xref: /openbmc/linux/drivers/hwmon/lm90.c (revision 6dfcd296)
1 /*
2  * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3  *          monitoring
4  * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
5  *
6  * Based on the lm83 driver. The LM90 is a sensor chip made by National
7  * Semiconductor. It reports up to two temperatures (its own plus up to
8  * one external one) with a 0.125 deg resolution (1 deg for local
9  * temperature) and a 3-4 deg accuracy.
10  *
11  * This driver also supports the LM89 and LM99, two other sensor chips
12  * made by National Semiconductor. Both have an increased remote
13  * temperature measurement accuracy (1 degree), and the LM99
14  * additionally shifts remote temperatures (measured and limits) by 16
15  * degrees, which allows for higher temperatures measurement.
16  * Note that there is no way to differentiate between both chips.
17  * When device is auto-detected, the driver will assume an LM99.
18  *
19  * This driver also supports the LM86, another sensor chip made by
20  * National Semiconductor. It is exactly similar to the LM90 except it
21  * has a higher accuracy.
22  *
23  * This driver also supports the ADM1032, a sensor chip made by Analog
24  * Devices. That chip is similar to the LM90, with a few differences
25  * that are not handled by this driver. Among others, it has a higher
26  * accuracy than the LM90, much like the LM86 does.
27  *
28  * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29  * chips made by Maxim. These chips are similar to the LM86.
30  * Note that there is no easy way to differentiate between the three
31  * variants. We use the device address to detect MAX6659, which will result
32  * in a detection as max6657 if it is on address 0x4c. The extra address
33  * and features of the MAX6659 are only supported if the chip is configured
34  * explicitly as max6659, or if its address is not 0x4c.
35  * These chips lack the remote temperature offset feature.
36  *
37  * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38  * MAX6692 chips made by Maxim.  These are again similar to the LM86,
39  * but they use unsigned temperature values and can report temperatures
40  * from 0 to 145 degrees.
41  *
42  * This driver also supports the MAX6680 and MAX6681, two other sensor
43  * chips made by Maxim. These are quite similar to the other Maxim
44  * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45  * be treated identically.
46  *
47  * This driver also supports the MAX6695 and MAX6696, two other sensor
48  * chips made by Maxim. These are also quite similar to other Maxim
49  * chips, but support three temperature sensors instead of two. MAX6695
50  * and MAX6696 only differ in the pinout so they can be treated identically.
51  *
52  * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53  * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54  * and extended mode. They are mostly compatible with LM90 except for a data
55  * format difference for the temperature value registers.
56  *
57  * This driver also supports the SA56004 from Philips. This device is
58  * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59  *
60  * This driver also supports the G781 from GMT. This device is compatible
61  * with the ADM1032.
62  *
63  * This driver also supports TMP451 from Texas Instruments. This device is
64  * supported in both compatibility and extended mode. It's mostly compatible
65  * with ADT7461 except for local temperature low byte register and max
66  * conversion rate.
67  *
68  * Since the LM90 was the first chipset supported by this driver, most
69  * comments will refer to this chipset, but are actually general and
70  * concern all supported chipsets, unless mentioned otherwise.
71  *
72  * This program is free software; you can redistribute it and/or modify
73  * it under the terms of the GNU General Public License as published by
74  * the Free Software Foundation; either version 2 of the License, or
75  * (at your option) any later version.
76  *
77  * This program is distributed in the hope that it will be useful,
78  * but WITHOUT ANY WARRANTY; without even the implied warranty of
79  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
80  * GNU General Public License for more details.
81  *
82  * You should have received a copy of the GNU General Public License
83  * along with this program; if not, write to the Free Software
84  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
85  */
86 
87 #include <linux/module.h>
88 #include <linux/init.h>
89 #include <linux/slab.h>
90 #include <linux/jiffies.h>
91 #include <linux/i2c.h>
92 #include <linux/hwmon.h>
93 #include <linux/err.h>
94 #include <linux/mutex.h>
95 #include <linux/sysfs.h>
96 #include <linux/interrupt.h>
97 #include <linux/regulator/consumer.h>
98 
99 /*
100  * Addresses to scan
101  * Address is fully defined internally and cannot be changed except for
102  * MAX6659, MAX6680 and MAX6681.
103  * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
104  * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
105  * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
106  * have address 0x4d.
107  * MAX6647 has address 0x4e.
108  * MAX6659 can have address 0x4c, 0x4d or 0x4e.
109  * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
110  * 0x4c, 0x4d or 0x4e.
111  * SA56004 can have address 0x48 through 0x4F.
112  */
113 
114 static const unsigned short normal_i2c[] = {
115 	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
116 	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
117 
118 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
119 	max6646, w83l771, max6696, sa56004, g781, tmp451 };
120 
121 /*
122  * The LM90 registers
123  */
124 
125 #define LM90_REG_R_MAN_ID		0xFE
126 #define LM90_REG_R_CHIP_ID		0xFF
127 #define LM90_REG_R_CONFIG1		0x03
128 #define LM90_REG_W_CONFIG1		0x09
129 #define LM90_REG_R_CONFIG2		0xBF
130 #define LM90_REG_W_CONFIG2		0xBF
131 #define LM90_REG_R_CONVRATE		0x04
132 #define LM90_REG_W_CONVRATE		0x0A
133 #define LM90_REG_R_STATUS		0x02
134 #define LM90_REG_R_LOCAL_TEMP		0x00
135 #define LM90_REG_R_LOCAL_HIGH		0x05
136 #define LM90_REG_W_LOCAL_HIGH		0x0B
137 #define LM90_REG_R_LOCAL_LOW		0x06
138 #define LM90_REG_W_LOCAL_LOW		0x0C
139 #define LM90_REG_R_LOCAL_CRIT		0x20
140 #define LM90_REG_W_LOCAL_CRIT		0x20
141 #define LM90_REG_R_REMOTE_TEMPH		0x01
142 #define LM90_REG_R_REMOTE_TEMPL		0x10
143 #define LM90_REG_R_REMOTE_OFFSH		0x11
144 #define LM90_REG_W_REMOTE_OFFSH		0x11
145 #define LM90_REG_R_REMOTE_OFFSL		0x12
146 #define LM90_REG_W_REMOTE_OFFSL		0x12
147 #define LM90_REG_R_REMOTE_HIGHH		0x07
148 #define LM90_REG_W_REMOTE_HIGHH		0x0D
149 #define LM90_REG_R_REMOTE_HIGHL		0x13
150 #define LM90_REG_W_REMOTE_HIGHL		0x13
151 #define LM90_REG_R_REMOTE_LOWH		0x08
152 #define LM90_REG_W_REMOTE_LOWH		0x0E
153 #define LM90_REG_R_REMOTE_LOWL		0x14
154 #define LM90_REG_W_REMOTE_LOWL		0x14
155 #define LM90_REG_R_REMOTE_CRIT		0x19
156 #define LM90_REG_W_REMOTE_CRIT		0x19
157 #define LM90_REG_R_TCRIT_HYST		0x21
158 #define LM90_REG_W_TCRIT_HYST		0x21
159 
160 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
161 
162 #define MAX6657_REG_R_LOCAL_TEMPL	0x11
163 #define MAX6696_REG_R_STATUS2		0x12
164 #define MAX6659_REG_R_REMOTE_EMERG	0x16
165 #define MAX6659_REG_W_REMOTE_EMERG	0x16
166 #define MAX6659_REG_R_LOCAL_EMERG	0x17
