xref: /openbmc/linux/drivers/hwmon/lm90.c (revision bc5aa3a0)
1 /*
2  * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3  *          monitoring
4  * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
5  *
6  * Based on the lm83 driver. The LM90 is a sensor chip made by National
7  * Semiconductor. It reports up to two temperatures (its own plus up to
8  * one external one) with a 0.125 deg resolution (1 deg for local
9  * temperature) and a 3-4 deg accuracy.
10  *
11  * This driver also supports the LM89 and LM99, two other sensor chips
12  * made by National Semiconductor. Both have an increased remote
13  * temperature measurement accuracy (1 degree), and the LM99
14  * additionally shifts remote temperatures (measured and limits) by 16
15  * degrees, which allows for higher temperatures measurement.
16  * Note that there is no way to differentiate between both chips.
17  * When device is auto-detected, the driver will assume an LM99.
18  *
19  * This driver also supports the LM86, another sensor chip made by
20  * National Semiconductor. It is exactly similar to the LM90 except it
21  * has a higher accuracy.
22  *
23  * This driver also supports the ADM1032, a sensor chip made by Analog
24  * Devices. That chip is similar to the LM90, with a few differences
25  * that are not handled by this driver. Among others, it has a higher
26  * accuracy than the LM90, much like the LM86 does.
27  *
28  * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29  * chips made by Maxim. These chips are similar to the LM86.
30  * Note that there is no easy way to differentiate between the three
31  * variants. We use the device address to detect MAX6659, which will result
32  * in a detection as max6657 if it is on address 0x4c. The extra address
33  * and features of the MAX6659 are only supported if the chip is configured
34  * explicitly as max6659, or if its address is not 0x4c.
35  * These chips lack the remote temperature offset feature.
36  *
37  * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38  * MAX6692 chips made by Maxim.  These are again similar to the LM86,
39  * but they use unsigned temperature values and can report temperatures
40  * from 0 to 145 degrees.
41  *
42  * This driver also supports the MAX6680 and MAX6681, two other sensor
43  * chips made by Maxim. These are quite similar to the other Maxim
44  * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45  * be treated identically.
46  *
47  * This driver also supports the MAX6695 and MAX6696, two other sensor
48  * chips made by Maxim. These are also quite similar to other Maxim
49  * chips, but support three temperature sensors instead of two. MAX6695
50  * and MAX6696 only differ in the pinout so they can be treated identically.
51  *
52  * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53  * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54  * and extended mode. They are mostly compatible with LM90 except for a data
55  * format difference for the temperature value registers.
56  *
57  * This driver also supports the SA56004 from Philips. This device is
58  * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59  *
60  * This driver also supports the G781 from GMT. This device is compatible
61  * with the ADM1032.
62  *
63  * This driver also supports TMP451 from Texas Instruments. This device is
64  * supported in both compatibility and extended mode. It's mostly compatible
65  * with ADT7461 except for local temperature low byte register and max
66  * conversion rate.
67  *
68  * Since the LM90 was the first chipset supported by this driver, most
69  * comments will refer to this chipset, but are actually general and
70  * concern all supported chipsets, unless mentioned otherwise.
71  *
72  * This program is free software; you can redistribute it and/or modify
73  * it under the terms of the GNU General Public License as published by
74  * the Free Software Foundation; either version 2 of the License, or
75  * (at your option) any later version.
76  *
77  * This program is distributed in the hope that it will be useful,
78  * but WITHOUT ANY WARRANTY; without even the implied warranty of
79  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
80  * GNU General Public License for more details.
81  *
82  * You should have received a copy of the GNU General Public License
83  * along with this program; if not, write to the Free Software
84  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
85  */
86 
87 #include <linux/module.h>
88 #include <linux/init.h>
89 #include <linux/slab.h>
90 #include <linux/jiffies.h>
91 #include <linux/i2c.h>
92 #include <linux/hwmon-sysfs.h>
93 #include <linux/hwmon.h>
94 #include <linux/err.h>
95 #include <linux/mutex.h>
96 #include <linux/sysfs.h>
97 #include <linux/interrupt.h>
98 #include <linux/regulator/consumer.h>
99 
100 /*
101  * Addresses to scan
102  * Address is fully defined internally and cannot be changed except for
103  * MAX6659, MAX6680 and MAX6681.
104  * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
105  * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
106  * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
107  * have address 0x4d.
108  * MAX6647 has address 0x4e.
109  * MAX6659 can have address 0x4c, 0x4d or 0x4e.
110  * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
111  * 0x4c, 0x4d or 0x4e.
112  * SA56004 can have address 0x48 through 0x4F.
113  */
114 
115 static const unsigned short normal_i2c[] = {
116 	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
117 	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
118 
119 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
120 	max6646, w83l771, max6696, sa56004, g781, tmp451 };
121 
122 /*
123  * The LM90 registers
124  */
125 
126 #define LM90_REG_R_MAN_ID		0xFE
127 #define LM90_REG_R_CHIP_ID		0xFF
128 #define LM90_REG_R_CONFIG1		0x03
129 #define LM90_REG_W_CONFIG1		0x09
130 #define LM90_REG_R_CONFIG2		0xBF
131 #define LM90_REG_W_CONFIG2		0xBF
132 #define LM90_REG_R_CONVRATE		0x04
133 #define LM90_REG_W_CONVRATE		0x0A
134 #define LM90_REG_R_STATUS		0x02
135 #define LM90_REG_R_LOCAL_TEMP		0x00
136 #define LM90_REG_R_LOCAL_HIGH		0x05
137 #define LM90_REG_W_LOCAL_HIGH		0x0B
138 #define LM90_REG_R_LOCAL_LOW		0x06
139 #define LM90_REG_W_LOCAL_LOW		0x0C
140 #define LM90_REG_R_LOCAL_CRIT		0x20
141 #define LM90_REG_W_LOCAL_CRIT		0x20
142 #define LM90_REG_R_REMOTE_TEMPH		0x01
143 #define LM90_REG_R_REMOTE_TEMPL		0x10
144 #define LM90_REG_R_REMOTE_OFFSH		0x11
145 #define LM90_REG_W_REMOTE_OFFSH		0x11
146 #define LM90_REG_R_REMOTE_OFFSL		0x12
147 #define LM90_REG_W_REMOTE_OFFSL		0x12
148 #define LM90_REG_R_REMOTE_HIGHH		0x07
149 #define LM90_REG_W_REMOTE_HIGHH		0x0D
150 #define LM90_REG_R_REMOTE_HIGHL		0x13
151 #define LM90_REG_W_REMOTE_HIGHL		0x13
152 #define LM90_REG_R_REMOTE_LOWH		0x08
153 #define LM90_REG_W_REMOTE_LOWH		0x0E
154 #define LM90_REG_R_REMOTE_LOWL		0x14
155 #define LM90_REG_W_REMOTE_LOWL		0x14
156 #define LM90_REG_R_REMOTE_CRIT		0x19
157 #define LM90_REG_W_REMOTE_CRIT		0x19
158 #define LM90_REG_R_TCRIT_HYST		0x21
159 #define LM90_REG_W_TCRIT_HYST		0x21
160 
161 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
162 
163 #define MAX6657_REG_R_LOCAL_TEMPL	0x11
164 #define MAX6696_REG_R_STATUS2		0x12
165 #define MAX6659_REG_R_REMOTE_EMERG	0x16
