1 /* 2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de> 5 * 6 * Based on the lm83 driver. The LM90 is a sensor chip made by National 7 * Semiconductor. It reports up to two temperatures (its own plus up to 8 * one external one) with a 0.125 deg resolution (1 deg for local 9 * temperature) and a 3-4 deg accuracy. 10 * 11 * This driver also supports the LM89 and LM99, two other sensor chips 12 * made by National Semiconductor. Both have an increased remote 13 * temperature measurement accuracy (1 degree), and the LM99 14 * additionally shifts remote temperatures (measured and limits) by 16 15 * degrees, which allows for higher temperatures measurement. 16 * Note that there is no way to differentiate between both chips. 17 * When device is auto-detected, the driver will assume an LM99. 18 * 19 * This driver also supports the LM86, another sensor chip made by 20 * National Semiconductor. It is exactly similar to the LM90 except it 21 * has a higher accuracy. 22 * 23 * This driver also supports the ADM1032, a sensor chip made by Analog 24 * Devices. That chip is similar to the LM90, with a few differences 25 * that are not handled by this driver. Among others, it has a higher 26 * accuracy than the LM90, much like the LM86 does. 27 * 28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor 29 * chips made by Maxim. These chips are similar to the LM86. 30 * Note that there is no easy way to differentiate between the three 31 * variants. We use the device address to detect MAX6659, which will result 32 * in a detection as max6657 if it is on address 0x4c. The extra address 33 * and features of the MAX6659 are only supported if the chip is configured 34 * explicitly as max6659, or if its address is not 0x4c. 35 * These chips lack the remote temperature offset feature. 36 * 37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and 38 * MAX6692 chips made by Maxim. These are again similar to the LM86, 39 * but they use unsigned temperature values and can report temperatures 40 * from 0 to 145 degrees. 41 * 42 * This driver also supports the MAX6680 and MAX6681, two other sensor 43 * chips made by Maxim. These are quite similar to the other Maxim 44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can 45 * be treated identically. 46 * 47 * This driver also supports the MAX6695 and MAX6696, two other sensor 48 * chips made by Maxim. These are also quite similar to other Maxim 49 * chips, but support three temperature sensors instead of two. MAX6695 50 * and MAX6696 only differ in the pinout so they can be treated identically. 51 * 52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as 53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility 54 * and extended mode. They are mostly compatible with LM90 except for a data 55 * format difference for the temperature value registers. 56 * 57 * This driver also supports the SA56004 from Philips. This device is 58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible. 59 * 60 * This driver also supports the G781 from GMT. This device is compatible 61 * with the ADM1032. 62 * 63 * This driver also supports TMP451 from Texas Instruments. This device is 64 * supported in both compatibility and extended mode. It's mostly compatible 65 * with ADT7461 except for local temperature low byte register and max 66 * conversion rate. 67 * 68 * Since the LM90 was the first chipset supported by this driver, most 69 * comments will refer to this chipset, but are actually general and 70 * concern all supported chipsets, unless mentioned otherwise. 71 * 72 * This program is free software; you can redistribute it and/or modify 73 * it under the terms of the GNU General Public License as published by 74 * the Free Software Foundation; either version 2 of the License, or 75 * (at your option) any later version. 76 * 77 * This program is distributed in the hope that it will be useful, 78 * but WITHOUT ANY WARRANTY; without even the implied warranty of 79 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 80 * GNU General Public License for more details. 81 * 82 * You should have received a copy of the GNU General Public License 83 * along with this program; if not, write to the Free Software 84 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 85 */ 86 87 #include <linux/module.h> 88 #include <linux/init.h> 89 #include <linux/slab.h> 90 #include <linux/jiffies.h> 91 #include <linux/i2c.h> 92 #include <linux/hwmon.h> 93 #include <linux/err.h> 94 #include <linux/mutex.h> 95 #include <linux/sysfs.h> 96 #include <linux/interrupt.h> 97 #include <linux/regulator/consumer.h> 98 99 /* 100 * Addresses to scan 101 * Address is fully defined internally and cannot be changed except for 102 * MAX6659, MAX6680 and MAX6681. 103 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649, 104 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c. 105 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D 106 * have address 0x4d. 107 * MAX6647 has address 0x4e. 108 * MAX6659 can have address 0x4c, 0x4d or 0x4e. 109 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 110 * 0x4c, 0x4d or 0x4e. 111 * SA56004 can have address 0x48 through 0x4F. 112 */ 113 114 static const unsigned short normal_i2c[] = { 115 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 116 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; 117 118 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680, 119 max6646, w83l771, max6696, sa56004, g781, tmp451 }; 120 121 /* 122 * The LM90 registers 123 */ 124 125 #define LM90_REG_R_MAN_ID 0xFE 126 #define LM90_REG_R_CHIP_ID 0xFF 127 #define LM90_REG_R_CONFIG1 0x03 128 #define LM90_REG_W_CONFIG1 0x09 129 #define LM90_REG_R_CONFIG2 0xBF 130 #define LM90_REG_W_CONFIG2 0xBF 131 #define LM90_REG_R_CONVRATE 0x04 132 #define LM90_REG_W_CONVRATE 0x0A 133 #define LM90_REG_R_STATUS 0x02 134 #define LM90_REG_R_LOCAL_TEMP 0x00 135 #define LM90_REG_R_LOCAL_HIGH 0x05 136 #define LM90_REG_W_LOCAL_HIGH 0x0B 137 #define LM90_REG_R_LOCAL_LOW 0x06 138 #define LM90_REG_W_LOCAL_LOW 0x0C 139 #define LM90_REG_R_LOCAL_CRIT 0x20 140 #define LM90_REG_W_LOCAL_CRIT 0x20 141 #define LM90_REG_R_REMOTE_TEMPH 0x01 142 #define LM90_REG_R_REMOTE_TEMPL 0x10 143 #define LM90_REG_R_REMOTE_OFFSH 0x11 144 #define LM90_REG_W_REMOTE_OFFSH 0x11 145 #define LM90_REG_R_REMOTE_OFFSL 0x12 146 #define LM90_REG_W_REMOTE_OFFSL 0x12 147 #define LM90_REG_R_REMOTE_HIGHH 0x07 148 #define LM90_REG_W_REMOTE_HIGHH 0x0D 149 #define LM90_REG_R_REMOTE_HIGHL 0x13 150 #define LM90_REG_W_REMOTE_HIGHL 0x13 151 #define LM90_REG_R_REMOTE_LOWH 0x08 152 #define LM90_REG_W_REMOTE_LOWH 0x0E 153 #define LM90_REG_R_REMOTE_LOWL 0x14 154 #define LM90_REG_W_REMOTE_LOWL 0x14 155 #define LM90_REG_R_REMOTE_CRIT 0x19 156 #define LM90_REG_W_REMOTE_CRIT 0x19 157 #define LM90_REG_R_TCRIT_HYST 0x21 158 #define LM90_REG_W_TCRIT_HYST 0x21 159 160 