167 #define MAX6659_REG_W_LOCAL_EMERG	0x17
168 
169 /*  SA56004 registers */
170 
171 #define SA56004_REG_R_LOCAL_TEMPL 0x22
172 
173 #define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
174 
175 /* TMP451 registers */
176 #define TMP451_REG_R_LOCAL_TEMPL	0x15
177 
178 /*
179  * Device flags
180  */
181 #define LM90_FLAG_ADT7461_EXT	(1 << 0) /* ADT7461 extended mode	*/
182 /* Device features */
183 #define LM90_HAVE_OFFSET	(1 << 1) /* temperature offset register	*/
184 #define LM90_HAVE_REM_LIMIT_EXT	(1 << 3) /* extended remote limit	*/
185 #define LM90_HAVE_EMERGENCY	(1 << 4) /* 3rd upper (emergency) limit	*/
186 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm		*/
187 #define LM90_HAVE_TEMP3		(1 << 6) /* 3rd temperature sensor	*/
188 #define LM90_HAVE_BROKEN_ALERT	(1 << 7) /* Broken alert		*/
189 
190 /* LM90 status */
191 #define LM90_STATUS_LTHRM	(1 << 0) /* local THERM limit tripped */
192 #define LM90_STATUS_RTHRM	(1 << 1) /* remote THERM limit tripped */
193 #define LM90_STATUS_ROPEN	(1 << 2) /* remote is an open circuit */
194 #define LM90_STATUS_RLOW	(1 << 3) /* remote low temp limit tripped */
195 #define LM90_STATUS_RHIGH	(1 << 4) /* remote high temp limit tripped */
196 #define LM90_STATUS_LLOW	(1 << 5) /* local low temp limit tripped */
197 #define LM90_STATUS_LHIGH	(1 << 6) /* local high temp limit tripped */
198 
199 #define MAX6696_STATUS2_R2THRM	(1 << 1) /* remote2 THERM limit tripped */
200 #define MAX6696_STATUS2_R2OPEN	(1 << 2) /* remote2 is an open circuit */
201 #define MAX6696_STATUS2_R2LOW	(1 << 3) /* remote2 low temp limit tripped */
202 #define MAX6696_STATUS2_R2HIGH	(1 << 4) /* remote2 high temp limit tripped */
203 #define MAX6696_STATUS2_ROT2	(1 << 5) /* remote emergency limit tripped */
204 #define MAX6696_STATUS2_R2OT2	(1 << 6) /* remote2 emergency limit tripped */
205 #define MAX6696_STATUS2_LOT2	(1 << 7) /* local emergency limit tripped */
206 
207 /*
208  * Driver data (common to all clients)
209  */
210 
211 static const struct i2c_device_id lm90_id[] = {
212 	{ "adm1032", adm1032 },
213 	{ "adt7461", adt7461 },
214 	{ "adt7461a", adt7461 },
215 	{ "g781", g781 },
216 	{ "lm90", lm90 },
217 	{ "lm86", lm86 },
218 	{ "lm89", lm86 },
219 	{ "lm99", lm99 },
220 	{ "max6646", max6646 },
221 	{ "max6647", max6646 },
222 	{ "max6649", max6646 },
223 	{ "max6657", max6657 },
224 	{ "max6658", max6657 },
225 	{ "max6659", max6659 },
226 	{ "max6680", max6680 },
227 	{ "max6681", max6680 },
228 	{ "max6695", max6696 },
229 	{ "max6696", max6696 },
230 	{ "nct1008", adt7461 },
231 	{ "w83l771", w83l771 },
232 	{ "sa56004", sa56004 },
233 	{ "tmp451", tmp451 },
234 	{ }
235 };
236 MODULE_DEVICE_TABLE(i2c, lm90_id);
237 
238 /*
239  * chip type specific parameters
240  */
241 struct lm90_params {
242 	u32 flags;		/* Capabilities */
243 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
244 				/* Upper 8 bits for max6695/96 */
245 	u8 max_convrate;	/* Maximum conversion rate register value */
246 	u8 reg_local_ext;	/* Extended local temp register (optional) */
247 };
248 
249 static const struct lm90_params lm90_params[] = {
250 	[adm1032] = {
251 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
252 		  | LM90_HAVE_BROKEN_ALERT,
253 		.alert_alarms = 0x7c,
254 		.max_convrate = 10,
255 	},
256 	[adt7461] = {
257 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
258 		  | LM90_HAVE_BROKEN_ALERT,
259 		.alert_alarms = 0x7c,
260 		.max_convrate = 10,
261 	},
262 	[g781] = {
263 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
264 		  | LM90_HAVE_BROKEN_ALERT,
265 		.alert_alarms = 0x7c,
266 		.max_convrate = 8,
267 	},
268 	[lm86] = {
269 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
270 		.alert_alarms = 0x7b,
271 		.max_convrate = 9,
272 	},
273 	[lm90] = {
274 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
275 		.alert_alarms = 0x7b,
276 		.max_convrate = 9,
277 	},
278 	[lm99] = {
279 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
280 		.alert_alarms = 0x7b,
281 		.max_convrate = 9,
282 	},
283 	[max6646] = {
284 		.alert_alarms = 0x7c,
285 		.max_convrate = 6,
286 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
287 	},
288 	[max6657] = {
289 		.alert_alarms = 0x7c,
290 		.max_convrate = 8,
291 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
292 	},
293 	[max6659] = {
294 		.flags = LM90_HAVE_EMERGENCY,
295 		.alert_alarms = 0x7c,
296 		.max_convrate = 8,
297 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
298 	},
299 	[max6680] = {
300 		.flags = LM90_HAVE_OFFSET,
301 		.alert_alarms = 0x7c,
302 		.max_convrate = 7,
303 	},
304 	[max6696] = {
305 		.flags = LM90_HAVE_EMERGENCY
306 		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
307 		.alert_alarms = 0x1c7c,
308 		.max_convrate = 6,
309 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
310 	},
311 	[w83l771] = {
312 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
313 		.alert_alarms = 0x7c,
314 		.max_convrate = 8,
315 	},
316 	[sa56004] = {
317 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
318 		.alert_alarms = 0x7b,
319 		.max_convrate = 9,
320 		.reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
321 	},
322 	[tmp451] = {
323 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
324 		  | LM90_HAVE_BROKEN_ALERT,
325 		.alert_alarms = 0x7c,
326 		.max_convrate = 9,
327 		.reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
328 	},
329 };
330 
331 /*
332  * TEMP8 register index
333  */
334 enum lm90_temp8_reg_index {
335 	LOCAL_LOW = 0,
336 	LOCAL_HIGH,
337 	LOCAL_CRIT,
338 	REMOTE_CRIT,
339 	LOCAL_EMERG,	/* max6659 and max6695/96 */
340 	REMOTE_EMERG,	/* max6659 and max6695/96 */
341 	REMOTE2_CRIT,	/* max6695/96 only */
342 	REMOTE2_EMERG,	/* max6695/96 only */
343 	TEMP8_REG_NUM
344 };
345 
346 /*
347  * TEMP11 register index
348  */
349 enum lm90_temp11_reg_index {
350 	REMOTE_TEMP = 0,
351 	REMOTE_LOW,
352 	REMOTE_HIGH,
353 	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
354 	LOCAL_TEMP,
355 	REMOTE2_TEMP,	/* max6695/96 only */
356 	REMOTE2_LOW,	/* max6695/96 only */
357 	REMOTE2_HIGH,	/* max6695/96 only */
358 	TEMP11_REG_NUM
359 };
360 
361 /*
362  * Client data (each client gets its own)
363  */
364 
365 struct lm90_data {
366 	struct i2c_client *client;
367 	u32 channel_config[4];
368 	struct hwmon_channel_info temp_info;
369 	const struct hwmon_channel_info *info[3];
370 	struct hwmon_chip_info chip;
371 	struct mutex update_lock;
372 	bool valid;		/* true if register values are valid */
373 	unsigned long last_updated; /* in jiffies */
374 	int kind;
375 	u32 flags;
376 
377 	unsigned int update_interval; /* in milliseconds */
378 
379 	u8 config_orig;		/* Original configuration register value */
380 	u8 convrate_orig;	/* Original conversion rate register value */
381 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
382 				/* Upper 8 bits for max6695/96 */
383 	u8 max_convrate;	/* Maximum conversion rate */
384 	u8 reg_local_ext;	/* local extension register offset */
385 
386 	/* registers values */
387 	s8 temp8[TEMP8_REG_NUM];
388 	s16 temp11[TEMP11_REG_NUM];
389 	u8 temp_hyst;
390 	u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
391 };
392 
393 /*
394  * Support functions
395  */
396 
397 /*
398  * The ADM1032 supports PEC but not on write byte transactions, so we need
399  * to explicitly ask for a transaction without PEC.
