xref: /openbmc/linux/drivers/hwmon/lm90.c (revision 3bf90eca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4  *          monitoring
5  * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
6  *
7  * Based on the lm83 driver. The LM90 is a sensor chip made by National
8  * Semiconductor. It reports up to two temperatures (its own plus up to
9  * one external one) with a 0.125 deg resolution (1 deg for local
10  * temperature) and a 3-4 deg accuracy.
11  *
12  * This driver also supports the LM89 and LM99, two other sensor chips
13  * made by National Semiconductor. Both have an increased remote
14  * temperature measurement accuracy (1 degree), and the LM99
15  * additionally shifts remote temperatures (measured and limits) by 16
16  * degrees, which allows for higher temperatures measurement.
17  * Note that there is no way to differentiate between both chips.
18  * When device is auto-detected, the driver will assume an LM99.
19  *
20  * This driver also supports the LM86, another sensor chip made by
21  * National Semiconductor. It is exactly similar to the LM90 except it
22  * has a higher accuracy.
23  *
24  * This driver also supports the ADM1032, a sensor chip made by Analog
25  * Devices. That chip is similar to the LM90, with a few differences
26  * that are not handled by this driver. Among others, it has a higher
27  * accuracy than the LM90, much like the LM86 does.
28  *
29  * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30  * chips made by Maxim. These chips are similar to the LM86.
31  * Note that there is no easy way to differentiate between the three
32  * variants. We use the device address to detect MAX6659, which will result
33  * in a detection as max6657 if it is on address 0x4c. The extra address
34  * and features of the MAX6659 are only supported if the chip is configured
35  * explicitly as max6659, or if its address is not 0x4c.
36  * These chips lack the remote temperature offset feature.
37  *
38  * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39  * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40  * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41  * limits. Extended range is available by setting the configuration register
42  * accordingly, and is done during initialization. Extended precision is only
43  * available at conversion rates of 1 Hz and slower. Note that extended
44  * precision is not enabled by default, as this driver initializes all chips
45  * to 2 Hz by design. The driver also supports MAX6690, which is practically
46  * identical to MAX6654.
47  *
48  * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49  * MAX6692 chips made by Maxim.  These are again similar to the LM86,
50  * but they use unsigned temperature values and can report temperatures
51  * from 0 to 145 degrees.
52  *
53  * This driver also supports the MAX6680 and MAX6681, two other sensor
54  * chips made by Maxim. These are quite similar to the other Maxim
55  * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56  * be treated identically.
57  *
58  * This driver also supports the MAX6695 and MAX6696, two other sensor
59  * chips made by Maxim. These are also quite similar to other Maxim
60  * chips, but support three temperature sensors instead of two. MAX6695
61  * and MAX6696 only differ in the pinout so they can be treated identically.
62  *
63  * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64  * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65  * and extended mode. They are mostly compatible with LM90 except for a data
66  * format difference for the temperature value registers.
67  *
68  * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69  * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70  * temperature sensors.
71  *
72  * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73  * The chips are similar to ADT7461/ADT7461A but have full PEC support
74  * (undocumented).
75  *
76  * This driver also supports the SA56004 from Philips. This device is
77  * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
78  *
79  * This driver also supports the G781 from GMT. This device is compatible
80  * with the ADM1032.
81  *
82  * This driver also supports TMP451 and TMP461 from Texas Instruments.
83  * Those devices are supported in both compatibility and extended mode.
84  * They are mostly compatible with ADT7461 except for local temperature
85  * low byte register and max conversion rate.
86  *
87  * This driver also supports MAX1617 and various clones such as G767
88  * and NE1617. Such clones will be detected as MAX1617.
89  *
90  * This driver also supports NE1618 from Philips. It is similar to NE1617
91  * but supports 11 bit external temperature values.
92  *
93  * Since the LM90 was the first chipset supported by this driver, most
94  * comments will refer to this chipset, but are actually general and
95  * concern all supported chipsets, unless mentioned otherwise.
96  */
97 
98 #include <linux/bits.h>
99 #include <linux/device.h>
100 #include <linux/err.h>
101 #include <linux/i2c.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/jiffies.h>
105 #include <linux/hwmon.h>
106 #include <linux/kstrtox.h>
107 #include <linux/module.h>
108 #include <linux/mutex.h>
109 #include <linux/of_device.h>
110 #include <linux/regulator/consumer.h>
111 #include <linux/slab.h>
112 #include <linux/workqueue.h>
113 
114 /* The maximum number of channels currently supported */
115 #define MAX_CHANNELS	3
116 
117 /*
118  * Addresses to scan
119  * Address is fully defined internally and cannot be changed except for
120  * MAX6659, MAX6680 and MAX6681.
121  * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
122  * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
123  * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
124  * have address 0x4d.
125  * MAX6647 has address 0x4e.
126  * MAX6659 can have address 0x4c, 0x4d or 0x4e.
127  * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
128  * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
129  * SA56004 can have address 0x48 through 0x4F.
130  */
131 
132 static const unsigned short normal_i2c[] = {
133 	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
134 	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
135 
136 enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
137 	g781, lm84, lm90, lm99,
138 	max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
139 	nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
140 };
141 
142 /*
143  * The LM90 registers
144  */
145 
146 #define LM90_REG_MAN_ID			0xFE
147 #define LM90_REG_CHIP_ID		0xFF
148 #define LM90_REG_CONFIG1		0x03
149 #define LM90_REG_CONFIG2		0xBF
150 #define LM90_REG_CONVRATE		0x04
151 #define LM90_REG_STATUS			0x02
152 #define LM90_REG_LOCAL_TEMP		0x00
153 #define LM90_REG_LOCAL_HIGH		0x05
154 #define LM90_REG_LOCAL_LOW		0x06
155 #define LM90_REG_LOCAL_CRIT		0x20
156 #define LM90_REG_REMOTE_TEMPH		0x01
157 #define LM90_REG_REMOTE_TEMPL		0x10
158 #define LM90_REG_REMOTE_OFFSH		0x11
159 #define LM90_REG_REMOTE_OFFSL		0x12
160 #define LM90_REG_REMOTE_HIGHH		0x07
161 #define LM90_REG_REMOTE_HIGHL		0x13
162 #define LM90_REG_REMOTE_LOWH		0x08
163 #define LM90_REG_REMOTE_LOWL		0x14
164 #define LM90_REG_REMOTE_CRIT		0x19
165 #define LM90_REG_TCRIT_HYST		0x21
166 
167 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
168 
169 #define MAX6657_REG_LOCAL_TEMPL		0x11
170 #define MAX6696_REG_STATUS2		0x12
171 #define MAX6659_REG_REMOTE_EMERG	0x16
172 #define MAX6659_REG_LOCAL_EMERG		0x17
173 
174 /*  SA56004 registers */
175 
176 #define SA56004_REG_LOCAL_TEMPL		0x22
177 
178 #define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
179 
180 /* TMP451/TMP461 registers */
181 #define TMP451_REG_LOCAL_TEMPL		0x15
182 #define TMP451_REG_CONALERT		0x22
183 
184 #define TMP461_REG_CHEN			0x16
185 #define TMP461_REG_DFC			0x24
186 
187 /* ADT7481 registers */
188 #define ADT7481_REG_STATUS2		0x23
189 #define ADT7481_REG_CONFIG2		0x24
190 
191 #define ADT7481_REG_MAN_ID		0x3e
192 #define ADT7481_REG_CHIP_ID		0x3d
193 
194 /* Device features */
195 #define LM90_HAVE_EXTENDED_TEMP	BIT(0)	/* extended temperature support	*/
196 #define LM90_HAVE_OFFSET	BIT(1)	/* temperature offset register	*/
197 #define LM90_HAVE_UNSIGNED_TEMP	BIT(2)	/* temperatures are unsigned	*/
198 #define LM90_HAVE_REM_LIMIT_EXT	BIT(3)	/* extended remote limit	*/
199 #define LM90_HAVE_EMERGENCY	BIT(4)	/* 3rd upper (emergency) limit	*/
200 #define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm		*/
201 #define LM90_HAVE_TEMP3		BIT(6)	/* 3rd temperature sensor	*/
202 #define LM90_HAVE_BROKEN_ALERT	BIT(7)	/* Broken alert			*/
203 #define LM90_PAUSE_FOR_CONFIG	BIT(8)	/* Pause conversion for config	*/
204 #define LM90_HAVE_CRIT		BIT(9)	/* Chip supports CRIT/OVERT register	*/
205 #define LM90_HAVE_CRIT_ALRM_SWP	BIT(10)	/* critical alarm bits swapped	*/
206 #define LM90_HAVE_PEC		BIT(11)	/* Chip supports PEC		*/
207 #define LM90_HAVE_PARTIAL_PEC	BIT(12)	/* Partial PEC support (adm1032)*/
208 #define LM90_HAVE_ALARMS	BIT(13)	/* Create 'alarms' attribute	*/
209 #define LM90_HAVE_EXT_UNSIGNED	BIT(14)	/* extended unsigned temperature*/
210 #define LM90_HAVE_LOW		BIT(15)	/* low limits			*/
211 #define LM90_HAVE_CONVRATE	BIT(16)	/* conversion rate		*/
212 #define LM90_HAVE_REMOTE_EXT	BIT(17)	/* extended remote temperature	*/
213 #define LM90_HAVE_FAULTQUEUE	BIT(18)	/* configurable samples count	*/
214 
215 /* LM90 status */
216 #define LM90_STATUS_LTHRM	BIT(0)	/* local THERM limit tripped */
217 #define LM90_STATUS_RTHRM	BIT(1)	/* remote THERM limit tripped */
218 #define LM90_STATUS_ROPEN	BIT(2)	/* remote is an open circuit */
219 #define LM90_STATUS_RLOW	BIT(3)	/* remote low temp limit tripped */
220 #define LM90_STATUS_RHIGH	BIT(4)	/* remote high temp limit tripped */
221 #define LM90_STATUS_LLOW	BIT(5)	/* local low temp limit tripped */
222 #define LM90_STATUS_LHIGH	BIT(6)	/* local high temp limit tripped */
223 #define LM90_STATUS_BUSY	BIT(7)	/* conversion is ongoing */
224 
225 /* MAX6695/6696 and ADT7481 2nd status register */
226 #define MAX6696_STATUS2_R2THRM	BIT(1)	/* remote2 THERM limit tripped */
227 #define MAX6696_STATUS2_R2OPEN	BIT(2)	/* remote2 is an open circuit */
228 #define MAX6696_STATUS2_R2LOW	BIT(3)	/* remote2 low temp limit tripped */
229 #define MAX6696_STATUS2_R2HIGH	BIT(4)	/* remote2 high temp limit tripped */
230 #define MAX6696_STATUS2_ROT2	BIT(5)	/* remote emergency limit tripped */
231 #define MAX6696_STATUS2_R2OT2	BIT(6)	/* remote2 emergency limit tripped */
232 #define MAX6696_STATUS2_LOT2	BIT(7)	/* local emergency limit tripped */
233 
234 /*
235  * Driver data (common to all clients)
236  */
237 
238 static const struct i2c_device_id lm90_id[] = {
239 	{ "adm1020", max1617 },
240 	{ "adm1021", max1617 },
241 	{ "adm1023", adm1023 },
242 	{ "adm1032", adm1032 },
243 	{ "adt7421", adt7461a },
244 	{ "adt7461", adt7461 },
245 	{ "adt7461a", adt7461a },
246 	{ "adt7481", adt7481 },
247 	{ "adt7482", adt7481 },
248 	{ "adt7483a", adt7481 },
249 	{ "g781", g781 },
250 	{ "gl523sm", max1617 },
251 	{ "lm84", lm84 },
252 	{ "lm86", lm90 },
253 	{ "lm89", lm90 },
254 	{ "lm90", lm90 },
255 	{ "lm99", lm99 },