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */ 161 162 #define MAX6657_REG_R_LOCAL_TEMPL 0x11 163 #define MAX6696_REG_R_STATUS2 0x12 164 #define MAX6659_REG_R_REMOTE_EMERG 0x16 165 #define MAX6659_REG_W_REMOTE_EMERG 0x16 166 #define MAX6659_REG_R_LOCAL_EMERG 0x17 167 #define MAX6659_REG_W_LOCAL_EMERG 0x17 168 169 /* SA56004 registers */ 170 171 #define SA56004_REG_R_LOCAL_TEMPL 0x22 172 173 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */ 174 175 /* TMP451 registers */ 176 #define TMP451_REG_R_LOCAL_TEMPL 0x15 177 178 /* 179 * Device flags 180 */ 181 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */ 182 /* Device features */ 183 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */ 184 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */ 185 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */ 186 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */ 187 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */ 188 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */ 189 190 /* LM90 status */ 191 #define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */ 192 #define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */ 193 #define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */ 194 #define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */ 195 #define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */ 196 #define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */ 197 #define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */ 198 199 #define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */ 200 #define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */ 201 #define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */ 202 #define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */ 203 #define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */ 204 #define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */ 205 #define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */ 206 207 /* 208 * Driver data (common to all clients) 209 */ 210 211 static const struct i2c_device_id lm90_id[] = { 212 { "adm1032", adm1032 }, 213 { "adt7461", adt7461 }, 214 { "adt7461a", adt7461 }, 215 { "g781", g781 }, 216 { "lm90", lm90 }, 217 { "lm86", lm86 }, 218 { "lm89", lm86 }, 219 { "lm99", lm99 }, 220 { "max6646", max6646 }, 221 { "max6647", max6646 }, 222 { "max6649", max6646 }, 223 { "max6657", max6657 }, 224 { "max6658", max6657 }, 225 { "max6659", max6659 }, 226 { "max6680", max6680 }, 227 { "max6681", max6680 }, 228 { "max6695", max6696 }, 229 { "max6696", max6696 }, 230 { "nct1008", adt7461 }, 231 { "w83l771", w83l771 }, 232 { "sa56004", sa56004 }, 233 { "tmp451", tmp451 }, 234 { } 235 }; 236 MODULE_DEVICE_TABLE(i2c, lm90_id); 237 238 /* 239 * chip type specific parameters 240 */ 241 struct lm90_params { 242 u32 flags; /* Capabilities */ 243 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 244 /* Upper 8 bits for max6695/96 */ 245 u8 max_convrate; /* Maximum conversion rate register value */ 246 u8 reg_local_ext; /* Extended local temp register (optional) */ 247 }; 248 249 static const struct lm90_params lm90_params[] = { 250 [adm1032] = { 251 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 252 | LM90_HAVE_BROKEN_ALERT, 253 .alert_alarms = 0x7c, 254 .max_convrate = 10, 255 }, 256 [adt7461] = { 257 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 258 | LM90_HAVE_BROKEN_ALERT, 259 .alert_alarms = 0x7c, 260 .max_convrate = 10, 261 }, 262 [g781] = { 263 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 264 | LM90_HAVE_BROKEN_ALERT, 265 .alert_alarms = 0x7c, 266 .max_convrate = 8, 267 }, 268 [lm86] = { 269 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 270 .alert_alarms = 0x7b, 271 .max_convrate = 9, 272 }, 273 [lm90] = { 274 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 275 .alert_alarms = 0x7b, 276 .max_convrate = 9, 277 }, 278 [lm99] = { 279 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 280 .alert_alarms = 0x7b, 281 .max_convrate = 9, 282 }, 283 [max6646] = { 284 .alert_alarms = 0x7c, 285 .max_convrate = 6, 286 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 287 }, 288 [max6657] = { 289 .alert_alarms = 0x7c, 290 .max_convrate = 8, 291 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 292 }, 293 [max6659] = { 294 .flags = LM90_HAVE_EMERGENCY, 295 .alert_alarms = 0x7c, 296 .max_convrate = 8, 297 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 298 }, 299 [max6680] = { 300 .flags = LM90_HAVE_OFFSET, 301 .alert_alarms = 0x7c, 302 .max_convrate = 7, 303 }, 304 [max6696] = { 305 .flags = LM90_HAVE_EMERGENCY 306 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3, 307 .alert_alarms = 0x1c7c, 308 .max_convrate = 6, 309 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 310 }, 311 [w83l771] = { 312 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 313 .alert_alarms = 0x7c, 314 .max_convrate = 8, 315 }, 316 [sa56004] = { 317 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 318 .alert_alarms = 0x7b, 319 .max_convrate = 9, 320 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL, 321 }, 322 [tmp451] = { 323 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 324 | LM90_HAVE_BROKEN_ALERT, 325 .alert_alarms = 0x7c, 326 .max_convrate = 9, 327 .reg_local_ext = TMP451_REG_R_LOCAL_TEMPL, 328 }, 329 }; 330 331 /* 332 * TEMP8 register index 333 */ 334 enum lm90_temp8_reg_index { 335 LOCAL_LOW = 0, 336 LOCAL_HIGH, 337 LOCAL_CRIT, 338 REMOTE_CRIT, 339 LOCAL_EMERG, /* max6659 and max6695/96 */ 340 REMOTE_EMERG, /* max6659 and max6695/96 */ 341 REMOTE2_CRIT, /* max6695/96 only */ 342 REMOTE2_EMERG, /* max6695/96 only */ 343 TEMP8_REG_NUM 344 }; 345 346 /* 347 * TEMP11 register index 348 */ 349 enum lm90_temp11_reg_index { 350 REMOTE_TEMP = 0, 351 REMOTE_LOW, 352 REMOTE_HIGH, 353 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */ 354 LOCAL_TEMP, 355 REMOTE2_TEMP, /* max6695/96 only */ 356 REMOTE2_LOW, /* max6695/96 only */ 357 REMOTE2_HIGH, /* max6695/96 only */ 358 TEMP11_REG_NUM 359 }; 360 361 /* 362 * Client data (each client gets its own) 363 */ 364 365 struct lm90_data { 366 struct i2c_client *client; 367 u32 channel_config[4]; 368 struct hwmon_channel_info temp_info; 369 const struct hwmon_channel_info *info[3]; 370 struct hwmon_chip_info chip; 371 struct mutex update_lock; 372 bool valid; /* true if register values are valid */ 373 unsigned long last_updated; /* in jiffies */ 374 int kind; 375 u32 flags; 376 377 unsigned int update_interval; /* in milliseconds */ 378 379 u8 config_orig; /* Original configuration register value */ 380 u8 convrate_orig; /* Original conversion rate register value */ 381 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 382 /* Upper 8 bits for max6695/96 */ 383 u8 max_convrate; /* Maximum conversion rate */ 384 u8 reg_local_ext; /* local extension register offset */ 385 386 /* registers values */ 387 s8 temp8[TEMP8_REG_NUM]; 388 s16 temp11[TEMP11_REG_NUM]; 389 u8 temp_hyst; 390 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */ 391 }; 392 393 /* 394 * Support functions 395 */ 396 397 /* 398 * The ADM1032 supports PEC but not on write byte transactions, so we need 399 * to explicitly ask for a transaction without PEC. 400 */ 401 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value) 402 { 403 return i2c_smbus_xfer(client->adapter, client->addr, 404 client->flags & ~I2C_CLIENT_PEC, 405 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL); 406 } 407 408 /* 409 * It is assumed that client->update_lock is held (unless we are in 410 * detection or initialization steps). This matters when PEC is enabled, 411 * because we don't want the address pointer to change between the write 412 * byte and the read byte transactions. 