1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de> 6 * 7 * Based on the lm83 driver. The LM90 is a sensor chip made by National 8 * Semiconductor. It reports up to two temperatures (its own plus up to 9 * one external one) with a 0.125 deg resolution (1 deg for local 10 * temperature) and a 3-4 deg accuracy. 11 * 12 * This driver also supports the LM89 and LM99, two other sensor chips 13 * made by National Semiconductor. Both have an increased remote 14 * temperature measurement accuracy (1 degree), and the LM99 15 * additionally shifts remote temperatures (measured and limits) by 16 16 * degrees, which allows for higher temperatures measurement. 17 * Note that there is no way to differentiate between both chips. 18 * When device is auto-detected, the driver will assume an LM99. 19 * 20 * This driver also supports the LM86, another sensor chip made by 21 * National Semiconductor. It is exactly similar to the LM90 except it 22 * has a higher accuracy. 23 * 24 * This driver also supports the ADM1032, a sensor chip made by Analog 25 * Devices. That chip is similar to the LM90, with a few differences 26 * that are not handled by this driver. Among others, it has a higher 27 * accuracy than the LM90, much like the LM86 does. 28 * 29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor 30 * chips made by Maxim. These chips are similar to the LM86. 31 * Note that there is no easy way to differentiate between the three 32 * variants. We use the device address to detect MAX6659, which will result 33 * in a detection as max6657 if it is on address 0x4c. The extra address 34 * and features of the MAX6659 are only supported if the chip is configured 35 * explicitly as max6659, or if its address is not 0x4c. 36 * These chips lack the remote temperature offset feature. 37 * 38 * This driver also supports the MAX6654 chip made by Maxim. This chip can be 39 * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar 40 * to MAX6657/MAX6658/MAX6659, but does not support critical temperature 41 * limits. Extended range is available by setting the configuration register 42 * accordingly, and is done during initialization. Extended precision is only 43 * available at conversion rates of 1 Hz and slower. Note that extended 44 * precision is not enabled by default, as this driver initializes all chips 45 * to 2 Hz by design. The driver also supports MAX6690, which is practically 46 * identical to MAX6654. 47 * 48 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and 49 * MAX6692 chips made by Maxim. These are again similar to the LM86, 50 * but they use unsigned temperature values and can report temperatures 51 * from 0 to 145 degrees. 52 * 53 * This driver also supports the MAX6680 and MAX6681, two other sensor 54 * chips made by Maxim. These are quite similar to the other Maxim 55 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can 56 * be treated identically. 57 * 58 * This driver also supports the MAX6695 and MAX6696, two other sensor 59 * chips made by Maxim. These are also quite similar to other Maxim 60 * chips, but support three temperature sensors instead of two. MAX6695 61 * and MAX6696 only differ in the pinout so they can be treated identically. 62 * 63 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as 64 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility 65 * and extended mode. They are mostly compatible with LM90 except for a data 66 * format difference for the temperature value registers. 67 * 68 * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices 69 * / ON Semiconductor. The chips are similar to ADT7461 but support two external 70 * temperature sensors. 71 * 72 * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor. 73 * The chips are similar to ADT7461/ADT7461A but have full PEC support 74 * (undocumented). 75 * 76 * This driver also supports the SA56004 from Philips. This device is 77 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible. 78 * 79 * This driver also supports the G781 from GMT. This device is compatible 80 * with the ADM1032. 81 * 82 * This driver also supports TMP451 and TMP461 from Texas Instruments. 83 * Those devices are supported in both compatibility and extended mode. 84 * They are mostly compatible with ADT7461 except for local temperature 85 * low byte register and max conversion rate. 86 * 87 * This driver also supports MAX1617 and various clones such as G767 88 * and NE1617. Such clones will be detected as MAX1617. 89 * 90 * This driver also supports NE1618 from Philips. It is similar to NE1617 91 * but supports 11 bit external temperature values. 92 * 93 * Since the LM90 was the first chipset supported by this driver, most 94 * comments will refer to this chipset, but are actually general and 95 * concern all supported chipsets, unless mentioned otherwise. 96 */ 97 98 #include <linux/bits.h> 99 #include <linux/device.h> 100 #include <linux/err.h> 101 #include <linux/i2c.h> 102 #include <linux/init.h> 103 #include <linux/interrupt.h> 104 #include <linux/jiffies.h> 105 #include <linux/hwmon.h> 106 #include <linux/module.h> 107 #include <linux/mutex.h> 108 #include <linux/of_device.h> 109 #include <linux/regulator/consumer.h> 110 #include <linux/slab.h> 111 #include <linux/workqueue.h> 112 113 /* The maximum number of channels currently supported */ 114 #define MAX_CHANNELS 3 115 116 /* 117 * Addresses to scan 118 * Address is fully defined internally and cannot be changed except for 119 * MAX6659, MAX6680 and MAX6681. 120 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649, 121 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c. 122 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D 123 * have address 0x4d. 124 * MAX6647 has address 0x4e. 125 * MAX6659 can have address 0x4c, 0x4d or 0x4e. 126 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 127 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e. 128 * SA56004 can have address 0x48 through 0x4F. 129 */ 130 131 static const unsigned short normal_i2c[] = { 132 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 133 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; 134 135 enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481, 136 g781, lm84, lm90, lm99, 137 max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696, 138 nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771, 139 }; 140 141 /* 142 * The LM90 registers 143 */ 144 145 #define LM90_REG_MAN_ID 0xFE 146 #define LM90_REG_CHIP_ID 0xFF 147 #define LM90_REG_CONFIG1 0x03 148 #define LM90_REG_CONFIG2 0xBF 149 #define LM90_REG_CONVRATE 0x04 150 #define LM90_REG_STATUS 0x02 151 #define LM90_REG_LOCAL_TEMP 0x00 152 #define LM90_REG_LOCAL_HIGH 0x05 153 #define LM90_REG_LOCAL_LOW 0x06 154 #define LM90_REG_LOCAL_CRIT 0x20 155 #define LM90_REG_REMOTE_TEMPH 0x01 156 #define LM90_REG_REMOTE_TEMPL 0x10 157 #define LM90_REG_REMOTE_OFFSH 0x11 158 #define LM90_REG_REMOTE_OFFSL 0x12 159 #define LM90_REG_REMOTE_HIGHH 0x07 160 #define LM90_REG_REMOTE_HIGHL 0x13 161 #define LM90_REG_REMOTE_LOWH 0x08 162 #define LM90_REG_REMOTE_LOWL 0x14 163 #define LM90_REG_REMOTE_CRIT 0x19 164 #define LM90_REG_TCRIT_HYST 0x21 165 166 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */ 167 168 #define MAX6657_REG_LOCAL_TEMPL 0x11 169 #define MAX6696_REG_STATUS2 0x12 170 #define MAX6659_REG_REMOTE_EMERG 0x16 171 #define MAX6659_REG_LOCAL_EMERG 0x17 172 173 /* SA56004 registers */ 174 175 #define SA56004_REG_LOCAL_TEMPL 0x22 176 177 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */ 178 179 /* TMP451/TMP461 registers */ 180 #define TMP451_REG_LOCAL_TEMPL 0x15 181 #define TMP451_REG_CONALERT 0x22 182 183 #define TMP461_REG_CHEN 0x16 184 #define TMP461_REG_DFC 0x24 185 186 /* ADT7481 registers */ 187 #define ADT7481_REG_STATUS2 0x23 188 #define ADT7481_REG_CONFIG2 0x24 189 190 #define ADT7481_REG_MAN_ID 0x3e 191 #define ADT7481_REG_CHIP_ID 0x3d 192 193 /* Device features */ 194 #define LM90_HAVE_EXTENDED_TEMP BIT(0) /* extended temperature support */ 195 #define LM90_HAVE_OFFSET BIT(1) /* temperature offset register */ 196 #define LM90_HAVE_UNSIGNED_TEMP BIT(2) /* temperatures are unsigned */ 197 #define LM90_HAVE_REM_LIMIT_EXT BIT(3) /* extended remote limit */ 198 #define LM90_HAVE_EMERGENCY BIT(4) /* 3rd upper (emergency) limit */ 199 #define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm */ 200 #define LM90_HAVE_TEMP3 BIT(6) /* 3rd temperature sensor */ 201 #define LM90_HAVE_BROKEN_ALERT BIT(7) /* Broken alert */ 202 #define LM90_PAUSE_FOR_CONFIG BIT(8) /* Pause conversion for config */ 203 #define LM90_HAVE_CRIT BIT(9) /* Chip supports CRIT/OVERT register */ 204 #define LM90_HAVE_CRIT_ALRM_SWP BIT(10) /* critical alarm bits swapped */ 205 #define LM90_HAVE_PEC BIT(11) /* Chip supports PEC */ 206 #define LM90_HAVE_PARTIAL_PEC BIT(12) /* Partial PEC support (adm1032)*/ 207 #define LM90_HAVE_ALARMS BIT(13) /* Create 'alarms' attribute */ 208 #define LM90_HAVE_EXT_UNSIGNED BIT(14) /* extended unsigned temperature*/ 209 #define LM90_HAVE_LOW BIT(15) /* low limits */ 210 #define LM90_HAVE_CONVRATE BIT(16) /* conversion rate */ 211 #define LM90_HAVE_REMOTE_EXT BIT(17) /* extended remote temperature */ 212 #define LM90_HAVE_FAULTQUEUE BIT(18) /* configurable samples count */ 213 214 /* LM90 status */ 215 #define LM90_STATUS_LTHRM BIT(0) /* local THERM limit tripped */ 216 #define LM90_STATUS_RTHRM BIT(1) /* remote THERM limit tripped */ 217 #define LM90_STATUS_ROPEN BIT(2) /* remote is an open circuit */ 218 #define LM90_STATUS_RLOW BIT(3) /* remote low temp limit tripped */ 219 #define LM90_STATUS_RHIGH BIT(4) /* remote high temp limit tripped */ 220 #define LM90_STATUS_LLOW BIT(5) /* local low temp limit tripped */ 221 #define LM90_STATUS_LHIGH BIT(6) /* local high temp limit tripped */ 222 #define LM90_STATUS_BUSY BIT(7) /* conversion is ongoing */ 223 224 /* MAX6695/6696 and ADT7481 2nd status register */ 225 #define MAX6696_STATUS2_R2THRM BIT(1) /* remote2 THERM limit tripped */ 226 #define MAX6696_STATUS2_R2OPEN BIT(2) /* remote2 is an open circuit */ 227 #define MAX6696_STATUS2_R2LOW BIT(3) /* remote2 low temp limit tripped */ 228 #define MAX6696_STATUS2_R2HIGH BIT(4) /* remote2 high temp limit tripped */ 229 #define MAX6696_STATUS2_ROT2 BIT(5) /* remote emergency limit tripped */ 230 #define MAX6696_STATUS2_R2OT2 BIT(6) /* remote2 emergency limit tripped */ 231 #define MAX6696_STATUS2_LOT2 BIT(7) /* local emergency limit tripped */ 232 233 /* 234 * Driver data (common to all clients) 235 */ 236 237 static const struct i2c_device_id lm90_id[] = { 238 { "adm1020", max1617 }, 239 { "adm1021", max1617 }, 240 { "adm1023", adm1023 }, 241 { "adm1032", adm1032 }, 242 { "adt7421", adt7461a }, 243 { "adt7461", adt7461 }, 244 { "adt7461a", adt7461a }, 245 { "adt7481", adt7481 }, 246 { "adt7482", adt7481 }, 247 { "adt7483a", adt7481 }, 248 { "g781", g781 }, 249 { "gl523sm", max1617 }, 250 { "lm84", lm84 }, 251 { "lm86", lm90 }, 252 { "lm89", lm90 }, 253 { "lm90", lm90 }, 254 { "lm99", lm99 }, 255 { "max1617", max1617 }, 256 { "max6642", max6642 }, 257 { "max6646", max6646 }, 258 { "max6647", max6646 }, 259 { "max6648", max6648 }, 260 { "max6649", max6646 }, 261 { "max6654", max6654 }, 262 { "max6657", max6657 }, 263 { "max6658", max6657 }, 264 { "max6659", max6659 }, 265 { "max6680", max6680 }, 266 { "max6681", max6680 }, 267 { "max6690", max6654 }, 268 { "max6692", max6648 }, 269 { "max6695", max6696 }, 270 { "max6696", max6696 }, 271 { "mc1066", max1617 }, 272 { "nct1008", adt7461a }, 273 { "nct210", nct210 }, 274 { "nct214", nct72 }, 275 { "nct218", nct72 }, 276 { "nct72", nct72 }, 277 { "ne1618", ne1618 }, 278 { "w83l771", w83l771 }, 279 { "sa56004", sa56004 }, 280 { "thmc10", max1617 }, 281 { "tmp451", tmp451 }, 282 { "tmp461", tmp461 }, 283 { } 284 }; 285 MODULE_DEVICE_TABLE(i2c, lm90_id); 286 287 static const struct of_device_id __maybe_unused lm90_of_match[] = { 288 { 289 .compatible = "adi,adm1032", 290 .data = (void *)adm1032 291 }, 292 { 293 .compatible = "adi,adt7461", 294 .data = (void *)adt7461 295 }, 296 { 297 .compatible = "adi,adt7461a", 298 .data = (void *)adt7461a 299 }, 300 { 301 .compatible = "adi,adt7481", 302 .data = (void *)adt7481 303 }, 304 { 305 .compatible = "gmt,g781", 306 .data = (void *)g781 307 }, 308 { 309 .compatible = "national,lm90", 310 .data = (void *)lm90 311 }, 312 { 313 .compatible = "national,lm86", 314 .data = (void *)lm90 315 }, 316 { 317 .compatible = "national,lm89", 318 .data = (void *)lm90 319 }, 320 { 321 .compatible = "national,lm99", 322 .data = (void *)lm99 323 }, 324 { 325 .compatible = "dallas,max6646", 326 .data = (void *)max6646 327 }, 328 { 329 .compatible = "dallas,max6647", 330 .data = (void *)max6646 331 }, 332 { 333 .compatible = "dallas,max6649", 334 .data = (void *)max6646 335 }, 336 { 337 .compatible = "dallas,max6654", 338 .data = (void *)max6654 339 }, 340 { 341 .compatible = "dallas,max6657", 342 .data = (void *)max6657 343 }, 344 { 345 .compatible = "dallas,max6658", 346 .data = (void *)max6657 347 }, 348 { 349 .compatible = "dallas,max6659", 350 .data = (void *)max6659 351 }, 352 { 353 .compatible = "dallas,max6680", 354 .data = (void *)max6680 355 }, 356 { 357 .compatible = "dallas,max6681", 358 .data = (void *)max6680 359 }, 360 { 361 .compatible = "dallas,max6695", 362 .data = (void *)max6696 363 }, 364 { 365 .compatible = "dallas,max6696", 366 .data = (void *)max6696 367 }, 368 { 369 .compatible = "onnn,nct1008", 370 .data = (void *)adt7461a 371 }, 372 { 373 .compatible = "onnn,nct214", 374 .data = (void *)nct72 375 }, 376 { 377 .compatible = "onnn,nct218", 378 .data = (void *)nct72 379 }, 380 { 381 .compatible = "onnn,nct72", 382 .data = (void *)nct72 383 }, 384 { 385 .compatible = "winbond,w83l771", 386 .data = (void *)w83l771 387 }, 388 { 389 .compatible = "nxp,sa56004", 390 .data = (void *)sa56004 391 }, 392 { 393 .compatible = "ti,tmp451", 394 .data = (void *)tmp451 395 }, 396 { 397 .compatible = "ti,tmp461", 398 .data = (void *)tmp461 399 }, 400 { }, 401 }; 402 MODULE_DEVICE_TABLE(of, lm90_of_match); 403 404 /* 405 * chip type specific parameters 406 */ 407 struct lm90_params { 408 u32 flags; /* Capabilities */ 409 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 410 /* Upper 8 bits for max6695/96 */ 411 u8 max_convrate; /* Maximum conversion rate register value */ 412 u8 resolution; /* 16-bit resolution (default 11 bit) */ 413 u8 reg_status2; /* 2nd status register (optional) */ 414 u8 reg_local_ext; /* Extended local temp register (optional) */ 415 u8 faultqueue_mask; /* fault queue bit mask */ 416 u8 faultqueue_depth; /* fault queue depth if mask is used */ 417 }; 418 419 static const struct lm90_params lm90_params[] = { 420 [adm1023] = { 421 .flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT 422 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 423 | LM90_HAVE_REMOTE_EXT, 424 .alert_alarms = 0x7c, 425 .resolution = 8, 426 .max_convrate = 7, 427 }, 428 [adm1032] = { 429 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 430 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT 431 | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS 432 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT 433 | LM90_HAVE_FAULTQUEUE, 434 .alert_alarms = 0x7c, 435 .max_convrate = 10, 436 }, 437 [adt7461] = { 438 /* 439 * Standard temperature range is supposed to be unsigned, 440 * but that does not match reality. Negative temperatures 441 * are always reported. 442 */ 443 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 444 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP 445 | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC 446 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 447 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, 448 .alert_alarms = 0x7c, 449 .max_convrate = 10, 450 .resolution = 10, 451 }, 452 [adt7461a] = { 453 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 454 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP 455 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS 456 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT 457 | LM90_HAVE_FAULTQUEUE, 458 .alert_alarms = 0x7c, 459 .max_convrate = 10, 460 }, 461 [adt7481] = { 462 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 463 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP 464 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC 465 | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW 466 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT 467 | LM90_HAVE_FAULTQUEUE, 468 .alert_alarms = 0x1c7c, 469 .max_convrate = 11, 470 .resolution = 10, 471 .reg_status2 = ADT7481_REG_STATUS2, 472 }, 473 [g781] = { 474 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 475 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT 476 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 477 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, 478 .alert_alarms = 0x7c, 479 .max_convrate = 7, 480 }, 481 [lm84] = { 482 .flags = LM90_HAVE_ALARMS, 483 .resolution = 8, 484 }, 485 [lm90] = { 486 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 487 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW 488 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT 489 | LM90_HAVE_FAULTQUEUE, 490 .alert_alarms = 0x7b, 491 .max_convrate = 9, 492 .faultqueue_mask = BIT(0), 493 .faultqueue_depth = 3, 494 }, 495 [lm99] = { 496 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 497 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW 498 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT 499 | LM90_HAVE_FAULTQUEUE, 500 .alert_alarms = 0x7b, 501 .max_convrate = 9, 502 .faultqueue_mask = BIT(0), 503 .faultqueue_depth = 3, 504 }, 505 [max1617] = { 506 .flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT | 507 LM90_HAVE_LOW | LM90_HAVE_ALARMS, 508 .alert_alarms = 0x78, 509 .resolution = 8, 510 .max_convrate = 7, 511 }, 512 [max6642] = { 513 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED 514 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, 515 .alert_alarms = 0x50, 516 .resolution = 10, 517 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, 518 .faultqueue_mask = BIT(4), 519 .faultqueue_depth = 2, 520 }, 521 [max6646] = { 522 .flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT 523 | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW 524 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, 525 .alert_alarms = 0x7c, 526 .max_convrate = 6, 527 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, 528 }, 529 [max6648] = { 530 .flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT 531 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW 532 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, 533 .alert_alarms = 0x7c, 534 .max_convrate = 6, 535 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, 536 }, 537 [max6654] = { 538 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW 539 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, 540 .alert_alarms = 0x7c, 541 .max_convrate = 7, 542 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, 543 }, 544 [max6657] = { 545 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT 546 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 547 | LM90_HAVE_REMOTE_EXT, 548 .alert_alarms = 0x7c, 549 .max_convrate = 8, 550 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, 551 }, 552 [max6659] = { 553 .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT 554 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 555 | LM90_HAVE_REMOTE_EXT, 556 .alert_alarms = 0x7c, 557 .max_convrate = 8, 558 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, 559 }, 560 [max6680] = { 561 /* 562 * Apparent temperatures of 128 degrees C or higher are reported 563 * and treated as negative temperatures (meaning min_alarm will 564 * be set). 565 */ 566 .flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT 567 | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT 568 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 569 | LM90_HAVE_REMOTE_EXT, 570 .alert_alarms = 0x7c, 571 .max_convrate = 7, 572 }, 573 [max6696] = { 574 .flags = LM90_HAVE_EMERGENCY 575 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT 576 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 577 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, 578 .alert_alarms = 0x1c7c, 579 .max_convrate = 6, 580 .reg_status2 = MAX6696_REG_STATUS2, 581 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, 582 .faultqueue_mask = BIT(5), 583 .faultqueue_depth = 4, 584 }, 585 [nct72] = { 586 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 587 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP 588 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP 589 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT 590 | LM90_HAVE_FAULTQUEUE, 591 .alert_alarms = 0x7c, 592 .max_convrate = 10, 593 .resolution = 10, 594 }, 595 [nct210] = { 596 .flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT 597 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 598 | LM90_HAVE_REMOTE_EXT, 599 .alert_alarms = 0x7c, 600 .resolution = 11, 601 .max_convrate = 7, 602 }, 603 [ne1618] = { 604 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT 605 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, 606 .alert_alarms = 0x7c, 607 .resolution = 11, 608 .max_convrate = 7, 609 }, 610 [w83l771] = { 611 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT 612 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 613 | LM90_HAVE_REMOTE_EXT, 614 .alert_alarms = 0x7c, 615 .max_convrate = 8, 616 }, 617 [sa56004] = { 618 /* 619 * Apparent temperatures of 128 degrees C or higher are reported 620 * and treated as negative temperatures (meaning min_alarm will 621 * be set). 622 */ 623 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT 624 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 625 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, 626 .alert_alarms = 0x7b, 627 .max_convrate = 9, 628 .reg_local_ext = SA56004_REG_LOCAL_TEMPL, 629 .faultqueue_mask = BIT(0), 630 .faultqueue_depth = 3, 631 }, 632 [tmp451] = { 633 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 634 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT 635 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW 636 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, 637 .alert_alarms = 0x7c, 638 .max_convrate = 9, 639 .resolution = 12, 640 .reg_local_ext = TMP451_REG_LOCAL_TEMPL, 641 }, 642 [tmp461] = { 643 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 644 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT 645 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE 646 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, 647 .alert_alarms = 0x7c, 648 .max_convrate = 9, 649 .resolution = 12, 650 .reg_local_ext = TMP451_REG_LOCAL_TEMPL, 651 }, 652 }; 653 654 /* 655 * temperature register index 656 */ 657 enum lm90_temp_reg_index { 658 LOCAL_LOW = 0, 659 LOCAL_HIGH, 660 LOCAL_CRIT, 661 REMOTE_CRIT, 662 LOCAL_EMERG, /* max6659 and max6695/96 */ 663 REMOTE_EMERG, /* max6659 and max6695/96 */ 664 REMOTE2_CRIT, /* max6695/96 only */ 665 REMOTE2_EMERG, /* max6695/96 only */ 666 667 REMOTE_TEMP, 668 REMOTE_LOW, 669 REMOTE_HIGH, 670 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */ 671 LOCAL_TEMP, 672 REMOTE2_TEMP, /* max6695/96 only */ 673 REMOTE2_LOW, /* max6695/96 only */ 674 REMOTE2_HIGH, /* max6695/96 only */ 675 REMOTE2_OFFSET, 676 677 TEMP_REG_NUM 678 }; 679 680 /* 681 * Client data (each client gets its own) 682 */ 683 684 struct lm90_data { 685 struct i2c_client *client; 686 struct device *hwmon_dev; 687 u32 chip_config[2]; 688 u32 channel_config[MAX_CHANNELS + 1]; 689 const char *channel_label[MAX_CHANNELS]; 690 struct hwmon_channel_info chip_info; 691 struct hwmon_channel_info temp_info; 692 const struct