672 				      struct device_node *child,
2673 				      struct lm90_data *data)
2674 {
2675 	u32 id;
2676 	s32 val;
2677 	int err;
2678 	struct device *dev = &client->dev;
2679 
2680 	err = of_property_read_u32(child, "reg", &id);
2681 	if (err) {
2682 		dev_err(dev, "missing reg property of %pOFn\n", child);
2683 		return err;
2684 	}
2685 
2686 	if (id >= MAX_CHANNELS) {
2687 		dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2688 		return -EINVAL;
2689 	}
2690 
2691 	err = of_property_read_string(child, "label", &data->channel_label[id]);
2692 	if (err == -ENODATA || err == -EILSEQ) {
2693 		dev_err(dev, "invalid label property in %pOFn\n", child);
2694 		return err;
2695 	}
2696 
2697 	if (data->channel_label[id])
2698 		data->channel_config[id] |= HWMON_T_LABEL;
2699 
2700 	err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2701 	if (!err) {
2702 		if (id == 0) {
2703 			dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2704 			return -EINVAL;
2705 		}
2706 
2707 		err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2708 		if (err) {
2709 			dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2710 				val, id, err);
2711 			return err;
2712 		}
2713 	}
2714 
2715 	return 0;
2716 }
2717 
2718 static int lm90_parse_dt_channel_info(struct i2c_client *client,
2719 				      struct lm90_data *data)
2720 {
2721 	int err;
2722 	struct device_node *child;
2723 	struct device *dev = &client->dev;
2724 	const struct device_node *np = dev->of_node;
2725 
2726 	for_each_child_of_node(np, child) {
2727 		if (strcmp(child->name, "channel"))
2728 			continue;
2729 
2730 		err = lm90_probe_channel_from_dt(client, child, data);
2731 		if (err) {
2732 			of_node_put(child);
2733 			return err;
2734 		}
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 static const struct hwmon_ops lm90_ops = {
2741 	.is_visible = lm90_is_visible,
2742 	.read = lm90_read,
2743 	.read_string = lm90_read_string,
2744 	.write = lm90_write,
2745 };
2746 
2747 static int lm90_probe(struct i2c_client *client)
2748 {
2749 	struct device *dev = &client->dev;
2750 	struct i2c_adapter *adapter = client->adapter;
2751 	struct hwmon_channel_info *info;
2752 	struct regulator *regulator;
2753 	struct device *hwmon_dev;
2754 	struct lm90_data *data;
2755 	int err;
2756 
2757 	regulator = devm_regulator_get(dev, "vcc");
2758 	if (IS_ERR(regulator))
2759 		return PTR_ERR(regulator);
2760 
2761 	err = regulator_enable(regulator);
2762 	if (err < 0) {
2763 		dev_err(dev, "Failed to enable regulator: %d\n", err);
2764 		return err;
2765 	}
2766 
2767 	err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
2768 	if (err)
2769 		return err;
2770 
2771 	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2772 	if (!data)
2773 		return -ENOMEM;
2774 
2775 	data->client = client;
2776 	i2c_set_clientdata(client, data);
2777 	mutex_init(&data->update_lock);
2778 	INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2779 	INIT_WORK(&data->report_work, lm90_report_alarms);
2780 
2781 	/* Set the device type */
2782 	if (client->dev.of_node)
2783 		data->kind = (enum chips)of_device_get_match_data(&client->dev);
2784 	else
2785 		data->kind = i2c_match_id(lm90_id, client)->driver_data;
2786 
2787 	/*
2788 	 * Different devices have different alarm bits triggering the
2789 	 * ALERT# output
2790 	 */
2791 	data->alert_alarms = lm90_params[data->kind].alert_alarms;
2792 	data->resolution = lm90_params[data->kind].resolution ? : 11;
2793 
2794 	/* Set chip capabilities */
2795 	data->flags = lm90_params[data->kind].flags;
2796 
2797 	if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2798 	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2799 		data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2800 
2801 	if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2802 	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2803 		data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2804 
2805 	data->chip.ops = &lm90_ops;
2806 	data->chip.info = data->info;
2807 
2808 	data->info[0] = &data->chip_info;
2809 	info = &data->chip_info;
2810 	info->type = hwmon_chip;
2811 	info->config = data->chip_config;
2812 
2813 	data->chip_config[0] = HWMON_C_REGISTER_TZ;
2814 	if (data->flags & LM90_HAVE_ALARMS)
2815 		data->chip_config[0] |= HWMON_C_ALARMS;
2816 	if (data->flags & LM90_HAVE_CONVRATE)
2817 		data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2818 	if (data->flags & LM90_HAVE_FAULTQUEUE)
2819 		data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2820 	data->info[1] = &data->temp_info;
2821 
2822 	info = &data->temp_info;
2823 	info->type = hwmon_temp;
2824 	info->config = data->channel_config;
2825 
2826 	data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2827 		HWMON_T_MAX_ALARM;
2828 	data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2829 		HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2830 
2831 	if (data->flags & LM90_HAVE_LOW) {
2832 		data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2833 		data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2834 	}
2835 
2836 	if (data->flags & LM90_HAVE_CRIT) {
2837 		data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2838 		data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2839 	}