413 */ 414 static int lm90_read_reg(struct i2c_client *client, u8 reg) 415 { 416 int err; 417 418 if (client->flags & I2C_CLIENT_PEC) { 419 err = adm1032_write_byte(client, reg); 420 if (err >= 0) 421 err = i2c_smbus_read_byte(client); 422 } else 423 err = i2c_smbus_read_byte_data(client, reg); 424 425 return err; 426 } 427 428 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl) 429 { 430 int oldh, newh, l; 431 432 /* 433 * There is a trick here. We have to read two registers to have the 434 * sensor temperature, but we have to beware a conversion could occur 435 * between the readings. The datasheet says we should either use 436 * the one-shot conversion register, which we don't want to do 437 * (disables hardware monitoring) or monitor the busy bit, which is 438 * impossible (we can't read the values and monitor that bit at the 439 * exact same time). So the solution used here is to read the high 440 * byte once, then the low byte, then the high byte again. If the new 441 * high byte matches the old one, then we have a valid reading. Else 442 * we have to read the low byte again, and now we believe we have a 443 * correct reading. 444 */ 445 oldh = lm90_read_reg(client, regh); 446 if (oldh < 0) 447 return oldh; 448 l = lm90_read_reg(client, regl); 449 if (l < 0) 450 return l; 451 newh = lm90_read_reg(client, regh); 452 if (newh < 0) 453 return newh; 454 if (oldh != newh) { 455 l = lm90_read_reg(client, regl); 456 if (l < 0) 457 return l; 458 } 459 return (newh << 8) | l; 460 } 461 462 /* 463 * client->update_lock must be held when calling this function (unless we are 464 * in detection or initialization steps), and while a remote channel other 465 * than channel 0 is selected. Also, calling code must make sure to re-select 466 * external channel 0 before releasing the lock. This is necessary because 467 * various registers have different meanings as a result of selecting a 468 * non-default remote channel. 469 */ 470 static inline int lm90_select_remote_channel(struct i2c_client *client, 471 struct lm90_data *data, 472 int channel) 473 { 474 int config; 475 476 if (data->kind == max6696) { 477 config = lm90_read_reg(client, LM90_REG_R_CONFIG1); 478 if (config < 0) 479 return config; 480 config &= ~0x08; 481 if (channel) 482 config |= 0x08; 483 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, 484 config); 485 } 486 return 0; 487 } 488 489 /* 490 * Set conversion rate. 491 * client->update_lock must be held when calling this function (unless we are 492 * in detection or initialization steps). 493 */ 494 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data, 495 unsigned int interval) 496 { 497 unsigned int update_interval; 498 int i, err; 499 500 /* Shift calculations to avoid rounding errors */ 501 interval <<= 6; 502 503 /* find the nearest update rate */ 504 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6; 505 i < data->max_convrate; i++, update_interval >>= 1) 506 if (interval >= update_interval * 3 / 4) 507 break; 508 509 err = i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i); 510 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64); 511 return err; 512 } 513 514 static int lm90_update_limits(struct device *dev) 515 { 516 struct lm90_data *data = dev_get_drvdata(dev); 517 struct i2c_client *client = data->client; 518 int val; 519 520 val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT); 521 if (val < 0) 522 return val; 523 data->temp8[LOCAL_CRIT] = val; 524 525 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT); 526 if (val < 0) 527 return val; 528 data->temp8[REMOTE_CRIT] = val; 529 530 val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST); 531 if (val < 0) 532 return val; 533 data->temp_hyst = val; 534 535 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH); 536 if (val < 0) 537 return val; 538 data->temp11[REMOTE_LOW] = val << 8; 539 540 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) { 541 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL); 542 if (val < 0) 543 return val; 544 data->temp11[REMOTE_LOW] |= val; 545 } 546 547 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH); 548 if (val < 0) 549 return val; 550 data->temp11[REMOTE_HIGH] = val << 8; 551 552 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) { 553 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL); 554 if (val < 0) 555 return val; 556 data->temp11[REMOTE_HIGH] |= val; 557 } 558 559 if (data->flags & LM90_HAVE_OFFSET) { 560 val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH, 561 LM90_REG_R_REMOTE_OFFSL); 562 if (val < 0) 563 return val; 564 data->temp11[REMOTE_OFFSET] = val; 565 } 566 567 if (data->flags & LM90_HAVE_EMERGENCY) { 568 val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG); 569 if (val < 0) 570 return val; 571 data->temp8[LOCAL_EMERG] = val; 572 573 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG); 574 if (val < 0) 575 return val; 576 data->temp8[REMOTE_EMERG] = val; 577 } 578 579 if (data->kind == max6696) { 580 val = lm90_select_remote_channel(client, data, 1); 581 if (val < 0) 582 return val; 583 584 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT); 585 if (val < 0) 586 return val; 587 data->temp8[REMOTE2_CRIT] = val; 588 589 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG); 590 if (val < 0) 591 return val; 592 data->temp8[REMOTE2_EMERG] = val; 593 594 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH); 595 if (val < 0) 596 return val; 597 data->temp11[REMOTE2_LOW] = val << 8; 598 599 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH); 600 if (val < 0) 601 return val; 602 data->temp11[REMOTE2_HIGH] = val << 8; 603 604 lm90_select_remote_channel(client, data, 0); 605 } 606 607 return 0; 608 } 609 610 static int lm90_update_device(struct device *dev) 611 { 612 struct lm90_data *data = dev_get_drvdata(dev); 613 struct i2c_client *client = data->client; 614 unsigned long next_update; 615 int val; 616 617 if (!data->valid) { 618 val = lm90_update_limits(dev); 619 if (val < 0) 620 return val; 621 } 622 623 next_update = data->last_updated + 624 msecs_to_jiffies(data->update_interval); 625 if (time_after(jiffies, next_update) || !data->valid) { 626 dev_dbg(&client->dev, "Updating lm90 data.