256 	{ "max1617", max1617 },
257 	{ "max6642", max6642 },
258 	{ "max6646", max6646 },
259 	{ "max6647", max6646 },
260 	{ "max6648", max6648 },
261 	{ "max6649", max6646 },
262 	{ "max6654", max6654 },
263 	{ "max6657", max6657 },
264 	{ "max6658", max6657 },
265 	{ "max6659", max6659 },
266 	{ "max6680", max6680 },
267 	{ "max6681", max6680 },
268 	{ "max6690", max6654 },
269 	{ "max6692", max6648 },
270 	{ "max6695", max6696 },
271 	{ "max6696", max6696 },
272 	{ "mc1066", max1617 },
273 	{ "nct1008", adt7461a },
274 	{ "nct210", nct210 },
275 	{ "nct214", nct72 },
276 	{ "nct218", nct72 },
277 	{ "nct72", nct72 },
278 	{ "ne1618", ne1618 },
279 	{ "w83l771", w83l771 },
280 	{ "sa56004", sa56004 },
281 	{ "thmc10", max1617 },
282 	{ "tmp451", tmp451 },
283 	{ "tmp461", tmp461 },
284 	{ }
285 };
286 MODULE_DEVICE_TABLE(i2c, lm90_id);
287 
288 static const struct of_device_id __maybe_unused lm90_of_match[] = {
289 	{
290 		.compatible = "adi,adm1032",
291 		.data = (void *)adm1032
292 	},
293 	{
294 		.compatible = "adi,adt7461",
295 		.data = (void *)adt7461
296 	},
297 	{
298 		.compatible = "adi,adt7461a",
299 		.data = (void *)adt7461a
300 	},
301 	{
302 		.compatible = "adi,adt7481",
303 		.data = (void *)adt7481
304 	},
305 	{
306 		.compatible = "gmt,g781",
307 		.data = (void *)g781
308 	},
309 	{
310 		.compatible = "national,lm90",
311 		.data = (void *)lm90
312 	},
313 	{
314 		.compatible = "national,lm86",
315 		.data = (void *)lm90
316 	},
317 	{
318 		.compatible = "national,lm89",
319 		.data = (void *)lm90
320 	},
321 	{
322 		.compatible = "national,lm99",
323 		.data = (void *)lm99
324 	},
325 	{
326 		.compatible = "dallas,max6646",
327 		.data = (void *)max6646
328 	},
329 	{
330 		.compatible = "dallas,max6647",
331 		.data = (void *)max6646
332 	},
333 	{
334 		.compatible = "dallas,max6649",
335 		.data = (void *)max6646
336 	},
337 	{
338 		.compatible = "dallas,max6654",
339 		.data = (void *)max6654
340 	},
341 	{
342 		.compatible = "dallas,max6657",
343 		.data = (void *)max6657
344 	},
345 	{
346 		.compatible = "dallas,max6658",
347 		.data = (void *)max6657
348 	},
349 	{
350 		.compatible = "dallas,max6659",
351 		.data = (void *)max6659
352 	},
353 	{
354 		.compatible = "dallas,max6680",
355 		.data = (void *)max6680
356 	},
357 	{
358 		.compatible = "dallas,max6681",
359 		.data = (void *)max6680
360 	},
361 	{
362 		.compatible = "dallas,max6695",
363 		.data = (void *)max6696
364 	},
365 	{
366 		.compatible = "dallas,max6696",
367 		.data = (void *)max6696
368 	},
369 	{
370 		.compatible = "onnn,nct1008",
371 		.data = (void *)adt7461a
372 	},
373 	{
374 		.compatible = "onnn,nct214",
375 		.data = (void *)nct72
376 	},
377 	{
378 		.compatible = "onnn,nct218",
379 		.data = (void *)nct72
380 	},
381 	{
382 		.compatible = "onnn,nct72",
383 		.data = (void *)nct72
384 	},
385 	{
386 		.compatible = "winbond,w83l771",
387 		.data = (void *)w83l771
388 	},
389 	{
390 		.compatible = "nxp,sa56004",
391 		.data = (void *)sa56004
392 	},
393 	{
394 		.compatible = "ti,tmp451",
395 		.data = (void *)tmp451
396 	},
397 	{
398 		.compatible = "ti,tmp461",
399 		.data = (void *)tmp461
400 	},
401 	{ },
402 };
403 MODULE_DEVICE_TABLE(of, lm90_of_match);
404 
405 /*
406  * chip type specific parameters
407  */
408 struct lm90_params {
409 	u32 flags;		/* Capabilities */
410 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
411 				/* Upper 8 bits for max6695/96 */
412 	u8 max_convrate;	/* Maximum conversion rate register value */
413 	u8 resolution;		/* 16-bit resolution (default 11 bit) */
414 	u8 reg_status2;		/* 2nd status register (optional) */
415 	u8 reg_local_ext;	/* Extended local temp register (optional) */
416 	u8 faultqueue_mask;	/* fault queue bit mask */
417 	u8 faultqueue_depth;	/* fault queue depth if mask is used */
418 };
419 
420 static const struct lm90_params lm90_params[] = {
421 	[adm1023] = {
422 		.flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
423 		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
424 		  | LM90_HAVE_REMOTE_EXT,
425 		.alert_alarms = 0x7c,
426 		.resolution = 8,
427 		.max_convrate = 7,
428 	},
429 	[adm1032] = {
430 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
431 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
432 		  | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
433 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
434 		  | LM90_HAVE_FAULTQUEUE,
435 		.alert_alarms = 0x7c,
436 		.max_convrate = 10,
437 	},
438 	[adt7461] = {
439 		/*
440 		 * Standard temperature range is supposed to be unsigned,
441 		 * but that does not match reality. Negative temperatures
442 		 * are always reported.
443 		 */
444 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
445 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
446 		  | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
447 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
448 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
449 		.alert_alarms = 0x7c,
450 		.max_convrate = 10,
451 		.resolution = 10,
452 	},
453 	[adt7461a] = {
454 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
455 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
456 		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
457 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
458 		  | LM90_HAVE_FAULTQUEUE,
459 		.alert_alarms = 0x7c,
460 		.max_convrate = 10,
461 	},
462 	[adt7481] = {
463 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
464 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
465 		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
466 		  | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
467 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
468 		  | LM90_HAVE_FAULTQUEUE,
469 		.alert_alarms = 0x1c7c,
470 		.max_convrate = 11,
471 		.resolution = 10,
472 		.reg_status2 = ADT7481_REG_STATUS2,
473 	},
474 	[g781] = {
475 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
476 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
477 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
478 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
479 		.alert_alarms = 0x7c,
480 		.max_convrate = 7,
481 	},
482 	[lm84] = {
483 		.flags = LM90_HAVE_ALARMS,
484 		.resolution = 8,
485 	},
486 	[lm90] = {
487 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
488 		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
489 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
490 		  | LM90_HAVE_FAULTQUEUE,
491 		.alert_alarms = 0x7b,
492 		.max_convrate = 9,
493 		.faultqueue_mask = BIT(0),
494 		.faultqueue_depth = 3,
495 	},
496 	[lm99] = {
497 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
498 		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
499 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
500 		  | LM90_HAVE_FAULTQUEUE,
501 		.alert_alarms = 0x7b,
502 		.max_convrate = 9,
503 		.faultqueue_mask = BIT(0),
504 		.faultqueue_depth = 3,
505 	},
506 	[max1617] = {
507 		.flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
508 		  LM90_HAVE_LOW | LM90_HAVE_ALARMS,
509 		.alert_alarms = 0x78,
510 		.resolution = 8,
511 		.max_convrate = 7,
512 	},
513 	[max6642] = {
514 		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
515 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
516 		.alert_alarms = 0x50,
517 		.resolution = 10,
518 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
519 		.faultqueue_mask = BIT(4),
520 		.faultqueue_depth = 2,
521 	},
522 	[max6646] = {
523 		.flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
524 		  | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
525 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
526 		.alert_alarms = 0x7c,
527 		.max_convrate = 6,
528 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
529 	},
530 	[max6648] = {
531 		.flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
532 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
533 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
534 		.alert_alarms = 0x7c,
535 		.max_convrate = 6,
536 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
537 	},
538 	[max6654] = {
539 		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
540 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
541 		.alert_alarms = 0x7c,
542 		.max_convrate = 7,
543 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
544 	},
545 	[max6657] = {
546 		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
547 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
548 		  | LM90_HAVE_REMOTE_EXT,
549 		.alert_alarms = 0x7c,
550 		.max_convrate = 8,
551 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
552 	},
553 	[max6659] = {
554 		.flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
555 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
556 		  | LM90_HAVE_REMOTE_EXT,
557 		.alert_alarms = 0x7c,
558 		.max_convrate = 8,
559 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
560 	},
561 	[max6680] = {
562 		/*
563 		 * Apparent temperatures of 128 degrees C or higher are reported
564 		 * and treated as negative temperatures (meaning min_alarm will
565 		 * be set).
566 		 */
567 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
568 		  | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
569 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
570 		  | LM90_HAVE_REMOTE_EXT,
571 		.alert_alarms = 0x7c,
572 		.max_convrate = 7,
573 	},
574 	[max6696] = {
575 		.flags = LM90_HAVE_EMERGENCY
576 		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
577 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
578 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
579 		.alert_alarms = 0x1c7c,
580 		.max_convrate = 6,
581 		.reg_status2 = MAX6696_REG_STATUS2,
582 		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
583 		.faultqueue_mask = BIT(5),
584 		.faultqueue_depth = 4,
585 	},
586 	[nct72] = {
587 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
588 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
589 		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
590 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
591 		  | LM90_HAVE_FAULTQUEUE,
592 		.alert_alarms = 0x7c,
593 		.max_convrate = 10,
594 		.resolution = 10,
595 	},
596 	[nct210] = {
597 		.flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
598 		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
599 		  | LM90_HAVE_REMOTE_EXT,
600 		.alert_alarms = 0x7c,
601 		.resolution = 11,
602 		.max_convrate = 7,
603 	},
604 	[ne1618] = {
605 		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
606 		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
607 		.alert_alarms = 0x7c,
608 		.resolution = 11,
609 		.max_convrate = 7,
610 	},
611 	[w83l771] = {
612 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
613 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
614 		  | LM90_HAVE_REMOTE_EXT,
615 		.alert_alarms = 0x7c,
616 		.max_convrate = 8,
617 	},
618 	[sa56004] = {
619 		/*
620 		 * Apparent temperatures of 128 degrees C or higher are reported
621 		 * and treated as negative temperatures (meaning min_alarm will
622 		 * be set).
