1 /* 2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> 6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de> 7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com> 8 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de> 9 * 10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/slab.h> 30 #include <linux/jiffies.h> 31 #include <linux/i2c.h> 32 #include <linux/hwmon.h> 33 #include <linux/hwmon-vid.h> 34 #include <linux/hwmon-sysfs.h> 35 #include <linux/err.h> 36 #include <linux/mutex.h> 37 38 /* Addresses to scan */ 39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; 40 41 enum chips { 42 lm85, 43 adm1027, adt7463, adt7468, 44 emc6d100, emc6d102, emc6d103, emc6d103s 45 }; 46 47 /* The LM85 registers */ 48 49 #define LM85_REG_IN(nr) (0x20 + (nr)) 50 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2) 51 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2) 52 53 #define LM85_REG_TEMP(nr) (0x25 + (nr)) 54 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2) 55 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2) 56 57 /* Fan speeds are LSB, MSB (2 bytes) */ 58 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2) 59 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2) 60 61 #define LM85_REG_PWM(nr) (0x30 + (nr)) 62 63 #define LM85_REG_COMPANY 0x3e 64 #define LM85_REG_VERSTEP 0x3f 65 66 #define ADT7468_REG_CFG5 0x7c 67 #define ADT7468_OFF64 (1 << 0) 68 #define ADT7468_HFPWM (1 << 1) 69 #define IS_ADT7468_OFF64(data) \ 70 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64)) 71 #define IS_ADT7468_HFPWM(data) \ 72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM)) 73 74 /* These are the recognized values for the above regs */ 75 #define LM85_COMPANY_NATIONAL 0x01 76 #define LM85_COMPANY_ANALOG_DEV 0x41 77 #define LM85_COMPANY_SMSC 0x5c 78 #define LM85_VERSTEP_LM85C 0x60 79 #define LM85_VERSTEP_LM85B 0x62 80 #define LM85_VERSTEP_LM96000_1 0x68 81 #define LM85_VERSTEP_LM96000_2 0x69 82 #define LM85_VERSTEP_ADM1027 0x60 83 #define LM85_VERSTEP_ADT7463 0x62 84 #define LM85_VERSTEP_ADT7463C 0x6A 85 #define LM85_VERSTEP_ADT7468_1 0x71 86 #define LM85_VERSTEP_ADT7468_2 0x72 87 #define LM85_VERSTEP_EMC6D100_A0 0x60 88 #define LM85_VERSTEP_EMC6D100_A1 0x61 89 #define LM85_VERSTEP_EMC6D102 0x65 90 #define LM85_VERSTEP_EMC6D103_A0 0x68 91 #define LM85_VERSTEP_EMC6D103_A1 0x69 92 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */ 93 94 #define LM85_REG_CONFIG 0x40 95 96 #define LM85_REG_ALARM1 0x41 97 #define LM85_REG_ALARM2 0x42 98 99 #define LM85_REG_VID 0x43 100 101 /* Automated FAN control */ 102 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr)) 103 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr)) 104 #define LM85_REG_AFAN_SPIKE1 0x62 105 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr)) 106 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr)) 107 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr)) 108 #define LM85_REG_AFAN_HYST1 0x6d 109 #define LM85_REG_AFAN_HYST2 0x6e 110 111 #define ADM1027_REG_EXTEND_ADC1 0x76 112 #define ADM1027_REG_EXTEND_ADC2 0x77 113 114 #define EMC6D100_REG_ALARM3 0x7d 115 /* IN5, IN6 and IN7 */ 116 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5)) 117 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2) 118 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2) 119 #define EMC6D102_REG_EXTEND_ADC1 0x85 120 #define EMC6D102_REG_EXTEND_ADC2 0x86 121 #define EMC6D102_REG_EXTEND_ADC3 0x87 122 #define EMC6D102_REG_EXTEND_ADC4 0x88 123 124 /* 125 * Conversions. Rounding and limit checking is only done on the TO_REG 126 * variants. Note that you should be a bit careful with which arguments 127 * these macros are called: arguments may