hwmon_channel_info *info[3]; 693 struct hwmon_chip_info chip; 694 struct mutex update_lock; 695 struct delayed_work alert_work; 696 struct work_struct report_work; 697 bool valid; /* true if register values are valid */ 698 bool alarms_valid; /* true if status register values are valid */ 699 unsigned long last_updated; /* in jiffies */ 700 unsigned long alarms_updated; /* in jiffies */ 701 int kind; 702 u32 flags; 703 704 unsigned int update_interval; /* in milliseconds */ 705 706 u8 config; /* Current configuration register value */ 707 u8 config_orig; /* Original configuration register value */ 708 u8 convrate_orig; /* Original conversion rate register value */ 709 u8 resolution; /* temperature resolution in bit */ 710 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 711 /* Upper 8 bits for max6695/96 */ 712 u8 max_convrate; /* Maximum conversion rate */ 713 u8 reg_status2; /* 2nd status register (optional) */ 714 u8 reg_local_ext; /* local extension register offset */ 715 u8 reg_remote_ext; /* remote temperature low byte */ 716 u8 faultqueue_mask; /* fault queue mask */ 717 u8 faultqueue_depth; /* fault queue mask */ 718 719 /* registers values */ 720 u16 temp[TEMP_REG_NUM]; 721 u8 temp_hyst; 722 u8 conalert; 723 u16 reported_alarms; /* alarms reported as sysfs/udev events */ 724 u16 current_alarms; /* current alarms, reported by chip */ 725 u16 alarms; /* alarms not yet reported to user */ 726 }; 727 728 /* 729 * Support functions 730 */ 731 732 /* 733 * If the chip supports PEC but not on write byte transactions, we need 734 * to explicitly ask for a transaction without PEC. 735 */ 736 static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value) 737 { 738 return i2c_smbus_xfer(client->adapter, client->addr, 739 client->flags & ~I2C_CLIENT_PEC, 740 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL); 741 } 742 743 /* 744 * It is assumed that client->update_lock is held (unless we are in 745 * detection or initialization steps). This matters when PEC is enabled 746 * for chips with partial PEC support, because we don't want the address 747 * pointer to change between the write byte and the read byte transactions. 748 */ 749 static int lm90_read_reg(struct i2c_client *client, u8 reg) 750 { 751 struct lm90_data *data = i2c_get_clientdata(client); 752 bool partial_pec = (client->flags & I2C_CLIENT_PEC) && 753 (data->flags & LM90_HAVE_PARTIAL_PEC); 754 int err; 755 756 if (partial_pec) { 757 err = lm90_write_no_pec(client, reg); 758 if (err) 759 return err; 760 return i2c_smbus_read_byte(client); 761 } 762 return i2c_smbus_read_byte_data(client, reg); 763 } 764 765 /* 766 * Return register write address 767 * 768 * The write address for registers 0x03 .. 0x08 is the read address plus 6. 769 * For other registers the write address matches the read address. 770 */ 771 static u8 lm90_write_reg_addr(u8 reg) 772 { 773 if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH) 774 return reg + 6; 775 return reg; 776 } 777 778 /* 779 * Write into LM90 register. 780 * Convert register address to write address if needed, then execute the 781 * operation. 782 */ 783 static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val) 784 { 785 return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val); 786 } 787 788 /* 789 * Write into 16-bit LM90 register. 790 * Convert register addresses to write address if needed, then execute the 791 * operation. 792 */ 793 static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val) 794 { 795 int ret; 796 797 ret = lm90_write_reg(client, regh, val >> 8); 798 if (ret < 0 || !regl) 799 return ret; 800 return lm90_write_reg(client, regl, val & 0xff); 801 } 802 803 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, 804 bool is_volatile) 805 { 806 int oldh, newh, l; 807 808 oldh = lm90_read_reg(client, regh); 809 if (oldh < 0) 810 return oldh; 811 812 if (!regl) 813 return oldh << 8; 814 815 l = lm90_read_reg(client, regl); 816 if (l < 0) 817 return l; 818 819 if (!is_volatile) 820 return (oldh << 8) | l; 821 822 /* 823 * For volatile registers we have to use a trick. 824 * We have to read two registers to have the sensor temperature, 825 * but we have to beware a conversion could occur between the 826 * readings. The datasheet says we should either use 827 * the one-shot conversion register, which we don't want to do 828 * (disables hardware monitoring) or monitor the busy bit, which is 829 * impossible (we can't read the values and monitor that bit at the 830 * exact same time). So the solution used here is to read the high 831 * the high byte again. If the new high byte matches the old one, 832 * then we have a valid reading. Otherwise we have to read the low 833 * byte again, and now we believe we have a correct reading. 834 */ 835 newh = lm90_read_reg(client, regh); 836 if (newh < 0) 837 return newh; 838 if (oldh != newh) { 839 l = lm90_read_reg(client, regl); 840 if (l < 0) 841 return l; 842 } 843 return (newh << 8) | l; 844 } 845 846 static int lm90_update_confreg(struct lm90_data *data, u8 config) 847 { 848 if (data->config != config) { 849 int err; 850 851 err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config); 852 if (err) 853 return err; 854 data->config = config; 855 } 856 return 0; 857 } 858 859 /* 860 * client->update_lock must be held when calling this function (unless we are 861 * in detection or initialization steps), and while a remote channel other 862 * than channel 0 is selected. Also, calling code must make sure to re-select 863 * external channel 0 before releasing the lock. This is necessary because 864 * various registers have different meanings as a result of selecting a 865 * non-default remote channel. 866 */ 867 static int lm90_select_remote_channel(struct lm90_data *data, bool second) 868 { 869 u8 config = data->config & ~0x08; 870 871 if (second) 872 config |= 0x08; 873 874 return lm90_update_confreg(data, config); 875 } 876 877 static int lm90_write_convrate(struct lm90_data *data, int val) 878 { 879 u8 config = data->config; 880 int err; 881 882 /* Save config and pause conversion */ 883 if (data->flags & LM90_PAUSE_FOR_CONFIG) { 884 err = lm90_update_confreg(data, config | 0x40); 885 if (err < 0) 886 return err; 887 } 888 889 /* Set conv rate */ 890 err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val); 891 892 /* Revert change to config */ 893 lm90_update_confreg(data, config); 894 895 return err; 896 } 897 898 /* 899 * Set conversion rate. 900 * client->update_lock must be held when calling this function (unless we are 901 * in detection or initialization steps). 902 */ 903 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data, 904 unsigned int interval) 905 { 906 unsigned int update_interval; 907 int i, err; 908 909 /* Shift calculations to avoid rounding errors */ 910 interval <<= 6; 911 912 /* find the nearest update rate */ 913 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6; 914 i < data->max_convrate; i++, update_interval >>= 1) 915 if (interval >= update_interval * 3 / 4) 916 break; 917 918 err = lm90_write_convrate(data, i); 919 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64); 920 return err; 921 } 922 923 static int lm90_set_faultqueue(struct i2c_client *client, 924 struct lm90_data *data, int val) 925 { 926 int err; 927 928 if (data->faultqueue_mask) { 929 err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ? 930 data->config & ~data->faultqueue_mask : 931 data->config | data->faultqueue_mask); 932 } else { 933 static const u8 values[4] = {0, 2, 6, 0x0e}; 934 935 data->conalert = (data->conalert & 0xf1) | values[val - 1]; 936 err = lm90_write_reg(data->client, TMP451_REG_CONALERT, 937 data->conalert); 938 } 939 940 return err; 941 } 942 943 static int lm90_update_limits(struct device *dev) 944 { 945 struct lm90_data *data = dev_get_drvdata(dev); 946 struct i2c_client *client = data->client; 947 int val; 948 949 if (data->flags & LM90_HAVE_CRIT) { 950 val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT); 951 if (val < 0) 952 return val; 953 data->temp[LOCAL_CRIT] = val << 8; 954 955 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT); 956 if (val < 0) 957 return val; 958 data->temp[REMOTE_CRIT] = val << 8; 959 960 val = lm90_read_reg(client, LM90_REG_TCRIT_HYST); 961 if (val < 0) 962 return val; 963 data->temp_hyst = val; 964 } 965 if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) { 966 val = lm90_read_reg(client, TMP451_REG_CONALERT); 967 if (val < 0) 968 return val; 969 data->conalert = val; 970 } 971 972 val = lm90_read16(client, LM90_REG_REMOTE_LOWH, 973 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0, 974 false); 975 if (val < 0) 976 return val; 977 data->temp[REMOTE_LOW] = val; 978 979 val = lm90_read16(client, LM90_REG_REMOTE_HIGHH, 980 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0, 981 false); 982 if (val < 0) 983 return val; 984 data->temp[REMOTE_HIGH] = val; 985 986 if (data->flags & LM90_HAVE_OFFSET) { 987 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH, 988 LM90_REG_REMOTE_OFFSL, false); 989 if (val < 0) 990 return val; 991 data->temp[REMOTE_OFFSET] = val; 992 } 993 994 if (data->flags & LM90_HAVE_EMERGENCY) { 995 val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG); 996 if (val < 0) 997 return val; 998 data->temp[LOCAL_EMERG] = val << 8; 999 1000 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG); 1001 if (val < 0) 1002 return val; 1003 data->temp[REMOTE_EMERG] = val << 8; 1004 } 1005 1006 if (data->flags & LM90_HAVE_TEMP3) { 1007 val = lm90_select_remote_channel(data, true); 1008 if (val < 0) 1009 return val; 1010 1011 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT); 1012 if (val < 0) 1013 return val; 1014 data->temp[REMOTE2_CRIT] = val << 8; 1015 1016 if (data->flags & LM90_HAVE_EMERGENCY) { 1017 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG); 1018 if (val < 0) 1019 return val; 1020 data->temp[REMOTE2_EMERG] = val << 8; 1021 } 1022 1023 val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH); 1024 if (val < 0) 1025 return val; 1026 data->temp[REMOTE2_LOW] = val << 8; 1027 1028 val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH); 1029 if (val < 0) 1030 return val; 1031 data->temp[REMOTE2_HIGH] = val << 8; 1032 1033 if (data->flags & LM90_HAVE_OFFSET) { 1034 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH, 1035 LM90_REG_REMOTE_OFFSL, false); 1036 if (val < 0) 1037 return val; 1038 data->temp[REMOTE2_OFFSET] = val; 1039 } 1040 1041 lm90_select_remote_channel(data, false); 1042 } 1043 1044 return 0; 1045 } 1046 1047 static void lm90_report_alarms(struct work_struct *work) 1048 { 1049 struct lm90_data *data = container_of(work, struct lm90_data, report_work); 1050 u16 cleared_alarms, new_alarms, current_alarms; 1051 struct device *hwmon_dev = data->hwmon_dev; 1052 struct device *dev = &data->client->dev; 1053 int st, st2; 1054 1055 current_alarms = data->current_alarms; 1056 cleared_alarms = data->reported_alarms & ~current_alarms; 1057 new_alarms = current_alarms & ~data->reported_alarms; 1058 1059 if (!cleared_alarms && !new_alarms) 1060 return; 1061 1062 st = new_alarms & 0xff; 1063 st2 = new_alarms >> 8; 1064 1065 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) || 1066 (st2 & MAX6696_STATUS2_LOT2)) 1067 dev_dbg(dev, "temp%d out of range, please check!\n", 1); 1068 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) || 1069 (st2 & MAX6696_STATUS2_ROT2)) 1070 dev_dbg(dev, "temp%d out of range, please check!\n", 2); 1071 if (st & LM90_STATUS_ROPEN) 1072 dev_dbg(dev, "temp%d diode open, please check!\n", 2); 1073 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH | 1074 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2)) 1075 dev_dbg(dev, "temp%d out of range, please check!\n", 3); 1076 if (st2 & MAX6696_STATUS2_R2OPEN) 1077 dev_dbg(dev, "temp%d diode open, please check!