623 		 */
624 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
625 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
626 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
627 		.alert_alarms = 0x7b,
628 		.max_convrate = 9,
629 		.reg_local_ext = SA56004_REG_LOCAL_TEMPL,
630 		.faultqueue_mask = BIT(0),
631 		.faultqueue_depth = 3,
632 	},
633 	[tmp451] = {
634 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
635 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
636 		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
637 		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
638 		.alert_alarms = 0x7c,
639 		.max_convrate = 9,
640 		.resolution = 12,
641 		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
642 	},
643 	[tmp461] = {
644 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
645 		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
646 		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
647 		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
648 		.alert_alarms = 0x7c,
649 		.max_convrate = 9,
650 		.resolution = 12,
651 		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
652 	},
653 };
654 
655 /*
656  * temperature register index
657  */
658 enum lm90_temp_reg_index {
659 	LOCAL_LOW = 0,
660 	LOCAL_HIGH,
661 	LOCAL_CRIT,
662 	REMOTE_CRIT,
663 	LOCAL_EMERG,	/* max6659 and max6695/96 */
664 	REMOTE_EMERG,	/* max6659 and max6695/96 */
665 	REMOTE2_CRIT,	/* max6695/96 only */
666 	REMOTE2_EMERG,	/* max6695/96 only */
667 
668 	REMOTE_TEMP,
669 	REMOTE_LOW,
670 	REMOTE_HIGH,
671 	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
672 	LOCAL_TEMP,
673 	REMOTE2_TEMP,	/* max6695/96 only */
674 	REMOTE2_LOW,	/* max6695/96 only */
675 	REMOTE2_HIGH,	/* max6695/96 only */
676 	REMOTE2_OFFSET,
677 
678 	TEMP_REG_NUM
679 };
680 
681 /*
682  * Client data (each client gets its own)
683  */
684 
685 struct lm90_data {
686 	struct i2c_client *client;
687 	struct device *hwmon_dev;
688 	u32 chip_config[2];
689 	u32 channel_config[MAX_CHANNELS + 1];
690 	const char *channel_label[MAX_CHANNELS];
691 	struct hwmon_channel_info chip_info;
692 	struct hwmon_channel_info temp_info;
693 	const struct hwmon_channel_info *info[3];
694 	struct hwmon_chip_info chip;
695 	struct mutex update_lock;
696 	struct delayed_work alert_work;
697 	struct work_struct report_work;
698 	bool valid;		/* true if register values are valid */
699 	bool alarms_valid;	/* true if status register values are valid */
700 	unsigned long last_updated; /* in jiffies */
701 	unsigned long alarms_updated; /* in jiffies */
702 	int kind;
703 	u32 flags;
704 
705 	unsigned int update_interval; /* in milliseconds */
706 
707 	u8 config;		/* Current configuration register value */
708 	u8 config_orig;		/* Original configuration register value */
709 	u8 convrate_orig;	/* Original conversion rate register value */
710 	u8 resolution;		/* temperature resolution in bit */
711 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
712 				/* Upper 8 bits for max6695/96 */
713 	u8 max_convrate;	/* Maximum conversion rate */
714 	u8 reg_status2;		/* 2nd status register (optional) */
715 	u8 reg_local_ext;	/* local extension register offset */
716 	u8 reg_remote_ext;	/* remote temperature low byte */
717 	u8 faultqueue_mask;	/* fault queue mask */
718 	u8 faultqueue_depth;	/* fault queue mask */
719 
720 	/* registers values */
721 	u16 temp[TEMP_REG_NUM];
722 	u8 temp_hyst;
723 	u8 conalert;
724 	u16 reported_alarms;	/* alarms reported as sysfs/udev events */
725 	u16 current_alarms;	/* current alarms, reported by chip */
726 	u16 alarms;		/* alarms not yet reported to user */
727 };
728 
729 /*
730  * Support functions
731  */
732 
733 /*
734  * If the chip supports PEC but not on write byte transactions, we need
735  * to explicitly ask for a transaction without PEC.
736  */
737 static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
738 {
739 	return i2c_smbus_xfer(client->adapter, client->addr,
740 			      client->flags & ~I2C_CLIENT_PEC,
741 			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
742 }
743 
744 /*
745  * It is assumed that client->update_lock is held (unless we are in
746  * detection or initialization steps). This matters when PEC is enabled
747  * for chips with partial PEC support, because we don't want the address
748  * pointer to change between the write byte and the read byte transactions.
749  */
750 static int lm90_read_reg(struct i2c_client *client, u8 reg)
751 {
752 	struct lm90_data *data = i2c_get_clientdata(client);
753 	bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
754 			(data->flags & LM90_HAVE_PARTIAL_PEC);
755 	int err;
756 
757 	if (partial_pec) {
758 		err = lm90_write_no_pec(client, reg);
759 		if (err)
760 			return err;
761 		return i2c_smbus_read_byte(client);
762 	}
763 	return i2c_smbus_read_byte_data(client, reg);
764 }
765 
766 /*
767  * Return register write address
768  *
769  * The write address for registers 0x03 .. 0x08 is the read address plus 6.
770  * For other registers the write address matches the read address.
771  */
772 static u8 lm90_write_reg_addr(u8 reg)
773 {
774 	if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
775 		return reg + 6;
776 	return reg;
777 }
778 
779 /*
780  * Write into LM90 register.
781  * Convert register address to write address if needed, then execute the
782  * operation.
783  */
784 static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
785 {
786 	return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
787 }
788 
789 /*
790  * Write into 16-bit LM90 register.
791  * Convert register addresses to write address if needed, then execute the
792  * operation.
793  */
794 static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
795 {
796 	int ret;
797 
798 	ret = lm90_write_reg(client, regh, val >> 8);
799 	if (ret < 0 || !regl)
800 		return ret;
801 	return lm90_write_reg(client, regl, val & 0xff);
802 }
803 
804 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
805 		       bool is_volatile)
806 {
807 	int oldh, newh, l;
808 
809 	oldh = lm90_read_reg(client, regh);
810 	if (oldh < 0)
811 		return oldh;
812 
813 	if (!regl)
814 		return oldh << 8;
815 
816 	l = lm90_read_reg(client, regl);
817 	if (l < 0)
818 		return l;
819 
820 	if (!is_volatile)
821 		return (oldh << 8) | l;
822 
823 	/*
824 	 * For volatile registers we have to use a trick.
825 	 * We have to read two registers to have the sensor temperature,
826 	 * but we have to beware a conversion could occur between the
827 	 * readings. The datasheet says we should either use
828 	 * the one-shot conversion register, which we don't want to do
829 	 * (disables hardware monitoring) or monitor the busy bit, which is
830 	 * impossible (we can't read the values and monitor that bit at the
831 	 * exact same time). So the solution used here is to read the high
832 	 * the high byte again. If the new high byte matches the old one,
833 	 * then we have a valid reading. Otherwise we have to read the low
834 	 * byte again, and now we believe we have a correct reading.
835 	 */
836 	newh = lm90_read_reg(client, regh);
837 	if (newh < 0)
838 		return newh;
839 	if (oldh != newh) {
840 		l = lm90_read_reg(client, regl);
841 		if (l < 0)
842 			return l;
843 	}
844 	return (newh << 8) | l;
845 }
846 
847 static int lm90_update_confreg(struct lm90_data *data, u8 config)
848 {
849 	if (data->config != config) {
850 		int err;
851 
852 		err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
853 		if (err)
854 			return err;
855 		data->config = config;
856 	}
857 	return 0;
858 }
859 
860 /*
861  * client->update_lock must be held when calling this function (unless we are
862  * in detection or initialization steps), and while a remote channel other
863  * than channel 0 is selected. Also, calling code must make sure to re-select
864  * external channel 0 before releasing the lock. This is necessary because
865  * various registers have different meanings as a result of selecting a
866  * non-default remote channel.
867  */
868 static int lm90_select_remote_channel(struct lm90_data *data, bool second)
869 {
870 	u8 config = data->config & ~0x08;
871 
872 	if (second)
873 		config |= 0x08;
874 
875 	return lm90_update_confreg(data, config);
876 }
877 
878 static int lm90_write_convrate(struct lm90_data *data, int val)
879 {
880 	u8 config = data->config;
881 	int err;
882 
883 	/* Save config and pause conversion */
884 	if (data->flags & LM90_PAUSE_FOR_CONFIG) {
885 		err = lm90_update_confreg(data, config | 0x40);
886 		if (err < 0)
887 			return err;
888 	}
889 
890 	/* Set conv rate */
891 	err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
892 
893 	/* Revert change to config */
894 	lm90_update_confreg(data, config);
895 
896 	return err;
897 }
898 
899 /*
900  * Set conversion rate.
901  * client->update_lock must be held when calling this function (unless we are
902  * in detection or initialization steps).
903  */
904 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
905 			     unsigned int interval)
906 {
907 	unsigned int update_interval;
908 	int i, err;
909 
910 	/* Shift calculations to avoid rounding errors */
911 	interval <<= 6;
912 
913 	/* find the nearest update rate */
914 	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
915 	     i < data->max_convrate; i++, update_interval >>= 1)
916 		if (interval >= update_interval * 3 / 4)
917 			break;
918 
919 	err = lm90_write_convrate(data, i);
920 	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
921 	return err;
922 }
923 
924 static int lm90_set_faultqueue(struct i2c_client *client,
925 			       struct lm90_data *data, int val)
926 {
927 	int err;
928 
929 	if (data->faultqueue_mask) {
930 		err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
931 					  data->config & ~data->faultqueue_mask :
932 					  data->config | data->faultqueue_mask);
933 	} else {
934 		static const u8 values[4] = {0, 2, 6, 0x0e};
935 
936 		data->conalert = (data->conalert & 0xf1) | values[val - 1];
937 		err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
938 				     data->conalert);
939 	}
940 
941 	return err;
942 }
943 
944 static int lm90_update_limits(struct device *dev)
945 {
946 	struct lm90_data *data = dev_get_drvdata(dev);
947 	struct i2c_client *client = data->client;
948 	int val;
949 
950 	if (data->flags & LM90_HAVE_CRIT) {
951 		val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
952 		if (val < 0)
953 			return val;
954 		data->temp[LOCAL_CRIT] = val << 8;
955 
956 		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
957 		if (val < 0)
958 			return val;
959 		data->temp[REMOTE_CRIT] = val << 8;
960 
961 		val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
962 		if (val < 0)
963 			return val;
964 		data->temp_hyst = val;
965 	}
966 	if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
967 		val = lm90_read_reg(client, TMP451_REG_CONALERT);
968 		if (val < 0)
969 			return val;
970 		data->conalert = val;
971 	}
972 
973 	val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
974 			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
975 			  false);
976 	if (val < 0)
977 		return val;
978 	data->temp[REMOTE_LOW] = val;
979 
980 	val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
981 			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
982 			  false);
983 	if (val < 0)
984 		return val;
985 	data->temp[REMOTE_HIGH] = val;
986 
987 	if (data->flags & LM90_HAVE_OFFSET) {
988 		val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
989 				  LM90_REG_REMOTE_OFFSL, false);
990 		if (val < 0)
991 			return val;
992 		data->temp[REMOTE_OFFSET] = val;
993 	}
994 
995 	if (data->flags & LM90_HAVE_EMERGENCY) {
996 		val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
997 		if (val < 0)
998 			return val;
999 		data->temp[LOCAL_EMERG] = val << 8;
1000 
1001 		val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1002 		if (val < 0)
1003 			return val;
1004 		data->temp[REMOTE_EMERG] = val << 8;
1005 	}
1006 
1007 	if (data->flags & LM90_HAVE_TEMP3) {
1008 		val = lm90_select_remote_channel(data, true);
1009 		if (val < 0)
1010 			return val;
1011 
1012 		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1013 		if (val < 0)
1014 			return val;
1015 		data->temp[REMOTE2_CRIT] = val << 8;
1016 
1017 		if (data->flags & LM90_HAVE_EMERGENCY) {
1018 			val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1019 			if (val < 0)
1020 				return val;
1021 			data->temp[REMOTE2_EMERG] = val << 8;
1022 		}
1023 
1024 		val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1025 		if (val < 0)
1026 			return val;
1027 		data->temp[REMOTE2_LOW] = val << 8;
1028 
1029 		val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1030 		if (val < 0)
1031 			return val;
1032 		data->temp[REMOTE2_HIGH] = val << 8;
1033 
1034 		if (data->flags & LM90_HAVE_OFFSET) {
1035 			val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1036 					  LM90_REG_REMOTE_OFFSL, false);
1037 			if (val < 0)
1038 				return val;
1039 			data->temp[REMOTE2_OFFSET] = val;
1040 		}
1041 
1042 		lm90_select_remote_channel(data, false);
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static void lm90_report_alarms(struct work_struct *work)
1049 {
1050 	struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1051 	u16 cleared_alarms, new_alarms, current_alarms;
1052 	struct device *hwmon_dev = data->hwmon_dev;
1053 	struct device *dev = &data->client->dev;
1054 	int st, st2;
1055 
1056 	current_alarms = data->current_alarms;
1057 	cleared_alarms = data->reported_alarms & ~current_alarms;
1058 	new_alarms = current_alarms & ~data->reported_alarms;
1059 
1060 	if (!cleared_alarms && !new_alarms)
1061 		return;
1062 
1063 	st = new_alarms & 0xff;
1064 	st2 = new_alarms >> 8;
1065 
1066 	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1067 	    (st2 & MAX6696_STATUS2_LOT2))
1068 		dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1069 	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1070 	    (st2 & MAX6696_STATUS2_ROT2))
1071 		dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1072 	if (st & LM90_STATUS_ROPEN)
1073 		dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1074 	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1075 		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1076 		dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1077 	if (st2 & MAX6696_STATUS2_R2OPEN)
1078 		dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1079 
1080 	st |= cleared_alarms & 0xff;
1081 	st2 |= cleared_alarms >> 8;
1082 
1083 	if (st & LM90_STATUS_LLOW)
1084 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1085 	if (st & LM90_STATUS_RLOW)
1086 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1087 	if (st2 & MAX6696_STATUS2_R2LOW)
1088 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1089 
1090 	if (st & LM90_STATUS_LHIGH)
1091 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1092 	if (st & LM90_STATUS_RHIGH)
1093 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1094 	if (st2 & MAX6696_STATUS2_R2HIGH)
1095 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1096 
1097 	if (st & LM90_STATUS_LTHRM)
1098 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1099 	if (st & LM90_STATUS_RTHRM)
1100 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1101 	if (st2 & MAX6696_STATUS2_R2THRM)
1102 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1103 
1104 	if (st2 & MAX6696_STATUS2_LOT2)
1105 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1106 	if (st2 & MAX6696_STATUS2_ROT2)
1107 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1108 	if (st2 & MAX6696_STATUS2_R2OT2)
1109 		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1110 
1111 	data->reported_alarms = current_alarms;
1112 }
1113 
1114 static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1115 {
1116 	if (force || !data->alarms_valid ||
1117 	    time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1118 		struct i2c_client *client = data->client;
1119 		bool check_enable;
1120 		u16 alarms;
1121 		int val;
1122 
1123 		data->alarms_valid = false;
1124 
1125 		val = lm90_read_reg(client, LM90_REG_STATUS);
1126 		if (val < 0)
1127 			return val;
1128 		alarms = val & ~LM90_STATUS_BUSY;
1129 
1130 		if (data->reg_status2) {
1131 			val = lm90_read_reg(client, data->reg_status2);
1132 			if (val < 0)
1133 				return val;
1134 			alarms |= val << 8;
1135 		}
1136 		/*
1137 		 * If the update is forced (called from interrupt or alert
1138 		 * handler) and alarm data is valid, the alarms may have been
1139 		 * updated after the last update interval, and the status
1140 		 * register may still be cleared. Only add additional alarms
1141 		 * in this case. Alarms will be cleared later if appropriate.