be evaluated more than once. 128 */ 129 130 /* IN are scaled according to built-in resistors */ 131 static const int lm85_scaling[] = { /* .001 Volts */ 132 2500, 2250, 3300, 5000, 12000, 133 3300, 1500, 1800 /*EMC6D100*/ 134 }; 135 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from)) 136 137 #define INS_TO_REG(n, val) \ 138 clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255) 139 140 #define INSEXT_FROM_REG(n, val, ext) \ 141 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n]) 142 143 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n]) 144 145 /* FAN speed is measured using 90kHz clock */ 146 static inline u16 FAN_TO_REG(unsigned long val) 147 { 148 if (!val) 149 return 0xffff; 150 return clamp_val(5400000 / val, 1, 0xfffe); 151 } 152 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \ 153 5400000 / (val)) 154 155 /* Temperature is reported in .001 degC increments */ 156 #define TEMP_TO_REG(val) \ 157 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000) 158 #define TEMPEXT_FROM_REG(val, ext) \ 159 SCALE(((val) << 4) + (ext), 16, 1000) 160 #define TEMP_FROM_REG(val) ((val) * 1000) 161 162 #define PWM_TO_REG(val) clamp_val(val, 0, 255) 163 #define PWM_FROM_REG(val) (val) 164 165 166 /* 167 * ZONEs have the following parameters: 168 * Limit (low) temp, 1. degC 169 * Hysteresis (below limit), 1. degC (0-15) 170 * Range of speed control, .1 degC (2-80) 171 * Critical (high) temp, 1. degC 172 * 173 * FAN PWMs have the following parameters: 174 * Reference Zone, 1, 2, 3, etc. 175 * Spinup time, .05 sec 176 * PWM value at limit/low temp, 1 count 177 * PWM Frequency, 1. Hz 178 * PWM is Min or OFF below limit, flag 179 * Invert PWM output, flag 180 * 181 * Some chips filter the temp, others the fan. 182 * Filter constant (or disabled) .1 seconds 183 */ 184 185 /* These are the zone temperature range encodings in .001 degree C */ 186 static const int lm85_range_map[] = { 187 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000, 188 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000 189 }; 190 191 static int RANGE_TO_REG(long range) 192 { 193 int i; 194 195 /* Find the closest match */ 196 for (i = 0; i < 15; ++i) { 197 if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2) 198 break; 199 } 200 201 return i; 202 } 203 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f] 204 205 /* These are the PWM frequency encodings */ 206 static const int lm85_freq_map[8] = { /* 1 Hz */ 207 10, 15, 23, 30, 38, 47, 61, 94 208 }; 209 static const int adm1027_freq_map[8] = { /* 1 Hz */ 210 11, 15, 22, 29, 35, 44, 59, 88 211 }; 212 213 static int FREQ_TO_REG(const int *map, unsigned long freq) 214 { 215 int i; 216 217 /* Find the closest match */ 218 for (i = 0; i < 7; ++i) 219 if (freq <= (map[i] + map[i + 1]) / 2) 220 break; 221 return i; 222 } 223 224 static int FREQ_FROM_REG(const int *map, u8 reg) 225 { 226 return map[reg & 0x07]; 227 } 228 229 /* 230 * Since we can't use strings, I'm abusing these numbers 231 * to stand in for the following meanings: 232 * 1 -- PWM responds to Zone 1 233 * 2 -- PWM responds to Zone 2 234 * 3 -- PWM responds to Zone 3 235 * 23 -- PWM responds to the higher temp of Zone 2 or 3 236 * 123 -- PWM responds to highest of Zone 1, 2, or 3 237 * 0 -- PWM is always at 0% (ie, off) 238 * -1 -- PWM is always at 100% 239 * -2 -- PWM responds to manual control 240 */ 241 242 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 }; 243 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5] 244 245 static int ZONE_TO_REG(int zone) 246 { 247 int i; 248 249 for (i = 0; i <= 7; ++i) 250 if (zone == lm85_zone_map[i]) 251 break; 252 if (i > 7) /* Not found. */ 253 i = 3; /* Always 100% */ 254 return i << 5; 255 } 256 257 #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15) 258 #define HYST_FROM_REG(val) ((val) * 1000) 259 260 /* 261 * Chip sampling rates 262 * 263 * Some sensors are not updated more frequently than once per second 264 * so it doesn't make sense to read them more often than that. 265 * We cache the results and return the saved data if the driver 266 * is called again before a second has elapsed. 