400  */
401 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
402 {
403 	return i2c_smbus_xfer(client->adapter, client->addr,
404 			      client->flags & ~I2C_CLIENT_PEC,
405 			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
406 }
407 
408 /*
409  * It is assumed that client->update_lock is held (unless we are in
410  * detection or initialization steps). This matters when PEC is enabled,
411  * because we don't want the address pointer to change between the write
412  * byte and the read byte transactions.
413  */
414 static int lm90_read_reg(struct i2c_client *client, u8 reg)
415 {
416 	int err;
417 
418 	if (client->flags & I2C_CLIENT_PEC) {
419 		err = adm1032_write_byte(client, reg);
420 		if (err >= 0)
421 			err = i2c_smbus_read_byte(client);
422 	} else
423 		err = i2c_smbus_read_byte_data(client, reg);
424 
425 	return err;
426 }
427 
428 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl)
429 {
430 	int oldh, newh, l;
431 
432 	/*
433 	 * There is a trick here. We have to read two registers to have the
434 	 * sensor temperature, but we have to beware a conversion could occur
435 	 * between the readings. The datasheet says we should either use
436 	 * the one-shot conversion register, which we don't want to do
437 	 * (disables hardware monitoring) or monitor the busy bit, which is
438 	 * impossible (we can't read the values and monitor that bit at the
439 	 * exact same time). So the solution used here is to read the high
440 	 * byte once, then the low byte, then the high byte again. If the new
441 	 * high byte matches the old one, then we have a valid reading. Else
442 	 * we have to read the low byte again, and now we believe we have a
443 	 * correct reading.
444 	 */
445 	oldh = lm90_read_reg(client, regh);
446 	if (oldh < 0)
447 		return oldh;
448 	l = lm90_read_reg(client, regl);
449 	if (l < 0)
450 		return l;
451 	newh = lm90_read_reg(client, regh);
452 	if (newh < 0)
453 		return newh;
454 	if (oldh != newh) {
455 		l = lm90_read_reg(client, regl);
456 		if (l < 0)
457 			return l;
458 	}
459 	return (newh << 8) | l;
460 }
461 
462 /*
463  * client->update_lock must be held when calling this function (unless we are
464  * in detection or initialization steps), and while a remote channel other
465  * than channel 0 is selected. Also, calling code must make sure to re-select
466  * external channel 0 before releasing the lock. This is necessary because
467  * various registers have different meanings as a result of selecting a
468  * non-default remote channel.
469  */
470 static inline int lm90_select_remote_channel(struct i2c_client *client,
471 					     struct lm90_data *data,
472 					     int channel)
473 {
474 	int config;
475 
476 	if (data->kind == max6696) {
477 		config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
478 		if (config < 0)
479 			return config;
480 		config &= ~0x08;
481 		if (channel)
482 			config |= 0x08;
483 		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
484 					  config);
485 	}
486 	return 0;
487 }
488 
489 /*
490  * Set conversion rate.
491  * client->update_lock must be held when calling this function (unless we are
492  * in detection or initialization steps).
493  */
494 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
495 			     unsigned int interval)
496 {
497 	unsigned int update_interval;
498 	int i, err;
499 
500 	/* Shift calculations to avoid rounding errors */
501 	interval <<= 6;
502 
503 	/* find the nearest update rate */
504 	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
505 	     i < data->max_convrate; i++, update_interval >>= 1)
506 		if (interval >= update_interval * 3 / 4)
507 			break;
508 
509 	err = i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
510 	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
511 	return err;
512 }
513 
514 static int lm90_update_limits(struct device *dev)
515 {
516 	struct lm90_data *data = dev_get_drvdata(dev);
517 	struct i2c_client *client = data->client;
518 	int val;
519 
520 	val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT);
521 	if (val < 0)
522 		return val;
523 	data->temp8[LOCAL_CRIT] = val;
524 
525 	val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
526 	if (val < 0)
527 		return val;
528 	data->temp8[REMOTE_CRIT] = val;
529 
530 	val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST);
531 	if (val < 0)
532 		return val;
533 	data->temp_hyst = val;
534 
535 	val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
536 	if (val < 0)
537 		return val;
538 	data->temp11[REMOTE_LOW] = val << 8;
539 
540 	if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
541 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL);
542 		if (val < 0)
543 			return val;
544 		data->temp11[REMOTE_LOW] |= val;
545 	}
546 
547 	val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
548 	if (val < 0)
549 		return val;
550 	data->temp11[REMOTE_HIGH] = val << 8;
551 
552 	if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
553 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL);
554 		if (val < 0)
555 			return val;
556 		data->temp11[REMOTE_HIGH] |= val;
557 	}
558 
559 	if (data->flags & LM90_HAVE_OFFSET) {
560 		val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH,
561 				  LM90_REG_R_REMOTE_OFFSL);
562 		if (val < 0)
563 			return val;
564 		data->temp11[REMOTE_OFFSET] = val;
565 	}
566 
567 	if (data->flags & LM90_HAVE_EMERGENCY) {
568 		val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG);
569 		if (val < 0)
570 			return val;
571 		data->temp8[LOCAL_EMERG] = val;
572 
573 		val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
574 		if (val < 0)
575 			return val;
576 		data->temp8[REMOTE_EMERG] = val;
577 	}
578 
579 	if (data->kind == max6696) {
580 		val = lm90_select_remote_channel(client, data, 1);
581 		if (val < 0)
582 			return val;
583 
584 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
585 		if (val < 0)
586 			return val;
587 		data->temp8[REMOTE2_CRIT] = val;
588 
589 		val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
590 		if (val < 0)
591 			return val;
592 		data->temp8[REMOTE2_EMERG] = val;
593 
594 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
595 		if (val < 0)
596 			return val;
597 		data->temp11[REMOTE2_LOW] = val << 8;
598 
599 		val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
600 		if (val < 0)
601 			return val;
602 		data->temp11[REMOTE2_HIGH] = val << 8;
603 
604 		lm90_select_remote_channel(client, data, 0);
605 	}
606 
607 	return 0;
608 }
609 
610 static int lm90_update_device(struct device *dev)
611 {
612 	struct lm90_data *data = dev_get_drvdata(dev);
613 	struct i2c_client *client = data->client;
614 	unsigned long next_update;
615 	int val;
616 
617 	if (!data->valid) {
618 		val = lm90_update_limits(dev);
619 		if (val < 0)
620 			return val;
621 	}
622 
623 	next_update = data->last_updated +
624 		      msecs_to_jiffies(data->update_interval);
625 	if (time_after(jiffies, next_update) || !data->valid) {
626 		dev_dbg(&client->dev, "Updating lm90 data.\n");
627 
628 		data->valid = false;
629 
630 		val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW);
631 		if (val < 0)
632 			return val;
633 		data->temp8[LOCAL_LOW] = val;
634 
635 		val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH);
636 		if (val < 0)
637 			return val;
638 		data->temp8[LOCAL_HIGH] = val;
639 
640 		if (data->reg_local_ext) {
641 			val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
642 					  data->reg_local_ext);
643 			if (val < 0)
644 				return val;
645 			data->temp11[LOCAL_TEMP] = val;
646 		} else {
647 			val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP);
648 			if (val < 0)
649 				return val;
650 			data->temp11[LOCAL_TEMP] = val << 8;
651 		}
652 		val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
653 				  LM90_REG_R_REMOTE_TEMPL);
654 		if (val < 0)
655 			return val;
656 		data->temp11[REMOTE_TEMP] = val;
657 
658 		val = lm90_read_reg(client, LM90_REG_R_STATUS);
659 		if (val < 0)
660 			return val;
661 		data->alarms = val;	/* lower 8 bit of alarms */
662 
663 		if (data->kind == max6696) {
664 			val = lm90_select_remote_channel(client, data, 1);
665 			if (val < 0)
666 				return val;
667 
668 			val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
669 					  LM90_REG_R_REMOTE_TEMPL);
670 			if (val < 0) {
671 				lm90_select_remote_channel(client, data, 0);
672 				return val;
673 			}
674 			data->temp11[REMOTE2_TEMP] = val;
675 
676 			lm90_select_remote_channel(client, data, 0);
677 
678 			val = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
679 			if (val < 0)
680 				return val;
681 			data->alarms |= val << 8;
682 		}
683 
684 		/*
685 		 * Re-enable ALERT# output if it was originally enabled and
686 		 * relevant alarms are all clear
687 		 */
688 		if (!(data->config_orig & 0x80) &&
689 		    !(data->alarms & data->alert_alarms)) {
690 			val = lm90_read_reg(client, LM90_REG_R_CONFIG1);
691 			if (val < 0)
692 				return val;
693 
694 			if (val & 0x80) {
695 				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
696 				i2c_smbus_write_byte_data(client,
697 							  LM90_REG_W_CONFIG1,
698 							  val & ~0x80);
699 			}
700 		}
701 
702 		data->last_updated = jiffies;
703 		data->valid = true;
704 	}
705 
706 	return 0;
707 }
708 
709 /*
710  * Conversions
711  * For local temperatures and limits, critical limits and the hysteresis
712  * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
713  * For remote temperatures and limits, it uses signed 11-bit values with
714  * LSB = 0.125 degree Celsius, left-justified in 16-bit registers.  Some
715  * Maxim chips use unsigned values.