166 #define MAX6659_REG_W_REMOTE_EMERG	0x16
167 #define MAX6659_REG_R_LOCAL_EMERG	0x17
168 #define MAX6659_REG_W_LOCAL_EMERG	0x17
169 
170 /*  SA56004 registers */
171 
172 #define SA56004_REG_R_LOCAL_TEMPL 0x22
173 
174 #define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
175 
176 /* TMP451 registers */
177 #define TMP451_REG_R_LOCAL_TEMPL	0x15
178 
179 /*
180  * Device flags
181  */
182 #define LM90_FLAG_ADT7461_EXT	(1 << 0) /* ADT7461 extended mode	*/
183 /* Device features */
184 #define LM90_HAVE_OFFSET	(1 << 1) /* temperature offset register	*/
185 #define LM90_HAVE_REM_LIMIT_EXT	(1 << 3) /* extended remote limit	*/
186 #define LM90_HAVE_EMERGENCY	(1 << 4) /* 3rd upper (emergency) limit	*/
187 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm		*/
188 #define LM90_HAVE_TEMP3		(1 << 6) /* 3rd temperature sensor	*/
189 #define LM90_HAVE_BROKEN_ALERT	(1 << 7) /* Broken alert		*/
190 
191 /* LM90 status */
192 #define LM90_STATUS_LTHRM	(1 << 0) /* local THERM limit tripped */
193 #define LM90_STATUS_RTHRM	(1 << 1) /* remote THERM limit tripped */
194 #define LM90_STATUS_ROPEN	(1 << 2) /* remote is an open circuit */
195 #define LM90_STATUS_RLOW	(1 << 3) /* remote low temp limit tripped */
196 #define LM90_STATUS_RHIGH	(1 << 4) /* remote high temp limit tripped */
197 #define LM90_STATUS_LLOW	(1 << 5) /* local low temp limit tripped */
198 #define LM90_STATUS_LHIGH	(1 << 6) /* local high temp limit tripped */
199 
200 #define MAX6696_STATUS2_R2THRM	(1 << 1) /* remote2 THERM limit tripped */
201 #define MAX6696_STATUS2_R2OPEN	(1 << 2) /* remote2 is an open circuit */
202 #define MAX6696_STATUS2_R2LOW	(1 << 3) /* remote2 low temp limit tripped */
203 #define MAX6696_STATUS2_R2HIGH	(1 << 4) /* remote2 high temp limit tripped */
204 #define MAX6696_STATUS2_ROT2	(1 << 5) /* remote emergency limit tripped */
205 #define MAX6696_STATUS2_R2OT2	(1 << 6) /* remote2 emergency limit tripped */
206 #define MAX6696_STATUS2_LOT2	(1 << 7) /* local emergency limit tripped */
207 
208 /*
209  * Driver data (common to all clients)
210  */
211 
212 static const struct i2c_device_id lm90_id[] = {
213 	{ "adm1032", adm1032 },
214 	{ "adt7461", adt7461 },
215 	{ "adt7461a", adt7461 },
216 	{ "g781", g781 },
217 	{ "lm90", lm90 },
218 	{ "lm86", lm86 },
219 	{ "lm89", lm86 },
220 	{ "lm99", lm99 },
221 	{ "max6646", max6646 },
222 	{ "max6647", max6646 },
223 	{ "max6649", max6646 },
224 	{ "max6657", max6657 },
225 	{ "max6658", max6657 },
226 	{ "max6659", max6659 },
227 	{ "max6680", max6680 },
228 	{ "max6681", max6680 },
229 	{ "max6695", max6696 },
230 	{ "max6696", max6696 },
231 	{ "nct1008", adt7461 },
232 	{ "w83l771", w83l771 },
233 	{ "sa56004", sa56004 },
234 	{ "tmp451", tmp451 },
235 	{ }
236 };
237 MODULE_DEVICE_TABLE(i2c, lm90_id);
238 
239 /*
240  * chip type specific parameters
241  */
242 struct lm90_params {
243 	u32 flags;		/* Capabilities */
244 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
245 				/* Upper 8 bits for max6695/96 */
246 	u8 max_convrate;	/* Maximum conversion rate register value */
247 	u8 reg_local_ext;	/* Extended local temp register (optional) */
248 };
249 
250 static const struct lm90_params lm90_params[] = {
251 	[adm1032] = {
252 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
253 		  | LM90_HAVE_BROKEN_ALERT,
254 		.alert_alarms = 0x7c,
255 		.max_convrate = 10,
256 	},
257 	[adt7461] = {
258 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
259 		  | LM90_HAVE_BROKEN_ALERT,
260 		.alert_alarms = 0x7c,
261 		.max_convrate = 10,
262 	},
263 	[g781] = {
264 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
265 		  | LM90_HAVE_BROKEN_ALERT,
266 		.alert_alarms = 0x7c,
267 		.max_convrate = 8,
268 	},
269 	[lm86] = {
270 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
271 		.alert_alarms = 0x7b,
272 		.max_convrate = 9,
273 	},
274 	[lm90] = {
275 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
276 		.alert_alarms = 0x7b,
277 		.max_convrate = 9,
278 	},
279 	[lm99] = {
280 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
281 		.alert_alarms = 0x7b,
282 		.max_convrate = 9,
283 	},
284 	[max6646] = {
285 		.alert_alarms = 0x7c,
286 		.max_convrate = 6,
287 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
288 	},
289 	[max6657] = {
290 		.alert_alarms = 0x7c,
291 		.max_convrate = 8,
292 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
293 	},
294 	[max6659] = {
295 		.flags = LM90_HAVE_EMERGENCY,
296 		.alert_alarms = 0x7c,
297 		.max_convrate = 8,
298 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
299 	},
300 	[max6680] = {
301 		.flags = LM90_HAVE_OFFSET,
302 		.alert_alarms = 0x7c,
303 		.max_convrate = 7,
304 	},
305 	[max6696] = {
306 		.flags = LM90_HAVE_EMERGENCY
307 		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
308 		.alert_alarms = 0x1c7c,
309 		.max_convrate = 6,
310 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
311 	},
312 	[w83l771] = {
313 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
314 		.alert_alarms = 0x7c,
315 		.max_convrate = 8,
316 	},
317 	[sa56004] = {
318 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
319 		.alert_alarms = 0x7b,
320 		.max_convrate = 9,
321 		.reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
322 	},
323 	[tmp451] = {
324 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
325 		  | LM90_HAVE_BROKEN_ALERT,
326 		.alert_alarms = 0x7c,
327 		.max_convrate = 9,
328 		.reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
329 	}
330 };
331 
332 /*
333  * TEMP8 register index
334  */
335 enum lm90_temp8_reg_index {
336 	LOCAL_LOW = 0,
337 	LOCAL_HIGH,
338 	LOCAL_CRIT,
339 	REMOTE_CRIT,
340 	LOCAL_EMERG,	/* max6659 and max6695/96 */
341 	REMOTE_EMERG,	/* max6659 and max6695/96 */
342 	REMOTE2_CRIT,	/* max6695/96 only */
343 	REMOTE2_EMERG,	/* max6695/96 only */
344 	TEMP8_REG_NUM
345 };
346 
347 /*
348  * TEMP11 register index
349  */
350 enum lm90_temp11_reg_index {
351 	REMOTE_TEMP = 0,
352 	REMOTE_LOW,
353 	REMOTE_HIGH,
354 	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
355 	LOCAL_TEMP,
356 	REMOTE2_TEMP,	/* max6695/96 only */
357 	REMOTE2_LOW,	/* max6695/96 only */
358 	REMOTE2_HIGH,	/* max6695/96 only */
359 	TEMP11_REG_NUM
360 };
361 
362 /*
363  * Client data (each client gets its own)
364  */
365 
366 struct lm90_data {
367 	struct i2c_client *client;
368 	const struct attribute_group *groups[6];
369 	struct mutex update_lock;
370 	bool valid;		/* true if register values are valid */
371 	unsigned long last_updated; /* in jiffies */
372 	int kind;
373 	u32 flags;
374 
375 	unsigned int update_interval; /* in milliseconds */
376 
377 	u8 config_orig;		/* Original configuration register value */
378 	u8 convrate_orig;	/* Original conversion rate register value */
379 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
380 				/* Upper 8 bits for max6695/96 */
381 	u8 max_convrate;	/* Maximum conversion rate */
382 	u8 reg_local_ext;	/* local extension register offset */
383 
384 	/* registers values */
385 	s8 temp8[TEMP8_REG_NUM];
386 	s16 temp11[TEMP11_REG_NUM];
387 	u8 temp_hyst;
388 	u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
389 };
390 
391 /*
392  * Support functions
393  */
394 
395 /*
396  * The ADM1032 supports PEC but not on write byte transactions, so we need
397  * to explicitly ask for a transaction without PEC.