\n", 3); 1078 1079 st |= cleared_alarms & 0xff; 1080 st2 |= cleared_alarms >> 8; 1081 1082 if (st & LM90_STATUS_LLOW) 1083 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0); 1084 if (st & LM90_STATUS_RLOW) 1085 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1); 1086 if (st2 & MAX6696_STATUS2_R2LOW) 1087 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2); 1088 1089 if (st & LM90_STATUS_LHIGH) 1090 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0); 1091 if (st & LM90_STATUS_RHIGH) 1092 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1); 1093 if (st2 & MAX6696_STATUS2_R2HIGH) 1094 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2); 1095 1096 if (st & LM90_STATUS_LTHRM) 1097 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0); 1098 if (st & LM90_STATUS_RTHRM) 1099 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1); 1100 if (st2 & MAX6696_STATUS2_R2THRM) 1101 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2); 1102 1103 if (st2 & MAX6696_STATUS2_LOT2) 1104 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0); 1105 if (st2 & MAX6696_STATUS2_ROT2) 1106 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1); 1107 if (st2 & MAX6696_STATUS2_R2OT2) 1108 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2); 1109 1110 data->reported_alarms = current_alarms; 1111 } 1112 1113 static int lm90_update_alarms_locked(struct lm90_data *data, bool force) 1114 { 1115 if (force || !data->alarms_valid || 1116 time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) { 1117 struct i2c_client *client = data->client; 1118 bool check_enable; 1119 u16 alarms; 1120 int val; 1121 1122 data->alarms_valid = false; 1123 1124 val = lm90_read_reg(client, LM90_REG_STATUS); 1125 if (val < 0) 1126 return val; 1127 alarms = val & ~LM90_STATUS_BUSY; 1128 1129 if (data->reg_status2) { 1130 val = lm90_read_reg(client, data->reg_status2); 1131 if (val < 0) 1132 return val; 1133 alarms |= val << 8; 1134 } 1135 /* 1136 * If the update is forced (called from interrupt or alert 1137 * handler) and alarm data is valid, the alarms may have been 1138 * updated after the last update interval, and the status 1139 * register may still be cleared. Only add additional alarms 1140 * in this case. Alarms will be cleared later if appropriate. 1141 */ 1142 if (force && data->alarms_valid) 1143 data->current_alarms |= alarms; 1144 else 1145 data->current_alarms = alarms; 1146 data->alarms |= alarms; 1147 1148 check_enable = (client->irq || !(data->config_orig & 0x80)) && 1149 (data->config & 0x80); 1150 1151 if (force || check_enable) 1152 schedule_work(&data->report_work); 1153 1154 /* 1155 * Re-enable ALERT# output if it was originally enabled, relevant 1156 * alarms are all clear, and alerts are currently disabled. 1157 * Otherwise (re)schedule worker if needed. 1158 */ 1159 if (check_enable) { 1160 if (!(data->current_alarms & data->alert_alarms)) { 1161 dev_dbg(&client->dev, "Re-enabling ALERT#\n"); 1162 lm90_update_confreg(data, data->config & ~0x80); 1163 /* 1164 * We may have been called from the update handler. 1165 * If so, the worker, if scheduled, is no longer 1166 * needed. Cancel it. Don't synchronize because 1167 * it may already be running. 1168 */ 1169 cancel_delayed_work(&data->alert_work); 1170 } else { 1171 schedule_delayed_work(&data->alert_work, 1172 max_t(int, HZ, msecs_to_jiffies(data->update_interval))); 1173 } 1174 } 1175 data->alarms_updated = jiffies; 1176 data->alarms_valid = true; 1177 } 1178 return 0; 1179 } 1180 1181 static int lm90_update_alarms(struct lm90_data *data, bool force) 1182 { 1183 int err; 1184 1185 mutex_lock(&data->update_lock); 1186 err = lm90_update_alarms_locked(data, force); 1187 mutex_unlock(&data->update_lock); 1188 1189 return err; 1190 } 1191 1192 static void lm90_alert_work(struct work_struct *__work) 1193 { 1194 struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work); 1195 struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work); 1196 1197 /* Nothing to do if alerts are enabled */ 1198 if (!(data->config & 0x80)) 1199 return; 1200 1201 lm90_update_alarms(data, true); 1202 } 1203 1204 static int lm90_update_device(struct device *dev) 1205 { 1206 struct lm90_data *data = dev_get_drvdata(dev); 1207 struct i2c_client *client = data->client; 1208 unsigned long next_update; 1209 int val; 1210 1211 if (!data->valid) { 1212 val = lm90_update_limits(dev); 1213 if (val < 0) 1214 return val; 1215 } 1216 1217 next_update = data->last_updated + 1218 msecs_to_jiffies(data->update_interval); 1219 if (time_after(jiffies, next_update) || !data->valid) { 1220 dev_dbg(&client->dev, "Updating lm90 data.\n"); 1221 1222 data->valid = false; 1223 1224 val = lm90_read_reg(client, LM90_REG_LOCAL_LOW); 1225 if (val < 0) 1226 return val; 1227 data->temp[LOCAL_LOW] = val << 8; 1228 1229 val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH); 1230 if (val < 0) 1231 return val; 1232 data->temp[LOCAL_HIGH] = val << 8; 1233 1234 val = lm90_read16(client, LM90_REG_LOCAL_TEMP, 1235 data->reg_local_ext, true); 1236 if (val < 0) 1237 return val; 1238 data->temp[LOCAL_TEMP] = val; 1239 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH, 1240 data->reg_remote_ext, true); 1241 if (val < 0) 1242 return val; 1243 data->temp[REMOTE_TEMP] = val; 1244 1245 if (data->flags & LM90_HAVE_TEMP3) { 1246 val = lm90_select_remote_channel(data, true); 1247 if (val < 0) 1248 return val; 1249 1250 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH, 1251 data->reg_remote_ext, true); 1252 if (val < 0) { 1253 lm90_select_remote_channel(data, false); 1254 return val; 1255 } 1256 data->temp[REMOTE2_TEMP] = val; 1257 1258 lm90_select_remote_channel(data, false); 1259 } 1260 1261 val = lm90_update_alarms_locked(data, false); 1262 if (val < 0) 1263 return val; 1264 1265 data->last_updated = jiffies; 1266 data->valid = true; 1267 } 1268 1269 return 0; 1270 } 1271 1272 /* pec used for devices with PEC support */ 1273 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy, 1274 char *buf) 1275 { 1276 struct i2c_client *client = to_i2c_client(dev); 1277 1278 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); 1279 } 1280 1281 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy, 1282 const char *buf, size_t count) 1283 { 1284 struct i2c_client *client = to_i2c_client(dev); 1285 long val; 1286 int err; 1287 1288 err = kstrtol(buf, 10, &val); 1289 if (err < 0) 1290 return err; 1291 1292 switch (val) { 1293 case 0: 1294 client->flags &= ~I2C_CLIENT_PEC; 1295 break; 1296 case 1: 1297 client->flags |= I2C_CLIENT_PEC; 1298 break; 1299 default: 1300 return -EINVAL; 1301 } 1302 1303 return count; 1304 } 1305 1306 static DEVICE_ATTR_RW(pec); 1307 1308 static int lm90_temp_get_resolution(struct lm90_data *data, int index) 1309 { 1310 switch (index) { 1311 case REMOTE_TEMP: 1312 if (data->reg_remote_ext) 1313 return data->resolution; 1314 return 8; 1315 case REMOTE_OFFSET: 1316 case REMOTE2_OFFSET: 1317 case REMOTE2_TEMP: 1318 return data->resolution; 1319 case LOCAL_TEMP: 1320 if (data->reg_local_ext) 1321 return data->resolution; 1322 return 8; 1323 case REMOTE_LOW: 1324 case REMOTE_HIGH: 1325 case REMOTE2_LOW: 1326 case REMOTE2_HIGH: 1327 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) 1328 return data->resolution; 1329 return 8; 1330 default: 1331 return 8; 1332 } 1333 } 1334 1335 static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution) 1336 { 1337 int val; 1338 1339 if (flags & LM90_HAVE_EXTENDED_TEMP) 1340 val = regval - 0x4000; 1341 else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED)) 1342 val = regval; 1343 else 1344 val = (s16)regval; 1345 1346 return ((val >> (16 - resolution)) * 1000) >> (resolution - 8); 1347 } 1348 1349 static int lm90_get_temp(struct lm90_data *data, int index, int channel) 1350 { 1351 int temp = lm90_temp_from_reg(data->flags, data->temp[index], 1352 lm90_temp_get_resolution(data, index)); 1353 1354 /* +16 degrees offset for remote temperature on LM99 */ 1355 if (data->kind == lm99 && channel) 1356 temp += 16000; 1357 1358 return temp; 1359 } 1360 1361 static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution) 1362 { 1363 int fraction = resolution > 8 ? 1364 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0; 1365 1366 if (flags & LM90_HAVE_EXTENDED_TEMP) { 1367 val = clamp_val(val, -64000, 191000 + fraction); 1368 val += 64000; 1369 } else if (flags & LM90_HAVE_EXT_UNSIGNED) { 1370 val = clamp_val(val, 0, 255000 + fraction); 1371 } else if (flags & LM90_HAVE_UNSIGNED_TEMP) { 1372 val = clamp_val(val, 0, 127000 + fraction); 1373 } else { 1374 val = clamp_val(val, -128000, 127000 + fraction); 1375 } 1376 1377 return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution); 1378 } 1379 1380 static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val) 1381 { 1382 static const u8 regs[] = { 1383 [LOCAL_LOW] = LM90_REG_LOCAL_LOW, 1384 [LOCAL_HIGH] = LM90_REG_LOCAL_HIGH, 1385 [LOCAL_CRIT] = LM90_REG_LOCAL_CRIT, 1386 [REMOTE_CRIT] = LM90_REG_REMOTE_CRIT, 1387 [LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG, 1388 [REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG, 1389 [REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT, 1390 [REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG, 1391 [REMOTE_LOW] = LM90_REG_REMOTE_LOWH, 1392 [REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH, 1393 [REMOTE2_LOW] = LM90_REG_REMOTE_LOWH, 1394 [REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH, 1395 }; 1396 struct i2c_client *client = data->client; 1397 u8 regh = regs[index]; 1398 u8 regl = 0; 1399 int err; 1400 1401 if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) { 1402 if (index == REMOTE_LOW || index == REMOTE2_LOW) 1403 regl = LM90_REG_REMOTE_LOWL; 1404 else if (index == REMOTE_HIGH || index == REMOTE2_HIGH) 1405 regl = LM90_REG_REMOTE_HIGHL; 1406 } 1407 1408 /* +16 degrees offset for remote temperature on LM99 */ 1409 if (data->kind == lm99 && channel) { 1410 /* prevent integer underflow */ 1411 val = max(val, -128000l); 1412 val -= 16000; 1413 } 1414 1415 data->temp[index] = lm90_temp_to_reg(data->flags, val, 1416 lm90_temp_get_resolution(data, index)); 1417 1418 if (channel > 1) 1419 lm90_select_remote_channel(data, true); 1420 1421 err = lm90_write16(client, regh, regl, data->temp[index]); 1422 1423 if (channel > 1) 1424 lm90_select_remote_channel(data, false); 1425 1426 return err; 1427 } 1428 1429 static int lm90_get_temphyst(struct lm90_data *data, int index, int channel) 1430 { 1431 int temp = lm90_get_temp(data, index, channel); 1432 1433 return temp - data->temp_hyst * 1000; 1434 } 1435 1436 static int lm90_set_temphyst(struct lm90_data *data, long val) 1437 { 1438 int temp = lm90_get_temp(data, LOCAL_CRIT, 0); 1439 1440 /* prevent integer overflow/underflow */ 1441 val = clamp_val(val, -128000l, 255000l); 1442 data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31); 1443 1444 return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst); 1445 } 1446 1447 static int lm90_get_temp_offset(struct lm90_data *data, int index) 1448 { 1449 int res = lm90_temp_get_resolution(data, index); 1450 1451 return lm90_temp_from_reg(0, data->temp[index], res); 1452 } 1453 1454 static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val) 1455 { 1456 int err; 1457 1458 val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index)); 1459 1460 /* For ADT7481 we can use the same registers for remote channel 1 and 2 */ 1461 if (channel > 1) 1462 lm90_select_remote_channel(data, true); 1463 1464 err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val); 1465 1466 if (channel > 1) 1467 lm90_select_remote_channel(data, false); 1468 1469 if (err) 1470 return err; 1471 1472 data->temp[index] = val; 1473 1474 return 0; 1475 } 1476 1477 static const u8 lm90_temp_index[MAX_CHANNELS] = { 1478 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP 1479 }; 1480 1481 static const u8 lm90_temp_min_index[MAX_CHANNELS] = { 