\n"); 627 628 data->valid = false; 629 630 val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW); 631 if (val < 0) 632 return val; 633 data->temp8[LOCAL_LOW] = val; 634 635 val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH); 636 if (val < 0) 637 return val; 638 data->temp8[LOCAL_HIGH] = val; 639 640 if (data->reg_local_ext) { 641 val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP, 642 data->reg_local_ext); 643 if (val < 0) 644 return val; 645 data->temp11[LOCAL_TEMP] = val; 646 } else { 647 val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP); 648 if (val < 0) 649 return val; 650 data->temp11[LOCAL_TEMP] = val << 8; 651 } 652 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, 653 LM90_REG_R_REMOTE_TEMPL); 654 if (val < 0) 655 return val; 656 data->temp11[REMOTE_TEMP] = val; 657 658 val = lm90_read_reg(client, LM90_REG_R_STATUS); 659 if (val < 0) 660 return val; 661 data->alarms = val; /* lower 8 bit of alarms */ 662 663 if (data->kind == max6696) { 664 val = lm90_select_remote_channel(client, data, 1); 665 if (val < 0) 666 return val; 667 668 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, 669 LM90_REG_R_REMOTE_TEMPL); 670 if (val < 0) { 671 lm90_select_remote_channel(client, data, 0); 672 return val; 673 } 674 data->temp11[REMOTE2_TEMP] = val; 675 676 lm90_select_remote_channel(client, data, 0); 677 678 val = lm90_read_reg(client, MAX6696_REG_R_STATUS2); 679 if (val < 0) 680 return val; 681 data->alarms |= val << 8; 682 } 683 684 /* 685 * Re-enable ALERT# output if it was originally enabled and 686 * relevant alarms are all clear 687 */ 688 if (!(data->config_orig & 0x80) && 689 !(data->alarms & data->alert_alarms)) { 690 val = lm90_read_reg(client, LM90_REG_R_CONFIG1); 691 if (val < 0) 692 return val; 693 694 if (val & 0x80) { 695 dev_dbg(&client->dev, "Re-enabling ALERT#\n"); 696 i2c_smbus_write_byte_data(client, 697 LM90_REG_W_CONFIG1, 698 val & ~0x80); 699 } 700 } 701 702 data->last_updated = jiffies; 703 data->valid = true; 704 } 705 706 return 0; 707 } 708 709 /* 710 * Conversions 711 * For local temperatures and limits, critical limits and the hysteresis 712 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius. 713 * For remote temperatures and limits, it uses signed 11-bit values with 714 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some 715 * Maxim chips use unsigned values. 716 */ 717 718 static inline int temp_from_s8(s8 val) 719 { 720 return val * 1000; 721 } 722 723 static inline int temp_from_u8(u8 val) 724 { 725 return val * 1000; 726 } 727 728 static inline int temp_from_s16(s16 val) 729 { 730 return val / 32 * 125; 731 } 732 733 static inline int temp_from_u16(u16 val) 734 { 735 return val / 32 * 125; 736 } 737 738 static s8 temp_to_s8(long val) 739 { 740 if (val <= -128000) 741 return -128; 742 if (val >= 127000) 743 return 127; 744 if (val < 0) 745 return (val - 500) / 1000; 746 return (val + 500) / 1000; 747 } 748 749 static u8 temp_to_u8(long val) 750 { 751 if (val <= 0) 752 return 0; 753 if (val >= 255000) 754 return 255; 755 return (val + 500) / 1000; 756 } 757 758 static s16 temp_to_s16(long val) 759 { 760 if (val <= -128000) 761 return 0x8000; 762 if (val >= 127875) 763 return 0x7FE0; 764 if (val < 0) 765 return (val - 62) / 125 * 32; 766 return (val + 62) / 125 * 32; 767 } 768 769 static u8 hyst_to_reg(long val) 770 { 771 if (val <= 0) 772 return 0; 773 if (val >= 30500) 774 return 31; 775 return (val + 500) / 1000; 776 } 777 778 /* 779 * ADT7461 in compatibility mode is almost identical to LM90 except that 780 * attempts to write values that are outside the range 0 < temp < 127 are 781 * treated as the boundary value. 782 * 783 * ADT7461 in "extended mode" operation uses unsigned integers offset by 784 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC. 785 */ 786 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val) 787 { 788 if (data->flags & LM90_FLAG_ADT7461_EXT) 789 return (val - 64) * 1000; 790 return temp_from_s8(val); 791 } 792 793 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val) 794 { 795 if (data->flags & LM90_FLAG_ADT7461_EXT) 796 return (val - 0x4000) / 64 * 250; 797 return temp_from_s16(val); 798 } 799 800 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val) 801 { 802 if (data->flags & LM90_FLAG_ADT7461_EXT) { 803 if (val <= -64000) 804 return 0; 805 if (val >= 191000) 806 return 0xFF; 807 return (val + 500 + 64000) / 1000; 808 } 809 if (val <= 0) 810 return 0; 811 if (val >= 127000) 812 return 127; 813 return (val + 500) / 1000; 814 } 815 816 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val) 817 { 818 if (data->flags & LM90_FLAG_ADT7461_EXT) { 819 if (val <= -64000) 820 return 0; 821 if (val >= 191750) 822 return 0xFFC0; 823 return (val + 64000 + 125) / 250 * 64; 824 } 825 if (val <= 0) 826 return 0; 827 if (val >= 127750) 828 return 0x7FC0; 829 return (val + 125) / 250 * 64; 830 } 831 832 /* pec used for ADM1032 only */ 833 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy, 834 char *buf) 835 { 836 struct i2c_client *client = to_i2c_client(dev); 837 838 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); 839 } 840 841 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy, 842 const char *buf, size_t count) 843 { 844 struct i2c_client *client = to_i2c_client(dev); 845 long val; 846 int err; 847 848 err = kstrtol(buf, 10, &val); 849 if (err < 0) 850 return err; 851 852 switch (val) { 853 case 0: 854 client->flags &= ~I2C_CLIENT_PEC; 855 break; 856 case 1: 857 client->flags |= I2C_CLIENT_PEC; 858 break; 859 default: 860 return -EINVAL; 861 } 862 863 return count; 864 } 865 866 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec); 867 868 static int lm90_get_temp11(struct lm90_data *data, int index) 869 { 870 s16 temp11 = data->temp11[index]; 871 int temp; 872 873 if (data->kind == adt7461 || data->kind == tmp451) 874 temp = temp_from_u16_adt7461(data, temp11); 875 else if (data->kind == max6646) 876 temp = temp_from_u16(temp11); 877 else 878 temp = temp_from_s16(temp11); 879 880 /* +16 degrees offset for temp2 for the LM99 */ 881 if (data->kind == lm99 && index <= 2) 882 temp += 16000; 883 884 return temp; 885 } 886 887 static int lm90_set_temp11(struct lm90_data *data, int index, long val) 888 { 889 static struct reg { 890 u8 high; 891 u8 low; 892 } reg[] = { 893 [REMOTE_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL }, 894 [REMOTE_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL }, 895 [REMOTE_OFFSET] = { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL }, 896 [REMOTE2_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL }, 897 [REMOTE2_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL } 898 }; 899 struct i2c_client *client = data->client; 900 struct reg *regp = ®[index]; 901 int err; 902 903 /* +16 degrees offset for temp2 for the LM99 */ 904 if (data->kind == lm99 && index <= 2) 905 val -= 16000; 906 907 if (data->kind == adt7461 || data->kind == tmp451) 908 data->temp11[index] = temp_to_u16_adt7461(data, val); 909 else if (data->kind == max6646) 910 data->temp11[index] = temp_to_u8(val) << 8; 911 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT) 912 data->temp11[index] = temp_to_s16(val); 913 else 914 data->temp11[index] = temp_to_s8(val) << 8; 915 916 lm90_select_remote_channel(client, data, index >= 3); 917 err = i2c_smbus_write_byte_data(client, regp->high, 918 data->temp11[index] >> 8); 919 if (err < 0) 920 return err; 921 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) 922 err = i2c_smbus_write_byte_data(client, regp->low, 923 data->temp11[index] & 0xff); 924 925 lm90_select_remote_channel(client, data, 0); 926 return err; 927 } 928 929 static int lm90_get_temp8(struct lm90_data *data, int index) 930 { 931 s8 temp8 = data->temp8[index]; 932 int temp; 933 934 if (data->kind == adt7461 || data->kind == tmp451) 935 temp = temp_from_u8_adt7461(data, temp8); 936 else if (data->kind == max6646) 937 temp = temp_from_u8(temp8); 938 else 939 temp = temp_from_s8(temp8); 940 941 /* +16 degrees offset for temp2 for the LM99 */ 942 if (data->kind == lm99 && index == 3) 943 temp += 16000; 944 945 return temp; 946 } 947 948 static int lm90_set_temp8(struct lm90_data *data, int index, long val) 949 { 950 static const u8 reg[TEMP8_REG_NUM] = { 951 LM90_REG_W_LOCAL_LOW, 952 LM90_REG_W_LOCAL_HIGH, 953 LM90_REG_W_LOCAL_CRIT, 954 LM90_REG_W_REMOTE_CRIT, 955 MAX6659_REG_W_LOCAL_EMERG, 956 MAX6659_REG_W_REMOTE_EMERG, 957 LM90_REG_W_REMOTE_CRIT, 958 MAX6659_REG_W_REMOTE_EMERG, 959 }; 960 struct i2c_client *client = data->client; 961 int err; 962 963 /* +16 degrees offset for temp2 for the LM99 */ 964 if (data->kind == lm99 && index == 3) 965 val -= 16000; 966 967 if (data->kind == adt7461 || data->kind == tmp451) 968 data->temp8[index] = temp_to_u8_adt7461(data, val); 969 else if (data->kind == max6646) 970 data->temp8[index] = temp_to_u8(val); 971 else 972 data->temp8[index] = temp_to_s8(val); 973 974 lm90_select_remote_channel(client, data, index >= 6); 975 err = i2c_smbus_write_byte_data(client, reg[index], data->temp8[index]); 976 lm90_select_remote_channel(client, data, 0); 977 978 return err; 979 } 980 981 static int lm90_get_temphyst(struct lm90_data *data, int index) 982 { 983 int temp; 984 985 if (data->kind == adt7461 || data->kind == tmp451) 986 temp = temp_from_u8_adt7461(data, data->temp8[index]); 987 else if (data->kind == max6646) 988 temp = temp_from_u8(data->temp8[index]); 989 else 990 temp = temp_from_s8(data->temp8[index]); 991 992 /* +16 degrees offset for temp2 for the LM99 */ 993 if (data->kind == lm99 && index == 3) 994 temp += 16000; 995 996 return temp - temp_from_s8(data->temp_hyst); 997 } 998 999 static int lm90_set_temphyst(struct lm90_data *data, long val) 1000 { 1001 struct i2c_client *client = data->client; 1002 int temp; 1003 int err; 1004 1005 if (data->kind == adt7461 || data->kind == tmp451) 1006 temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]); 1007 else if (data->kind == max6646) 1008 temp = temp_from_u8(data->temp8[LOCAL_CRIT]); 1009 else 1010 temp = temp_from_s8(data->temp8[LOCAL_CRIT]); 1011 1012 data->temp_hyst = hyst_to_reg(temp - val); 1013 err = i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST, 1014 data->temp_hyst); 1015 return err; 1016 } 1017 1018 static const u8 lm90_temp_index[3] = { 1019 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP 1020 }; 1021 1022 static const u8 lm90_temp_min_index[3] = { 1023 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW 1024 }; 1025 1026 static const u8 lm90_temp_max_index[3] = { 1027 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH 1028 }; 1029 1030 static const u8 lm90_temp_crit_index[3] = { 1031 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT 1032 }; 1033 1034 static const u8 lm90_temp_emerg_index[3] = { 1035 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG 1036 }; 1037 1038 static const u8 lm90_min_alarm_bits[3] = { 5, 3, 11 }; 1039 static const u8 lm90_max_alarm_bits[3] = { 0, 4, 12 }; 1040 static const u8 lm90_crit_alarm_bits[3] = { 0, 1, 9 }; 1041 static const u8 lm90_emergency_alarm_bits[3] = { 15, 13, 14 }; 1042 static const u8 lm90_fault_bits[3] = { 0, 2, 10 }; 1043 1044 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val) 1045 { 1046 struct lm90_data *data = dev_get_drvdata(dev); 1047 int err; 1048 1049 mutex_lock(&data->update_lock); 1050 err = lm90_update_device(dev); 1051 mutex_unlock(&data->update_lock); 1052 if (err) 1053 return err; 1054 1055 switch (attr) { 1056 case hwmon_temp_input: 1057 *val = lm90_get_temp11(data, lm90_temp_index[channel]); 1058 break; 1059 case hwmon_temp_min_alarm: 1060 *val = (data->alarms >> lm90_min_alarm_bits[channel]) & 1; 1061 break; 1062 case hwmon_temp_max_alarm: 1063 *val = (data->alarms >> lm90_max_alarm_bits[channel]) & 1; 1064 break; 1065 case hwmon_temp_crit_alarm: 1066 *val = (data->alarms >> lm90_crit_alarm_bits[channel]) & 1; 1067 break; 1068 case hwmon_temp_emergency_alarm: 1069 *val = (data->alarms >> lm90_emergency_alarm_bits[channel]) & 1; 1070 break; 1071 case hwmon_temp_fault: 1072 *val = (data->alarms >> lm90_fault_bits[channel]) & 1; 1073 break; 1074 case hwmon_temp_min: 1075 if (channel == 0) 1076 *val = lm90_get_temp8(data, 1077 lm90_temp_min_index[channel]); 1078 else 1079 *val = lm90_get_temp11(data, 1080 lm90_temp_min_index[channel]); 1081 break; 1082 case hwmon_temp_max: 1083 if (channel == 0) 1084 *val = lm90_get_temp8(data, 1085 lm90_temp_max_index[channel]); 1086 else 1087 *val = lm90_get_temp11(data, 1088 lm90_temp_max_index[channel]); 1089 break; 1090 case hwmon_temp_crit: 1091 *val = lm90_get_temp8(data, lm90_temp_crit_index[channel]); 1092 break; 1093 case hwmon_temp_crit_hyst: 1094 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel]); 1095 break; 1096 case hwmon_temp_emergency: 1097 *val = lm90_get_temp8(data, lm90_temp_emerg_index[channel]); 1098 break; 1099 case hwmon_temp_emergency_hyst: 1100 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel]); 1101 break; 1102 case hwmon_temp_offset: 1103 *val = lm90_get_temp11(data, REMOTE_OFFSET); 1104 break; 1105 default: 1106 return -EOPNOTSUPP; 1107 } 1108 return 0; 1109 } 1110 1111 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val) 1112 { 1113 struct lm90_data *data = dev_get_drvdata(dev); 1114 int err; 1115 1116 mutex_lock(&data->update_lock); 1117 1118 err = lm90_update_device(dev); 1119 if (err) 1120 goto