398  */
399 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
400 {
401 	return i2c_smbus_xfer(client->adapter, client->addr,
402 			      client->flags & ~I2C_CLIENT_PEC,
403 			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
404 }
405 
406 /*
407  * It is assumed that client->update_lock is held (unless we are in
408  * detection or initialization steps). This matters when PEC is enabled,
409  * because we don't want the address pointer to change between the write
410  * byte and the read byte transactions.
411  */
412 static int lm90_read_reg(struct i2c_client *client, u8 reg)
413 {
414 	int err;
415 
416 	if (client->flags & I2C_CLIENT_PEC) {
417 		err = adm1032_write_byte(client, reg);
418 		if (err >= 0)
419 			err = i2c_smbus_read_byte(client);
420 	} else
421 		err = i2c_smbus_read_byte_data(client, reg);
422 
423 	return err;
424 }
425 
426 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl)
427 {
428 	int oldh, newh, l;
429 
430 	/*
431 	 * There is a trick here. We have to read two registers to have the
432 	 * sensor temperature, but we have to beware a conversion could occur
433 	 * between the readings. The datasheet says we should either use
434 	 * the one-shot conversion register, which we don't want to do
435 	 * (disables hardware monitoring) or monitor the busy bit, which is
436 	 * impossible (we can't read the values and monitor that bit at the
437 	 * exact same time). So the solution used here is to read the high
438 	 * byte once, then the low byte, then the high byte again. If the new
439 	 * high byte matches the old one, then we have a valid reading. Else
440 	 * we have to read the low byte again, and now we believe we have a
441 	 * correct reading.
442 	 */
443 	oldh = lm90_read_reg(client, regh);
444 	if (oldh < 0)
445 		return oldh;
446 	l = lm90_read_reg(client, regl);
447 	if (l < 0)
448 		return l;
449 	newh = lm90_read_reg(client, regh);
450 	if (newh < 0)
451 		return newh;
452 	if (oldh != newh) {
453 		l = lm90_read_reg(client, regl);
454 		if (l < 0)
455 			return l;
456 	}
457 	return (newh << 8) | l;
458 }
459 
460 /*
461  * client->update_lock must be held when calling this function (unless we are
462  * in detection or initialization steps), and while a remote channel other
463  * than channel 0 is selected. Also, calling code must make sure to re-select
464  * external channel 0 before releasing the lock. This is necessary because
465  * various registers have different meanings as a result of selecting a
466  * non-default remote channel.
467  */
468 static inline int lm90_select_remote_channel(struct i2c_client *client,
469 					     struct lm90_data *data,
470 					     int channel)
471 {
472 	int config;
473 
474 	if (data->kind == max6696) {
475 		config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
476 		if (config < 0)
477 			return config;
478 		config &= ~0x08;
479 		if (channel)
480 			config |= 0x08;
481 		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
482 					  config);
483 	}
484 	return 0;
485 }
486 
487 /*
488  * Set conversion rate.
489  * client->update_lock must be held when calling this function (unless we are
490  * in detection or initialization steps).
491  */
492 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
493 			      unsigned int interval)
494 {
495 	int i;
496 	unsigned int update_interval;
497 
498 	/* Shift calculations to avoid rounding errors */
499 	interval <<= 6;
500 
501 	/* find the nearest update rate */
502 	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
503 	     i < data->max_convrate; i++, update_interval >>= 1)
504 		if (interval >= update_interval * 3 / 4)
505 			break;
506 
507 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
508 	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
509 }
510 
511 static int lm90_update_limits(struct device *dev)
512 {
513 	struct lm90_data *data = dev_get_drvdata(dev);
514 	struct i2c_client *client = data->client;
515 	int val;
516 
517 	val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT);
518 	if (val < 0)
519 		return val;
520 	data->temp8[LOCAL_CRIT] = val;
521 
522 	val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
523 	if (val < 0)
524 		return val;
525 	data->temp8[REMOTE_CRIT] = val;
526 
527 	val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST);
528 	if (val < 0)
529 		return val;
530 	data->temp_hyst = val;
531 
532 	val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
533 	if (val < 0)
534 		return val;
535 	data->temp11[REMOTE_LOW] = val << 8;
536 
537 	if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
538 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL);
539 		if (val < 0)
540 			return val;
541 		data->temp11[REMOTE_LOW] |= val;
542 	}
543 
544 	val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
545 	if (val < 0)
546 		return val;
547 	data->temp11[REMOTE_HIGH] = val << 8;
548 
549 	if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
550 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL);
551 		if (val < 0)
552 			return val;
553 		data->temp11[REMOTE_HIGH] |= val;
554 	}
555 
556 	if (data->flags & LM90_HAVE_OFFSET) {
557 		val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH,
558 				  LM90_REG_R_REMOTE_OFFSL);
559 		if (val < 0)
560 			return val;
561 		data->temp11[REMOTE_OFFSET] = val;
562 	}
563 
564 	if (data->flags & LM90_HAVE_EMERGENCY) {
565 		val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG);
566 		if (val < 0)
567 			return val;
568 		data->temp8[LOCAL_EMERG] = val;
569 
570 		val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
571 		if (val < 0)