716  */
717 
718 static inline int temp_from_s8(s8 val)
719 {
720 	return val * 1000;
721 }
722 
723 static inline int temp_from_u8(u8 val)
724 {
725 	return val * 1000;
726 }
727 
728 static inline int temp_from_s16(s16 val)
729 {
730 	return val / 32 * 125;
731 }
732 
733 static inline int temp_from_u16(u16 val)
734 {
735 	return val / 32 * 125;
736 }
737 
738 static s8 temp_to_s8(long val)
739 {
740 	if (val <= -128000)
741 		return -128;
742 	if (val >= 127000)
743 		return 127;
744 	if (val < 0)
745 		return (val - 500) / 1000;
746 	return (val + 500) / 1000;
747 }
748 
749 static u8 temp_to_u8(long val)
750 {
751 	if (val <= 0)
752 		return 0;
753 	if (val >= 255000)
754 		return 255;
755 	return (val + 500) / 1000;
756 }
757 
758 static s16 temp_to_s16(long val)
759 {
760 	if (val <= -128000)
761 		return 0x8000;
762 	if (val >= 127875)
763 		return 0x7FE0;
764 	if (val < 0)
765 		return (val - 62) / 125 * 32;
766 	return (val + 62) / 125 * 32;
767 }
768 
769 static u8 hyst_to_reg(long val)
770 {
771 	if (val <= 0)
772 		return 0;
773 	if (val >= 30500)
774 		return 31;
775 	return (val + 500) / 1000;
776 }
777 
778 /*
779  * ADT7461 in compatibility mode is almost identical to LM90 except that
780  * attempts to write values that are outside the range 0 < temp < 127 are
781  * treated as the boundary value.
782  *
783  * ADT7461 in "extended mode" operation uses unsigned integers offset by
784  * 64 (e.g., 0 -> -64 degC).  The range is restricted to -64..191 degC.
785  */
786 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
787 {
788 	if (data->flags & LM90_FLAG_ADT7461_EXT)
789 		return (val - 64) * 1000;
790 	return temp_from_s8(val);
791 }
792 
793 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
794 {
795 	if (data->flags & LM90_FLAG_ADT7461_EXT)
796 		return (val - 0x4000) / 64 * 250;
797 	return temp_from_s16(val);
798 }
799 
800 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
801 {
802 	if (data->flags & LM90_FLAG_ADT7461_EXT) {
803 		if (val <= -64000)
804 			return 0;
805 		if (val >= 191000)
806 			return 0xFF;
807 		return (val + 500 + 64000) / 1000;
808 	}
809 	if (val <= 0)
810 		return 0;
811 	if (val >= 127000)
812 		return 127;
813 	return (val + 500) / 1000;
814 }
815 
816 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
817 {
818 	if (data->flags & LM90_FLAG_ADT7461_EXT) {
819 		if (val <= -64000)
820 			return 0;
821 		if (val >= 191750)
822 			return 0xFFC0;
823 		return (val + 64000 + 125) / 250 * 64;
824 	}
825 	if (val <= 0)
826 		return 0;
827 	if (val >= 127750)
828 		return 0x7FC0;
829 	return (val + 125) / 250 * 64;
830 }
831 
832 /* pec used for ADM1032 only */
833 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
834 			char *buf)
835 {
836 	struct i2c_client *client = to_i2c_client(dev);
837 
838 	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
839 }
840 
841 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
842 		       const char *buf, size_t count)
843 {
844 	struct i2c_client *client = to_i2c_client(dev);
845 	long val;
846 	int err;
847 
848 	err = kstrtol(buf, 10, &val);
849 	if (err < 0)
850 		return err;
851 
852 	switch (val) {
853 	case 0:
854 		client->flags &= ~I2C_CLIENT_PEC;
855 		break;
856 	case 1:
857 		client->flags |= I2C_CLIENT_PEC;
858 		break;
859 	default:
860 		return -EINVAL;
861 	}
862 
863 	return count;
864 }
865 
866 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
867 
868 static int lm90_get_temp11(struct lm90_data *data, int index)
869 {
870 	s16 temp11 = data->temp11[index];
871 	int temp;
872 
873 	if (data->kind == adt7461 || data->kind == tmp451)
874 		temp = temp_from_u16_adt7461(data, temp11);
875 	else if (data->kind == max6646)
876 		temp = temp_from_u16(temp11);
877 	else
878 		temp = temp_from_s16(temp11);
879 
880 	/* +16 degrees offset for temp2 for the LM99 */
881 	if (data->kind == lm99 && index <= 2)
882 		temp += 16000;
883 
884 	return temp;
885 }
886 
887 static int lm90_set_temp11(struct lm90_data *data, int index, long val)
888 {
889 	static struct reg {
890 		u8 high;
891 		u8 low;
892 	} reg[] = {
893 	[REMOTE_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL },
894 	[REMOTE_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL },
895 	[REMOTE_OFFSET] = { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL },
896 	[REMOTE2_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL },
897 	[REMOTE2_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL }
898 	};
899 	struct i2c_client *client = data->client;
900 	struct reg *regp = &reg[index];
901 	int err;
902 
903 	/* +16 degrees offset for temp2 for the LM99 */
904 	if (data->kind == lm99 && index <= 2)
905 		val -= 16000;
906 
907 	if (data->kind == adt7461 || data->kind == tmp451)
908 		data->temp11[index] = temp_to_u16_adt7461(data, val);
909 	else if (data->kind == max6646)
910 		data->temp11[index] = temp_to_u8(val) << 8;
911 	else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
912 		data->temp11[index] = temp_to_s16(val);
913 	else
914 		data->temp11[index] = temp_to_s8(val) << 8;
915 
916 	lm90_select_remote_channel(client, data, index >= 3);
917 	err = i2c_smbus_write_byte_data(client, regp->high,
918 				  data->temp11[index] >> 8);
919 	if (err < 0)
920 		return err;
921 	if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
922 		err = i2c_smbus_write_byte_data(client, regp->low,
923 						data->temp11[index] & 0xff);
924 
925 	lm90_select_remote_channel(client, data, 0);
926 	return err;
927 }
928 
929 static int lm90_get_temp8(struct lm90_data *data, int index)
930 {
931 	s8 temp8 = data->temp8[index];
932 	int temp;
933 
934 	if (data->kind == adt7461 || data->kind == tmp451)
935 		temp = temp_from_u8_adt7461(data, temp8);
936 	else if (data->kind == max6646)
937 		temp = temp_from_u8(temp8);
938 	else
939 		temp = temp_from_s8(temp8);
940 
941 	/* +16 degrees offset for temp2 for the LM99 */
942 	if (data->kind == lm99 && index == 3)
943 		temp += 16000;
944 
945 	return temp;
946 }
947 
948 static int lm90_set_temp8(struct lm90_data *data, int index, long val)
949 {
950 	static const u8 reg[TEMP8_REG_NUM] = {
951 		LM90_REG_W_LOCAL_LOW,
952 		LM90_REG_W_LOCAL_HIGH,
953 		LM90_REG_W_LOCAL_CRIT,
954 		LM90_REG_W_REMOTE_CRIT,
955 		MAX6659_REG_W_LOCAL_EMERG,