267 * 268 * Also, there is significant configuration data for this chip 269 * given the automatic PWM fan control that is possible. There 270 * are about 47 bytes of config data to only 22 bytes of actual 271 * readings. So, we keep the config data up to date in the cache 272 * when it is written and only sample it once every 1 *minute* 273 */ 274 #define LM85_DATA_INTERVAL (HZ + HZ / 2) 275 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ) 276 277 /* 278 * LM85 can automatically adjust fan speeds based on temperature 279 * This structure encapsulates an entire Zone config. There are 280 * three zones (one for each temperature input) on the lm85 281 */ 282 struct lm85_zone { 283 s8 limit; /* Low temp limit */ 284 u8 hyst; /* Low limit hysteresis. (0-15) */ 285 u8 range; /* Temp range, encoded */ 286 s8 critical; /* "All fans ON" temp limit */ 287 u8 max_desired; /* 288 * Actual "max" temperature specified. Preserved 289 * to prevent "drift" as other autofan control 290 * values change. 291 */ 292 }; 293 294 struct lm85_autofan { 295 u8 config; /* Register value */ 296 u8 min_pwm; /* Minimum PWM value, encoded */ 297 u8 min_off; /* Min PWM or OFF below "limit", flag */ 298 }; 299 300 /* 301 * For each registered chip, we need to keep some data in memory. 302 * The structure is dynamically allocated. 303 */ 304 struct lm85_data { 305 struct i2c_client *client; 306 const struct attribute_group *groups[6]; 307 const int *freq_map; 308 enum chips type; 309 310 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */ 311 312 struct mutex update_lock; 313 int valid; /* !=0 if following fields are valid */ 314 unsigned long last_reading; /* In jiffies */ 315 unsigned long last_config; /* In jiffies */ 316 317 u8 in[8]; /* Register value */ 318 u8 in_max[8]; /* Register value */ 319 u8 in_min[8]; /* Register value */ 320 s8 temp[3]; /* Register value */ 321 s8 temp_min[3]; /* Register value */ 322 s8 temp_max[3]; /* Register value */ 323 u16 fan[4]; /* Register value */ 324 u16 fan_min[4]; /* Register value */ 325 u8 pwm[3]; /* Register value */ 326 u8 pwm_freq[3]; /* Register encoding */ 327 u8 temp_ext[3]; /* Decoded values */ 328 u8 in_ext[8]; /* Decoded values */ 329 u8 vid; /* Register value */ 330 u8 vrm; /* VRM version */ 331 u32 alarms; /* Register encoding, combined */ 332 u8 cfg5; /* Config Register 5 on ADT7468 */ 333 struct lm85_autofan autofan[3]; 334 struct lm85_zone zone[3]; 335 }; 336 337 static int lm85_read_value(struct i2c_client *client, u8 reg) 338 { 339 int res; 340 341 /* What size location is it? */ 342 switch (reg) { 343 case LM85_REG_FAN(0): /* Read WORD data */ 344 case LM85_REG_FAN(1): 345 case LM85_REG_FAN(2): 346 case LM85_REG_FAN(3): 347 case LM85_REG_FAN_MIN(0): 348 case LM85_REG_FAN_MIN(1): 349 case LM85_REG_FAN_MIN(2): 350 case LM85_REG_FAN_MIN(3): 351 case LM85_REG_ALARM1: /* Read both bytes at once */ 352 res = i2c_smbus_read_byte_data(client, reg) & 0xff; 353 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8; 354 break; 355 default: /* Read BYTE data */ 356 res = i2c_smbus_read_byte_data(client, reg); 357 break; 358 } 359 360 return res; 361 } 362 363 static void lm85_write_value(struct i2c_client *client, u8 reg, int value) 364 { 365 switch (reg) { 366 case LM85_REG_FAN(0): /* Write