572 			return val;
573 		data->temp8[REMOTE_EMERG] = val;
574 	}
575 
576 	if (data->kind == max6696) {
577 		val = lm90_select_remote_channel(client, data, 1);
578 		if (val < 0)
579 			return val;
580 
581 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
582 		if (val < 0)
583 			return val;
584 		data->temp8[REMOTE2_CRIT] = val;
585 
586 		val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
587 		if (val < 0)
588 			return val;
589 		data->temp8[REMOTE2_EMERG] = val;
590 
591 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
592 		if (val < 0)
593 			return val;
594 		data->temp11[REMOTE2_LOW] = val << 8;
595 
596 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
597 		if (val < 0)
598 			return val;
599 		data->temp11[REMOTE2_HIGH] = val << 8;
600 
601 		lm90_select_remote_channel(client, data, 0);
602 	}
603 
604 	return 0;
605 }
606 
607 static struct lm90_data *lm90_update_device(struct device *dev)
608 {
609 	struct lm90_data *data = dev_get_drvdata(dev);
610 	struct i2c_client *client = data->client;
611 	unsigned long next_update;
612 	int val = 0;
613 
614 	mutex_lock(&data->update_lock);
615 
616 	if (!data->valid) {
617 		val = lm90_update_limits(dev);
618 		if (val < 0)
619 			goto error;
620 	}
621 
622 	next_update = data->last_updated +
623 		      msecs_to_jiffies(data->update_interval);
624 	if (time_after(jiffies, next_update) || !data->valid) {
625 		dev_dbg(&client->dev, "Updating lm90 data.\n");
626 
627 		data->valid = false;
628 
629 		val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW);
630 		if (val < 0)
631 			goto error;
632 		data->temp8[LOCAL_LOW] = val;
633 
634 		val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH);
635 		if (val < 0)
636 			goto error;
637 		data->temp8[LOCAL_HIGH] = val;
638 
639 		if (data->reg_local_ext) {
640 			val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
641 					  data->reg_local_ext);
642 			if (val < 0)
643 				goto error;
644 			data->temp11[LOCAL_TEMP] = val;
645 		} else {
646 			val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP);
647 			if (val < 0)
648 				goto error;
649 			data->temp11[LOCAL_TEMP] = val << 8;
650 		}
651 		val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
652 				  LM90_REG_R_REMOTE_TEMPL);
653 		if (val < 0)
654 			goto error;
655 		data->temp11[REMOTE_TEMP] = val;
656 
657 		val = lm90_read_reg(client, LM90_REG_R_STATUS);
658 		if (val < 0)
659 			goto error;
660 		data->alarms = val;	/* lower 8 bit of alarms */
661 
662 		if (data->kind == max6696) {
663 			val = lm90_select_remote_channel(client, data, 1);
664 			if (val < 0)
665 				goto error;
666 
667 			val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
668 					  LM90_REG_R_REMOTE_TEMPL);
669 			if (val < 0)
670 				goto error;
671 			data->temp11[REMOTE2_TEMP] = val;
672 
673 			lm90_select_remote_channel(client, data, 0);
674 
675 			val = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
676 			if (val < 0)
677 				goto error;
678 			data->alarms |= val << 8;
679 		}
680 
681 		/*
682 		 * Re-enable ALERT# output if it was originally enabled and
683 		 * relevant alarms are all clear
684 		 */
685 		if (!(data->config_orig & 0x80) &&
686 		    !(data->alarms & data->alert_alarms)) {
687 			val = lm90_read_reg(client, LM90_REG_R_CONFIG1);
688 			if (val < 0)
689 				goto error;
690 
691 			if (val & 0x80) {
692 				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
693 				i2c_smbus_write_byte_data(client,
694 							  LM90_REG_W_CONFIG1,
695 							  val & ~0x80);
696 			}
697 		}
698 
699 		data->last_updated = jiffies;
700 		data->valid = true;
701 	}
702 
703 error:
704 	mutex_unlock(&data->update_lock);
705 
706 	if (val < 0)
707 		return ERR_PTR(val);
708 
709 	return data;
710 }
711 
712 /*
713  * Conversions
714  * For local temperatures and limits, critical limits and the hysteresis
715  * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
716  * For remote temperatures and limits, it uses signed 11-bit values with
717  * LSB = 0.125 degree Celsius, left-justified in 16-bit registers.  Some
718  * Maxim chips use unsigned values.
719  */
720 
721 static inline int temp_from_s8(s8 val)
722 {
723 	return val * 1000;
724 }
725 
726 static inline int temp_from_u8(u8 val)
727 {
728 	return val * 1000;
729 }
730 
731 static inline int temp_from_s16(s16 val)
732 {
733 	return val / 32 * 125;
734 }
735 
736 static inline int temp_from_u16(u16 val)
737 {
738 	return val / 32 * 125;
739 }
740 
741 static s8 temp_to_s8(long val)
742 {
743 	if (val <= -128000)
744 		return -128;
745 	if (val >= 127000)
746 		return 127;
747 	if (val < 0)
748 		return (val - 500) / 1000;
749 	return (val + 500) / 1000;
750 }
751 
752 static u8 temp_to_u8(long val)
753 {
754 	if (val <= 0)
755 		return 0;
756 	if (val >= 255000)
757 		return 255;
758 	return (val + 500) / 1000;
759 }
760 
761 static s16 temp_to_s16(long val)
762 {
763 	if (val <= -128000)
764 		return 0x8000;
765 	if (val >= 127875)
766 		return 0x7FE0;
767 	if (val < 0)
768 		return (val - 62) / 125 * 32;
769 	return (val + 62) / 125 * 32;
770 }
771 
772 static u8 hyst_to_reg(long val)
773 {
774 	if (val <= 0)
775 		return 0;
776 	if (val >= 30500)
777 		return 31;
778 	return (val + 500) / 1000;
779 }
780 
781 /*
782  * ADT7461 in compatibility mode is almost identical to LM90 except that
783  * attempts to write values that are outside the range 0 < temp < 127 are
784  * treated as the boundary value.
785  *
786  * ADT7461 in "extended mode" operation uses unsigned integers offset by
787  * 64 (e.g., 0 -> -64 degC).  The range is restricted to -64..191 degC.