956 		MAX6659_REG_W_REMOTE_EMERG,
957 		LM90_REG_W_REMOTE_CRIT,
958 		MAX6659_REG_W_REMOTE_EMERG,
959 	};
960 	struct i2c_client *client = data->client;
961 	int err;
962 
963 	/* +16 degrees offset for temp2 for the LM99 */
964 	if (data->kind == lm99 && index == 3)
965 		val -= 16000;
966 
967 	if (data->kind == adt7461 || data->kind == tmp451)
968 		data->temp8[index] = temp_to_u8_adt7461(data, val);
969 	else if (data->kind == max6646)
970 		data->temp8[index] = temp_to_u8(val);
971 	else
972 		data->temp8[index] = temp_to_s8(val);
973 
974 	lm90_select_remote_channel(client, data, index >= 6);
975 	err = i2c_smbus_write_byte_data(client, reg[index], data->temp8[index]);
976 	lm90_select_remote_channel(client, data, 0);
977 
978 	return err;
979 }
980 
981 static int lm90_get_temphyst(struct lm90_data *data, int index)
982 {
983 	int temp;
984 
985 	if (data->kind == adt7461 || data->kind == tmp451)
986 		temp = temp_from_u8_adt7461(data, data->temp8[index]);
987 	else if (data->kind == max6646)
988 		temp = temp_from_u8(data->temp8[index]);
989 	else
990 		temp = temp_from_s8(data->temp8[index]);
991 
992 	/* +16 degrees offset for temp2 for the LM99 */
993 	if (data->kind == lm99 && index == 3)
994 		temp += 16000;
995 
996 	return temp - temp_from_s8(data->temp_hyst);
997 }
998 
999 static int lm90_set_temphyst(struct lm90_data *data, long val)
1000 {
1001 	struct i2c_client *client = data->client;
1002 	int temp;
1003 	int err;
1004 
1005 	if (data->kind == adt7461 || data->kind == tmp451)
1006 		temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
1007 	else if (data->kind == max6646)
1008 		temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
1009 	else
1010 		temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
1011 
1012 	data->temp_hyst = hyst_to_reg(temp - val);
1013 	err = i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
1014 					data->temp_hyst);
1015 	return err;
1016 }
1017 
1018 static const u8 lm90_temp_index[3] = {
1019 	LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1020 };
1021 
1022 static const u8 lm90_temp_min_index[3] = {
1023 	LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1024 };
1025 
1026 static const u8 lm90_temp_max_index[3] = {
1027 	LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1028 };
1029 
1030 static const u8 lm90_temp_crit_index[3] = {
1031 	LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1032 };
1033 
1034 static const u8 lm90_temp_emerg_index[3] = {
1035 	LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1036 };
1037 
1038 static const u8 lm90_min_alarm_bits[3] = { 5, 3, 11 };
1039 static const u8 lm90_max_alarm_bits[3] = { 0, 4, 12 };
1040 static const u8 lm90_crit_alarm_bits[3] = { 0, 1, 9 };
1041 static const u8 lm90_emergency_alarm_bits[3] = { 15, 13, 14 };
1042 static const u8 lm90_fault_bits[3] = { 0, 2, 10 };
1043 
1044 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1045 {
1046 	struct lm90_data *data = dev_get_drvdata(dev);
1047 	int err;
1048 
1049 	mutex_lock(&data->update_lock);
1050 	err = lm90_update_device(dev);
1051 	mutex_unlock(&data->update_lock);
1052 	if (err)
1053 		return err;
1054 
1055 	switch (attr) {
1056 	case hwmon_temp_input:
1057 		*val = lm90_get_temp11(data, lm90_temp_index[channel]);
1058 		break;
1059 	case hwmon_temp_min_alarm:
1060 		*val = (data->alarms >> lm90_min_alarm_bits[channel]) & 1;
1061 		break;
1062 	case hwmon_temp_max_alarm:
1063 		*val = (data->alarms >> lm90_max_alarm_bits[channel]) & 1;
1064 		break;
1065 	case hwmon_temp_crit_alarm:
1066 		*val = (data->alarms >> lm90_crit_alarm_bits[channel]) & 1;
1067 		break;
1068 	case hwmon_temp_emergency_alarm:
1069 		*val = (data->alarms >> lm90_emergency_alarm_bits[channel]) & 1;
1070 		break;
1071 	case hwmon_temp_fault:
1072 		*val = (data->alarms >> lm90_fault_bits[channel]) & 1;
1073 		break;
1074 	case hwmon_temp_min:
1075 		if (channel == 0)
1076 			*val = lm90_get_temp8(data,
1077 					      lm90_temp_min_index[channel]);
1078 		else
1079 			*val = lm90_get_temp11(data,
1080 					       lm90_temp_min_index[channel]);
1081 		break;
1082 	case hwmon_temp_max:
1083 		if (channel == 0)
1084 			*val = lm90_get_temp8(data,
1085 					      lm90_temp_max_index[channel]);
1086 		else
1087 			*val = lm90_get_temp11(data,
1088 					       lm90_temp_max_index[channel]);
1089 		break;
1090 	case hwmon_temp_crit:
1091 		*val = lm90_get_temp8(data, lm90_temp_crit_index[channel]);
1092 		break;
1093 	case hwmon_temp_crit_hyst:
1094 		*val = lm90_get_temphyst(data, lm90_temp_crit_index[channel]);
1095 		break;
1096 	case hwmon_temp_emergency:
1097 		*val = lm90_get_temp8(data, lm90_temp_emerg_index[channel]);
1098 		break;
1099 	case hwmon_temp_emergency_hyst:
1100 		*val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel]);
1101 		break;
1102 	case hwmon_temp_offset:
1103 		*val = lm90_get_temp11(data, REMOTE_OFFSET);
1104 		break;
1105 	default:
1106 		return -EOPNOTSUPP;
1107 	}
1108 	return 0;
1109 }
1110 
1111 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1112 {
1113 	struct lm90_data *data = dev_get_drvdata(dev);
1114 	int err;
1115 
1116 	mutex_lock(&data->update_lock);
1117 
1118 	err = lm90_update_device(dev);
1119 	if (err)
1120 		goto error;
1121 
1122 	switch (attr) {
1123 	case hwmon_temp_min:
1124 		if (channel == 0)
1125 			err = lm90_set_temp8(data,
1126 					      lm90_temp_min_index[channel],
1127 					      val);
1128 		else
1129 			err = lm90_set_temp11(data,
1130 					      lm90_temp_min_index[channel],
1131 					      val);
1132 		break;
1133 	case hwmon_temp_max:
1134 		if (channel == 0)
1135 			err = lm90_set_temp8(data,
1136 					     lm90_temp_max_index[channel],
1137 					     val);
1138 		else
1139 			err = lm90_set_temp11(data,
1140 					      lm90_temp_max_index[channel],
1141 					      val);
1142 		break;
1143 	case hwmon_temp_crit:
1144 		err = lm90_set_temp8(data, lm90_temp_crit_index[channel], val);
1145 		break;
1146 	case hwmon_temp_crit_hyst:
1147 		err = lm90_set_temphyst(data, val);
1148 		break;
1149 	case hwmon_temp_emergency:
1150 		err = lm90_set_temp8(data, lm90_temp_emerg_index[channel], val);
1151 		break;
1152 	case hwmon_temp_offset:
1153 		err = lm90_set_temp11(data, REMOTE_OFFSET, val);
1154 		break;
1155 	default:
1156 		err = -EOPNOTSUPP;