WORD data */ 367 case LM85_REG_FAN(1): 368 case LM85_REG_FAN(2): 369 case LM85_REG_FAN(3): 370 case LM85_REG_FAN_MIN(0): 371 case LM85_REG_FAN_MIN(1): 372 case LM85_REG_FAN_MIN(2): 373 case LM85_REG_FAN_MIN(3): 374 /* NOTE: ALARM is read only, so not included here */ 375 i2c_smbus_write_byte_data(client, reg, value & 0xff); 376 i2c_smbus_write_byte_data(client, reg + 1, value >> 8); 377 break; 378 default: /* Write BYTE data */ 379 i2c_smbus_write_byte_data(client, reg, value); 380 break; 381 } 382 } 383 384 static struct lm85_data *lm85_update_device(struct device *dev) 385 { 386 struct lm85_data *data = dev_get_drvdata(dev); 387 struct i2c_client *client = data->client; 388 int i; 389 390 mutex_lock(&data->update_lock); 391 392 if (!data->valid || 393 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) { 394 /* Things that change quickly */ 395 dev_dbg(&client->dev, "Reading sensor values\n"); 396 397 /* 398 * Have to read extended bits first to "freeze" the 399 * more significant bits that are read later. 400 * There are 2 additional resolution bits per channel and we 401 * have room for 4, so we shift them to the left. 402 */ 403 if (data->type == adm1027 || data->type == adt7463 || 404 data->type == adt7468) { 405 int ext1 = lm85_read_value(client, 406 ADM1027_REG_EXTEND_ADC1); 407 int ext2 = lm85_read_value(client, 408 ADM1027_REG_EXTEND_ADC2); 409 int val = (ext1 << 8) + ext2; 410 411 for (i = 0; i <= 4; i++) 412 data->in_ext[i] = 413 ((val >> (i * 2)) & 0x03) << 2; 414 415 for (i = 0; i <= 2; i++) 416 data->temp_ext[i] = 417 (val >> ((i + 4) * 2)) & 0x0c; 418 } 419 420 data->vid = lm85_read_value(client, LM85_REG_VID); 421 422 for (i = 0; i <= 3; ++i) { 423 data->in[i] = 424 lm85_read_value(client, LM85_REG_IN(i)); 425 data->fan[i] = 426 lm85_read_value(client, LM85_REG_FAN(i)); 427 } 428 429 if (!data->has_vid5) 430 data->in[4] = lm85_read_value(client, LM85_REG_IN(4)); 431 432 if (data->type == adt7468) 433 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5); 434 435 for (i = 0; i <= 2; ++i) { 436 data->temp[i] = 437 lm85_read_value(client, LM85_REG_TEMP(i)); 438 data->pwm[i] = 439 lm85_read_value(client, LM85_REG_PWM(i)); 440 441 if (IS_ADT7468_OFF64(data)) 442 data->temp[i] -= 64; 443 } 444 445 data->alarms = lm85_read_value(client, LM85_REG_ALARM1); 446 447 if (data->type == emc6d100) { 448 /* Three more voltage sensors */ 449 for (i = 5; i <= 7; ++i) { 450 data->in[i] = lm85_read_value(client, 451 EMC6D100_REG_IN(i)); 452 } 453 /* More alarm bits */ 454 data->alarms |= lm85_read_value(client, 455 EMC6D100_REG_ALARM3) << 16; 456 } else if (data->type == emc6d102 || data->type == emc6d103 || 457 data->type == emc6d103s) { 458 /* 459 * Have to read LSB bits after the MSB ones because 460 * the reading of the MSB bits has frozen the 461 * LSBs (backward from the ADM1027). 462 */ 463 int ext1 = lm85_read_value(client, 464 EMC6D102_REG_EXTEND_ADC1); 465 int ext2 = lm85_read_value(client, 466 EMC6D102_REG_EXTEND_ADC2); 467 int ext3 = lm85_read_value(client, 468 EMC6D102_REG_EXTEND_ADC3); 469 int ext4 = lm85_read_value(client, 470 EMC6D102_REG_EXTEND_ADC4); 471 data->in_ext[0] = ext3 & 0x0f; 472 data->in_ext[1] = ext4 & 0x0f; 473 data->in_ext[2] = ext4 >> 4; 474 data->in_ext[3] = ext3 >> 4; 475 data->in_ext[4] = ext2 >> 4; 476 477 data->temp_ext[0] = ext1 & 0x0f; 478 data->temp_ext[1] = ext2 & 0x0f; 479 data->temp_ext[2] = ext1 >> 4; 480 } 481 482 data->last_reading = jiffies; 483 } /* last_reading */ 484 485 if (!data->valid || 486 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) { 487 /* Things that don't change often */ 488 dev_dbg(&client->dev, "Reading config values\n"); 489 490 for (i = 0; i <= 3; ++i) { 