error; 1121 1122 switch (attr) { 1123 case hwmon_temp_min: 1124 if (channel == 0) 1125 err = lm90_set_temp8(data, 1126 lm90_temp_min_index[channel], 1127 val); 1128 else 1129 err = lm90_set_temp11(data, 1130 lm90_temp_min_index[channel], 1131 val); 1132 break; 1133 case hwmon_temp_max: 1134 if (channel == 0) 1135 err = lm90_set_temp8(data, 1136 lm90_temp_max_index[channel], 1137 val); 1138 else 1139 err = lm90_set_temp11(data, 1140 lm90_temp_max_index[channel], 1141 val); 1142 break; 1143 case hwmon_temp_crit: 1144 err = lm90_set_temp8(data, lm90_temp_crit_index[channel], val); 1145 break; 1146 case hwmon_temp_crit_hyst: 1147 err = lm90_set_temphyst(data, val); 1148 break; 1149 case hwmon_temp_emergency: 1150 err = lm90_set_temp8(data, lm90_temp_emerg_index[channel], val); 1151 break; 1152 case hwmon_temp_offset: 1153 err = lm90_set_temp11(data, REMOTE_OFFSET, val); 1154 break; 1155 default: 1156 err = -EOPNOTSUPP; 1157 break; 1158 } 1159 error: 1160 mutex_unlock(&data->update_lock); 1161 1162 return err; 1163 } 1164 1165 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel) 1166 { 1167 switch (attr) { 1168 case hwmon_temp_input: 1169 case hwmon_temp_min_alarm: 1170 case hwmon_temp_max_alarm: 1171 case hwmon_temp_crit_alarm: 1172 case hwmon_temp_emergency_alarm: 1173 case hwmon_temp_emergency_hyst: 1174 case hwmon_temp_fault: 1175 return S_IRUGO; 1176 case hwmon_temp_min: 1177 case hwmon_temp_max: 1178 case hwmon_temp_crit: 1179 case hwmon_temp_emergency: 1180 case hwmon_temp_offset: 1181 return S_IRUGO | S_IWUSR; 1182 case hwmon_temp_crit_hyst: 1183 if (channel == 0) 1184 return S_IRUGO | S_IWUSR; 1185 return S_IRUGO; 1186 default: 1187 return 0; 1188 } 1189 } 1190 1191 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val) 1192 { 1193 struct lm90_data *data = dev_get_drvdata(dev); 1194 int err; 1195 1196 mutex_lock(&data->update_lock); 1197 err = lm90_update_device(dev); 1198 mutex_unlock(&data->update_lock); 1199 if (err) 1200 return err; 1201 1202 switch (attr) { 1203 case hwmon_chip_update_interval: 1204 *val = data->update_interval; 1205 break; 1206 case hwmon_chip_alarms: 1207 *val = data->alarms; 1208 break; 1209 default: 1210 return -EOPNOTSUPP; 1211 } 1212 1213 return 0; 1214 } 1215 1216 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val) 1217 { 1218 struct lm90_data *data = dev_get_drvdata(dev); 1219 struct i2c_client *client = data->client; 1220 int err; 1221 1222 mutex_lock(&data->update_lock); 1223 1224 err = lm90_update_device(dev); 1225 if (err) 1226 goto error; 1227 1228 switch (attr) { 1229 case hwmon_chip_update_interval: 1230 err = lm90_set_convrate(client, data, 1231 clamp_val(val, 0, 100000)); 1232 break; 1233 default: 1234 err = -EOPNOTSUPP; 1235 break; 1236 } 1237 error: 1238 mutex_unlock(&data->update_lock); 1239 1240 return err; 1241 } 1242 1243 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel) 1244 { 1245 switch (attr) { 1246 case hwmon_chip_update_interval: 1247 return S_IRUGO | S_IWUSR; 1248 case hwmon_chip_alarms: 1249 return S_IRUGO; 1250 default: 1251 return 0; 1252 } 1253 } 1254 1255 static int lm90_read(struct device *dev, enum hwmon_sensor_types type, 1256 u32 attr, int channel, long *val) 1257 { 1258 switch (type) { 1259 case hwmon_chip: 1260 return lm90_chip_read(dev, attr, channel, val); 1261 case hwmon_temp: 1262 return lm90_temp_read(dev, attr, channel, val); 1263 default: 1264 return -EOPNOTSUPP; 1265 } 1266 } 1267 1268 static int lm90_write(struct device *dev, enum hwmon_sensor_types type, 1269 u32 attr, int channel, long val) 1270 { 1271 switch (type) { 1272 case hwmon_chip: 1273 return lm90_chip_write(dev, attr, channel, val); 1274 case hwmon_temp: 1275 return lm90_temp_write(dev, attr, channel, val); 1276 default: 1277 return -EOPNOTSUPP; 1278 } 1279 } 1280 1281 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type, 1282 u32 attr, int channel) 1283 { 1284 switch (type) { 1285 case hwmon_chip: 1286 return lm90_chip_is_visible(data, attr, channel); 1287 case hwmon_temp: 1288 return lm90_temp_is_visible(data, attr, channel); 1289 default: 1290 return 0; 1291 } 1292 } 1293 1294 /* Return 0 if detection is successful, -ENODEV otherwise */ 1295 static int lm90_detect(struct i2c_client *client, 1296 struct i2c_board_info *info) 1297 { 1298 struct i2c_adapter *adapter = client->adapter; 1299 int address = client->addr; 1300 const char *name = NULL; 1301 int man_id, chip_id, config1, config2, convrate; 1302 1303 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1304 return -ENODEV; 1305 1306 /* detection and identification */ 1307 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID); 1308 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID); 1309 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1); 1310 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE); 1311 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0) 1312 return -ENODEV; 1313 1314 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) { 1315 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2); 1316 if (config2 < 0) 1317 return -ENODEV; 1318 } else 1319 config2 = 0; /* Make compiler happy */ 1320 1321 if ((address == 0x4C || address == 0x4D) 1322 && man_id == 0x01) { /* National Semiconductor */ 1323 if ((config1 & 0x2A) == 0x00 1324 && (config2 & 0xF8) == 0x00 1325 && convrate <= 0x09) { 1326 if (address == 0x4C 1327 && (chip_id & 0xF0) == 0x20) { /* LM90 */ 1328 name = "lm90"; 1329 } else 1330 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */ 1331 name = "lm99"; 1332 dev_info(&adapter->dev, 1333 "Assuming LM99 chip at 0x%02x\n", 1334 address); 1335 dev_info(&adapter->dev, 1336 "If it is an LM89, instantiate it " 1337 "with the new_device sysfs " 1338 "interface\n"); 1339 } else 1340 if (address == 0x4C 1341 && (chip_id & 0xF0) == 0x10) { /* LM86 */ 1342 name = "lm86"; 1343 } 1344 } 1345 } else 1346 if ((address == 0x4C || address == 0x4D) 1347 && man_id == 0x41) { /* Analog Devices */ 1348 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */ 1349 && (config1 & 0x3F) == 0x00 1350 && convrate <= 0x0A) { 1351 name = "adm1032"; 1352 /* 1353 * The ADM1032 supports PEC, but only if combined 1354 * transactions are not used. 1355 */ 1356 if (i2c_check_functionality(adapter, 1357 I2C_FUNC_SMBUS_BYTE)) 1358 info->flags |= I2C_CLIENT_PEC; 1359 } else 1360 if (chip_id == 0x51 /* ADT7461 */ 1361 && (config1 & 0x1B) == 0x00 1362 && convrate <= 0x0A) { 1363 name = "adt7461"; 1364 } else 1365 if (chip_id == 0x57 /* ADT7461A, NCT1008 */ 1366 && (config1 & 0x1B) == 0x00 1367 && convrate <= 0x0A) { 1368 name = "adt7461a"; 1369 } 1370 } else 1371 if (man_id == 0x4D) { /* Maxim */ 1372 int emerg, emerg2, status2; 1373 1374 /* 1375 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read 1376 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG 1377 * exists, both readings will reflect the same value. Otherwise, 1378 * the readings will be different. 