1142 		 */
1143 		if (force && data->alarms_valid)
1144 			data->current_alarms |= alarms;
1145 		else
1146 			data->current_alarms = alarms;
1147 		data->alarms |= alarms;
1148 
1149 		check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1150 			(data->config & 0x80);
1151 
1152 		if (force || check_enable)
1153 			schedule_work(&data->report_work);
1154 
1155 		/*
1156 		 * Re-enable ALERT# output if it was originally enabled, relevant
1157 		 * alarms are all clear, and alerts are currently disabled.
1158 		 * Otherwise (re)schedule worker if needed.
1159 		 */
1160 		if (check_enable) {
1161 			if (!(data->current_alarms & data->alert_alarms)) {
1162 				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1163 				lm90_update_confreg(data, data->config & ~0x80);
1164 				/*
1165 				 * We may have been called from the update handler.
1166 				 * If so, the worker, if scheduled, is no longer
1167 				 * needed. Cancel it. Don't synchronize because
1168 				 * it may already be running.
1169 				 */
1170 				cancel_delayed_work(&data->alert_work);
1171 			} else {
1172 				schedule_delayed_work(&data->alert_work,
1173 					max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1174 			}
1175 		}
1176 		data->alarms_updated = jiffies;
1177 		data->alarms_valid = true;
1178 	}
1179 	return 0;
1180 }
1181 
1182 static int lm90_update_alarms(struct lm90_data *data, bool force)
1183 {
1184 	int err;
1185 
1186 	mutex_lock(&data->update_lock);
1187 	err = lm90_update_alarms_locked(data, force);
1188 	mutex_unlock(&data->update_lock);
1189 
1190 	return err;
1191 }
1192 
1193 static void lm90_alert_work(struct work_struct *__work)
1194 {
1195 	struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1196 	struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1197 
1198 	/* Nothing to do if alerts are enabled */
1199 	if (!(data->config & 0x80))
1200 		return;
1201 
1202 	lm90_update_alarms(data, true);
1203 }
1204 
1205 static int lm90_update_device(struct device *dev)
1206 {
1207 	struct lm90_data *data = dev_get_drvdata(dev);
1208 	struct i2c_client *client = data->client;
1209 	unsigned long next_update;
1210 	int val;
1211 
1212 	if (!data->valid) {
1213 		val = lm90_update_limits(dev);
1214 		if (val < 0)
1215 			return val;
1216 	}
1217 
1218 	next_update = data->last_updated +
1219 		      msecs_to_jiffies(data->update_interval);
1220 	if (time_after(jiffies, next_update) || !data->valid) {
1221 		dev_dbg(&client->dev, "Updating lm90 data.\n");
1222 
1223 		data->valid = false;
1224 
1225 		val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1226 		if (val < 0)
1227 			return val;
1228 		data->temp[LOCAL_LOW] = val << 8;
1229 
1230 		val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1231 		if (val < 0)
1232 			return val;
1233 		data->temp[LOCAL_HIGH] = val << 8;
1234 
1235 		val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1236 				  data->reg_local_ext, true);
1237 		if (val < 0)
1238 			return val;
1239 		data->temp[LOCAL_TEMP] = val;
1240 		val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1241 				  data->reg_remote_ext, true);
1242 		if (val < 0)
1243 			return val;
1244 		data->temp[REMOTE_TEMP] = val;
1245 
1246 		if (data->flags & LM90_HAVE_TEMP3) {
1247 			val = lm90_select_remote_channel(data, true);
1248 			if (val < 0)
1249 				return val;
1250 
1251 			val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1252 					  data->reg_remote_ext, true);
1253 			if (val < 0) {
1254 				lm90_select_remote_channel(data, false);
1255 				return val;
1256 			}
1257 			data->temp[REMOTE2_TEMP] = val;
1258 
1259 			lm90_select_remote_channel(data, false);
1260 		}
1261 
1262 		val = lm90_update_alarms_locked(data, false);
1263 		if (val < 0)
1264 			return val;
1265 
1266 		data->last_updated = jiffies;
1267 		data->valid = true;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /* pec used for devices with PEC support */
1274 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
1275 			char *buf)
1276 {
1277 	struct i2c_client *client = to_i2c_client(dev);
1278 
1279 	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1280 }
1281 
1282 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
1283 			 const char *buf, size_t count)
1284 {
1285 	struct i2c_client *client = to_i2c_client(dev);
1286 	long val;
1287 	int err;
1288 
1289 	err = kstrtol(buf, 10, &val);
1290 	if (err < 0)
1291 		return err;
1292 
1293 	switch (val) {
1294 	case 0:
1295 		client->flags &= ~I2C_CLIENT_PEC;
1296 		break;
1297 	case 1:
1298 		client->flags |= I2C_CLIENT_PEC;
1299 		break;
1300 	default:
1301 		return -EINVAL;
1302 	}
1303 
1304 	return count;
1305 }
1306 
1307 static DEVICE_ATTR_RW(pec);
1308 
1309 static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1310 {
1311 	switch (index) {
1312 	case REMOTE_TEMP:
1313 		if (data->reg_remote_ext)
1314 			return data->resolution;
1315 		return 8;
1316 	case REMOTE_OFFSET:
1317 	case REMOTE2_OFFSET:
1318 	case REMOTE2_TEMP:
1319 		return data->resolution;
1320 	case LOCAL_TEMP:
1321 		if (data->reg_local_ext)
1322 			return data->resolution;
1323 		return 8;
1324 	case REMOTE_LOW:
1325 	case REMOTE_HIGH:
1326 	case REMOTE2_LOW:
1327 	case REMOTE2_HIGH:
1328 		if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1329 			return data->resolution;
1330 		return 8;
1331 	default:
1332 		return 8;
1333 	}
1334 }
1335 
1336 static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1337 {
1338 	int val;
1339 
1340 	if (flags & LM90_HAVE_EXTENDED_TEMP)
1341 		val = regval - 0x4000;
1342 	else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1343 		val = regval;
1344 	else
1345 		val = (s16)regval;
1346 
1347 	return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1348 }
1349 
1350 static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1351 {
1352 	int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1353 				      lm90_temp_get_resolution(data, index));
1354 
1355 	/* +16 degrees offset for remote temperature on LM99 */
1356 	if (data->kind == lm99 && channel)
1357 		temp += 16000;
1358 
1359 	return temp;
1360 }
1361 
1362 static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1363 {
1364 	int fraction = resolution > 8 ?