491 data->in_min[i] = 492 lm85_read_value(client, LM85_REG_IN_MIN(i)); 493 data->in_max[i] = 494 lm85_read_value(client, LM85_REG_IN_MAX(i)); 495 data->fan_min[i] = 496 lm85_read_value(client, LM85_REG_FAN_MIN(i)); 497 } 498 499 if (!data->has_vid5) { 500 data->in_min[4] = lm85_read_value(client, 501 LM85_REG_IN_MIN(4)); 502 data->in_max[4] = lm85_read_value(client, 503 LM85_REG_IN_MAX(4)); 504 } 505 506 if (data->type == emc6d100) { 507 for (i = 5; i <= 7; ++i) { 508 data->in_min[i] = lm85_read_value(client, 509 EMC6D100_REG_IN_MIN(i)); 510 data->in_max[i] = lm85_read_value(client, 511 EMC6D100_REG_IN_MAX(i)); 512 } 513 } 514 515 for (i = 0; i <= 2; ++i) { 516 int val; 517 518 data->temp_min[i] = 519 lm85_read_value(client, LM85_REG_TEMP_MIN(i)); 520 data->temp_max[i] = 521 lm85_read_value(client, LM85_REG_TEMP_MAX(i)); 522 523 data->autofan[i].config = 524 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i)); 525 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i)); 526 data->pwm_freq[i] = val & 0x07; 527 data->zone[i].range = val >> 4; 528 data->autofan[i].min_pwm = 529 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i)); 530 data->zone[i].limit = 531 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i)); 532 data->zone[i].critical = 533 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i)); 534 535 if (IS_ADT7468_OFF64(data)) { 536 data->temp_min[i] -= 64; 537 data->temp_max[i] -= 64; 538 data->zone[i].limit -= 64; 539 data->zone[i].critical -= 64; 540 } 541 } 542 543 if (data->type != emc6d103s) { 544 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 545 data->autofan[0].min_off = (i & 0x20) != 0; 546 data->autofan[1].min_off = (i & 0x40) != 0; 547 data->autofan[2].min_off = (i & 0x80) != 0; 548 549 i = lm85_read_value(client, LM85_REG_AFAN_HYST1); 550 data->zone[0].hyst = i >> 4; 551 data->zone[1].hyst = i & 0x0f; 552 553 i = lm85_read_value(client, LM85_REG_AFAN_HYST2); 554 data->zone[2].hyst = i >> 4; 555 } 556 557 data->last_config = jiffies; 558 } /* last_config */ 559 560 data->valid = 1; 561 562 mutex_unlock(&data->update_lock); 563 564 return data; 565 } 566 567 /* 4 Fans */ 568 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 569 char *buf) 570 { 571 int nr = to_sensor_dev_attr(attr)->index; 572 struct lm85_data *data = lm85_update_device(dev); 573 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr])); 574 } 575 576 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 577 char *buf) 578 { 579 int nr = to_sensor_dev_attr(attr)->index; 580 struct lm85_data *data = lm85_update_device(dev); 581 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr])); 582 } 583 584 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 585 const char *buf, size_t count) 586 { 587 int nr = to_sensor_dev_attr(attr)->index; 588 struct lm85_data *data = dev_get_drvdata(dev); 589 struct i2c_client *client = data->client; 590 unsigned long val; 591 int err; 592 593 err = kstrtoul(buf, 10, &val); 594 if (err) 595 return err; 596 597 mutex_lock(&data->update_lock); 598 data->fan_min[nr] = FAN_TO_REG(val); 599 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]); 600 mutex_unlock(&data->update_lock); 601 return count; 602 } 603 604 #define show_fan_offset(offset) \ 605 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 606 show_fan, NULL, offset - 1); \ 607 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 608 show_fan_min, set_fan_min, offset - 1) 609 610 show_fan_offset(1); 611 show_fan_offset(2); 612 show_fan_offset(3); 613 show_fan_offset(4); 614 615 /* vid, vrm, alarms */ 616 617 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, 618 char *buf) 619 { 620 struct lm85_data *data = lm85_update_device(dev); 