1482 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW 1483 }; 1484 1485 static const u8 lm90_temp_max_index[MAX_CHANNELS] = { 1486 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH 1487 }; 1488 1489 static const u8 lm90_temp_crit_index[MAX_CHANNELS] = { 1490 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT 1491 }; 1492 1493 static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = { 1494 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG 1495 }; 1496 1497 static const s8 lm90_temp_offset_index[MAX_CHANNELS] = { 1498 -1, REMOTE_OFFSET, REMOTE2_OFFSET 1499 }; 1500 1501 static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) }; 1502 static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) }; 1503 static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) }; 1504 static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) }; 1505 static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) }; 1506 static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) }; 1507 1508 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val) 1509 { 1510 struct lm90_data *data = dev_get_drvdata(dev); 1511 int err; 1512 u16 bit; 1513 1514 mutex_lock(&data->update_lock); 1515 err = lm90_update_device(dev); 1516 mutex_unlock(&data->update_lock); 1517 if (err) 1518 return err; 1519 1520 switch (attr) { 1521 case hwmon_temp_input: 1522 *val = lm90_get_temp(data, lm90_temp_index[channel], channel); 1523 break; 1524 case hwmon_temp_min_alarm: 1525 case hwmon_temp_max_alarm: 1526 case hwmon_temp_crit_alarm: 1527 case hwmon_temp_emergency_alarm: 1528 case hwmon_temp_fault: 1529 switch (attr) { 1530 case hwmon_temp_min_alarm: 1531 bit = lm90_min_alarm_bits[channel]; 1532 break; 1533 case hwmon_temp_max_alarm: 1534 bit = lm90_max_alarm_bits[channel]; 1535 break; 1536 case hwmon_temp_crit_alarm: 1537 if (data->flags & LM90_HAVE_CRIT_ALRM_SWP) 1538 bit = lm90_crit_alarm_bits_swapped[channel]; 1539 else 1540 bit = lm90_crit_alarm_bits[channel]; 1541 break; 1542 case hwmon_temp_emergency_alarm: 1543 bit = lm90_emergency_alarm_bits[channel]; 1544 break; 1545 case hwmon_temp_fault: 1546 bit = lm90_fault_bits[channel]; 1547 break; 1548 } 1549 *val = !!(data->alarms & bit); 1550 data->alarms &= ~bit; 1551 data->alarms |= data->current_alarms; 1552 break; 1553 case hwmon_temp_min: 1554 *val = lm90_get_temp(data, lm90_temp_min_index[channel], channel); 1555 break; 1556 case hwmon_temp_max: 1557 *val = lm90_get_temp(data, lm90_temp_max_index[channel], channel); 1558 break; 1559 case hwmon_temp_crit: 1560 *val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel); 1561 break; 1562 case hwmon_temp_crit_hyst: 1563 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel); 1564 break; 1565 case hwmon_temp_emergency: 1566 *val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel); 1567 break; 1568 case hwmon_temp_emergency_hyst: 1569 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel); 1570 break; 1571 case hwmon_temp_offset: 1572 *val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]); 1573 break; 1574 default: 1575 return -EOPNOTSUPP; 1576 } 1577 return 0; 1578 } 1579 1580 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val) 1581 { 1582 struct lm90_data *data = dev_get_drvdata(dev); 1583 int err; 1584 1585 mutex_lock(&data->update_lock); 1586 1587 err = lm90_update_device(dev); 1588 if (err) 1589 goto error; 1590 1591 switch (attr) { 1592 case hwmon_temp_min: 1593 err = lm90_set_temp(data, lm90_temp_min_index[channel], 1594 channel, val); 1595 break; 1596 case hwmon_temp_max: 1597 err = lm90_set_temp(data, lm90_temp_max_index[channel], 1598 channel, val); 1599 break; 1600 case hwmon_temp_crit: 1601 err = lm90_set_temp(data, lm90_temp_crit_index[channel], 1602 channel, val); 1603 break; 1604 case hwmon_temp_crit_hyst: 1605 err = lm90_set_temphyst(data, val); 1606 break; 1607 case hwmon_temp_emergency: 1608 err = lm90_set_temp(data, lm90_temp_emerg_index[channel], 1609 channel, val); 1610 break; 1611 case hwmon_temp_offset: 1612 err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel], 1613 channel, val); 1614 break; 1615 default: 1616 err = -EOPNOTSUPP; 1617 break; 1618 } 1619 error: 1620 mutex_unlock(&data->update_lock); 1621 1622 return err; 1623 } 1624 1625 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel) 1626 { 1627 switch (attr) { 1628 case hwmon_temp_input: 1629 case hwmon_temp_min_alarm: 1630 case hwmon_temp_max_alarm: 1631 case hwmon_temp_crit_alarm: 1632 case hwmon_temp_emergency_alarm: 1633 case hwmon_temp_emergency_hyst: 1634 case hwmon_temp_fault: 1635 case hwmon_temp_label: 1636 return 0444; 1637 case hwmon_temp_min: 1638 case hwmon_temp_max: 1639 case hwmon_temp_crit: 1640 case hwmon_temp_emergency: 1641 case hwmon_temp_offset: 1642 return 0644; 1643 case hwmon_temp_crit_hyst: 1644 if (channel == 0) 1645 return 0644; 1646 return 0444; 1647 default: 1648 return 0; 1649 } 1650 } 1651 1652 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val) 1653 { 1654 struct lm90_data *data = dev_get_drvdata(dev); 1655 int err; 1656 1657 mutex_lock(&data->update_lock); 1658 err = lm90_update_device(dev); 1659 mutex_unlock(&data->update_lock); 1660 if (err) 1661 return err; 1662 1663 switch (attr) { 1664 case hwmon_chip_update_interval: 1665 *val = data->update_interval; 1666 break; 1667 case hwmon_chip_alarms: 1668 *val = data->alarms; 1669 break; 1670 case hwmon_chip_temp_samples: 1671 if (data->faultqueue_mask) { 1672 *val = (data->config & data->faultqueue_mask) ? 1673 data->faultqueue_depth : 1; 1674 } else { 1675 switch (data->conalert & 0x0e) { 1676 case 0x0: 1677 default: 1678 *val = 1; 1679 break; 1680 case 0x2: 1681 *val = 2; 1682 break; 1683 case 0x6: 1684 *val = 3; 1685 break; 1686 case 0xe: 1687 *val = 4; 1688 break; 1689 } 1690 } 1691 break; 1692 default: 1693 return -EOPNOTSUPP; 1694 } 1695 1696 return 0; 1697 } 1698 1699 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val) 1700 { 1701 struct lm90_data *data = dev_get_drvdata(dev); 1702 struct i2c_client *client = data->client; 1703 int err; 1704 1705 mutex_lock(&data->update_lock); 1706 1707 err = lm90_update_device(dev); 1708 if (err) 1709 goto error; 1710 1711 switch (attr) { 1712 case hwmon_chip_update_interval: 1713 err = lm90_set_convrate(client, data, 1714 clamp_val(val, 0, 100000)); 1715 break; 1716 case hwmon_chip_temp_samples: 1717 err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4)); 1718 break; 1719 default: 1720 err = -EOPNOTSUPP; 1721 break; 1722 } 1723 error: 1724 mutex_unlock(&data->update_lock); 1725 1726 return err; 1727 } 1728 1729 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel) 1730 { 1731 switch (attr) { 1732 case hwmon_chip_update_interval: 1733 case hwmon_chip_temp_samples: 1734 return 0644; 1735 case hwmon_chip_alarms: 1736 return 0444; 1737 default: 1738 return 0; 1739 } 1740 } 1741 1742 static int lm90_read(struct device *dev, enum hwmon_sensor_types type, 1743 u32 attr, int channel, long *val) 1744 { 1745 switch (type) { 1746 case hwmon_chip: 1747 return lm90_chip_read(dev, attr, channel, val); 1748 case hwmon_temp: 1749 return lm90_temp_read(dev, attr, channel, val); 1750 default: 1751 return -EOPNOTSUPP; 1752 } 1753 } 1754 1755 static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type, 1756 u32 attr, int channel, const char **str) 1757 { 1758 struct lm90_data *data = dev_get_drvdata(dev); 1759 1760 *str = data->channel_label[channel]; 1761 1762 return 0; 1763 } 1764 1765 static int lm90_write(struct device *dev, enum hwmon_sensor_types type, 1766 u32 attr, int channel, long val) 1767 { 1768 switch (type) { 1769 case hwmon_chip: 1770 return lm90_chip_write(dev, attr, channel, val); 1771 case hwmon_temp: 1772 return lm90_temp_write(dev, attr, channel, val); 1773 default: 1774 return -EOPNOTSUPP; 1775 } 1776 } 1777 1778 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type, 1779 u32 attr, int channel) 1780 { 1781 switch (type) { 1782 case hwmon_chip: 1783 return lm90_chip_is_visible(data, attr, channel); 1784 case hwmon_temp: 1785 return lm90_temp_is_visible(data, attr, channel); 1786 default: 1787 return 0; 1788 } 1789 } 1790 1791 static const char *lm90_detect_lm84(struct i2c_client *client) 1792 { 1793 static const u8 regs[] = { 1794 LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH, 1795 LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH 1796 }; 1797 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); 1798 int reg1, reg2, reg3, reg4; 1799 bool nonzero = false; 1800 u8 ff = 0xff; 1801 int i; 1802 1803 if (status < 0 || (status & 0xab)) 1804 return NULL; 1805 1806 /* 1807 * For LM84, undefined registers return the most recent value. 1808 * Repeat several times, each time checking against a different 1809 * (presumably) existing register. 1810 */ 1811 for (i = 0; i < ARRAY_SIZE(regs); i++) { 1812 reg1 = i2c_smbus_read_byte_data(client, regs[i]); 1813 reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL); 1814 reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW); 1815 reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH); 1816 1817 if (reg1 < 0) 1818 return NULL; 1819 1820 /* If any register has a different value, this is not an LM84 */ 1821 if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1) 1822 return NULL; 1823 1824 nonzero |= reg1 || reg2 || reg3 || reg4; 1825 ff &= reg1; 1826 } 1827 /* 1828 * If all registers always returned 0 or 0xff, all bets are off, 1829 * and we can not make any predictions about the chip type. 1830 */ 1831 return nonzero && ff != 0xff ? "lm84" : NULL; 1832 } 1833 1834 static const char *lm90_detect_max1617(struct i2c_client *client, int config1) 1835 { 1836 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); 1837 int llo, rlo, lhi, rhi; 1838 1839 if (status < 0 || (status & 0x03)) 1840 return NULL; 1841 1842 if (config1 & 0x3f) 1843 return NULL; 1844 1845 /* 1846 * Fail if unsupported registers return anything but 0xff. 1847 * The calling code already checked man_id and chip_id. 1848 * A byte read operation repeats the most recent read operation 1849 * and should also return 0xff. 1850 */ 1851 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff || 1852 i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff || 1853 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff || 1854 i2c_smbus_read_byte(client) != 0xff) 1855 return NULL; 1856 1857 llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW); 1858 rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH); 1859 1860 lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH); 1861 rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH); 1862 1863 if (llo < 0 || rlo < 0) 1864 return NULL; 1865 1866 /* 1867 * A byte read operation repeats the most recent read and should 1868 * return the same value. 1869 */ 1870 if (i2c_smbus_read_byte(client) != rhi) 1871 return NULL; 1872 1873 /* 1874 * The following two checks are marginal since the checked values 1875 * are strictly speaking valid. 