1365 			1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1366 
1367 	if (flags & LM90_HAVE_EXTENDED_TEMP) {
1368 		val = clamp_val(val, -64000, 191000 + fraction);
1369 		val += 64000;
1370 	} else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1371 		val = clamp_val(val, 0, 255000 + fraction);
1372 	} else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1373 		val = clamp_val(val, 0, 127000 + fraction);
1374 	} else {
1375 		val = clamp_val(val, -128000, 127000 + fraction);
1376 	}
1377 
1378 	return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1379 }
1380 
1381 static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1382 {
1383 	static const u8 regs[] = {
1384 		[LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1385 		[LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1386 		[LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1387 		[REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1388 		[LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1389 		[REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1390 		[REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1391 		[REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1392 		[REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1393 		[REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1394 		[REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1395 		[REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1396 	};
1397 	struct i2c_client *client = data->client;
1398 	u8 regh = regs[index];
1399 	u8 regl = 0;
1400 	int err;
1401 
1402 	if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1403 		if (index == REMOTE_LOW || index == REMOTE2_LOW)
1404 			regl = LM90_REG_REMOTE_LOWL;
1405 		else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1406 			regl = LM90_REG_REMOTE_HIGHL;
1407 	}
1408 
1409 	/* +16 degrees offset for remote temperature on LM99 */
1410 	if (data->kind == lm99 && channel) {
1411 		/* prevent integer underflow */
1412 		val = max(val, -128000l);
1413 		val -= 16000;
1414 	}
1415 
1416 	data->temp[index] = lm90_temp_to_reg(data->flags, val,
1417 					     lm90_temp_get_resolution(data, index));
1418 
1419 	if (channel > 1)
1420 		lm90_select_remote_channel(data, true);
1421 
1422 	err = lm90_write16(client, regh, regl, data->temp[index]);
1423 
1424 	if (channel > 1)
1425 		lm90_select_remote_channel(data, false);
1426 
1427 	return err;
1428 }
1429 
1430 static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1431 {
1432 	int temp = lm90_get_temp(data, index, channel);
1433 
1434 	return temp - data->temp_hyst * 1000;
1435 }
1436 
1437 static int lm90_set_temphyst(struct lm90_data *data, long val)
1438 {
1439 	int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1440 
1441 	/* prevent integer overflow/underflow */
1442 	val = clamp_val(val, -128000l, 255000l);
1443 	data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1444 
1445 	return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1446 }
1447 
1448 static int lm90_get_temp_offset(struct lm90_data *data, int index)
1449 {
1450 	int res = lm90_temp_get_resolution(data, index);
1451 
1452 	return lm90_temp_from_reg(0, data->temp[index], res);
1453 }
1454 
1455 static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1456 {
1457 	int err;
1458 
1459 	val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1460 
1461 	/* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1462 	if (channel > 1)
1463 		lm90_select_remote_channel(data, true);
1464 
1465 	err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1466 
1467 	if (channel > 1)
1468 		lm90_select_remote_channel(data, false);
1469 
1470 	if (err)
1471 		return err;
1472 
1473 	data->temp[index] = val;
1474 
1475 	return 0;
1476 }
1477 
1478 static const u8 lm90_temp_index[MAX_CHANNELS] = {
1479 	LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1480 };
1481 
1482 static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1483 	LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1484 };
1485 
1486 static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1487 	LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1488 };
1489 
1490 static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1491 	LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1492 };
1493 
1494 static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1495 	LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1496 };
1497 
1498 static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1499 	-1, REMOTE_OFFSET, REMOTE2_OFFSET
1500 };
1501 
1502 static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1503 static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1504 static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1505 static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1506 static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1507 static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1508 
1509 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1510 {
1511 	struct lm90_data *data = dev_get_drvdata(dev);
1512 	int err;
1513 	u16 bit;
1514 
1515 	mutex_lock(&data->update_lock);
1516 	err = lm90_update_device(dev);
1517 	mutex_unlock(&data->update_lock);
1518 	if (err)
1519 		return err;
1520 
1521 	switch (attr) {
1522 	case hwmon_temp_input:
1523 		*val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1524 		break;
1525 	case hwmon_temp_min_alarm:
1526 	case hwmon_temp_max_alarm:
1527 	case hwmon_temp_crit_alarm:
1528 	case hwmon_temp_emergency_alarm:
1529 	case hwmon_temp_fault:
1530 		switch (attr) {
1531 		case hwmon_temp_min_alarm:
1532 			bit = lm90_min_alarm_bits[channel];
1533 			break;
1534 		case hwmon_temp_max_alarm:
1535 			bit = lm90_max_alarm_bits[channel];
1536 			break;
1537 		case hwmon_temp_crit_alarm:
1538 			if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1539 				bit = lm90_crit_alarm_bits_swapped[channel];
1540 			else
1541 				bit = lm90_crit_alarm_bits[channel];
1542 			break;
1543 		case hwmon_temp_emergency_alarm:
1544 			bit = lm90_emergency_alarm_bits[channel];
1545 			break;
1546 		case hwmon_temp_fault:
1547 			bit = lm90_fault_bits[channel];
1548 			break;
1549 		}
1550 		*val = !!(data->alarms & bit);
1551 		data->alarms &= ~bit;
1552 		data->alarms |= data->current_alarms;
1553 		break;
1554 	case hwmon_temp_min:
1555 		*val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1556 		break;
1557 	case hwmon_temp_max:
1558 		*val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1559 		break;
1560 	case hwmon_temp_crit:
1561 		*val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1562 		break;
1563 	case hwmon_temp_crit_hyst:
1564 		*val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1565 		break;
1566 	case hwmon_temp_emergency:
1567 		*val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1568 		break;
1569 	case hwmon_temp_emergency_hyst:
1570 		*val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1571 		break;
1572 	case hwmon_temp_offset:
1573 		*val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1574 		break;
1575 	default:
1576 		return -EOPNOTSUPP;
1577 	}
1578 	return 0;
1579 }
1580 
1581 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1582 {
1583 	struct lm90_data *data = dev_get_drvdata(dev);
1584 	int err;
1585 
1586 	mutex_lock(&data->update_lock);
1587 
1588 	err = lm90_update_device(dev);
1589 	if (err)
1590 		goto error;
1591 
1592 	switch (attr) {
1593 	case hwmon_temp_min:
1594 		err = lm90_set_temp(data, lm90_temp_min_index[channel],
1595 				    channel, val);
1596 		break;
1597 	case hwmon_temp_max:
1598 		err = lm90_set_temp(data, lm90_temp_max_index[channel],
1599 				    channel, val);
1600 		break;
1601 	case hwmon_temp_crit:
1602 		err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1603 				    channel, val);
1604 		break;
1605 	case hwmon_temp_crit_hyst:
1606 		err = lm90_set_temphyst(data, val);
1607 		break;
1608 	case hwmon_temp_emergency:
1609 		err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1610 				    channel, val);
1611 		break;
1612 	case hwmon_temp_offset:
1613 		err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1614 					   channel, val);
1615 		break;
1616 	default:
1617 		err = -EOPNOTSUPP;
1618 		break;
1619 	}
1620 error:
1621 	mutex_unlock(&data->update_lock);
1622 
1623 	return err;
1624 }
1625 
1626 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1627 {
1628 	switch (attr) {
1629 	case hwmon_temp_input:
1630 	case hwmon_temp_min_alarm:
1631 	case hwmon_temp_max_alarm:
1632 	case hwmon_temp_crit_alarm:
1633 	case hwmon_temp_emergency_alarm:
1634 	case hwmon_temp_emergency_hyst:
1635 	case hwmon_temp_fault:
1636 	case hwmon_temp_label:
1637 		return 0444;
1638 	case hwmon_temp_min:
1639 	case hwmon_temp_max:
1640 	case hwmon_temp_crit:
1641 	case hwmon_temp_emergency:
1642 	case hwmon_temp_offset:
1643 		return 0644;
1644 	case hwmon_temp_crit_hyst:
1645 		if (channel == 0)
1646 			return 0644;
1647 		return 0444;
1648 	default:
1649 		return 0;
1650 	}
1651 }
1652 
1653 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1654 {
1655 	struct lm90_data *data = dev_get_drvdata(dev);
1656 	int err;
1657 
1658 	mutex_lock(&data->update_lock);
1659 	err = lm90_update_device(dev);
1660 	mutex_unlock(&data->update_lock);
1661 	if (err)
1662 		return err;
1663 
1664 	switch (attr) {
1665 	case hwmon_chip_update_interval:
1666 		*val = data->update_interval;
1667 		break;
1668 	case hwmon_chip_alarms:
1669 		*val = data->alarms;
1670 		break;
1671 	case hwmon_chip_temp_samples:
1672 		if (data->faultqueue_mask) {
1673 			*val = (data->config & data->faultqueue_mask) ?
1674 				data->faultqueue_depth : 1;
1675 		} else {
1676 			switch (data->conalert & 0x0e) {
1677 			case 0x0:
1678 			default:
1679 				*val = 1;
1680 				break;
1681 			case 0x2:
1682 				*val = 2;
1683 				break;
1684 			case 0x6:
1685 				*val = 3;
1686 				break;
1687 			case 0xe:
1688 				*val = 4;
1689 				break;
1690 			}
1691 		}
1692 		break;
1693 	default:
1694 		return -EOPNOTSUPP;
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1701 {
1702 	struct lm90_data *data = dev_get_drvdata(dev);
1703 	struct i2c_client *client = data->client;
1704 	int err;
1705 
1706 	mutex_lock(&data->update_lock);
1707 
1708 	err = lm90_update_device(dev);
1709 	if (err)
1710 		goto error;
1711 
1712 	switch (attr) {
1713 	case hwmon_chip_update_interval:
1714 		err = lm90_set_convrate(client, data,
1715 					clamp_val(val, 0, 100000));
1716 		break;
1717 	case hwmon_chip_temp_samples:
1718 		err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1719 		break;
1720 	default:
1721 		err = -EOPNOTSUPP;
1722 		break;
1723 	}
1724 error:
1725 	mutex_unlock(&data->update_lock);
1726 
1727 	return err;
1728 }
1729 
1730 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1731 {
1732 	switch (attr) {
1733 	case hwmon_chip_update_interval:
1734 	case hwmon_chip_temp_samples:
1735 		return 0644;
1736 	case hwmon_chip_alarms:
1737 		return 0444;
1738 	default:
1739 		return 0;
1740 	}
1741 }
1742 
1743 static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1744 		     u32 attr, int channel, long *val)
1745 {
1746 	switch (type) {
1747 	case hwmon_chip:
1748 		return lm90_chip_read(dev, attr, channel, val);
1749 	case hwmon_temp:
1750 		return lm90_temp_read(dev, attr, channel, val);
1751 	default:
1752 		return -EOPNOTSUPP;
1753 	}
1754 }
1755 
1756 static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1757 			    u32 attr, int channel, const char **str)
1758 {
1759 	struct lm90_data *data = dev_get_drvdata(dev);
1760 
1761 	*str = data->channel_label[channel];
1762 
1763 	return 0;
1764 }
1765 
1766 static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1767 		      u32 attr, int channel, long val)
1768 {
1769 	switch (type) {
1770 	case hwmon_chip:
1771 		return lm90_chip_write(dev, attr, channel, val);
1772 	case hwmon_temp:
1773 		return lm90_temp_write(dev, attr, channel, val);
1774 	default:
1775 		return -EOPNOTSUPP;
1776 	}
1777 }
1778 
1779 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1780 			       u32 attr, int channel)
1781 {
1782 	switch (type) {
1783 	case hwmon_chip:
1784 		return lm90_chip_is_visible(data, attr, channel);
1785 	case hwmon_temp:
1786 		return lm90_temp_is_visible(data, attr, channel);
1787 	default:
1788 		return 0;
1789 	}
1790 }
1791 
1792 static const char *lm90_detect_lm84(struct i2c_client *client)
1793 {
1794 	static const u8 regs[] = {
1795 		LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1796 		LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1797 	};
1798 	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1799 	int reg1, reg2, reg3, reg4;
1800 	bool nonzero = false;
1801 	u8 ff = 0xff;
1802 	int i;
1803 
1804 	if (status < 0 || (status & 0xab))
1805 		return NULL;
1806 
1807 	/*
1808 	 * For LM84, undefined registers return the most recent value.
1809 	 * Repeat several times, each time checking against a different
1810 	 * (presumably) existing register.
1811 	 */
1812 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
1813 		reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1814 		reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1815 		reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1816 		reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1817 
1818 		if (reg1 < 0)
1819 			return NULL;
1820 
1821 		/* If any register has a different value, this is not an LM84 */
1822 		if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1823 			return NULL;
1824 
1825 		nonzero |= reg1 || reg2 || reg3 || reg4;
1826 		ff &= reg1;
1827 	}
1828 	/*
1829 	 * If all registers always returned 0 or 0xff, all bets are off,
1830 	 * and we can not make any predictions about the chip type.
1831 	 */
1832 	return nonzero && ff != 0xff ? "lm84" : NULL;
1833 }
1834 
1835 static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1836 {
1837 	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1838 	int llo, rlo, lhi, rhi;
1839 
1840 	if (status < 0 || (status & 0x03))
1841 		return NULL;
1842 
1843 	if (config1 & 0x3f)
1844 		return NULL;
1845 
1846 	/*
1847 	 * Fail if unsupported registers return anything but 0xff.
1848 	 * The calling code already checked man_id and chip_id.
1849 	 * A byte read operation repeats the most recent read operation
1850 	 * and should also return 0xff.
1851 	 */
1852 	if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1853 	    i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1854 	    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1855 	    i2c_smbus_read_byte(client) != 0xff)
1856 		return NULL;
1857 
1858 	llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1859 	rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1860 
1861 	lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1862 	rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1863 
1864 	if (llo < 0 || rlo < 0)
1865 		return NULL;
1866 
1867 	/*
1868 	 * A byte read operation repeats the most recent read and should
1869 	 * return the same value.
1870 	 */
1871 	if (i2c_smbus_read_byte(client) != rhi)
1872 		return NULL;
1873 
1874 	/*
1875 	 * The following two checks are marginal since the checked values
1876 	 * are strictly speaking valid.