788  */
789 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
790 {
791 	if (data->flags & LM90_FLAG_ADT7461_EXT)
792 		return (val - 64) * 1000;
793 	return temp_from_s8(val);
794 }
795 
796 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
797 {
798 	if (data->flags & LM90_FLAG_ADT7461_EXT)
799 		return (val - 0x4000) / 64 * 250;
800 	return temp_from_s16(val);
801 }
802 
803 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
804 {
805 	if (data->flags & LM90_FLAG_ADT7461_EXT) {
806 		if (val <= -64000)
807 			return 0;
808 		if (val >= 191000)
809 			return 0xFF;
810 		return (val + 500 + 64000) / 1000;
811 	}
812 	if (val <= 0)
813 		return 0;
814 	if (val >= 127000)
815 		return 127;
816 	return (val + 500) / 1000;
817 }
818 
819 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
820 {
821 	if (data->flags & LM90_FLAG_ADT7461_EXT) {
822 		if (val <= -64000)
823 			return 0;
824 		if (val >= 191750)
825 			return 0xFFC0;
826 		return (val + 64000 + 125) / 250 * 64;
827 	}
828 	if (val <= 0)
829 		return 0;
830 	if (val >= 127750)
831 		return 0x7FC0;
832 	return (val + 125) / 250 * 64;
833 }
834 
835 /*
836  * Sysfs stuff
837  */
838 
839 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
840 			  char *buf)
841 {
842 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
843 	struct lm90_data *data = lm90_update_device(dev);
844 	int temp;
845 
846 	if (IS_ERR(data))
847 		return PTR_ERR(data);
848 
849 	if (data->kind == adt7461 || data->kind == tmp451)
850 		temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
851 	else if (data->kind == max6646)
852 		temp = temp_from_u8(data->temp8[attr->index]);
853 	else
854 		temp = temp_from_s8(data->temp8[attr->index]);
855 
856 	/* +16 degrees offset for temp2 for the LM99 */
857 	if (data->kind == lm99 && attr->index == 3)
858 		temp += 16000;
859 
860 	return sprintf(buf, "%d\n", temp);
861 }
862 
863 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
864 			 const char *buf, size_t count)
865 {
866 	static const u8 reg[TEMP8_REG_NUM] = {
867 		LM90_REG_W_LOCAL_LOW,
868 		LM90_REG_W_LOCAL_HIGH,
869 		LM90_REG_W_LOCAL_CRIT,
870 		LM90_REG_W_REMOTE_CRIT,
871 		MAX6659_REG_W_LOCAL_EMERG,
872 		MAX6659_REG_W_REMOTE_EMERG,
873 		LM90_REG_W_REMOTE_CRIT,
874 		MAX6659_REG_W_REMOTE_EMERG,
875 	};
876 
877 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
878 	struct lm90_data *data = dev_get_drvdata(dev);
879 	struct i2c_client *client = data->client;
880 	int nr = attr->index;
881 	long val;
882 	int err;
883 
884 	err = kstrtol(buf, 10, &val);
885 	if (err < 0)
886 		return err;
887 
888 	/* +16 degrees offset for temp2 for the LM99 */
889 	if (data->kind == lm99 && attr->index == 3)
890 		val -= 16000;
891 
892 	mutex_lock(&data->update_lock);
893 	if (data->kind == adt7461 || data->kind == tmp451)
894 		data->temp8[nr] = temp_to_u8_adt7461(data, val);
895 	else if (data->kind == max6646)
896 		data->temp8[nr] = temp_to_u8(val);
897 	else
898 		data->temp8[nr] = temp_to_s8(val);
899 
900 	lm90_select_remote_channel(client, data, nr >= 6);
901 	i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
902 	lm90_select_remote_channel(client, data, 0);
903 
904 	mutex_unlock(&data->update_lock);
905 	return count;
906 }
907 
908 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
909 			   char *buf)
910 {
911 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
912 	struct lm90_data *data = lm90_update_device(dev);
913 	int temp;
914 
915 	if (IS_ERR(data))
916 		return PTR_ERR(data);
917 
918 	if (data->kind == adt7461 || data->kind == tmp451)
919 		temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
920 	else if (data->kind == max6646)
921 		temp = temp_from_u16(data->temp11[attr->index]);
922 	else
923 		temp = temp_from_s16(data->temp11[attr->index]);
924 
925 	/* +16 degrees offset for temp2 for the LM99 */
926 	if (data->kind == lm99 &&  attr->index <= 2)
927 		temp += 16000;
928 
929 	return sprintf(buf, "%d\n", temp);
930 }
931 
932 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
933 			  const char *buf, size_t count)
934 {
935 	struct {
936 		u8 high;
937 		u8 low;
938 		int channel;
939 	} reg[5] = {
940 		{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
941 		{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
942 		{ LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
943 		{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
944 		{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
945 	};
946 
947 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
948 	struct lm90_data *data = dev_get_drvdata(dev);
949 	struct i2c_client *client = data->client;
950 	int nr = attr->nr;
951 	int index = attr->index;
952 	long val;
953 	int err;
954 
955 	err = kstrtol(buf, 10, &val);
956 	if (err < 0)
957 		return err;
958 
959 	/* +16 degrees offset for temp2 for the LM99 */
960 	if (data->kind == lm99 && index <= 2)
961 		val -= 16000;
962 
963 	mutex_lock(&data->update_lock);
964 	if (data->kind == adt7461 || data->kind == tmp451)
965 		data->temp11[index] = temp_to_u16_adt7461(data, val);
966 	else if (data->kind == max6646)
967 		data->temp11[index] = temp_to_u8(val) << 8;
968 	else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
969 		data->temp11[index] = temp_to_s16(val);
970 	else
971 		data->temp11[index] = temp_to_s8(val) << 8;
972 
973 	lm90_select_remote_channel(client, data, reg[nr].channel);
974 	i2c_smbus_write_byte_data(client, reg[nr].high,
975 				  data->temp11[index] >> 8);
976 	if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
977 		i2c_smbus_write_byte_data(client, reg[nr].low,
978 					  data->temp11[index] & 0xff);
979 	lm90_select_remote_channel(client, data, 0);
980 
981 	mutex_unlock(&data->update_lock);
982 	return count;
983 }
984 
985 static ssize_t show_temphyst(struct device *dev,
986 			     struct device_attribute *devattr,
987 			     char *buf)
988 {
989 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
990 	struct lm90_data *data = lm90_update_device(dev);
991 	int temp;
992 
993 	if (IS_ERR(data))
994 		return PTR_ERR(data);
995 
996 	if (data->kind == adt7461 || data->kind == tmp451)
997 		temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
998 	else if (data->kind == max6646)
999 		temp = temp_from_u8(data->temp8[attr->index]);
1000 	else
1001 		temp = temp_from_s8(data->temp8[attr->index]);
1002 
1003 	/* +16 degrees offset for temp2 for the LM99 */
1004 	if (data->kind == lm99 && attr->index == 3)
1005 		temp += 16000;
1006 
1007 	return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
1008 }
1009 
1010 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
1011 			    const char *buf, size_t count)
1012 {
1013 	struct lm90_data *data = dev_get_drvdata(dev);
1014 	struct i2c_client *client = data->client;
1015 	long val;
1016 	int err;
1017 	int temp;
1018 
1019 	err = kstrtol(buf, 10, &val);
1020 	if (err < 0)
1021 		return err;
1022 
1023 	mutex_lock(&data->update_lock);
1024 	if (data->kind == adt7461 || data->kind == tmp451)
1025 		temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
1026 	else if (data->kind == max6646)
1027 		temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
1028 	else
1029 		temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
1030 
1031 	data->temp_hyst = hyst_to_reg(temp - val);
1032 	i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
1033 				  data->temp_hyst);
1034 	mutex_unlock(&data->update_lock);
1035 	return count;
1036 }
1037 
1038 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
1039 			   char *buf)
1040 {
1041 	struct lm90_data *data = lm90_update_device(dev);
1042 
1043 	if (IS_ERR(data))
1044 		return PTR_ERR(data);
1045 
1046 	return sprintf(buf, "%d\n", data->alarms);
1047 }
1048 
1049 static ssize_t show_alarm(struct device *dev, struct device_attribute
1050 			  *devattr, char *buf)
1051 {
1052 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
1053 	struct lm90_data *data = lm90_update_device(dev);
1054 	int bitnr = attr->index;
1055 
1056 	if (IS_ERR(data))
1057 		return PTR_ERR(data);
1058 
1059 	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
1060 }
1061 
1062 static ssize_t show_update_interval(struct device *dev,
1063 				    struct device_attribute *attr, char *buf)
1064 {
1065 	struct lm90_data *data = dev_get_drvdata(dev);
1066 
1067 	return sprintf(buf, "%u\n", data->update_interval);
1068 }
1069 
1070 static ssize_t set_update_interval(struct device *dev,
1071 				   struct device_attribute *attr,
1072 				   const char *buf, size_t count)
1073 {
1074 	struct lm90_data *data = dev_get_drvdata(dev);
1075 	struct i2c_client *client = data->client;
1076 	unsigned long val;
1077 	int err;
1078 
1079 	err = kstrtoul(buf, 10, &val);
1080 	if (err)
1081 		return err;
1082 
1083 	mutex_lock(&data->update_lock);
1084 	lm90_set_convrate(client, data, clamp_val(val, 0, 100000));
1085 	mutex_unlock(&data->update_lock);
1086 
1087 	return count;
1088 }
1089 
1090 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL,
1091 	0, LOCAL_TEMP);
1092 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL,
1093 	0, REMOTE_TEMP);
1094 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
1095 	set_temp8, LOCAL_LOW);
1096 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