621 int vid; 622 623 if (data->has_vid5) { 624 /* 6-pin VID (VRM 10) */ 625 vid = vid_from_reg(data->vid & 0x3f, data->vrm); 626 } else { 627 /* 5-pin VID (VRM 9) */ 628 vid = vid_from_reg(data->vid & 0x1f, data->vrm); 629 } 630 631 return sprintf(buf, "%d\n", vid); 632 } 633 634 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); 635 636 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, 637 char *buf) 638 { 639 struct lm85_data *data = dev_get_drvdata(dev); 640 return sprintf(buf, "%ld\n", (long) data->vrm); 641 } 642 643 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, 644 const char *buf, size_t count) 645 { 646 struct lm85_data *data = dev_get_drvdata(dev); 647 unsigned long val; 648 int err; 649 650 err = kstrtoul(buf, 10, &val); 651 if (err) 652 return err; 653 654 if (val > 255) 655 return -EINVAL; 656 657 data->vrm = val; 658 return count; 659 } 660 661 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); 662 663 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute 664 *attr, char *buf) 665 { 666 struct lm85_data *data = lm85_update_device(dev); 667 return sprintf(buf, "%u\n", data->alarms); 668 } 669 670 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); 671 672 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 673 char *buf) 674 { 675 int nr = to_sensor_dev_attr(attr)->index; 676 struct lm85_data *data = lm85_update_device(dev); 677 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); 678 } 679 680 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 681 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 682 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 683 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 684 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 685 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18); 686 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16); 687 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17); 688 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 689 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14); 690 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 691 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6); 692 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15); 693 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); 694 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); 695 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12); 696 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13); 697 698 /* pwm */ 699 700 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 701 char *buf) 702 { 703 int nr = to_sensor_dev_attr(attr)->index; 704 struct lm85_data *data = lm85_update_device(dev); 705 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); 706 } 707 708 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr, 709 const char *buf, size_t count) 710 { 711 int nr = to_sensor_dev_attr(attr)->index; 712 struct lm85_data *data = dev_get_drvdata(dev); 713 struct i2c_client *client = data->client; 714 unsigned long val; 715 int err; 716 717 err = kstrtoul(buf, 10, &val); 718 if (err) 719 return err; 720 721 mutex_lock(&data->update_lock); 722 data->pwm[nr] = PWM_TO_REG(val); 723 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]); 724 mutex_unlock(&data->update_lock); 725 return count; 726 } 727 728 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute 729 *attr, char *buf) 730 { 731 int nr = to_sensor_dev_attr(attr)->index; 732 struct lm85_data *data = lm85_update_device(dev); 733 int pwm_zone, enable; 734 735 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config); 736 switch (pwm_zone) { 737 case -1: /* PWM is always at 100% */ 738 enable = 0; 739 break; 740 case 