1877 	 */
1878 
1879 	/* fail for negative high limits; this also catches read errors */
1880 	if ((s8)lhi < 0 || (s8)rhi < 0)
1881 		return NULL;
1882 
1883 	/* fail if low limits are larger than or equal to high limits */
1884 	if ((s8)llo >= lhi || (s8)rlo >= rhi)
1885 		return NULL;
1886 
1887 	if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1888 		/*
1889 		 * Word read operations return 0xff in second byte
1890 		 */
1891 		if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1892 						0xffff)
1893 			return NULL;
1894 		if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1895 						(config1 | 0xff00))
1896 			return NULL;
1897 		if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1898 						(lhi | 0xff00))
1899 			return NULL;
1900 	}
1901 
1902 	return "max1617";
1903 }
1904 
1905 static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1906 					int config1, int convrate)
1907 {
1908 	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1909 	int address = client->addr;
1910 	const char *name = NULL;
1911 
1912 	if (config2 < 0)
1913 		return NULL;
1914 
1915 	if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1916 		return NULL;
1917 
1918 	if (address != 0x4c && address != 0x4d)
1919 		return NULL;
1920 
1921 	switch (chip_id & 0xf0) {
1922 	case 0x10:	/* LM86 */
1923 		if (address == 0x4c)
1924 			name = "lm86";
1925 		break;
1926 	case 0x20:	/* LM90 */
1927 		if (address == 0x4c)
1928 			name = "lm90";
1929 		break;
1930 	case 0x30:	/* LM89/LM99 */
1931 		name = "lm99";	/* detect LM89 as LM99 */
1932 		break;
1933 	default:
1934 		break;
1935 	}
1936 
1937 	return name;
1938 }
1939 
1940 static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1941 				  int convrate)
1942 {
1943 	int address = client->addr;
1944 	const char *name = NULL;
1945 
1946 	switch (chip_id) {
1947 	case 0xca:		/* NCT218 */
1948 		if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1949 		    convrate <= 0x0a)
1950 			name = "nct218";
1951 		break;
1952 	default:
1953 		break;
1954 	}
1955 	return name;
1956 }
1957 
1958 static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1959 				      int chip_id, int config1, int convrate)
1960 {
1961 	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1962 	int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1963 	int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1964 	int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1965 	int address = client->addr;
1966 	const char *name = NULL;
1967 
1968 	if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1969 		return NULL;
1970 
1971 	/*
1972 	 * The following chips should be detected by this function. Known
1973 	 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1974 	 * for most of the chips, yet appear to return a well defined value.
1975 	 * Register 0xff is undocumented for some of the chips. Register 0x3f
1976 	 * is undocumented for all chips, but also returns a well defined value.
1977 	 * Values are as reported from real chips unless mentioned otherwise.
1978 	 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1979 	 * but not for register 0x3f.
1980 	 *
1981 	 * Chip			Register
1982 	 *		3d	3e	3f	fe	ff	Notes
1983 	 * ----------------------------------------------------------
1984 	 * adm1020	00	00	00	41	39
1985 	 * adm1021	00	00	00	41	03
1986 	 * adm1021a	00	00	00	41	3c
1987 	 * adm1023	00	00	00	41	3c	same as adm1021a
1988 	 * adm1032	00	00	00	41	42
1989 	 *
1990 	 * adt7421	21	41	04	41	04
1991 	 * adt7461	00	00	00	41	51
1992 	 * adt7461a	61	41	05	41	57
1993 	 * adt7481	81	41	02	41	62
1994 	 * adt7482	-	-	-	41	65	datasheet
1995 	 *		82	41	05	41	75	real chip
1996 	 * adt7483	83	41	04	41	94
1997 	 *
1998 	 * nct72	61	41	07	41	55
1999 	 * nct210	00	00	00	41	3f
2000 	 * nct214	61	41	08	41	5a
2001 	 * nct1008	-	-	-	41	57	datasheet rev. 3
2002 	 *		61	41	06	41	54	real chip
2003 	 *
2004 	 * nvt210	-	-	-	41	-	datasheet
2005 	 * nvt211	-	-	-	41	-	datasheet
2006 	 */
2007 	switch (chip_id) {
2008 	case 0x00 ... 0x03:	/* ADM1021 */
2009 	case 0x05 ... 0x0f:
2010 		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2011 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2012 			name = "adm1021";
2013 		break;
2014 	case 0x04:		/* ADT7421 (undocumented) */
2015 		if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2016 		    (address == 0x4c || address == 0x4d) &&
2017 		    (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2018 			name = "adt7421";
2019 		break;
2020 	case 0x30 ... 0x38:	/* ADM1021A, ADM1023 */
2021 	case 0x3a ... 0x3e:
2022 		/*
2023 		 * ADM1021A and compatible chips will be mis-detected as
2024 		 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2025 		 * found to have a Chip ID of 0x3c.
2026 		 * ADM1021A does not officially support low byte registers
2027 		 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2028 		 * Official support for the temperature offset high byte
2029 		 * register (0x11) was added to revision F of the ADM1021A
2030 		 * datasheet.
2031 		 * It is currently unknown if there is a means to distinguish
2032 		 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2033 		 * which differ in functionality from ADM1023.
2034 		 */
2035 		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2036 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2037 			name = "adm1023";
2038 		break;
2039 	case 0x39:		/* ADM1020 (undocumented) */
2040 		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2041 		    (address == 0x4c || address == 0x4d || address == 0x4e) &&
2042 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2043 			name = "adm1020";
2044 		break;
2045 	case 0x3f:		/* NCT210 */
2046 		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2047 		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2048 			name = "nct210";
2049 		break;
2050 	case 0x40 ... 0x4f:	/* ADM1032 */
2051 		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2052 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2053 		    convrate <= 0x0a)
2054 			name = "adm1032";
2055 		break;
2056 	case 0x51:	/* ADT7461 */
2057 		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2058 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2059 		    convrate <= 0x0a)
2060 			name = "adt7461";
2061 		break;
2062 	case 0x54:	/* NCT1008 */
2063 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2064 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2065 		    convrate <= 0x0a)
2066 			name = "nct1008";
2067 		break;
2068 	case 0x55:	/* NCT72 */
2069 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2070 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2071 		    convrate <= 0x0a)
2072 			name = "nct72";
2073 		break;
2074 	case 0x57:	/* ADT7461A, NCT1008 (datasheet rev. 3) */
2075 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2076 		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2077 		    convrate <= 0x0a)
2078 			name = "adt7461a";
2079 		break;
2080 	case 0x5a:	/* NCT214 */
2081 		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2082 		    common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2083 			name = "nct214";
2084 		break;
2085 	case 0x62:	/* ADT7481, undocumented */
2086 		if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2087 		    (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2088 		    !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2089 			name = "adt7481";
2090 		}
2091 		break;
2092 	case 0x65:	/* ADT7482, datasheet */
2093 	case 0x75:	/* ADT7482, real chip */
2094 		if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2095 		    address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2096 		    convrate <= 0x0a)
2097 			name = "adt7482";
2098 		break;
2099 	case 0x94:	/* ADT7483 */
2100 		if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2101 		    common_address &&
2102 		    ((address >= 0x18 && address <= 0x1a) ||
2103 		     (address >= 0x29 && address <= 0x2b) ||
2104 		     (address >= 0x4c && address <= 0x4e)) &&
2105 		    !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2106 			name = "adt7483a";
2107 		break;
2108 	default:
2109 		break;
2110 	}
2111 
2112 	return name;
2113 }
2114 
2115 static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2116 				     int chip_id, int config1, int convrate)
2117 {
2118 	int man_id, emerg, emerg2, status2;
2119 	int address = client->addr;
2120 	const char *name = NULL;
2121 
2122 	switch (chip_id) {
2123 	case 0x01:
2124 		if (!common_address)
2125 			break;
2126 
2127 		/*
2128 		 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2129 		 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2130 		 * exists, both readings will reflect the same value. Otherwise,
2131 		 * the readings will be different.
2132 		 */
2133 		emerg = i2c_smbus_read_byte_data(client,
2134 						 MAX6659_REG_REMOTE_EMERG);
2135 		man_id = i2c_smbus_read_byte_data(client,
2136 						  LM90_REG_MAN_ID);
2137 		emerg2 = i2c_smbus_read_byte_data(client,
2138 						  MAX6659_REG_REMOTE_EMERG);
2139 		status2 = i2c_smbus_read_byte_data(client,
2140 						   MAX6696_REG_STATUS2);
2141 		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2142 			return NULL;
2143 
2144 		/*
2145 		 * Even though MAX6695 and MAX6696 do not have a chip ID
2146 		 * register, reading it returns 0x01. Bit 4 of the config1
2147 		 * register is unused and should return zero when read. Bit 0 of
2148 		 * the status2 register is unused and should return zero when
2149 		 * read.
2150 		 *
2151 		 * MAX6695 and MAX6696 have an additional set of temperature
2152 		 * limit registers. We can detect those chips by checking if
2153 		 * one of those registers exists.
2154 		 */
2155 		if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2156 		    convrate <= 0x07)
2157 			name = "max6696";
2158 		/*
2159 		 * The chip_id register of the MAX6680 and MAX6681 holds the
2160 		 * revision of the chip. The lowest bit of the config1 register
2161 		 * is unused and should return zero when read, so should the
2162 		 * second to last bit of config1 (software reset). Register
2163 		 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2164 		 * should differ from emerg2, and emerg2 should match man_id
2165 		 * since it does not exist.
2166 		 */
2167 		else if (!(config1 & 0x03) && convrate <= 0x07 &&
2168 			 emerg2 == man_id && emerg2 != status2)
2169 			name = "max6680";
2170 		/*
2171 		 * MAX1617A does not have any extended registers (register
2172 		 * address 0x10 or higher) except for manufacturer and
2173 		 * device ID registers. Unlike other chips of this series,
2174 		 * unsupported registers were observed to return a fixed value
2175 		 * of 0x01.
2176 		 * Note: Multiple chips with different markings labeled as
2177 		 * "MAX1617" (no "A") were observed to report manufacturer ID
2178 		 * 0x4d and device ID 0x01. It is unknown if other variants of
2179 		 * MAX1617/MAX617A with different behavior exist. The detection
2180 		 * code below works for those chips.
2181 		 */
2182 		else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2183 			 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2184 			name = "max1617";
2185 		break;
2186 	case 0x08:
2187 		/*
2188 		 * The chip_id of the MAX6654 holds the revision of the chip.
2189 		 * The lowest 3 bits of the config1 register are unused and
2190 		 * should return zero when read.
2191 		 */
2192 		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2193 			name = "max6654";
2194 		break;
2195 	case 0x09:
2196 		/*
2197 		 * The chip_id of the MAX6690 holds the revision of the chip.
2198 		 * The lowest 3 bits of the config1 register are unused and
2199 		 * should return zero when read.
2200 		 * Note that MAX6654 and MAX6690 are practically the same chips.
2201 		 * The only diference is the rated accuracy. Rev. 1 of the
2202 		 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2203 		 * MAX6654 was observed to have a chip ID of 0x09.
2204 		 */
2205 		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2206 			name = "max6690";
2207 		break;
2208 	case 0x4d:
2209 		/*
2210 		 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2211 		 * register. Reading from that address will return the last
2212 		 * read value, which in our case is those of the man_id
2213 		 * register, or 0x4d.
2214 		 * MAX6642 does not have a conversion rate register, nor low
2215 		 * limit registers. Reading from those registers returns the
2216 		 * last read value.
2217 		 *
2218 		 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2219 		 * a low nibble, so the value will be those of the previous
2220 		 * read, so in our case again those of the man_id register.
2221 		 * MAX6659 has a third set of upper temperature limit registers.
2222 		 * Those registers also return values on MAX6657 and MAX6658,
2223 		 * thus the only way to detect MAX6659 is by its address.
2224 		 * For this reason it will be mis-detected as MAX6657 if its
2225 		 * address is 0x4c.