1876 */ 1877 1878 /* fail for negative high limits; this also catches read errors */ 1879 if ((s8)lhi < 0 || (s8)rhi < 0) 1880 return NULL; 1881 1882 /* fail if low limits are larger than or equal to high limits */ 1883 if ((s8)llo >= lhi || (s8)rlo >= rhi) 1884 return NULL; 1885 1886 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) { 1887 /* 1888 * Word read operations return 0xff in second byte 1889 */ 1890 if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) != 1891 0xffff) 1892 return NULL; 1893 if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) != 1894 (config1 | 0xff00)) 1895 return NULL; 1896 if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) != 1897 (lhi | 0xff00)) 1898 return NULL; 1899 } 1900 1901 return "max1617"; 1902 } 1903 1904 static const char *lm90_detect_national(struct i2c_client *client, int chip_id, 1905 int config1, int convrate) 1906 { 1907 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2); 1908 int address = client->addr; 1909 const char *name = NULL; 1910 1911 if (config2 < 0) 1912 return NULL; 1913 1914 if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09) 1915 return NULL; 1916 1917 if (address != 0x4c && address != 0x4d) 1918 return NULL; 1919 1920 switch (chip_id & 0xf0) { 1921 case 0x10: /* LM86 */ 1922 if (address == 0x4c) 1923 name = "lm86"; 1924 break; 1925 case 0x20: /* LM90 */ 1926 if (address == 0x4c) 1927 name = "lm90"; 1928 break; 1929 case 0x30: /* LM89/LM99 */ 1930 name = "lm99"; /* detect LM89 as LM99 */ 1931 break; 1932 default: 1933 break; 1934 } 1935 1936 return name; 1937 } 1938 1939 static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1, 1940 int convrate) 1941 { 1942 int address = client->addr; 1943 const char *name = NULL; 1944 1945 switch (chip_id) { 1946 case 0xca: /* NCT218 */ 1947 if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && 1948 convrate <= 0x0a) 1949 name = "nct218"; 1950 break; 1951 default: 1952 break; 1953 } 1954 return name; 1955 } 1956 1957 static const char *lm90_detect_analog(struct i2c_client *client, bool common_address, 1958 int chip_id, int config1, int convrate) 1959 { 1960 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); 1961 int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2); 1962 int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID); 1963 int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID); 1964 int address = client->addr; 1965 const char *name = NULL; 1966 1967 if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0) 1968 return NULL; 1969 1970 /* 1971 * The following chips should be detected by this function. Known 1972 * register values are listed. Registers 0x3d .. 0x3e are undocumented 1973 * for most of the chips, yet appear to return a well defined value. 1974 * Register 0xff is undocumented for some of the chips. Register 0x3f 1975 * is undocumented for all chips, but also returns a well defined value. 1976 * Values are as reported from real chips unless mentioned otherwise. 1977 * The code below checks values for registers 0x3d, 0x3e, and 0xff, 1978 * but not for register 0x3f. 1979 * 1980 * Chip Register 1981 * 3d 3e 3f fe ff Notes 1982 * ---------------------------------------------------------- 1983 * adm1020 00 00 00 41 39 1984 * adm1021 00 00 00 41 03 1985 * adm1021a 00 00 00 41 3c 1986 * adm1023 00 00 00 41 3c same as adm1021a 1987 * adm1032 00 00 00 41 42 1988 * 1989 * adt7421 21 41 04 41 04 1990 * adt7461 00 00 00 41 51 1991 * adt7461a 61 41 05 41 57 1992 * adt7481 81 41 02 41 62 1993 * adt7482 - - - 41 65 datasheet 1994 * 82 41 05 41 75 real chip 1995 * adt7483 83 41 04 41 94 1996 * 1997 * nct72 61 41 07 41 55 1998 * nct210 00 00 00 41 3f 1999 * nct214 61 41 08 41 5a 2000 * nct1008 - - - 41 57 datasheet rev. 3 2001 * 61 41 06 41 54 real chip 2002 * 2003 * nvt210 - - - 41 - datasheet 2004 * nvt211 - - - 41 - datasheet 2005 */ 2006 switch (chip_id) { 2007 case 0x00 ... 0x03: /* ADM1021 */ 2008 case 0x05 ... 0x0f: 2009 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address && 2010 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) 2011 name = "adm1021"; 2012 break; 2013 case 0x04: /* ADT7421 (undocumented) */ 2014 if (man_id2 == 0x41 && chip_id2 == 0x21 && 2015 (address == 0x4c || address == 0x4d) && 2016 (config1 & 0x0b) == 0x08 && convrate <= 0x0a) 2017 name = "adt7421"; 2018 break; 2019 case 0x30 ... 0x38: /* ADM1021A, ADM1023 */ 2020 case 0x3a ... 0x3e: 2021 /* 2022 * ADM1021A and compatible chips will be mis-detected as 2023 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both 2024 * found to have a Chip ID of 0x3c. 2025 * ADM1021A does not officially support low byte registers 2026 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it. 2027 * Official support for the temperature offset high byte 2028 * register (0x11) was added to revision F of the ADM1021A 2029 * datasheet. 2030 * It is currently unknown if there is a means to distinguish 2031 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist 2032 * which differ in functionality from ADM1023. 2033 */ 2034 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address && 2035 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) 2036 name = "adm1023"; 2037 break; 2038 case 0x39: /* ADM1020 (undocumented) */ 2039 if (man_id2 == 0x00 && chip_id2 == 0x00 && 2040 (address == 0x4c || address == 0x4d || address == 0x4e) && 2041 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) 2042 name = "adm1020"; 2043 break; 2044 case 0x3f: /* NCT210 */ 2045 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address && 2046 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) 2047 name = "nct210"; 2048 break; 2049 case 0x40 ... 0x4f: /* ADM1032 */ 2050 if (man_id2 == 0x00 && chip_id2 == 0x00 && 2051 (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) && 2052 convrate <= 0x0a) 2053 name = "adm1032"; 2054 break; 2055 case 0x51: /* ADT7461 */ 2056 if (man_id2 == 0x00 && chip_id2 == 0x00 && 2057 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && 2058 convrate <= 0x0a) 2059 name = "adt7461"; 2060 break; 2061 case 0x54: /* NCT1008 */ 2062 if (man_id2 == 0x41 && chip_id2 == 0x61 && 2063 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && 2064 convrate <= 0x0a) 2065 name = "nct1008"; 2066 break; 2067 case 0x55: /* NCT72 */ 2068 if (man_id2 == 0x41 && chip_id2 == 0x61 && 2069 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && 2070 convrate <= 0x0a) 2071 name = "nct72"; 2072 break; 2073 case 0x57: /* ADT7461A, NCT1008 (datasheet rev. 3) */ 2074 if (man_id2 == 0x41 && chip_id2 == 0x61 && 2075 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && 2076 convrate <= 0x0a) 2077 name = "adt7461a"; 2078 break; 2079 case 0x5a: /* NCT214 */ 2080 if (man_id2 == 0x41 && chip_id2 == 0x61 && 2081 common_address && !(config1 & 0x1b) && convrate <= 0x0a) 2082 name = "nct214"; 2083 break; 2084 case 0x62: /* ADT7481, undocumented */ 2085 if (man_id2 == 0x41 && chip_id2 == 0x81 && 2086 (address == 0x4b || address == 0x4c) && !(config1 & 0x10) && 2087 !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) { 2088 name = "adt7481"; 2089 } 2090 break; 2091 case 0x65: /* ADT7482, datasheet */ 2092 case 0x75: /* ADT7482, real chip */ 2093 if (man_id2 == 0x41 && chip_id2 == 0x82 && 2094 address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) && 2095 convrate <= 0x0a) 2096 name = "adt7482"; 2097 break; 2098 case 0x94: /* ADT7483 */ 2099 if (man_id2 == 0x41 && chip_id2 == 0x83 && 2100 common_address && 2101 ((address >= 0x18 && address <= 0x1a) || 2102 (address >= 0x29 && address <= 0x2b) || 2103 (address >= 0x4c && address <= 0x4e)) && 2104 !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a) 2105 name = "adt7483a"; 2106 break; 2107 default: 2108 break; 2109 } 2110 2111 return name; 2112 } 2113 2114 static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address, 2115 int chip_id, int config1, int convrate) 2116 { 2117 int man_id, emerg, emerg2, status2; 2118 int address = client->addr; 2119 const char *name = NULL; 2120 2121 switch (chip_id) { 2122 case 0x01: 2123 if (!common_address) 2124 break; 2125 2126 /* 2127 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read 2128 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG 2129 * exists, both readings will reflect the same value. Otherwise, 2130 * the readings will be different. 2131 */ 2132 emerg = i2c_smbus_read_byte_data(client, 2133 MAX6659_REG_REMOTE_EMERG); 2134 man_id = i2c_smbus_read_byte_data(client, 2135 LM90_REG_MAN_ID); 2136 emerg2 = i2c_smbus_read_byte_data(client, 2137 MAX6659_REG_REMOTE_EMERG); 2138 status2 = i2c_smbus_read_byte_data(client, 2139 MAX6696_REG_STATUS2); 2140 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0) 2141 return NULL; 2142 2143 /* 2144 * Even though MAX6695 and MAX6696 do not have a chip ID 2145 * register, reading it returns 0x01. Bit 4 of the config1 2146 * register is unused and should return zero when read. Bit 0 of 2147 * the status2 register is unused and should return zero when 2148 * read. 2149 * 2150 * MAX6695 and MAX6696 have an additional set of temperature 2151 * limit registers. We can detect those chips by checking if 2152 * one of those registers exists. 2153 */ 2154 if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 && 2155 convrate <= 0x07) 2156 name = "max6696"; 2157 /* 2158 * The chip_id register of the MAX6680 and MAX6681 holds the 2159 * revision of the chip. The lowest bit of the config1 register 2160 * is unused and should return zero when read, so should the 2161 * second to last bit of config1 (software reset). Register 2162 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and 2163 * should differ from emerg2, and emerg2 should match man_id 2164 * since it does not exist. 2165 */ 2166 else if (!(config1 & 0x03) && convrate <= 0x07 && 2167 emerg2 == man_id && emerg2 != status2) 2168 name = "max6680"; 2169 /* 2170 * MAX1617A does not have any extended registers (register 2171 * address 0x10 or higher) except for manufacturer and 2172 * device ID registers. Unlike other chips of this series, 2173 * unsupported registers were observed to return a fixed value 2174 * of 0x01. 2175 * Note: Multiple chips with different markings labeled as 2176 * "MAX1617" (no "A") were observed to report manufacturer ID 2177 * 0x4d and device ID 0x01. It is unknown if other variants of 2178 * MAX1617/MAX617A with different behavior exist. The detection 2179 * code below works for those chips. 2180 */ 2181 else if (!(config1 & 0x03f) && convrate <= 0x07 && 2182 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01) 2183 name = "max1617"; 2184 break; 2185 case 0x08: 2186 /* 2187 * The chip_id of the MAX6654 holds the revision of the chip. 2188 * The lowest 3 bits of the config1 register are unused and 2189 * should return zero when read. 2190 */ 2191 if (common_address && !(config1 & 0x07) && convrate <= 0x07) 2192 name = "max6654"; 2193 break; 2194 case 0x09: 2195 /* 2196 * The chip_id of the MAX6690 holds the revision of the chip. 2197 * The lowest 3 bits of the config1 register are unused and 2198 * should return zero when read. 2199 * Note that MAX6654 and MAX6690 are practically the same chips. 2200 * The only diference is the rated accuracy. Rev. 1 of the 2201 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled 2202 * MAX6654 was observed to have a chip ID of 0x09. 2203 */ 2204 if (common_address && !(config1 & 0x07) && convrate <= 0x07) 2205 name = "max6690"; 2206 break; 2207 case 0x4d: 2208 /* 2209 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id 2210 * register. Reading from that address will return the last 2211 * read value, which in our case is those of the man_id 2212 * register, or 0x4d. 2213 * MAX6642 does not have a conversion rate register, nor low 2214 * limit registers. Reading from those registers returns the 2215 * last read value. 2216 * 2217 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks 2218 * a low nibble, so the value will be those of the previous 2219 * read, so in our case again those of the man_id register. 2220 * MAX6659 has a third set of upper temperature limit registers. 2221 * Those registers also return values on MAX6657 and MAX6658, 2222 * thus the only way to detect MAX6659 is by its address. 2223 * For this reason it will be mis-detected as MAX6657 if its 2224 * address is 0x4c. 2225 */ 2226 if (address >= 0x48 && address <= 0x4f && config1 == convrate && 2227 !(config1 & 0x0f)) { 2228 int regval; 2229 2230 /* 2231 * We know that this is not a MAX6657/58/59 because its 2232 * configuration register has the wrong value and it does 2233 * not appear to have a conversion rate register. 