1097 	set_temp11, 0, REMOTE_LOW);
1098 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
1099 	set_temp8, LOCAL_HIGH);
1100 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
1101 	set_temp11, 1, REMOTE_HIGH);
1102 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
1103 	set_temp8, LOCAL_CRIT);
1104 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
1105 	set_temp8, REMOTE_CRIT);
1106 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
1107 	set_temphyst, LOCAL_CRIT);
1108 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL,
1109 	REMOTE_CRIT);
1110 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
1111 	set_temp11, 2, REMOTE_OFFSET);
1112 
1113 /* Individual alarm files */
1114 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
1115 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
1116 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
1117 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
1118 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
1119 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
1120 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
1121 /* Raw alarm file for compatibility */
1122 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
1123 
1124 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
1125 		   set_update_interval);
1126 
1127 static struct attribute *lm90_attributes[] = {
1128 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1129 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1130 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1131 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1132 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1133 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1134 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
1135 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
1136 	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
1137 	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
1138 
1139 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
1140 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
1141 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
1142 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
1143 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
1144 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
1145 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
1146 	&dev_attr_alarms.attr,
1147 	&dev_attr_update_interval.attr,
1148 	NULL
1149 };
1150 
1151 static const struct attribute_group lm90_group = {
1152 	.attrs = lm90_attributes,
1153 };
1154 
1155 static struct attribute *lm90_temp2_offset_attributes[] = {
1156 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
1157 	NULL
1158 };
1159 
1160 static const struct attribute_group lm90_temp2_offset_group = {
1161 	.attrs = lm90_temp2_offset_attributes,
1162 };
1163 
1164 /*
1165  * Additional attributes for devices with emergency sensors
1166  */
1167 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1168 	set_temp8, LOCAL_EMERG);
1169 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1170 	set_temp8, REMOTE_EMERG);
1171 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1172 			  NULL, LOCAL_EMERG);
1173 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1174 			  NULL, REMOTE_EMERG);
1175 
1176 static struct attribute *lm90_emergency_attributes[] = {
1177 	&sensor_dev_attr_temp1_emergency.dev_attr.attr,
1178 	&sensor_dev_attr_temp2_emergency.dev_attr.attr,
1179 	&sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1180 	&sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1181 	NULL
1182 };
1183 
1184 static const struct attribute_group lm90_emergency_group = {
1185 	.attrs = lm90_emergency_attributes,
1186 };
1187 
1188 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1189 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1190 
1191 static struct attribute *lm90_emergency_alarm_attributes[] = {
1192 	&sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1193 	&sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1194 	NULL
1195 };
1196 
1197 static const struct attribute_group lm90_emergency_alarm_group = {
1198 	.attrs = lm90_emergency_alarm_attributes,
1199 };
1200 
1201 /*
1202  * Additional attributes for devices with 3 temperature sensors
1203  */
1204 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL,
1205 	0, REMOTE2_TEMP);
1206 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1207 	set_temp11, 3, REMOTE2_LOW);
1208 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1209 	set_temp11, 4, REMOTE2_HIGH);
1210 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1211 	set_temp8, REMOTE2_CRIT);
1212 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL,
1213 	REMOTE2_CRIT);
1214 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1215 	set_temp8, REMOTE2_EMERG);
1216 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1217 			  NULL, REMOTE2_EMERG);
1218 
1219 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1220 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1221 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1222 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1223 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1224 
1225 static struct attribute *lm90_temp3_attributes[] = {
1226 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1227 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1228 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1229 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
1230 	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1231 	&sensor_dev_attr_temp3_emergency.dev_attr.attr,
1232 	&sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1233 
1234 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1235 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1236 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1237 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1238 	&sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1239 	NULL
1240 };
1241 
1242 static const struct attribute_group lm90_temp3_group = {
1243 	.attrs = lm90_temp3_attributes,
1244 };
1245 
1246 /* pec used for ADM1032 only */
1247 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1248 			char *buf)
1249 {
1250 	struct i2c_client *client = to_i2c_client(dev);
1251 	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1252 }
1253 
1254 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1255 		       const char *buf, size_t count)
1256 {
1257 	struct i2c_client *client = to_i2c_client(dev);
1258 	long val;
1259 	int err;
1260 
1261 	err = kstrtol(buf, 10, &val);
1262 	if (err < 0)
1263 		return err;
1264 
1265 	switch (val) {
1266 	case 0:
1267 		client->flags &= ~I2C_CLIENT_PEC;
1268 		break;
1269 	case 1:
1270 		client->flags |= I2C_CLIENT_PEC;
1271 		break;
1272 	default:
1273 		return -EINVAL;
1274 	}
1275 
1276 	return count;
1277 }
1278 
1279 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1280 
1281 /*
1282  * Real code
1283  */
1284 
1285 /* Return 0 if detection is successful, -ENODEV otherwise */
1286 static int lm90_detect(struct i2c_client *client,
1287 		       struct i2c_board_info *info)
1288 {
1289 	struct i2c_adapter *adapter = client->adapter;
1290 	int address = client->addr;
1291 	const char *name = NULL;
1292 	int man_id, chip_id, config1, config2, convrate;
1293 
1294 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1295 		return -ENODEV;
1296 
1297 	/* detection and identification */
1298 	man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1299 	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1300 	config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1301 	convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1302 	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1303 		return -ENODEV;
1304 
1305 	if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1306 		config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1307 		if (config2 < 0)
1308 			return -ENODEV;
1309 	} else
1310 		config2 = 0;		/* Make compiler happy */
1311 
1312 	if ((address == 0x4C || address == 0x4D)
1313 	 && man_id == 0x01) { /* National Semiconductor */
1314 		if ((config1 & 0x2A) == 0x00
1315 		 && (config2 & 0xF8) == 0x00
1316 		 && convrate <= 0x09) {
1317 			if (address == 0x4C
1318 			 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1319 				name = "lm90";
1320 			} else
1321 			if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1322 				name = "lm99";
1323 				dev_info(&adapter->dev,
1324 					 "Assuming LM99 chip at 0x%02x\n",
1325 					 address);
1326 				dev_info(&adapter->dev,
1327 					 "If it is an LM89, instantiate it "
1328 					 "with the new_device sysfs "
1329 					 "interface\n");
1330 			} else
1331 			if (address == 0x4C
1332 			 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1333 				name = "lm86";
1334 			}
1335 		}
1336 	} else
1337 	if ((address == 0x4C || address == 0x4D)
1338 	 && man_id == 0x41) { /* Analog Devices */
1339 		if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1340 		 && (config1 & 0x3F) == 0x00
1341 		 && convrate <= 0x0A) {
1342 			name = "adm1032";
1343 			/*
1344 			 * The ADM1032 supports PEC, but only if combined
1345 			 * transactions are not used.