2226 		 */
2227 		if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2228 		    !(config1 & 0x0f)) {
2229 			int regval;
2230 
2231 			/*
2232 			 * We know that this is not a MAX6657/58/59 because its
2233 			 * configuration register has the wrong value and it does
2234 			 * not appear to have a conversion rate register.
2235 			 */
2236 
2237 			/* re-read manufacturer ID to have a good baseline */
2238 			if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2239 				break;
2240 
2241 			/* check various non-existing registers */
2242 			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2243 			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2244 			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2245 				break;
2246 
2247 			/* check for unused status register bits */
2248 			regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2249 			if (regval < 0 || (regval & 0x2b))
2250 				break;
2251 
2252 			/* re-check unsupported registers */
2253 			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2254 			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2255 			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2256 				break;
2257 
2258 			name = "max6642";
2259 		} else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2260 			   (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2261 			if (address == 0x4c)
2262 				name = "max6657";
2263 			else
2264 				name = "max6659";
2265 		}
2266 		break;
2267 	case 0x59:
2268 		/*
2269 		 * The chip_id register of the MAX6646/6647/6649 holds the
2270 		 * revision of the chip. The lowest 6 bits of the config1
2271 		 * register are unused and should return zero when read.
2272 		 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2273 		 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2274 		 * and MAX6649 is at address 0x4c. A slight difference between
2275 		 * the two sets of chips is that the remote temperature register
2276 		 * reports different values if the DXP pin is open or shorted.
2277 		 * We can use that information to help distinguish between the
2278 		 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2279 		 * diode is connected, but there isn't really anything we can
2280 		 * do about that.
2281 		 */
2282 		if (!(config1 & 0x3f) && convrate <= 0x07) {
2283 			int temp;
2284 
2285 			switch (address) {
2286 			case 0x4c:
2287 				/*
2288 				 * MAX6649 reports an external temperature
2289 				 * value of 0xff if DXP is open or shorted.
2290 				 * MAX6648 reports 0x80 in that case.
2291 				 */
2292 				temp = i2c_smbus_read_byte_data(client,
2293 								LM90_REG_REMOTE_TEMPH);
2294 				if (temp == 0x80)
2295 					name = "max6648";
2296 				else
2297 					name = "max6649";
2298 				break;
2299 			case 0x4d:
2300 				name = "max6646";
2301 				break;
2302 			case 0x4e:
2303 				name = "max6647";
2304 				break;
2305 			default:
2306 				break;
2307 			}
2308 		}
2309 		break;
2310 	default:
2311 		break;
2312 	}
2313 
2314 	return name;
2315 }
2316 
2317 static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2318 				       int config1, int convrate)
2319 {
2320 	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2321 	int address = client->addr;
2322 	const char *name = NULL;
2323 
2324 	if (config2 < 0)
2325 		return NULL;
2326 
2327 	if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2328 		if (chip_id == 0x01 && convrate <= 0x09) {
2329 			/* W83L771W/G */
2330 			name = "w83l771";
2331 		} else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2332 			/* W83L771AWG/ASG */
2333 			name = "w83l771";
2334 		}
2335 	}
2336 	return name;
2337 }
2338 
2339 static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2340 				   int chip_id, int config1, int convrate)
2341 {
2342 	int address = client->addr;
2343 	const char *name = NULL;
2344 	int config2;
2345 
2346 	switch (chip_id) {
2347 	case 0x00:
2348 		config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2349 		if (config2 < 0)
2350 			return NULL;
2351 		if (address >= 0x48 && address <= 0x4f &&
2352 		    !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2353 			name = "sa56004";
2354 		break;
2355 	case 0x80:
2356 		if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2357 			name = "ne1618";
2358 		break;
2359 	default:
2360 		break;
2361 	}
2362 	return name;
2363 }
2364 
2365 static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2366 				   int config1, int convrate)
2367 {
2368 	int address = client->addr;
2369 
2370 	/*
2371 	 * According to the datasheet, G781 is supposed to be at I2C Address
2372 	 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2373 	 * address 0x4d and have a chip ID of 0x03. However, when support
2374 	 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2375 	 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2376 	 * chip ID 0x03.
2377 	 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2378 	 * addresses.
2379 	 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2380 	 * datasheet is not available. Extensive testing suggests that
2381 	 * the chip appears to be fully compatible with G781.
2382 	 * Available register dumps show that G751 also reports manufacturer
2383 	 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2384 	 * support those registers. This makes chip detection somewhat
2385 	 * vulnerable. To improve detection quality, read the offset low byte
2386 	 * and alert fault queue registers and verify that only expected bits
2387 	 * are set.
2388 	 */
2389 	if ((chip_id == 0x01 || chip_id == 0x03) &&
2390 	    (address == 0x4c || address == 0x4d) &&
2391 	    !(config1 & 0x3f) && convrate <= 0x08) {
2392 		int reg;
2393 
2394 		reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2395 		if (reg < 0 || reg & 0x1f)
2396 			return NULL;
2397 		reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2398 		if (reg < 0 || reg & 0xf1)
2399 			return NULL;
2400 
2401 		return "g781";
2402 	}
2403 
2404 	return NULL;
2405 }
2406 
2407 static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2408 				    int chip_id, int config1, int convrate)
2409 {
2410 	if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2411 		/* THMC10: Unsupported registers return 0xff */
2412 		if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2413 		    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2414 			return "thmc10";
2415 	}
2416 	return NULL;
2417 }
2418 
2419 static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2420 				  int config1, int convrate)
2421 {
2422 	int address = client->addr;
2423 	const char *name = NULL;
2424 
2425 	if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2426 		int local_ext, conalert, chen, dfc;
2427 
2428 		local_ext = i2c_smbus_read_byte_data(client,
2429 						     TMP451_REG_LOCAL_TEMPL);
2430 		conalert = i2c_smbus_read_byte_data(client,
2431 						    TMP451_REG_CONALERT);
2432 		chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2433 		dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2434 
2435 		if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2436 		    (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2437 			if (address == 0x4c && !(chen & 0x03))
2438 				name = "tmp451";
2439 			else if (address >= 0x48 && address <= 0x4f)
2440 				name = "tmp461";
2441 		}
2442 	}
2443 
2444 	return name;
2445 }
2446 
2447 /* Return 0 if detection is successful, -ENODEV otherwise */
2448 static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2449 {
2450 	struct i2c_adapter *adapter = client->adapter;
2451 	int man_id, chip_id, config1, convrate, lhigh;
2452 	const char *name = NULL;
2453 	int address = client->addr;
2454 	bool common_address =
2455 			(address >= 0x18 && address <= 0x1a) ||
2456 			(address >= 0x29 && address <= 0x2b) ||
2457 			(address >= 0x4c && address <= 0x4e);
2458 
2459 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2460 		return -ENODEV;
2461 
2462 	/*
2463 	 * Get well defined register value for chips with neither man_id nor
2464 	 * chip_id registers.
2465 	 */
2466 	lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2467 
2468 	/* detection and identification */
2469 	man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2470 	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2471 	config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2472 	convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2473 	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2474 		return -ENODEV;
2475 
2476 	/* Bail out immediately if all register report the same value */
2477 	if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2478 		return -ENODEV;
2479 
2480 	/*
2481 	 * If reading man_id and chip_id both return the same value as lhigh,
2482 	 * the chip may not support those registers and return the most recent read
2483 	 * value. Check again with a different register and handle accordingly.
2484 	 */
2485 	if (man_id == lhigh && chip_id == lhigh) {
2486 		convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2487 		man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2488 		chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2489 		if (convrate < 0 || man_id < 0 || chip_id < 0)
2490 			return -ENODEV;
2491 		if (man_id == convrate && chip_id == convrate)
2492 			man_id = -1;
2493 	}
2494 	switch (man_id) {
2495 	case -1:	/* Chip does not support man_id / chip_id */
2496 		if (common_address && !convrate && !(config1 & 0x7f))
2497 			name = lm90_detect_lm84(client);
2498 		break;
2499 	case 0x01:	/* National Semiconductor */
2500 		name = lm90_detect_national(client, chip_id, config1, convrate);
2501 		break;
2502 	case 0x1a:	/* ON */
2503 		name = lm90_detect_on(client, chip_id, config1, convrate);
2504 		break;
2505 	case 0x23:	/* Genesys Logic */
2506 		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2507 			name = "gl523sm";
2508 		break;
2509 	case 0x41:	/* Analog Devices */
2510 		name = lm90_detect_analog(client, common_address, chip_id, config1,
2511 					  convrate);
2512 		break;
2513 	case 0x47:	/* GMT */
2514 		name = lm90_detect_gmt(client, chip_id, config1, convrate);
2515 		break;
2516 	case 0x49:	/* TI */
2517 		name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2518 		break;
2519 	case 0x4d:	/* Maxim Integrated */
2520 		name = lm90_detect_maxim(client, common_address, chip_id,
2521 					 config1, convrate);
2522 		break;
2523 	case 0x54:	/* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2524 		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2525 			name = "mc1066";
2526 		break;
2527 	case 0x55:	/* TI */
2528 		name = lm90_detect_ti(client, chip_id, config1, convrate);
2529 		break;
2530 	case 0x5c:	/* Winbond/Nuvoton */
2531 		name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2532 		break;
2533 	case 0xa1:	/*  NXP Semiconductor/Philips */
2534 		name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2535 		break;
2536 	case 0xff:	/* MAX1617, G767, NE1617 */
2537 		if (common_address && chip_id == 0xff && convrate < 8)
2538 			name = lm90_detect_max1617(client, config1);
2539 		break;
2540 	default:
2541 		break;
2542 	}
2543 
2544 	if (!name) {	/* identification failed */
2545 		dev_dbg(&adapter->dev,
2546 			"Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2547 			client->addr, man_id, chip_id);
2548 		return -ENODEV;
2549 	}
2550 
2551 	strscpy(info->type, name, I2C_NAME_SIZE);
2552 
2553 	return 0;
2554 }
2555 
2556 static void lm90_restore_conf(void *_data)
2557 {
2558 	struct lm90_data *data = _data;
2559 	struct i2c_client *client = data->client;
2560 
2561 	cancel_delayed_work_sync(&data->alert_work);
2562 	cancel_work_sync(&data->report_work);
2563 
2564 	/* Restore initial configuration */
2565 	if (data->flags & LM90_HAVE_CONVRATE)
2566 		lm90_write_convrate(data, data->convrate_orig);
2567 	lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2568 }
2569 
2570 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2571 {
2572 	struct device_node *np = client->dev.of_node;
2573 	int config, convrate;
2574 
2575 	if (data->flags & LM90_HAVE_CONVRATE) {
2576 		convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2577 		if (convrate < 0)
2578 			return convrate;
2579 		data->convrate_orig = convrate;
2580 		lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2581 	} else {
2582 		data->update_interval = 500;
2583 	}
2584 
2585 	/*
2586 	 * Start the conversions.
2587 	 */
2588 	config = lm90_read_reg(client, LM90_REG_CONFIG1);
2589 	if (config < 0)
2590 		return config;
2591 	data->config_orig = config;
2592 	data->config = config;
2593 
2594 	/* Check Temperature Range Select */
2595 	if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2596 		if (of_property_read_bool(np, "ti,extended-range-enable"))
2597 			config |= 0x04;
2598 		if (!(config & 0x04))
2599 			data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2600 	}
2601 
2602 	/*
2603 	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2604 	 * 0.125 degree resolution) and range (0x08, extend range
2605 	 * to -64 degree) mode for the remote temperature sensor.
2606 	 * Note that expeciments with an actual chip do not show a difference
2607 	 * if bit 3 is set or not.
2608 	 */
2609 	if (data->kind == max6680)
2610 		config |= 0x18;
2611 
2612 	/*
2613 	 * Put MAX6654 into extended range (0x20, extend minimum range from
2614 	 * 0 degrees to -64 degrees). Note that extended resolution is not
2615 	 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2616 	 * slower, which is intentionally not done by default.