2234 */ 2235 2236 /* re-read manufacturer ID to have a good baseline */ 2237 if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d) 2238 break; 2239 2240 /* check various non-existing registers */ 2241 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d || 2242 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d || 2243 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d) 2244 break; 2245 2246 /* check for unused status register bits */ 2247 regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); 2248 if (regval < 0 || (regval & 0x2b)) 2249 break; 2250 2251 /* re-check unsupported registers */ 2252 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval || 2253 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval || 2254 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval) 2255 break; 2256 2257 name = "max6642"; 2258 } else if ((address == 0x4c || address == 0x4d || address == 0x4e) && 2259 (config1 & 0x1f) == 0x0d && convrate <= 0x09) { 2260 if (address == 0x4c) 2261 name = "max6657"; 2262 else 2263 name = "max6659"; 2264 } 2265 break; 2266 case 0x59: 2267 /* 2268 * The chip_id register of the MAX6646/6647/6649 holds the 2269 * revision of the chip. The lowest 6 bits of the config1 2270 * register are unused and should return zero when read. 2271 * The I2C address of MAX6648/6692 is fixed at 0x4c. 2272 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e, 2273 * and MAX6649 is at address 0x4c. A slight difference between 2274 * the two sets of chips is that the remote temperature register 2275 * reports different values if the DXP pin is open or shorted. 2276 * We can use that information to help distinguish between the 2277 * chips. MAX6648 will be mis-detected as MAX6649 if the remote 2278 * diode is connected, but there isn't really anything we can 2279 * do about that. 2280 */ 2281 if (!(config1 & 0x3f) && convrate <= 0x07) { 2282 int temp; 2283 2284 switch (address) { 2285 case 0x4c: 2286 /* 2287 * MAX6649 reports an external temperature 2288 * value of 0xff if DXP is open or shorted. 2289 * MAX6648 reports 0x80 in that case. 2290 */ 2291 temp = i2c_smbus_read_byte_data(client, 2292 LM90_REG_REMOTE_TEMPH); 2293 if (temp == 0x80) 2294 name = "max6648"; 2295 else 2296 name = "max6649"; 2297 break; 2298 case 0x4d: 2299 name = "max6646"; 2300 break; 2301 case 0x4e: 2302 name = "max6647"; 2303 break; 2304 default: 2305 break; 2306 } 2307 } 2308 break; 2309 default: 2310 break; 2311 } 2312 2313 return name; 2314 } 2315 2316 static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id, 2317 int config1, int convrate) 2318 { 2319 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2); 2320 int address = client->addr; 2321 const char *name = NULL; 2322 2323 if (config2 < 0) 2324 return NULL; 2325 2326 if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) { 2327 if (chip_id == 0x01 && convrate <= 0x09) { 2328 /* W83L771W/G */ 2329 name = "w83l771"; 2330 } else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) { 2331 /* W83L771AWG/ASG */ 2332 name = "w83l771"; 2333 } 2334 } 2335 return name; 2336 } 2337 2338 static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address, 2339 int chip_id, int config1, int convrate) 2340 { 2341 int address = client->addr; 2342 const char *name = NULL; 2343 int config2; 2344 2345 switch (chip_id) { 2346 case 0x00: 2347 config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2); 2348 if (config2 < 0) 2349 return NULL; 2350 if (address >= 0x48 && address <= 0x4f && 2351 !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09) 2352 name = "sa56004"; 2353 break; 2354 case 0x80: 2355 if (common_address && !(config1 & 0x3f) && convrate <= 0x07) 2356 name = "ne1618"; 2357 break; 2358 default: 2359 break; 2360 } 2361 return name; 2362 } 2363 2364 static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id, 2365 int config1, int convrate) 2366 { 2367 int address = client->addr; 2368 2369 /* 2370 * According to the datasheet, G781 is supposed to be at I2C Address 2371 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C 2372 * address 0x4d and have a chip ID of 0x03. However, when support 2373 * for G781 was added, chips at 0x4c and 0x4d were found to have a 2374 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with 2375 * chip ID 0x03. 2376 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both 2377 * addresses. 2378 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public 2379 * datasheet is not available. Extensive testing suggests that 2380 * the chip appears to be fully compatible with G781. 2381 * Available register dumps show that G751 also reports manufacturer 2382 * ID 0x47 and chip ID 0x01 even though that chip does not officially 2383 * support those registers. This makes chip detection somewhat 2384 * vulnerable. To improve detection quality, read the offset low byte 2385 * and alert fault queue registers and verify that only expected bits 2386 * are set. 2387 */ 2388 if ((chip_id == 0x01 || chip_id == 0x03) && 2389 (address == 0x4c || address == 0x4d) && 2390 !(config1 & 0x3f) && convrate <= 0x08) { 2391 int reg; 2392 2393 reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL); 2394 if (reg < 0 || reg & 0x1f) 2395 return NULL; 2396 reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT); 2397 if (reg < 0 || reg & 0xf1) 2398 return NULL; 2399 2400 return "g781"; 2401 } 2402 2403 return NULL; 2404 } 2405 2406 static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address, 2407 int chip_id, int config1, int convrate) 2408 { 2409 if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) { 2410 /* THMC10: Unsupported registers return 0xff */ 2411 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff && 2412 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff) 2413 return "thmc10"; 2414 } 2415 return NULL; 2416 } 2417 2418 static const char *lm90_detect_ti(struct i2c_client *client, int chip_id, 2419 int config1, int convrate) 2420 { 2421 int address = client->addr; 2422 const char *name = NULL; 2423 2424 if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) { 2425 int local_ext, conalert, chen, dfc; 2426 2427 local_ext = i2c_smbus_read_byte_data(client, 2428 TMP451_REG_LOCAL_TEMPL); 2429 conalert = i2c_smbus_read_byte_data(client, 2430 TMP451_REG_CONALERT); 2431 chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN); 2432 dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC); 2433 2434 if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 && 2435 (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) { 2436 if (address == 0x4c && !(chen & 0x03)) 2437 name = "tmp451"; 2438 else if (address >= 0x48 && address <= 0x4f) 2439 name = "tmp461"; 2440 } 2441 } 2442 2443 return name; 2444 } 2445 2446 /* Return 0 if detection is successful, -ENODEV otherwise */ 2447 static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info) 2448 { 2449 struct i2c_adapter *adapter = client->adapter; 2450 int man_id, chip_id, config1, convrate, lhigh; 2451 const char *name = NULL; 2452 int address = client->addr; 2453 bool common_address = 2454 (address >= 0x18 && address <= 0x1a) || 2455 (address >= 0x29 && address <= 0x2b) || 2456 (address >= 0x4c && address <= 0x4e); 2457 2458 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 2459 return -ENODEV; 2460 2461 /* 2462 * Get well defined register value for chips with neither man_id nor 2463 * chip_id registers. 2464 */ 2465 lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH); 2466 2467 /* detection and identification */ 2468 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID); 2469 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID); 2470 config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1); 2471 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE); 2472 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0) 2473 return -ENODEV; 2474 2475 /* Bail out immediately if all register report the same value */ 2476 if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate) 2477 return -ENODEV; 2478 2479 /* 2480 * If reading man_id and chip_id both return the same value as lhigh, 2481 * the chip may not support those registers and return the most recent read 2482 * value. Check again with a different register and handle accordingly. 2483 */ 2484 if (man_id == lhigh && chip_id == lhigh) { 2485 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE); 2486 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID); 2487 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID); 2488 if (convrate < 0 || man_id < 0 || chip_id < 0) 2489 return -ENODEV; 2490 if (man_id == convrate && chip_id == convrate) 2491 man_id = -1; 2492 } 2493 switch (man_id) { 2494 case -1: /* Chip does not support man_id / chip_id */ 2495 if (common_address && !convrate && !(config1 & 0x7f)) 2496 name = lm90_detect_lm84(client); 2497 break; 2498 case 0x01: /* National Semiconductor */ 2499 name = lm90_detect_national(client, chip_id, config1, convrate); 2500 break; 2501 case 0x1a: /* ON */ 2502 name = lm90_detect_on(client, chip_id, config1, convrate); 2503 break; 2504 case 0x23: /* Genesys Logic */ 2505 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8)) 2506 name = "gl523sm"; 2507 break; 2508 case 0x41: /* Analog Devices */ 2509 name = lm90_detect_analog(client, common_address, chip_id, config1, 2510 convrate); 2511 break; 2512 case 0x47: /* GMT */ 2513 name = lm90_detect_gmt(client, chip_id, config1, convrate); 2514 break; 2515 case 0x49: /* TI */ 2516 name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate); 2517 break; 2518 case 0x4d: /* Maxim Integrated */ 2519 name = lm90_detect_maxim(client, common_address, chip_id, 2520 config1, convrate); 2521 break; 2522 case 0x54: /* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */ 2523 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8)) 2524 name = "mc1066"; 2525 break; 2526 case 0x55: /* TI */ 2527 name = lm90_detect_ti(client, chip_id, config1, convrate); 2528 break; 2529 case 0x5c: /* Winbond/Nuvoton */ 2530 name = lm90_detect_nuvoton(client, chip_id, config1, convrate); 2531 break; 2532 case 0xa1: /* NXP Semiconductor/Philips */ 2533 name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate); 2534 break; 2535 case 0xff: /* MAX1617, G767, NE1617 */ 2536 if (common_address && chip_id == 0xff && convrate < 8) 2537 name = lm90_detect_max1617(client, config1); 2538 break; 2539 default: 2540 break; 2541 } 2542 2543 if (!name) { /* identification failed */ 2544 dev_dbg(&adapter->dev, 2545 "Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n", 2546 client->addr, man_id, chip_id); 2547 return -ENODEV; 2548 } 2549 2550 strlcpy(info->type, name, I2C_NAME_SIZE); 2551 2552 return 0; 2553 } 2554 2555 static void lm90_restore_conf(void *_data) 2556 { 2557 struct lm90_data *data = _data; 2558 struct i2c_client *client = data->client; 2559 2560 cancel_delayed_work_sync(&data->alert_work); 2561 cancel_work_sync(&data->report_work); 2562 2563 /* Restore initial configuration */ 2564 if (data->flags & LM90_HAVE_CONVRATE) 2565 lm90_write_convrate(data, data->convrate_orig); 2566 lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig); 2567 } 2568 2569 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data) 2570 { 2571 struct device_node *np = client->dev.of_node; 2572 int config, convrate; 2573 2574 if (data->flags & LM90_HAVE_CONVRATE) { 2575 convrate = lm90_read_reg(client, LM90_REG_CONVRATE); 2576 if (convrate < 0) 2577 return convrate; 2578 data->convrate_orig = convrate; 2579 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */ 2580 } else { 2581 data->update_interval = 500; 2582 } 2583 2584 /* 2585 * Start the conversions. 2586 */ 2587 config = lm90_read_reg(client, LM90_REG_CONFIG1); 2588 if (config < 0) 2589 return config; 2590 data->config_orig = config; 2591 data->config = config; 2592 2593 /* Check Temperature Range Select */ 2594 if (data->flags & LM90_HAVE_EXTENDED_TEMP) { 2595 if (of_property_read_bool(np, "ti,extended-range-enable")) 2596 config |= 0x04; 2597 if (!