1346 			 */
1347 			if (i2c_check_functionality(adapter,
1348 						    I2C_FUNC_SMBUS_BYTE))
1349 				info->flags |= I2C_CLIENT_PEC;
1350 		} else
1351 		if (chip_id == 0x51 /* ADT7461 */
1352 		 && (config1 & 0x1B) == 0x00
1353 		 && convrate <= 0x0A) {
1354 			name = "adt7461";
1355 		} else
1356 		if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1357 		 && (config1 & 0x1B) == 0x00
1358 		 && convrate <= 0x0A) {
1359 			name = "adt7461a";
1360 		}
1361 	} else
1362 	if (man_id == 0x4D) { /* Maxim */
1363 		int emerg, emerg2, status2;
1364 
1365 		/*
1366 		 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1367 		 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1368 		 * exists, both readings will reflect the same value. Otherwise,
1369 		 * the readings will be different.
1370 		 */
1371 		emerg = i2c_smbus_read_byte_data(client,
1372 						 MAX6659_REG_R_REMOTE_EMERG);
1373 		man_id = i2c_smbus_read_byte_data(client,
1374 						  LM90_REG_R_MAN_ID);
1375 		emerg2 = i2c_smbus_read_byte_data(client,
1376 						  MAX6659_REG_R_REMOTE_EMERG);
1377 		status2 = i2c_smbus_read_byte_data(client,
1378 						   MAX6696_REG_R_STATUS2);
1379 		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1380 			return -ENODEV;
1381 
1382 		/*
1383 		 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1384 		 * register. Reading from that address will return the last
1385 		 * read value, which in our case is those of the man_id
1386 		 * register. Likewise, the config1 register seems to lack a
1387 		 * low nibble, so the value will be those of the previous
1388 		 * read, so in our case those of the man_id register.
1389 		 * MAX6659 has a third set of upper temperature limit registers.
1390 		 * Those registers also return values on MAX6657 and MAX6658,
1391 		 * thus the only way to detect MAX6659 is by its address.
1392 		 * For this reason it will be mis-detected as MAX6657 if its
1393 		 * address is 0x4C.
1394 		 */
1395 		if (chip_id == man_id
1396 		 && (address == 0x4C || address == 0x4D || address == 0x4E)
1397 		 && (config1 & 0x1F) == (man_id & 0x0F)
1398 		 && convrate <= 0x09) {
1399 			if (address == 0x4C)
1400 				name = "max6657";
1401 			else
1402 				name = "max6659";
1403 		} else
1404 		/*
1405 		 * Even though MAX6695 and MAX6696 do not have a chip ID
1406 		 * register, reading it returns 0x01. Bit 4 of the config1
1407 		 * register is unused and should return zero when read. Bit 0 of
1408 		 * the status2 register is unused and should return zero when
1409 		 * read.
1410 		 *
1411 		 * MAX6695 and MAX6696 have an additional set of temperature
1412 		 * limit registers. We can detect those chips by checking if
1413 		 * one of those registers exists.
1414 		 */
1415 		if (chip_id == 0x01
1416 		 && (config1 & 0x10) == 0x00
1417 		 && (status2 & 0x01) == 0x00
1418 		 && emerg == emerg2
1419 		 && convrate <= 0x07) {
1420 			name = "max6696";
1421 		} else
1422 		/*
1423 		 * The chip_id register of the MAX6680 and MAX6681 holds the
1424 		 * revision of the chip. The lowest bit of the config1 register
1425 		 * is unused and should return zero when read, so should the
1426 		 * second to last bit of config1 (software reset).
1427 		 */
1428 		if (chip_id == 0x01
1429 		 && (config1 & 0x03) == 0x00
1430 		 && convrate <= 0x07) {
1431 			name = "max6680";
1432 		} else
1433 		/*
1434 		 * The chip_id register of the MAX6646/6647/6649 holds the
1435 		 * revision of the chip. The lowest 6 bits of the config1
1436 		 * register are unused and should return zero when read.
1437 		 */
1438 		if (chip_id == 0x59
1439 		 && (config1 & 0x3f) == 0x00
1440 		 && convrate <= 0x07) {
1441 			name = "max6646";
1442 		}
1443 	} else
1444 	if (address == 0x4C
1445 	 && man_id == 0x5C) { /* Winbond/Nuvoton */
1446 		if ((config1 & 0x2A) == 0x00
1447 		 && (config2 & 0xF8) == 0x00) {
1448 			if (chip_id == 0x01 /* W83L771W/G */
1449 			 && convrate <= 0x09) {
1450 				name = "w83l771";
1451 			} else
1452 			if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1453 			 && convrate <= 0x08) {
1454 				name = "w83l771";
1455 			}
1456 		}
1457 	} else
1458 	if (address >= 0x48 && address <= 0x4F
1459 	 && man_id == 0xA1) { /*  NXP Semiconductor/Philips */
1460 		if (chip_id == 0x00
1461 		 && (config1 & 0x2A) == 0x00
1462 		 && (config2 & 0xFE) == 0x00
1463 		 && convrate <= 0x09) {
1464 			name = "sa56004";
1465 		}
1466 	} else
1467 	if ((address == 0x4C || address == 0x4D)
1468 	 && man_id == 0x47) { /* GMT */
1469 		if (chip_id == 0x01 /* G781 */
1470 		 && (config1 & 0x3F) == 0x00
1471 		 && convrate <= 0x08)
1472 			name = "g781";
1473 	} else
1474 	if (address == 0x4C
1475 	 && man_id == 0x55) { /* Texas Instruments */
1476 		int local_ext;
1477 
1478 		local_ext = i2c_smbus_read_byte_data(client,
1479 						     TMP451_REG_R_LOCAL_TEMPL);
1480 
1481 		if (chip_id == 0x00 /* TMP451 */
1482 		 && (config1 & 0x1B) == 0x00
1483 		 && convrate <= 0x09
1484 		 && (local_ext & 0x0F) == 0x00)
1485 			name = "tmp451";
1486 	}
1487 
1488 	if (!name) { /* identification failed */
1489 		dev_dbg(&adapter->dev,
1490 			"Unsupported chip at 0x%02x (man_id=0x%02X, "
1491 			"chip_id=0x%02X)\n", address, man_id, chip_id);
1492 		return -ENODEV;
1493 	}
1494 
1495 	strlcpy(info->type, name, I2C_NAME_SIZE);
1496 
1497 	return 0;
1498 }
1499 
1500 static void lm90_restore_conf(void *_data)
1501 {
1502 	struct lm90_data *data = _data;
1503 	struct i2c_client *client = data->client;
1504 
1505 	/* Restore initial configuration */
1506 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1507 				  data->convrate_orig);
1508 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1509 				  data->config_orig);
1510 }
1511 
1512 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1513 {
1514 	int config, convrate;
1515 
1516 	convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE);
1517 	if (convrate < 0)
1518 		return convrate;
1519 	data->convrate_orig = convrate;
1520 
1521 	/*
1522 	 * Start the conversions.
1523 	 */
1524 	lm90_set_convrate(client, data, 500);	/* 500ms; 2Hz conversion rate */
1525 	config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1526 	if (config < 0)
1527 		return config;
1528 	data->config_orig = config;
1529 
1530 	/* Check Temperature Range Select */
1531 	if (data->kind == adt7461 || data->kind == tmp451) {
1532 		if (config & 0x04)
1533 			data->flags |= LM90_FLAG_ADT7461_EXT;
1534 	}
1535 
1536 	/*
1537 	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1538 	 * 0.125 degree resolution) and range (0x08, extend range
1539 	 * to -64 degree) mode for the remote temperature sensor.