2617 	 */
2618 	if (data->kind == max6654)
2619 		config |= 0x20;
2620 
2621 	/*
2622 	 * Select external channel 0 for devices with three sensors
2623 	 */
2624 	if (data->flags & LM90_HAVE_TEMP3)
2625 		config &= ~0x08;
2626 
2627 	/*
2628 	 * Interrupt is enabled by default on reset, but it may be disabled
2629 	 * by bootloader, unmask it.
2630 	 */
2631 	if (client->irq)
2632 		config &= ~0x80;
2633 
2634 	config &= 0xBF;	/* run */
2635 	lm90_update_confreg(data, config);
2636 
2637 	return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2638 }
2639 
2640 static bool lm90_is_tripped(struct i2c_client *client)
2641 {
2642 	struct lm90_data *data = i2c_get_clientdata(client);
2643 	int ret;
2644 
2645 	ret = lm90_update_alarms(data, true);
2646 	if (ret < 0)
2647 		return false;
2648 
2649 	return !!data->current_alarms;
2650 }
2651 
2652 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2653 {
2654 	struct i2c_client *client = dev_id;
2655 
2656 	if (lm90_is_tripped(client))
2657 		return IRQ_HANDLED;
2658 	else
2659 		return IRQ_NONE;
2660 }
2661 
2662 static void lm90_remove_pec(void *dev)
2663 {
2664 	device_remove_file(dev, &dev_attr_pec);
2665 }
2666 
2667 static int lm90_probe_channel_from_dt(struct i2c_client *client,
2668 				      struct device_node *child,
2669 				      struct lm90_data *data)
2670 {
2671 	u32 id;
2672 	s32 val;
2673 	int err;
2674 	struct device *dev = &client->dev;
2675 
2676 	err = of_property_read_u32(child, "reg", &id);
2677 	if (err) {
2678 		dev_err(dev, "missing reg property of %pOFn\n", child);
2679 		return err;
2680 	}
2681 
2682 	if (id >= MAX_CHANNELS) {
2683 		dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2684 		return -EINVAL;
2685 	}
2686 
2687 	err = of_property_read_string(child, "label", &data->channel_label[id]);
2688 	if (err == -ENODATA || err == -EILSEQ) {
2689 		dev_err(dev, "invalid label property in %pOFn\n", child);
2690 		return err;
2691 	}
2692 
2693 	if (data->channel_label[id])
2694 		data->channel_config[id] |= HWMON_T_LABEL;
2695 
2696 	err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2697 	if (!err) {
2698 		if (id == 0) {
2699 			dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2700 			return -EINVAL;
2701 		}
2702 
2703 		err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2704 		if (err) {
2705 			dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2706 				val, id, err);
2707 			return err;
2708 		}
2709 	}
2710 
2711 	return 0;
2712 }
2713 
2714 static int lm90_parse_dt_channel_info(struct i2c_client *client,
2715 				      struct lm90_data *data)
2716 {
2717 	int err;
2718 	struct device_node *child;
2719 	struct device *dev = &client->dev;
2720 	const struct device_node *np = dev->of_node;
2721 
2722 	for_each_child_of_node(np, child) {
2723 		if (strcmp(child->name, "channel"))
2724 			continue;
2725 
2726 		err = lm90_probe_channel_from_dt(client, child, data);
2727 		if (err) {
2728 			of_node_put(child);
2729 			return err;
2730 		}
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 static const struct hwmon_ops lm90_ops = {
2737 	.is_visible = lm90_is_visible,
2738 	.read = lm90_read,
2739 	.read_string = lm90_read_string,
2740 	.write = lm90_write,
2741 };
2742 
2743 static int lm90_probe(struct i2c_client *client)
2744 {
2745 	struct device *dev = &client->dev;
2746 	struct i2c_adapter *adapter = client->adapter;
2747 	struct hwmon_channel_info *info;
2748 	struct device *hwmon_dev;
2749 	struct lm90_data *data;
2750 	int err;
2751 
2752 	err = devm_regulator_get_enable(dev, "vcc");
2753 	if (err)
2754 		return dev_err_probe(dev, err, "Failed to enable regulator\n");
2755 
2756 	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2757 	if (!data)
2758 		return -ENOMEM;
2759 
2760 	data->client = client;
2761 	i2c_set_clientdata(client, data);
2762 	mutex_init(&data->update_lock);
2763 	INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2764 	INIT_WORK(&data->report_work, lm90_report_alarms);
2765 
2766 	/* Set the device type */
2767 	if (client->dev.of_node)
2768 		data->kind = (enum chips)of_device_get_match_data(&client->dev);
2769 	else
2770 		data->kind = i2c_match_id(lm90_id, client)->driver_data;
2771 
2772 	/*
2773 	 * Different devices have different alarm bits triggering the
2774 	 * ALERT# output
2775 	 */
2776 	data->alert_alarms = lm90_params[data->kind].alert_alarms;
2777 	data->resolution = lm90_params[data->kind].resolution ? : 11;
2778 
2779 	/* Set chip capabilities */
2780 	data->flags = lm90_params[data->kind].flags;
2781 
2782 	if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2783 	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2784 		data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2785 
2786 	if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2787 	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2788 		data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2789 
2790 	data->chip.ops = &lm90_ops;
2791 	data->chip.info = data->info;
2792 
2793 	data->info[0] = &data->chip_info;
2794 	info = &data->chip_info;
2795 	info->type = hwmon_chip;
2796 	info->config = data->chip_config;
2797 
2798 	data->chip_config[0] = HWMON_C_REGISTER_TZ;
2799 	if (data->flags & LM90_HAVE_ALARMS)
2800 		data->chip_config[0] |= HWMON_C_ALARMS;
2801 	if (data->flags & LM90_HAVE_CONVRATE)
2802 		data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2803 	if (data->flags & LM90_HAVE_FAULTQUEUE)
2804 		data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2805 	data->info[1] = &data->temp_info;
2806 
2807 	info = &data->temp_info;
2808 	info->type = hwmon_temp;
2809 	info->config = data->channel_config;
2810 
2811 	data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2812 		HWMON_T_MAX_ALARM;
2813 	data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2814 		HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2815 
2816 	if (data->flags & LM90_HAVE_LOW) {
2817 		data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2818 		data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2819 	}
2820 
2821 	if (data->flags & LM90_HAVE_CRIT) {
2822 		data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2823 		data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2824 	}
2825 
2826 	if (data->flags & LM90_HAVE_OFFSET)
2827 		data->channel_config[1] |= HWMON_T_OFFSET;
2828 
2829 	if (data->flags & LM90_HAVE_EMERGENCY) {
2830 		data->channel_config[0] |= HWMON_T_EMERGENCY |
2831 			HWMON_T_EMERGENCY_HYST;
2832 		data->channel_config[1] |= HWMON_T_EMERGENCY |
2833 			HWMON_T_EMERGENCY_HYST;
2834 	}
2835 
2836 	if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2837 		data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2838 		data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2839 	}
2840 
2841 	if (data->flags & LM90_HAVE_TEMP3) {
2842 		data->channel_config[2] = HWMON_T_INPUT |
2843 			HWMON_T_MIN | HWMON_T_MAX |
2844 			HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2845 			HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2846 			HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2847 		if (data->flags & LM90_HAVE_EMERGENCY) {
2848 			data->channel_config[2] |= HWMON_T_EMERGENCY |
2849 				HWMON_T_EMERGENCY_HYST;
2850 		}
2851 		if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2852 			data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2853 		if (data->flags & LM90_HAVE_OFFSET)
2854 			data->channel_config[2] |= HWMON_T_OFFSET;
2855 	}
2856 
2857 	data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2858 	data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2859 	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2860 	if (data->flags & LM90_HAVE_REMOTE_EXT)
2861 		data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2862 	data->reg_status2 = lm90_params[data->kind].reg_status2;
2863 
2864 	/* Set maximum conversion rate */
2865 	data->max_convrate = lm90_params[data->kind].max_convrate;
2866 
2867 	/* Parse device-tree channel information */
2868 	if (client->dev.of_node) {
2869 		err = lm90_parse_dt_channel_info(client, data);
2870 		if (err)
2871 			return err;
2872 	}
2873 
2874 	/* Initialize the LM90 chip */
2875 	err = lm90_init_client(client, data);
2876 	if (err < 0) {
2877 		dev_err(dev, "Failed to initialize device\n");
2878 		return err;
2879 	}
2880 
2881 	/*
2882 	 * The 'pec' attribute is attached to the i2c device and thus created
2883 	 * separately.
2884 	 */
2885 	if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
2886 		err = device_create_file(dev, &dev_attr_pec);
2887 		if (err)
2888 			return err;
2889 		err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
2890 		if (err)
2891 			return err;
2892 	}
2893 
2894 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2895 							 data, &data->chip,
2896 							 NULL);
2897 	if (IS_ERR(hwmon_dev))
2898 		return PTR_ERR(hwmon_dev);
2899 
2900 	data->hwmon_dev = hwmon_dev;
2901 
2902 	if (client->irq) {
2903 		dev_dbg(dev, "IRQ: %d\n", client->irq);
2904 		err = devm_request_threaded_irq(dev, client->irq,
2905 						NULL, lm90_irq_thread,
2906 						IRQF_ONESHOT, "lm90", client);
2907 		if (err < 0) {
2908 			dev_err(dev, "cannot request IRQ %d\n", client->irq);
2909 			return err;
2910 		}
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2917 		       unsigned int flag)
2918 {
2919 	if (type != I2C_PROTOCOL_SMBUS_ALERT)
2920 		return;
2921 
2922 	if (lm90_is_tripped(client)) {
2923 		/*
2924 		 * Disable ALERT# output, because these chips don't implement
2925 		 * SMBus alert correctly; they should only hold the alert line
2926 		 * low briefly.
2927 		 */
2928 		struct lm90_data *data = i2c_get_clientdata(client);
2929 
2930 		if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2931 		    (data->current_alarms & data->alert_alarms)) {
2932 			if (!(data->config & 0x80)) {
2933 				dev_dbg(&client->dev, "Disabling ALERT#\n");
2934 				lm90_update_confreg(data, data->config | 0x80);
2935 			}
2936 			schedule_delayed_work(&data->alert_work,
2937 				max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2938 		}
2939 	} else {
2940 		dev_dbg(&client->dev, "Everything OK\n");
2941 	}
2942 }
2943 
2944 static int lm90_suspend(struct device *dev)
2945 {
2946 	struct lm90_data *data = dev_get_drvdata(dev);
2947 	struct i2c_client *client = data->client;
2948 
2949 	if (client->irq)
2950 		disable_irq(client->irq);
2951 
2952 	return 0;
2953 }
2954 
2955 static int lm90_resume(struct device *dev)
2956 {
2957 	struct lm90_data *data = dev_get_drvdata(dev);
2958 	struct i2c_client *client = data->client;
2959 
2960 	if (client->irq)
2961 		enable_irq(client->irq);
2962 
2963 	return 0;
2964 }
2965 
2966 static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2967 
2968 static struct i2c_driver lm90_driver = {
2969 	.class		= I2C_CLASS_HWMON,
2970 	.driver = {
2971 		.name	= "lm90",
2972 		.of_match_table = of_match_ptr(lm90_of_match),
2973 		.pm	= pm_sleep_ptr(&lm90_pm_ops),
2974 	},
2975 	.probe_new	= lm90_probe,
2976 	.alert		= lm90_alert,
2977 	.id_table	= lm90_id,
2978 	.detect		= lm90_detect,
2979 	.address_list	= normal_i2c,
2980 };
2981 
2982 module_i2c_driver(lm90_driver);
2983 
2984 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2985 MODULE_DESCRIPTION("LM90/ADM1032 driver");
2986 MODULE_LICENSE("GPL");
2987