1157 		break;
1158 	}
1159 error:
1160 	mutex_unlock(&data->update_lock);
1161 
1162 	return err;
1163 }
1164 
1165 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1166 {
1167 	switch (attr) {
1168 	case hwmon_temp_input:
1169 	case hwmon_temp_min_alarm:
1170 	case hwmon_temp_max_alarm:
1171 	case hwmon_temp_crit_alarm:
1172 	case hwmon_temp_emergency_alarm:
1173 	case hwmon_temp_emergency_hyst:
1174 	case hwmon_temp_fault:
1175 		return S_IRUGO;
1176 	case hwmon_temp_min:
1177 	case hwmon_temp_max:
1178 	case hwmon_temp_crit:
1179 	case hwmon_temp_emergency:
1180 	case hwmon_temp_offset:
1181 		return S_IRUGO | S_IWUSR;
1182 	case hwmon_temp_crit_hyst:
1183 		if (channel == 0)
1184 			return S_IRUGO | S_IWUSR;
1185 		return S_IRUGO;
1186 	default:
1187 		return 0;
1188 	}
1189 }
1190 
1191 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1192 {
1193 	struct lm90_data *data = dev_get_drvdata(dev);
1194 	int err;
1195 
1196 	mutex_lock(&data->update_lock);
1197 	err = lm90_update_device(dev);
1198 	mutex_unlock(&data->update_lock);
1199 	if (err)
1200 		return err;
1201 
1202 	switch (attr) {
1203 	case hwmon_chip_update_interval:
1204 		*val = data->update_interval;
1205 		break;
1206 	case hwmon_chip_alarms:
1207 		*val = data->alarms;
1208 		break;
1209 	default:
1210 		return -EOPNOTSUPP;
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1217 {
1218 	struct lm90_data *data = dev_get_drvdata(dev);
1219 	struct i2c_client *client = data->client;
1220 	int err;
1221 
1222 	mutex_lock(&data->update_lock);
1223 
1224 	err = lm90_update_device(dev);
1225 	if (err)
1226 		goto error;
1227 
1228 	switch (attr) {
1229 	case hwmon_chip_update_interval:
1230 		err = lm90_set_convrate(client, data,
1231 					clamp_val(val, 0, 100000));
1232 		break;
1233 	default:
1234 		err = -EOPNOTSUPP;
1235 		break;
1236 	}
1237 error:
1238 	mutex_unlock(&data->update_lock);
1239 
1240 	return err;
1241 }
1242 
1243 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1244 {
1245 	switch (attr) {
1246 	case hwmon_chip_update_interval:
1247 		return S_IRUGO | S_IWUSR;
1248 	case hwmon_chip_alarms:
1249 		return S_IRUGO;
1250 	default:
1251 		return 0;
1252 	}
1253 }
1254 
1255 static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1256 		     u32 attr, int channel, long *val)
1257 {
1258 	switch (type) {
1259 	case hwmon_chip:
1260 		return lm90_chip_read(dev, attr, channel, val);
1261 	case hwmon_temp:
1262 		return lm90_temp_read(dev, attr, channel, val);
1263 	default:
1264 		return -EOPNOTSUPP;
1265 	}
1266 }
1267 
1268 static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1269 		      u32 attr, int channel, long val)
1270 {
1271 	switch (type) {
1272 	case hwmon_chip:
1273 		return lm90_chip_write(dev, attr, channel, val);
1274 	case hwmon_temp:
1275 		return lm90_temp_write(dev, attr, channel, val);
1276 	default:
1277 		return -EOPNOTSUPP;
1278 	}
1279 }
1280 
1281 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1282 			       u32 attr, int channel)
1283 {
1284 	switch (type) {
1285 	case hwmon_chip:
1286 		return lm90_chip_is_visible(data, attr, channel);
1287 	case hwmon_temp:
1288 		return lm90_temp_is_visible(data, attr, channel);
1289 	default:
1290 		return 0;
1291 	}
1292 }
1293 
1294 /* Return 0 if detection is successful, -ENODEV otherwise */
1295 static int lm90_detect(struct i2c_client *client,
1296 		       struct i2c_board_info *info)
1297 {
1298 	struct i2c_adapter *adapter = client->adapter;
1299 	int address = client->addr;
1300 	const char *name = NULL;
1301 	int man_id, chip_id, config1, config2, convrate;
1302 
1303 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1304 		return -ENODEV;
1305 
1306 	/* detection and identification */
1307 	man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1308 	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1309 	config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1310 	convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1311 	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1312 		return -ENODEV;
1313 
1314 	if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1315 		config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1316 		if (config2 < 0)
1317 			return -ENODEV;
1318 	} else
1319 		config2 = 0;		/* Make compiler happy */
1320 
1321 	if ((address == 0x4C || address == 0x4D)
1322 	 && man_id == 0x01) { /* National Semiconductor */
1323 		if ((config1 & 0x2A) == 0x00
1324 		 && (config2 & 0xF8) == 0x00
1325 		 && convrate <= 0x09) {
1326 			if (address == 0x4C
1327 			 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1328 				name = "lm90";
1329 			} else
1330 			if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1331 				name = "lm99";
1332 				dev_info(&adapter->dev,
1333 					 "Assuming LM99 chip at 0x%02x\n",
1334 					 address);
1335 				dev_info(&adapter->dev,
1336 					 "If it is an LM89, instantiate it "
1337 					 "with the new_device sysfs "
1338 					 "interface\n");
1339 			} else
1340 			if (address == 0x4C
1341 			 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1342 				name = "lm86";
1343 			}
1344 		}
1345 	} else
1346 	if ((address == 0x4C || address == 0x4D)
1347 	 && man_id == 0x41) { /* Analog Devices */
1348 		if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1349 		 && (config1 & 0x3F) == 0x00
1350 		 && convrate <= 0x0A) {
1351 			name = "adm1032";
1352 			/*
1353 			 * The ADM1032 supports PEC, but only if combined
1354 			 * transactions are not used.
1355 			 */
1356 			if (i2c_check_functionality(adapter,
1357 						    I2C_FUNC_SMBUS_BYTE))
1358 				info->flags |= I2C_CLIENT_PEC;
1359 		} else
1360 		if (chip_id == 0x51 /* ADT7461 */
1361 		 && (config1 & 0x1B) == 0x00
1362 		 && convrate <= 0x0A) {
1363 			name = "adt7461";
1364 		} else
1365 		if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1366 		 && (config1 & 0x1B) == 0x00
1367 		 && convrate <= 0x0A) {
1368 			name = "adt7461a";
1369 		}
1370 	} else
1371 	if (man_id == 0x4D) { /* Maxim */
1372 		int emerg, emerg2, status2;
1373 
1374 		/*
1375 		 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1376 		 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1377 		 * exists, both readings will reflect the same value. Otherwise,
1378 		 * the readings will be different.