1379 */ 1380 emerg = i2c_smbus_read_byte_data(client, 1381 MAX6659_REG_R_REMOTE_EMERG); 1382 man_id = i2c_smbus_read_byte_data(client, 1383 LM90_REG_R_MAN_ID); 1384 emerg2 = i2c_smbus_read_byte_data(client, 1385 MAX6659_REG_R_REMOTE_EMERG); 1386 status2 = i2c_smbus_read_byte_data(client, 1387 MAX6696_REG_R_STATUS2); 1388 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0) 1389 return -ENODEV; 1390 1391 /* 1392 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id 1393 * register. Reading from that address will return the last 1394 * read value, which in our case is those of the man_id 1395 * register. Likewise, the config1 register seems to lack a 1396 * low nibble, so the value will be those of the previous 1397 * read, so in our case those of the man_id register. 1398 * MAX6659 has a third set of upper temperature limit registers. 1399 * Those registers also return values on MAX6657 and MAX6658, 1400 * thus the only way to detect MAX6659 is by its address. 1401 * For this reason it will be mis-detected as MAX6657 if its 1402 * address is 0x4C. 1403 */ 1404 if (chip_id == man_id 1405 && (address == 0x4C || address == 0x4D || address == 0x4E) 1406 && (config1 & 0x1F) == (man_id & 0x0F) 1407 && convrate <= 0x09) { 1408 if (address == 0x4C) 1409 name = "max6657"; 1410 else 1411 name = "max6659"; 1412 } else 1413 /* 1414 * Even though MAX6695 and MAX6696 do not have a chip ID 1415 * register, reading it returns 0x01. Bit 4 of the config1 1416 * register is unused and should return zero when read. Bit 0 of 1417 * the status2 register is unused and should return zero when 1418 * read. 1419 * 1420 * MAX6695 and MAX6696 have an additional set of temperature 1421 * limit registers. We can detect those chips by checking if 1422 * one of those registers exists. 1423 */ 1424 if (chip_id == 0x01 1425 && (config1 & 0x10) == 0x00 1426 && (status2 & 0x01) == 0x00 1427 && emerg == emerg2 1428 && convrate <= 0x07) { 1429 name = "max6696"; 1430 } else 1431 /* 1432 * The chip_id register of the MAX6680 and MAX6681 holds the 1433 * revision of the chip. The lowest bit of the config1 register 1434 * is unused and should return zero when read, so should the 1435 * second to last bit of config1 (software reset). 1436 */ 1437 if (chip_id == 0x01 1438 && (config1 & 0x03) == 0x00 1439 && convrate <= 0x07) { 1440 name = "max6680"; 1441 } else 1442 /* 1443 * The chip_id register of the MAX6646/6647/6649 holds the 1444 * revision of the chip. The lowest 6 bits of the config1 1445 * register are unused and should return zero when read. 1446 */ 1447 if (chip_id == 0x59 1448 && (config1 & 0x3f) == 0x00 1449 && convrate <= 0x07) { 1450 name = "max6646"; 1451 } 1452 } else 1453 if (address == 0x4C 1454 && man_id == 0x5C) { /* Winbond/Nuvoton */ 1455 if ((config1 & 0x2A) == 0x00 1456 && (config2 & 0xF8) == 0x00) { 1457 if (chip_id == 0x01 /* W83L771W/G */ 1458 && convrate <= 0x09) { 1459 name = "w83l771"; 1460 } else 1461 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */ 1462 && convrate <= 0x08) { 1463 name = "w83l771"; 1464 } 1465 } 1466 } else 1467 if (address >= 0x48 && address <= 0x4F 1468 && man_id == 0xA1) { /* NXP Semiconductor/Philips */ 1469 if (chip_id == 0x00 1470 && (config1 & 0x2A) == 0x00 1471 && (config2 & 0xFE) == 0x00 1472 && convrate <= 0x09) { 1473 name = "sa56004"; 1474 } 1475 } else 1476 if ((address == 0x4C || address == 0x4D) 1477 && man_id == 0x47) { /* GMT */ 1478 if (chip_id == 0x01 /* G781 */ 1479 && (config1 & 0x3F) == 0x00 1480 && convrate <= 0x08) 1481 name = "g781"; 1482 } else 1483 if (address == 0x4C 1484 && man_id == 0x55) { /* Texas Instruments */ 1485 int local_ext; 1486 1487 local_ext = i2c_smbus_read_byte_data(client, 1488 TMP451_REG_R_LOCAL_TEMPL); 1489 1490 if (chip_id == 0x00 /* TMP451 */ 1491 && (config1 & 0x1B) == 0x00 1492 && convrate <= 0x09 1493 && (local_ext & 0x0F) == 0x00) 1494 name = "tmp451"; 1495 } 1496 1497 if (!name) { /* identification failed */ 1498 dev_dbg(&adapter->dev, 1499 "Unsupported chip at 0x%02x (man_id=0x%02X, " 1500 "chip_id=0x%02X)\n", address, man_id, chip_id); 1501 return -ENODEV; 1502 } 1503 1504 strlcpy(info->type, name, I2C_NAME_SIZE); 1505 1506 return 0; 1507 } 1508 1509 static void lm90_restore_conf(void *_data) 1510 { 1511 struct lm90_data *data = _data; 1512 struct i2c_client *client = data->client; 1513 1514 /* Restore initial configuration */ 1515 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, 1516 data->convrate_orig); 1517 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, 1518 data->config_orig); 1519 } 1520 1521 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data) 1522 { 1523 int config, convrate; 1524 1525 convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE); 1526 if (convrate < 0) 1527 return convrate; 1528 data->convrate_orig = convrate; 1529 1530 /* 1531 * Start the conversions. 1532 */ 1533 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */ 1534 config = lm90_read_reg(client, LM90_REG_R_CONFIG1); 1535 if (config < 0) 1536 return config; 1537 data->config_orig = config; 1538 1539 /* Check Temperature Range Select */ 1540 if (data->kind == adt7461 || data->kind == tmp451) { 1541 if (config & 0x04) 1542 data->flags |= LM90_FLAG_ADT7461_EXT; 1543 } 1544 1545 /* 1546 * Put MAX6680/MAX8881 into extended resolution (bit 0x10, 1547 * 0.125 degree resolution) and range (0x08, extend range 1548 * to -64 degree) mode for the remote temperature sensor. 1549 */ 1550 if (data->kind == max6680) 1551 config |= 0x18; 1552 1553 /* 1554 * Select external channel 0 for max6695/96 1555 */ 1556 if (data->kind == max6696) 1557 config &= ~0x08; 1558 1559 config &= 0xBF; /* run */ 1560 if (config != data->config_orig) /* Only write if changed */ 1561 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config); 1562 1563 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data); 1564 } 1565 1566 static bool lm90_is_tripped(struct i2c_client *client, u16 *status) 1567 { 1568 struct lm90_data *data = i2c_get_clientdata(client); 1569 int st, st2 = 0; 1570 1571 st = lm90_read_reg(client, LM90_REG_R_STATUS); 1572 if (st < 0) 1573 return false; 1574 1575 if (data->kind == max6696) { 1576 st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2); 1577 if (st2 < 0) 1578 return false; 1579 } 1580 1581 *status = st | (st2 << 8); 1582 1583 if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0) 1584 return false; 1585 1586 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) || 1587 (st2 & MAX6696_STATUS2_LOT2)) 1588 dev_warn(&client->dev, 1589 "temp%d out of range, please check!\n", 1); 1590 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) || 1591 (st2 & MAX6696_STATUS2_ROT2)) 1592 dev_warn(&client->dev, 1593 "temp%d out of range, please check!