(config & 0x04)) 2598 data->flags &= ~LM90_HAVE_EXTENDED_TEMP; 2599 } 2600 2601 /* 2602 * Put MAX6680/MAX8881 into extended resolution (bit 0x10, 2603 * 0.125 degree resolution) and range (0x08, extend range 2604 * to -64 degree) mode for the remote temperature sensor. 2605 * Note that expeciments with an actual chip do not show a difference 2606 * if bit 3 is set or not. 2607 */ 2608 if (data->kind == max6680) 2609 config |= 0x18; 2610 2611 /* 2612 * Put MAX6654 into extended range (0x20, extend minimum range from 2613 * 0 degrees to -64 degrees). Note that extended resolution is not 2614 * possible on the MAX6654 unless conversion rate is set to 1 Hz or 2615 * slower, which is intentionally not done by default. 2616 */ 2617 if (data->kind == max6654) 2618 config |= 0x20; 2619 2620 /* 2621 * Select external channel 0 for devices with three sensors 2622 */ 2623 if (data->flags & LM90_HAVE_TEMP3) 2624 config &= ~0x08; 2625 2626 /* 2627 * Interrupt is enabled by default on reset, but it may be disabled 2628 * by bootloader, unmask it. 2629 */ 2630 if (client->irq) 2631 config &= ~0x80; 2632 2633 config &= 0xBF; /* run */ 2634 lm90_update_confreg(data, config); 2635 2636 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data); 2637 } 2638 2639 static bool lm90_is_tripped(struct i2c_client *client) 2640 { 2641 struct lm90_data *data = i2c_get_clientdata(client); 2642 int ret; 2643 2644 ret = lm90_update_alarms(data, true); 2645 if (ret < 0) 2646 return false; 2647 2648 return !!data->current_alarms; 2649 } 2650 2651 static irqreturn_t lm90_irq_thread(int irq, void *dev_id) 2652 { 2653 struct i2c_client *client = dev_id; 2654 2655 if (lm90_is_tripped(client)) 2656 return IRQ_HANDLED; 2657 else 2658 return IRQ_NONE; 2659 } 2660 2661 static void lm90_remove_pec(void *dev) 2662 { 2663 device_remove_file(dev, &dev_attr_pec); 2664 } 2665 2666 static void lm90_regulator_disable(void *regulator) 2667 { 2668 regulator_disable(regulator); 2669 } 2670 2671 static int lm90_probe_channel_from_dt(struct i2c_client *client, 2672 struct device_node *child, 2673 struct lm90_data *data) 2674 { 2675 u32 id; 2676 s32 val; 2677 int err; 2678 struct device *dev = &client->dev; 2679 2680 err = of_property_read_u32(child, "reg", &id); 2681 if (err) { 2682 dev_err(dev, "missing reg property of %pOFn\n", child); 2683 return err; 2684 } 2685 2686 if (id >= MAX_CHANNELS) { 2687 dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child); 2688 return -EINVAL; 2689 } 2690 2691 err = of_property_read_string(child, "label", &data->channel_label[id]); 2692 if (err == -ENODATA || err == -EILSEQ) { 2693 dev_err(dev, "invalid label property in %pOFn\n", child); 2694 return err; 2695 } 2696 2697 if (data->channel_label[id]) 2698 data->channel_config[id] |= HWMON_T_LABEL; 2699 2700 err = of_property_read_s32(child, "temperature-offset-millicelsius", &val); 2701 if (!err) { 2702 if (id == 0) { 2703 dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n"); 2704 return -EINVAL; 2705 } 2706 2707 err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val); 2708 if (err) { 2709 dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n", 2710 val, id, err); 2711 return err; 2712 } 2713 } 2714 2715 return 0; 2716 } 2717 2718 static int lm90_parse_dt_channel_info(struct i2c_client *client, 2719 struct lm90_data *data) 2720 { 2721 int err; 2722 struct device_node *child; 2723 struct device *dev = &client->dev; 2724 const struct device_node *np = dev->of_node; 2725 2726 for_each_child_of_node(np, child) { 2727 if (strcmp(child->name, "channel")) 2728 continue; 2729 2730 err = lm90_probe_channel_from_dt(client, child, data); 2731 if (err) { 2732 of_node_put(child); 2733 return err; 2734 } 2735 } 2736 2737 return 0; 2738 } 2739 2740 static const struct hwmon_ops lm90_ops = { 2741 .is_visible = lm90_is_visible, 2742 .read = lm90_read, 2743 .read_string = lm90_read_string, 2744 .write = lm90_write, 2745 }; 2746 2747 static int lm90_probe(struct i2c_client *client) 2748 { 2749 struct device *dev = &client->dev; 2750 struct i2c_adapter *adapter = client->adapter; 2751 struct hwmon_channel_info *info; 2752 struct regulator *regulator; 2753 struct device *hwmon_dev; 2754 struct lm90_data *data; 2755 int err; 2756 2757 regulator = devm_regulator_get(dev, "vcc"); 2758 if (IS_ERR(regulator)) 2759 return PTR_ERR(regulator); 2760 2761 err = regulator_enable(regulator); 2762 if (err < 0) { 2763 dev_err(dev, "Failed to enable regulator: %d\n", err); 2764 return err; 2765 } 2766 2767 err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator); 2768 if (err) 2769 return err; 2770 2771 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL); 2772 if (!data) 2773 return -ENOMEM; 2774 2775 data->client = client; 2776 i2c_set_clientdata(client, data); 2777 mutex_init(&data->update_lock); 2778 INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work); 2779 INIT_WORK(&data->report_work, lm90_report_alarms); 2780 2781 /* Set the device type */ 2782 if (client->dev.of_node) 2783 data->kind = (enum chips)of_device_get_match_data(&client->dev); 2784 else 2785 data->kind = i2c_match_id(lm90_id, client)->driver_data; 2786 2787 /* 2788 * Different devices have different alarm bits triggering the 2789 * ALERT# output 2790 */ 2791 data->alert_alarms = lm90_params[data->kind].alert_alarms; 2792 data->resolution = lm90_params[data->kind].resolution ? : 11; 2793 2794 /* Set chip capabilities */ 2795 data->flags = lm90_params[data->kind].flags; 2796 2797 if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) && 2798 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC)) 2799 data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC); 2800 2801 if ((data->flags & LM90_HAVE_PARTIAL_PEC) && 2802 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) 2803 data->flags &= ~LM90_HAVE_PARTIAL_PEC; 2804 2805 data->chip.ops = &lm90_ops; 2806 data->chip.info = data->info; 2807 2808 data->info[0] = &data->chip_info; 2809 info = &data->chip_info; 2810 info->type = hwmon_chip; 2811 info->config = data->chip_config; 2812 2813 data->chip_config[0] = HWMON_C_REGISTER_TZ; 2814 if (data->flags & LM90_HAVE_ALARMS) 2815 data->chip_config[0] |= HWMON_C_ALARMS; 2816 if (data->flags & LM90_HAVE_CONVRATE) 2817 data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL; 2818 if (data->flags & LM90_HAVE_FAULTQUEUE) 2819 data->chip_config[0] |= HWMON_C_TEMP_SAMPLES; 2820 data->info[1] = &data->temp_info; 2821 2822 info = &data->temp_info; 2823 info->type = hwmon_temp; 2824 info->config = data->channel_config; 2825 2826 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX | 2827 HWMON_T_MAX_ALARM; 2828 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX | 2829 HWMON_T_MAX_ALARM | HWMON_T_FAULT; 2830 2831 if (data->flags & LM90_HAVE_LOW) { 2832 data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM; 2833 data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM; 2834 } 2835 2836 if (data->flags & LM90_HAVE_CRIT) { 2837 data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST; 2838 data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST; 2839 } 2840 2841 if (data->flags & LM90_HAVE_OFFSET) 2842 data->channel_config[1] |= HWMON_T_OFFSET; 2843 2844 if (data->flags & LM90_HAVE_EMERGENCY) { 2845 data->channel_config[0] |= HWMON_T_EMERGENCY | 2846 HWMON_T_EMERGENCY_HYST; 2847 data->channel_config[1] |= HWMON_T_EMERGENCY | 2848 HWMON_T_EMERGENCY_HYST; 2849 } 2850 2851 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) { 2852 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM; 2853 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM; 2854 } 2855 2856 if (data->flags & LM90_HAVE_TEMP3) { 2857 data->channel_config[2] = HWMON_T_INPUT | 2858 HWMON_T_MIN | HWMON_T_MAX | 2859 HWMON_T_CRIT | HWMON_T_CRIT_HYST | 2860 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | 2861 HWMON_T_CRIT_ALARM | HWMON_T_FAULT; 2862 if (data->flags & LM90_HAVE_EMERGENCY) { 2863 data->channel_config[2] |= HWMON_T_EMERGENCY | 2864 HWMON_T_EMERGENCY_HYST; 2865 } 2866 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) 2867 data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM; 2868 if (data->flags & LM90_HAVE_OFFSET) 2869 data->channel_config[2] |= HWMON_T_OFFSET; 2870 } 2871 2872 data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask; 2873 data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth; 2874 data->reg_local_ext = lm90_params[data->kind].reg_local_ext; 2875 if (data->flags & LM90_HAVE_REMOTE_EXT) 2876 data->reg_remote_ext = LM90_REG_REMOTE_TEMPL; 2877 data->reg_status2 = lm90_params[data->kind].reg_status2; 2878 2879 /* Set maximum conversion rate */ 2880 data->max_convrate = lm90_params[data->kind].max_convrate; 2881 2882 /* Parse device-tree channel information */ 2883 if (client->dev.of_node) { 2884 err = lm90_parse_dt_channel_info(client, data); 2885 if (err) 2886 return err; 2887 } 2888 2889 /* Initialize the LM90 chip */ 2890 err = lm90_init_client(client, data); 2891 if (err < 0) { 2892 dev_err(dev, "Failed to initialize device\n"); 2893 return err; 2894 } 2895 2896 /* 2897 * The 'pec' attribute is attached to the i2c device and thus created 2898 * separately. 2899 */ 2900 if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) { 2901 err = device_create_file(dev, &dev_attr_pec); 2902 if (err) 2903 return err; 2904 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev); 2905 if (err) 2906 return err; 2907 } 2908 2909 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, 2910 data, &data->chip, 2911 NULL); 2912 if (IS_ERR(hwmon_dev)) 2913 return PTR_ERR(hwmon_dev); 2914 2915 data->hwmon_dev = hwmon_dev; 2916 2917 if (client->irq) { 2918 dev_dbg(dev, "IRQ: %d\n", client->irq); 2919 err = devm_request_threaded_irq(dev, client->irq, 2920 NULL, lm90_irq_thread, 2921 IRQF_ONESHOT, "lm90", client); 2922 if (err < 0) { 2923 dev_err(dev, "cannot request IRQ %d\n", client->irq); 2924 return err; 2925 } 2926 } 2927 2928 return 0; 2929 } 2930 2931 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type, 2932 unsigned int flag) 2933 { 2934 if (type != I2C_PROTOCOL_SMBUS_ALERT) 2935 return; 2936 2937 if (lm90_is_tripped(client)) { 2938 /* 2939 * Disable ALERT# output, because these chips don't implement 2940 * SMBus alert correctly; they should only hold the alert line 2941 * low briefly. 2942 */ 2943 struct lm90_data *data = i2c_get_clientdata(client); 2944 2945 if ((data->flags & LM90_HAVE_BROKEN_ALERT) && 2946 (data->current_alarms & data->alert_alarms)) { 2947 if (!(data->config & 0x80)) { 2948 dev_dbg(&client->dev, "Disabling ALERT#\n"); 2949 lm90_update_confreg(data, data->config | 0x80); 2950 } 2951 schedule_delayed_work(&data->alert_work, 2952 max_t(int, HZ, msecs_to_jiffies(data->update_interval))); 2953 } 2954 } else { 2955 dev_dbg(&client->dev, "Everything OK\n"); 2956 } 2957 } 2958 2959 static int __maybe_unused lm90_suspend(struct device *dev) 2960 { 2961 struct lm90_data *data = dev_get_drvdata(dev); 2962 struct i2c_client *client = data->client; 2963 2964 if (client->irq) 2965 disable_irq(client->irq); 2966 2967 return 0; 2968 } 2969 2970 static int __maybe_unused lm90_resume(struct device *dev) 2971 { 2972 struct lm90_data *data = dev_get_drvdata(dev); 2973 struct i2c_client *client = data->client; 2974 2975 if (client->irq) 2976 enable_irq(client->irq); 2977 2978 return 0; 2979 } 2980 2981 static SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume); 2982 2983 static struct i2c_driver lm90_driver = { 2984 .class = I2C_CLASS_HWMON, 2985 .driver = { 2986 .name = "lm90", 2987 .of_match_table = of_match_ptr(lm90_of_match), 2988 .pm = &lm90_pm_ops, 2989 }, 2990 .probe_new = lm90_probe, 2991 .alert = lm90_alert, 2992 .id_table = lm90_id, 2993 .detect = lm90_detect, 2994 .address_list = normal_i2c, 2995 }; 2996 2997 module_i2c_driver(lm90_driver); 2998 2999 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); 3000 MODULE_DESCRIPTION("LM90/ADM1032 driver"); 3001 MODULE_LICENSE("GPL"); 3002