1379 		 */
1380 		emerg = i2c_smbus_read_byte_data(client,
1381 						 MAX6659_REG_R_REMOTE_EMERG);
1382 		man_id = i2c_smbus_read_byte_data(client,
1383 						  LM90_REG_R_MAN_ID);
1384 		emerg2 = i2c_smbus_read_byte_data(client,
1385 						  MAX6659_REG_R_REMOTE_EMERG);
1386 		status2 = i2c_smbus_read_byte_data(client,
1387 						   MAX6696_REG_R_STATUS2);
1388 		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1389 			return -ENODEV;
1390 
1391 		/*
1392 		 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1393 		 * register. Reading from that address will return the last
1394 		 * read value, which in our case is those of the man_id
1395 		 * register. Likewise, the config1 register seems to lack a
1396 		 * low nibble, so the value will be those of the previous
1397 		 * read, so in our case those of the man_id register.
1398 		 * MAX6659 has a third set of upper temperature limit registers.
1399 		 * Those registers also return values on MAX6657 and MAX6658,
1400 		 * thus the only way to detect MAX6659 is by its address.
1401 		 * For this reason it will be mis-detected as MAX6657 if its
1402 		 * address is 0x4C.
1403 		 */
1404 		if (chip_id == man_id
1405 		 && (address == 0x4C || address == 0x4D || address == 0x4E)
1406 		 && (config1 & 0x1F) == (man_id & 0x0F)
1407 		 && convrate <= 0x09) {
1408 			if (address == 0x4C)
1409 				name = "max6657";
1410 			else
1411 				name = "max6659";
1412 		} else
1413 		/*
1414 		 * Even though MAX6695 and MAX6696 do not have a chip ID
1415 		 * register, reading it returns 0x01. Bit 4 of the config1
1416 		 * register is unused and should return zero when read. Bit 0 of
1417 		 * the status2 register is unused and should return zero when
1418 		 * read.
1419 		 *
1420 		 * MAX6695 and MAX6696 have an additional set of temperature
1421 		 * limit registers. We can detect those chips by checking if
1422 		 * one of those registers exists.
1423 		 */
1424 		if (chip_id == 0x01
1425 		 && (config1 & 0x10) == 0x00
1426 		 && (status2 & 0x01) == 0x00
1427 		 && emerg == emerg2
1428 		 && convrate <= 0x07) {
1429 			name = "max6696";
1430 		} else
1431 		/*
1432 		 * The chip_id register of the MAX6680 and MAX6681 holds the
1433 		 * revision of the chip. The lowest bit of the config1 register
1434 		 * is unused and should return zero when read, so should the
1435 		 * second to last bit of config1 (software reset).
1436 		 */
1437 		if (chip_id == 0x01
1438 		 && (config1 & 0x03) == 0x00
1439 		 && convrate <= 0x07) {
1440 			name = "max6680";
1441 		} else
1442 		/*
1443 		 * The chip_id register of the MAX6646/6647/6649 holds the
1444 		 * revision of the chip. The lowest 6 bits of the config1
1445 		 * register are unused and should return zero when read.
1446 		 */
1447 		if (chip_id == 0x59
1448 		 && (config1 & 0x3f) == 0x00
1449 		 && convrate <= 0x07) {
1450 			name = "max6646";
1451 		}
1452 	} else
1453 	if (address == 0x4C
1454 	 && man_id == 0x5C) { /* Winbond/Nuvoton */
1455 		if ((config1 & 0x2A) == 0x00
1456 		 && (config2 & 0xF8) == 0x00) {
1457 			if (chip_id == 0x01 /* W83L771W/G */
1458 			 && convrate <= 0x09) {
1459 				name = "w83l771";
1460 			} else
1461 			if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1462 			 && convrate <= 0x08) {
1463 				name = "w83l771";
1464 			}
1465 		}
1466 	} else
1467 	if (address >= 0x48 && address <= 0x4F
1468 	 && man_id == 0xA1) { /*  NXP Semiconductor/Philips */
1469 		if (chip_id == 0x00
1470 		 && (config1 & 0x2A) == 0x00
1471 		 && (config2 & 0xFE) == 0x00
1472 		 && convrate <= 0x09) {
1473 			name = "sa56004";
1474 		}
1475 	} else
1476 	if ((address == 0x4C || address == 0x4D)
1477 	 && man_id == 0x47) { /* GMT */
1478 		if (chip_id == 0x01 /* G781 */
1479 		 && (config1 & 0x3F) == 0x00
1480 		 && convrate <= 0x08)
1481 			name = "g781";
1482 	} else
1483 	if (address == 0x4C
1484 	 && man_id == 0x55) { /* Texas Instruments */
1485 		int local_ext;
1486 
1487 		local_ext = i2c_smbus_read_byte_data(client,
1488 						     TMP451_REG_R_LOCAL_TEMPL);
1489 
1490 		if (chip_id == 0x00 /* TMP451 */
1491 		 && (config1 & 0x1B) == 0x00
1492 		 && convrate <= 0x09
1493 		 && (local_ext & 0x0F) == 0x00)
1494 			name = "tmp451";
1495 	}
1496 
1497 	if (!name) { /* identification failed */
1498 		dev_dbg(&adapter->dev,
1499 			"Unsupported chip at 0x%02x (man_id=0x%02X, "
1500 			"chip_id=0x%02X)\n", address, man_id, chip_id);
1501 		return -ENODEV;
1502 	}
1503 
1504 	strlcpy(info->type, name, I2C_NAME_SIZE);
1505 
1506 	return 0;
1507 }
1508 
1509 static void lm90_restore_conf(void *_data)
1510 {
1511 	struct lm90_data *data = _data;
1512 	struct i2c_client *client = data->client;
1513 
1514 	/* Restore initial configuration */
1515 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1516 				  data->convrate_orig);
1517 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1518 				  data->config_orig);
1519 }
1520 
1521 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1522 {
1523 	int config, convrate;
1524 
1525 	convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE);
1526 	if (convrate < 0)
1527 		return convrate;
1528 	data->convrate_orig = convrate;
1529 
1530 	/*
1531 	 * Start the conversions.
1532 	 */
1533 	lm90_set_convrate(client, data, 500);	/* 500ms; 2Hz conversion rate */
1534 	config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1535 	if (config < 0)
1536 		return config;
1537 	data->config_orig = config;
1538 
1539 	/* Check Temperature Range Select */
1540 	if (data->kind == adt7461 || data->kind == tmp451) {
1541 		if (config & 0x04)
1542 			data->flags |= LM90_FLAG_ADT7461_EXT;
1543 	}
1544 
1545 	/*
1546 	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1547 	 * 0.125 degree resolution) and range (0x08, extend range
1548 	 * to -64 degree) mode for the remote temperature sensor.