\n", 2); 1594 if (st & LM90_STATUS_ROPEN) 1595 dev_warn(&client->dev, 1596 "temp%d diode open, please check!\n", 2); 1597 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH | 1598 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2)) 1599 dev_warn(&client->dev, 1600 "temp%d out of range, please check!\n", 3); 1601 if (st2 & MAX6696_STATUS2_R2OPEN) 1602 dev_warn(&client->dev, 1603 "temp%d diode open, please check!\n", 3); 1604 1605 return true; 1606 } 1607 1608 static irqreturn_t lm90_irq_thread(int irq, void *dev_id) 1609 { 1610 struct i2c_client *client = dev_id; 1611 u16 status; 1612 1613 if (lm90_is_tripped(client, &status)) 1614 return IRQ_HANDLED; 1615 else 1616 return IRQ_NONE; 1617 } 1618 1619 static void lm90_remove_pec(void *dev) 1620 { 1621 device_remove_file(dev, &dev_attr_pec); 1622 } 1623 1624 static void lm90_regulator_disable(void *regulator) 1625 { 1626 regulator_disable(regulator); 1627 } 1628 1629 static const u32 lm90_chip_config[] = { 1630 HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL | HWMON_C_ALARMS, 1631 0 1632 }; 1633 1634 static const struct hwmon_channel_info lm90_chip_info = { 1635 .type = hwmon_chip, 1636 .config = lm90_chip_config, 1637 }; 1638 1639 1640 static const struct hwmon_ops lm90_ops = { 1641 .is_visible = lm90_is_visible, 1642 .read = lm90_read, 1643 .write = lm90_write, 1644 }; 1645 1646 static int lm90_probe(struct i2c_client *client, 1647 const struct i2c_device_id *id) 1648 { 1649 struct device *dev = &client->dev; 1650 struct i2c_adapter *adapter = to_i2c_adapter(dev->parent); 1651 struct hwmon_channel_info *info; 1652 struct regulator *regulator; 1653 struct device *hwmon_dev; 1654 struct lm90_data *data; 1655 int err; 1656 1657 regulator = devm_regulator_get(dev, "vcc"); 1658 if (IS_ERR(regulator)) 1659 return PTR_ERR(regulator); 1660 1661 err = regulator_enable(regulator); 1662 if (err < 0) { 1663 dev_err(dev, "Failed to enable regulator: %d\n", err); 1664 return err; 1665 } 1666 1667 err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator); 1668 if (err) 1669 return err; 1670 1671 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL); 1672 if (!data) 1673 return -ENOMEM; 1674 1675 data->client = client; 1676 i2c_set_clientdata(client, data); 1677 mutex_init(&data->update_lock); 1678 1679 /* Set the device type */ 1680 data->kind = id->driver_data; 1681 if (data->kind == adm1032) { 1682 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) 1683 client->flags &= ~I2C_CLIENT_PEC; 1684 } 1685 1686 /* 1687 * Different devices have different alarm bits triggering the 1688 * ALERT# output 1689 */ 1690 data->alert_alarms = lm90_params[data->kind].alert_alarms; 1691 1692 /* Set chip capabilities */ 1693 data->flags = lm90_params[data->kind].flags; 1694 1695 data->chip.ops = &lm90_ops; 1696 data->chip.info = data->info; 1697 1698 data->info[0] = &lm90_chip_info; 1699 data->info[1] = &data->temp_info; 1700 1701 info = &data->temp_info; 1702 info->type = hwmon_temp; 1703 info->config = data->channel_config; 1704 1705 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | 1706 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | 1707 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM; 1708 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | 1709 HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | 1710 HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT; 1711 1712 if (data->flags & LM90_HAVE_OFFSET) 1713 data->channel_config[1] |= HWMON_T_OFFSET; 1714 1715 if (data->flags & LM90_HAVE_EMERGENCY) { 1716 data->channel_config[0] |= HWMON_T_EMERGENCY | 1717 HWMON_T_EMERGENCY_HYST; 1718 data->channel_config[1] |= HWMON_T_EMERGENCY | 1719 HWMON_T_EMERGENCY_HYST; 1720 } 1721 1722 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) { 1723 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM; 1724 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM; 1725 } 1726 1727 if (data->flags & LM90_HAVE_TEMP3) { 1728 data->channel_config[2] = HWMON_T_INPUT | 1729 HWMON_T_MIN | HWMON_T_MAX | 1730 HWMON_T_CRIT | HWMON_T_CRIT_HYST | 1731 HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST | 1732 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | 1733 HWMON_T_CRIT_ALARM | HWMON_T_EMERGENCY_ALARM | 1734 HWMON_T_FAULT; 1735 } 1736 1737 data->reg_local_ext = lm90_params[data->kind].reg_local_ext; 1738 1739 /* Set maximum conversion rate */ 1740 data->max_convrate = lm90_params[data->kind].max_convrate; 1741 1742 /* Initialize the LM90 chip */ 1743 err = lm90_init_client(client, data); 1744 if (err < 0) { 1745 dev_err(dev, "Failed to initialize device\n"); 1746 return err; 1747 } 1748 1749 /* 1750 * The 'pec' attribute is attached to the i2c device and thus created 1751 * separately. 1752 */ 1753 if (client->flags & I2C_CLIENT_PEC) { 1754 err = device_create_file(dev, &dev_attr_pec); 1755 if (err) 1756 return err; 1757 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev); 1758 if (err) 1759 return err; 1760 } 1761 1762 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, 1763 data, &data->chip, 1764 NULL); 1765 if (IS_ERR(hwmon_dev)) 1766 return PTR_ERR(hwmon_dev); 1767 1768 if (client->irq) { 1769 dev_dbg(dev, "IRQ: %d\n", client->irq); 1770 err = devm_request_threaded_irq(dev, client->irq, 1771 NULL, lm90_irq_thread, 1772 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 1773 "lm90", client); 1774 if (err < 0) { 1775 dev_err(dev, "cannot request IRQ %d\n", client->irq); 1776 return err; 1777 } 1778 } 1779 1780 return 0; 1781 } 1782 1783 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type, 1784 unsigned int flag) 1785 { 1786 u16 alarms; 1787 1788 if (type != I2C_PROTOCOL_SMBUS_ALERT) 1789 return; 1790 1791 if (lm90_is_tripped(client, &alarms)) { 1792 /* 1793 * Disable ALERT# output, because these chips don't implement 1794 * SMBus alert correctly; they should only hold the alert line 1795 * low briefly. 1796 */ 1797 struct lm90_data *data = i2c_get_clientdata(client); 1798 1799 if ((data->flags & LM90_HAVE_BROKEN_ALERT) && 1800 (alarms & data->alert_alarms)) { 1801 int config; 1802 1803 dev_dbg(&client->dev, "Disabling ALERT#\n"); 1804 config = lm90_read_reg(client, LM90_REG_R_CONFIG1); 1805 if (config >= 0) 1806 i2c_smbus_write_byte_data(client, 1807 LM90_REG_W_CONFIG1, 1808 config | 0x80); 1809 } 1810 } else { 1811 dev_info(&client->dev, "Everything OK\n"); 1812 } 1813 } 1814 1815 static struct i2c_driver lm90_driver = { 1816 .class = I2C_CLASS_HWMON, 1817 .driver = { 1818 .name = "lm90", 1819 }, 1820 .probe = lm90_probe, 1821 .alert = lm90_alert, 1822 .id_table = lm90_id, 1823 .detect = lm90_detect, 1824 .address_list = normal_i2c, 1825 }; 1826 1827 module_i2c_driver(lm90_driver); 1828 1829 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); 1830 MODULE_DESCRIPTION("LM90/ADM1032 driver"); 1831 MODULE_LICENSE("GPL"); 1832