1540 	 */
1541 	if (data->kind == max6680)
1542 		config |= 0x18;
1543 
1544 	/*
1545 	 * Select external channel 0 for max6695/96
1546 	 */
1547 	if (data->kind == max6696)
1548 		config &= ~0x08;
1549 
1550 	config &= 0xBF;	/* run */
1551 	if (config != data->config_orig) /* Only write if changed */
1552 		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1553 
1554 	return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
1555 }
1556 
1557 static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1558 {
1559 	struct lm90_data *data = i2c_get_clientdata(client);
1560 	int st, st2 = 0;
1561 
1562 	st = lm90_read_reg(client, LM90_REG_R_STATUS);
1563 	if (st < 0)
1564 		return false;
1565 
1566 	if (data->kind == max6696) {
1567 		st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
1568 		if (st2 < 0)
1569 			return false;
1570 	}
1571 
1572 	*status = st | (st2 << 8);
1573 
1574 	if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1575 		return false;
1576 
1577 	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1578 	    (st2 & MAX6696_STATUS2_LOT2))
1579 		dev_warn(&client->dev,
1580 			 "temp%d out of range, please check!\n", 1);
1581 	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1582 	    (st2 & MAX6696_STATUS2_ROT2))
1583 		dev_warn(&client->dev,
1584 			 "temp%d out of range, please check!\n", 2);
1585 	if (st & LM90_STATUS_ROPEN)
1586 		dev_warn(&client->dev,
1587 			 "temp%d diode open, please check!\n", 2);
1588 	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1589 		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1590 		dev_warn(&client->dev,
1591 			 "temp%d out of range, please check!\n", 3);
1592 	if (st2 & MAX6696_STATUS2_R2OPEN)
1593 		dev_warn(&client->dev,
1594 			 "temp%d diode open, please check!\n", 3);
1595 
1596 	return true;
1597 }
1598 
1599 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1600 {
1601 	struct i2c_client *client = dev_id;
1602 	u16 status;
1603 
1604 	if (lm90_is_tripped(client, &status))
1605 		return IRQ_HANDLED;
1606 	else
1607 		return IRQ_NONE;
1608 }
1609 
1610 static void lm90_remove_pec(void *dev)
1611 {
1612 	device_remove_file(dev, &dev_attr_pec);
1613 }
1614 
1615 static void lm90_regulator_disable(void *regulator)
1616 {
1617 	regulator_disable(regulator);
1618 }
1619 
1620 static int lm90_probe(struct i2c_client *client,
1621 		      const struct i2c_device_id *id)
1622 {
1623 	struct device *dev = &client->dev;
1624 	struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1625 	struct lm90_data *data;
1626 	struct regulator *regulator;
1627 	struct device *hwmon_dev;
1628 	int groups = 0;
1629 	int err;
1630 
1631 	regulator = devm_regulator_get(dev, "vcc");
1632 	if (IS_ERR(regulator))
1633 		return PTR_ERR(regulator);
1634 
1635 	err = regulator_enable(regulator);
1636 	if (err < 0) {
1637 		dev_err(dev, "Failed to enable regulator: %d\n", err);
1638 		return err;
1639 	}
1640 
1641 	err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
1642 	if (err)
1643 		return err;
1644 
1645 	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1646 	if (!data)
1647 		return -ENOMEM;
1648 
1649 	data->client = client;
1650 	i2c_set_clientdata(client, data);
1651 	mutex_init(&data->update_lock);
1652 
1653 	/* Set the device type */
1654 	data->kind = id->driver_data;
1655 	if (data->kind == adm1032) {
1656 		if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1657 			client->flags &= ~I2C_CLIENT_PEC;
1658 	}
1659 
1660 	/*
1661 	 * Different devices have different alarm bits triggering the
1662 	 * ALERT# output
1663 	 */
1664 	data->alert_alarms = lm90_params[data->kind].alert_alarms;
1665 
1666 	/* Set chip capabilities */
1667 	data->flags = lm90_params[data->kind].flags;
1668 	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1669 
1670 	/* Set maximum conversion rate */
1671 	data->max_convrate = lm90_params[data->kind].max_convrate;
1672 
1673 	/* Initialize the LM90 chip */
1674 	err = lm90_init_client(client, data);
1675 	if (err < 0) {
1676 		dev_err(dev, "Failed to initialize device\n");
1677 		return err;
1678 	}
1679 
1680 	/* Register sysfs hooks */
1681 	data->groups[groups++] = &lm90_group;
1682 
1683 	if (data->flags & LM90_HAVE_OFFSET)
1684 		data->groups[groups++] = &lm90_temp2_offset_group;
1685 
1686 	if (data->flags & LM90_HAVE_EMERGENCY)
1687 		data->groups[groups++] = &lm90_emergency_group;
1688 
1689 	if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1690 		data->groups[groups++] = &lm90_emergency_alarm_group;
1691 
1692 	if (data->flags & LM90_HAVE_TEMP3)
1693 		data->groups[groups++] = &lm90_temp3_group;
1694 
1695 	if (client->flags & I2C_CLIENT_PEC) {
1696 		err = device_create_file(dev, &dev_attr_pec);
1697 		if (err)
1698 			return err;
1699 		err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
1700 		if (err)
1701 			return err;
1702 	}
1703 
1704 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1705 							   data, data->groups);
1706 	if (IS_ERR(hwmon_dev))
1707 		return PTR_ERR(hwmon_dev);
1708 
1709 	if (client->irq) {
1710 		dev_dbg(dev, "IRQ: %d\n", client->irq);
1711 		err = devm_request_threaded_irq(dev, client->irq,
1712 						NULL, lm90_irq_thread,
1713 						IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1714 						"lm90", client);
1715 		if (err < 0) {
1716 			dev_err(dev, "cannot request IRQ %d\n", client->irq);
1717 			return err;
1718 		}
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
1725 		       unsigned int flag)
1726 {
1727 	u16 alarms;
1728 
1729 	if (type != I2C_PROTOCOL_SMBUS_ALERT)
1730 		return;
1731 
1732 	if (lm90_is_tripped(client, &alarms)) {
1733 		/*
1734 		 * Disable ALERT# output, because these chips don't implement
1735 		 * SMBus alert correctly; they should only hold the alert line
1736 		 * low briefly.
1737 		 */
1738 		struct lm90_data *data = i2c_get_clientdata(client);
1739 
1740 		if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
1741 		    (alarms & data->alert_alarms)) {
1742 			int config;
1743 
1744 			dev_dbg(&client->dev, "Disabling ALERT#\n");
1745 			config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1746 			if (config >= 0)
1747 				i2c_smbus_write_byte_data(client,
1748 							  LM90_REG_W_CONFIG1,
1749 							  config | 0x80);
1750 		}
1751 	} else {
1752 		dev_info(&client->dev, "Everything OK\n");
1753 	}
1754 }
1755 
1756 static struct i2c_driver lm90_driver = {
1757 	.class		= I2C_CLASS_HWMON,
1758 	.driver = {
1759 		.name	= "lm90",
1760 	},
1761 	.probe		= lm90_probe,
1762 	.alert		= lm90_alert,
1763 	.id_table	= lm90_id,
1764 	.detect		= lm90_detect,
1765 	.address_list	= normal_i2c,
1766 };
1767 
1768 module_i2c_driver(lm90_driver);
1769 
1770 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1771 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1772 MODULE_LICENSE("GPL");
1773