1549 	 */
1550 	if (data->kind == max6680)
1551 		config |= 0x18;
1552 
1553 	/*
1554 	 * Select external channel 0 for max6695/96
1555 	 */
1556 	if (data->kind == max6696)
1557 		config &= ~0x08;
1558 
1559 	config &= 0xBF;	/* run */
1560 	if (config != data->config_orig) /* Only write if changed */
1561 		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1562 
1563 	return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
1564 }
1565 
1566 static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1567 {
1568 	struct lm90_data *data = i2c_get_clientdata(client);
1569 	int st, st2 = 0;
1570 
1571 	st = lm90_read_reg(client, LM90_REG_R_STATUS);
1572 	if (st < 0)
1573 		return false;
1574 
1575 	if (data->kind == max6696) {
1576 		st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
1577 		if (st2 < 0)
1578 			return false;
1579 	}
1580 
1581 	*status = st | (st2 << 8);
1582 
1583 	if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1584 		return false;
1585 
1586 	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1587 	    (st2 & MAX6696_STATUS2_LOT2))
1588 		dev_warn(&client->dev,
1589 			 "temp%d out of range, please check!\n", 1);
1590 	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1591 	    (st2 & MAX6696_STATUS2_ROT2))
1592 		dev_warn(&client->dev,
1593 			 "temp%d out of range, please check!\n", 2);
1594 	if (st & LM90_STATUS_ROPEN)
1595 		dev_warn(&client->dev,
1596 			 "temp%d diode open, please check!\n", 2);
1597 	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1598 		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1599 		dev_warn(&client->dev,
1600 			 "temp%d out of range, please check!\n", 3);
1601 	if (st2 & MAX6696_STATUS2_R2OPEN)
1602 		dev_warn(&client->dev,
1603 			 "temp%d diode open, please check!\n", 3);
1604 
1605 	return true;
1606 }
1607 
1608 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1609 {
1610 	struct i2c_client *client = dev_id;
1611 	u16 status;
1612 
1613 	if (lm90_is_tripped(client, &status))
1614 		return IRQ_HANDLED;
1615 	else
1616 		return IRQ_NONE;
1617 }
1618 
1619 static void lm90_remove_pec(void *dev)
1620 {
1621 	device_remove_file(dev, &dev_attr_pec);
1622 }
1623 
1624 static void lm90_regulator_disable(void *regulator)
1625 {
1626 	regulator_disable(regulator);
1627 }
1628 
1629 static const u32 lm90_chip_config[] = {
1630 	HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL | HWMON_C_ALARMS,
1631 	0
1632 };
1633 
1634 static const struct hwmon_channel_info lm90_chip_info = {
1635 	.type = hwmon_chip,
1636 	.config = lm90_chip_config,
1637 };
1638 
1639 
1640 static const struct hwmon_ops lm90_ops = {
1641 	.is_visible = lm90_is_visible,
1642 	.read = lm90_read,
1643 	.write = lm90_write,
1644 };
1645 
1646 static int lm90_probe(struct i2c_client *client,
1647 		      const struct i2c_device_id *id)
1648 {
1649 	struct device *dev = &client->dev;
1650 	struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1651 	struct hwmon_channel_info *info;
1652 	struct regulator *regulator;
1653 	struct device *hwmon_dev;
1654 	struct lm90_data *data;
1655 	int err;
1656 
1657 	regulator = devm_regulator_get(dev, "vcc");
1658 	if (IS_ERR(regulator))
1659 		return PTR_ERR(regulator);
1660 
1661 	err = regulator_enable(regulator);
1662 	if (err < 0) {
1663 		dev_err(dev, "Failed to enable regulator: %d\n", err);
1664 		return err;
1665 	}
1666 
1667 	err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
1668 	if (err)
1669 		return err;
1670 
1671 	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1672 	if (!data)
1673 		return -ENOMEM;
1674 
1675 	data->client = client;
1676 	i2c_set_clientdata(client, data);
1677 	mutex_init(&data->update_lock);
1678 
1679 	/* Set the device type */
1680 	data->kind = id->driver_data;
1681 	if (data->kind == adm1032) {
1682 		if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1683 			client->flags &= ~I2C_CLIENT_PEC;
1684 	}
1685 
1686 	/*
1687 	 * Different devices have different alarm bits triggering the
1688 	 * ALERT# output
1689 	 */
1690 	data->alert_alarms = lm90_params[data->kind].alert_alarms;
1691 
1692 	/* Set chip capabilities */
1693 	data->flags = lm90_params[data->kind].flags;
1694 
1695 	data->chip.ops = &lm90_ops;
1696 	data->chip.info = data->info;
1697 
1698 	data->info[0] = &lm90_chip_info;
1699 	data->info[1] = &data->temp_info;
1700 
1701 	info = &data->temp_info;
1702 	info->type = hwmon_temp;
1703 	info->config = data->channel_config;
1704 
1705 	data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
1706 		HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM |
1707 		HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM;
1708 	data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
1709 		HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM |
1710 		HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
1711 
1712 	if (data->flags & LM90_HAVE_OFFSET)
1713 		data->channel_config[1] |= HWMON_T_OFFSET;
1714 
1715 	if (data->flags & LM90_HAVE_EMERGENCY) {
1716 		data->channel_config[0] |= HWMON_T_EMERGENCY |
1717 			HWMON_T_EMERGENCY_HYST;
1718 		data->channel_config[1] |= HWMON_T_EMERGENCY |
1719 			HWMON_T_EMERGENCY_HYST;
1720 	}
1721 
1722 	if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
1723 		data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
1724 		data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
1725 	}
1726 
1727 	if (data->flags & LM90_HAVE_TEMP3) {
1728 		data->channel_config[2] = HWMON_T_INPUT |
1729 			HWMON_T_MIN | HWMON_T_MAX |
1730 			HWMON_T_CRIT | HWMON_T_CRIT_HYST |
1731 			HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST |
1732 			HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
1733 			HWMON_T_CRIT_ALARM | HWMON_T_EMERGENCY_ALARM |
1734 			HWMON_T_FAULT;
1735 	}
1736 
1737 	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1738 
1739 	/* Set maximum conversion rate */
1740 	data->max_convrate = lm90_params[data->kind].max_convrate;
1741 
1742 	/* Initialize the LM90 chip */
1743 	err = lm90_init_client(client, data);
1744 	if (err < 0) {
1745 		dev_err(dev, "Failed to initialize device\n");
1746 		return err;
1747 	}
1748 
1749 	/*
1750 	 * The 'pec' attribute is attached to the i2c device and thus created
1751 	 * separately.
1752 	 */
1753 	if (client->flags & I2C_CLIENT_PEC) {
1754 		err = device_create_file(dev, &dev_attr_pec);
1755 		if (err)
1756 			return err;
1757 		err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
1758 		if (err)
1759 			return err;
1760 	}
1761 
1762 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
1763 							 data, &data->chip,
1764 							 NULL);
1765 	if (IS_ERR(hwmon_dev))
1766 		return PTR_ERR(hwmon_dev);
1767 
1768 	if (client->irq) {
1769 		dev_dbg(dev, "IRQ: %d\n", client->irq);
1770 		err = devm_request_threaded_irq(dev, client->irq,
1771 						NULL, lm90_irq_thread,
1772 						IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1773 						"lm90", client);
1774 		if (err < 0) {
1775 			dev_err(dev, "cannot request IRQ %d\n", client->irq);
1776 			return err;
1777 		}
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
1784 		       unsigned int flag)
1785 {
1786 	u16 alarms;
1787 
1788 	if (type != I2C_PROTOCOL_SMBUS_ALERT)
1789 		return;
1790 
1791 	if (lm90_is_tripped(client, &alarms)) {
1792 		/*
1793 		 * Disable ALERT# output, because these chips don't implement
1794 		 * SMBus alert correctly; they should only hold the alert line
1795 		 * low briefly.
1796 		 */
1797 		struct lm90_data *data = i2c_get_clientdata(client);
1798 
1799 		if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
1800 		    (alarms & data->alert_alarms)) {
1801 			int config;
1802 
1803 			dev_dbg(&client->dev, "Disabling ALERT#\n");
1804 			config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1805 			if (config >= 0)
1806 				i2c_smbus_write_byte_data(client,
1807 							  LM90_REG_W_CONFIG1,
1808 							  config | 0x80);
1809 		}
1810 	} else {
1811 		dev_info(&client->dev, "Everything OK\n");
1812 	}
1813 }
1814 
1815 static struct i2c_driver lm90_driver = {
1816 	.class		= I2C_CLASS_HWMON,
1817 	.driver = {
1818 		.name	= "lm90",
1819 	},
1820 	.probe		= lm90_probe,
1821 	.alert		= lm90_alert,
1822 	.id_table	= lm90_id,
1823 	.detect		= lm90_detect,
1824 	.address_list	= normal_i2c,
1825 };
1826 
1827 module_i2c_driver(lm90_driver);
1828 
1829 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1830 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1831 MODULE_LICENSE("GPL");
1832