2840 
2841 	if (data->flags & LM90_HAVE_OFFSET)
2842 		data->channel_config[1] |= HWMON_T_OFFSET;
2843 
2844 	if (data->flags & LM90_HAVE_EMERGENCY) {
2845 		data->channel_config[0] |= HWMON_T_EMERGENCY |
2846 			HWMON_T_EMERGENCY_HYST;
2847 		data->channel_config[1] |= HWMON_T_EMERGENCY |
2848 			HWMON_T_EMERGENCY_HYST;
2849 	}
2850 
2851 	if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2852 		data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2853 		data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2854 	}
2855 
2856 	if (data->flags & LM90_HAVE_TEMP3) {
2857 		data->channel_config[2] = HWMON_T_INPUT |
2858 			HWMON_T_MIN | HWMON_T_MAX |
2859 			HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2860 			HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2861 			HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2862 		if (data->flags & LM90_HAVE_EMERGENCY) {
2863 			data->channel_config[2] |= HWMON_T_EMERGENCY |
2864 				HWMON_T_EMERGENCY_HYST;
2865 		}
2866 		if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2867 			data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2868 		if (data->flags & LM90_HAVE_OFFSET)
2869 			data->channel_config[2] |= HWMON_T_OFFSET;
2870 	}
2871 
2872 	data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2873 	data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2874 	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2875 	if (data->flags & LM90_HAVE_REMOTE_EXT)
2876 		data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2877 	data->reg_status2 = lm90_params[data->kind].reg_status2;
2878 
2879 	/* Set maximum conversion rate */
2880 	data->max_convrate = lm90_params[data->kind].max_convrate;
2881 
2882 	/* Parse device-tree channel information */
2883 	if (client->dev.of_node) {
2884 		err = lm90_parse_dt_channel_info(client, data);
2885 		if (err)
2886 			return err;
2887 	}
2888 
2889 	/* Initialize the LM90 chip */
2890 	err = lm90_init_client(client, data);
2891 	if (err < 0) {
2892 		dev_err(dev, "Failed to initialize device\n");
2893 		return err;
2894 	}
2895 
2896 	/*
2897 	 * The 'pec' attribute is attached to the i2c device and thus created
2898 	 * separately.
2899 	 */
2900 	if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
2901 		err = device_create_file(dev, &dev_attr_pec);
2902 		if (err)
2903 			return err;
2904 		err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
2905 		if (err)
2906 			return err;
2907 	}
2908 
2909 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2910 							 data, &data->chip,
2911 							 NULL);
2912 	if (IS_ERR(hwmon_dev))
2913 		return PTR_ERR(hwmon_dev);
2914 
2915 	data->hwmon_dev = hwmon_dev;
2916 
2917 	if (client->irq) {
2918 		dev_dbg(dev, "IRQ: %d\n", client->irq);
2919 		err = devm_request_threaded_irq(dev, client->irq,
2920 						NULL, lm90_irq_thread,
2921 						IRQF_ONESHOT, "lm90", client);
2922 		if (err < 0) {
2923 			dev_err(dev, "cannot request IRQ %d\n", client->irq);
2924 			return err;
2925 		}
2926 	}
2927 
2928 	return 0;
2929 }
2930 
2931 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2932 		       unsigned int flag)
2933 {
2934 	if (type != I2C_PROTOCOL_SMBUS_ALERT)
2935 		return;
2936 
2937 	if (lm90_is_tripped(client)) {
2938 		/*
2939 		 * Disable ALERT# output, because these chips don't implement
2940 		 * SMBus alert correctly; they should only hold the alert line
2941 		 * low briefly.
2942 		 */
2943 		struct lm90_data *data = i2c_get_clientdata(client);
2944 
2945 		if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2946 		    (data->current_alarms & data->alert_alarms)) {
2947 			if (!(data->config & 0x80)) {
2948 				dev_dbg(&client->dev, "Disabling ALERT#\n");
2949 				lm90_update_confreg(data, data->config | 0x80);
2950 			}
2951 			schedule_delayed_work(&data->alert_work,
2952 				max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2953 		}
2954 	} else {
2955 		dev_dbg(&client->dev, "Everything OK\n");
2956 	}
2957 }
2958 
2959 static int lm90_suspend(struct device *dev)
2960 {
2961 	struct lm90_data *data = dev_get_drvdata(dev);
2962 	struct i2c_client *client = data->client;
2963 
2964 	if (client->irq)
2965 		disable_irq(client->irq);
2966 
2967 	return 0;
2968 }
2969 
2970 static int lm90_resume(struct device *dev)
2971 {
2972 	struct lm90_data *data = dev_get_drvdata(dev);
2973 	struct i2c_client *client = data->client;
2974 
2975 	if (client->irq)
2976 		enable_irq(client->irq);
2977 
2978 	return 0;
2979 }
2980 
2981 static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2982 
2983 static struct i2c_driver lm90_driver = {
2984 	.class		= I2C_CLASS_HWMON,
2985 	.driver = {
2986 		.name	= "lm90",
2987 		.of_match_table = of_match_ptr(lm90_of_match),
2988 		.pm	= pm_sleep_ptr(&lm90_pm_ops),
2989 	},
2990 	.probe_new	= lm90_probe,
2991 	.alert		= lm90_alert,
2992 	.id_table	= lm90_id,
2993 	.detect		= lm90_detect,
2994 	.address_list	= normal_i2c,
2995 };
2996 
2997 module_i2c_driver(lm90_driver);
2998 
2999 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
3000 MODULE_DESCRIPTION("LM90/ADM1032 driver");
3001 MODULE_LICENSE("GPL");
3002