0: /* PWM is always at 0% */ 741 case -2: /* PWM responds to manual control */ 742 enable = 1; 743 break; 744 default: /* PWM in automatic mode */ 745 enable = 2; 746 } 747 return sprintf(buf, "%d\n", enable); 748 } 749 750 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute 751 *attr, const char *buf, size_t count) 752 { 753 int nr = to_sensor_dev_attr(attr)->index; 754 struct lm85_data *data = dev_get_drvdata(dev); 755 struct i2c_client *client = data->client; 756 u8 config; 757 unsigned long val; 758 int err; 759 760 err = kstrtoul(buf, 10, &val); 761 if (err) 762 return err; 763 764 switch (val) { 765 case 0: 766 config = 3; 767 break; 768 case 1: 769 config = 7; 770 break; 771 case 2: 772 /* 773 * Here we have to choose arbitrarily one of the 5 possible 774 * configurations; I go for the safest 775 */ 776 config = 6; 777 break; 778 default: 779 return -EINVAL; 780 } 781 782 mutex_lock(&data->update_lock); 783 data->autofan[nr].config = lm85_read_value(client, 784 LM85_REG_AFAN_CONFIG(nr)); 785 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0) 786 | (config << 5); 787 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 788 data->autofan[nr].config); 789 mutex_unlock(&data->update_lock); 790 return count; 791 } 792 793 static ssize_t show_pwm_freq(struct device *dev, 794 struct device_attribute *attr, char *buf) 795 { 796 int nr = to_sensor_dev_attr(attr)->index; 797 struct lm85_data *data = lm85_update_device(dev); 798 int freq; 799 800 if (IS_ADT7468_HFPWM(data)) 801 freq = 22500; 802 else 803 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]); 804 805 return sprintf(buf, "%d\n", freq); 806 } 807 808 static ssize_t set_pwm_freq(struct device *dev, 809 struct device_attribute *attr, const char *buf, size_t count) 810 { 811 int nr = to_sensor_dev_attr(attr)->index; 812 struct lm85_data *data = dev_get_drvdata(dev); 813 struct i2c_client *client = data->client; 814 unsigned long val; 815 int err; 816 817 err = kstrtoul(buf, 10, &val); 818 if (err) 819 return err; 820 821 mutex_lock(&data->update_lock); 822 /* 823 * The ADT7468 has a special high-frequency PWM output mode, 824 * where all PWM outputs are driven by a 22.5 kHz clock. 825 * This might confuse the user, but there's not much we can do. 826 */ 827 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */ 828 data->cfg5 &= ~ADT7468_HFPWM; 829 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 830 } else { /* Low freq. mode */ 831 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val); 832 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 833 (data->zone[nr].range << 4) 834 | data->pwm_freq[nr]); 835 if (data->type == adt7468) { 836 data->cfg5 |= ADT7468_HFPWM; 837 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 838 } 839 } 840 mutex_unlock(&data->update_lock); 841 return count; 842 } 843 844 #define show_pwm_reg(offset) \ 845 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \ 846 show_pwm, set_pwm, offset - 1); \ 847 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \ 848 show_pwm_enable, set_pwm_enable, offset - 1); \ 849 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \ 850 show_pwm_freq, set_pwm_freq, offset - 1) 851 852 show_pwm_reg(1); 853 show_pwm_reg(2); 854 show_pwm_reg(3); 855 856 /* Voltages */ 857 858 static ssize_t show_in(struct device *dev, struct device_attribute *attr, 859 char *buf) 860 { 861 int nr = to_sensor_dev_attr(attr)->index; 862 struct lm85_data *data = lm85_update_device(dev); 863 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr], 864 data->in_ext[nr])); 865 } 866 867 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, 868 char *buf) 869 { 870 int nr = to_sensor_dev_attr(attr)->index; 871 struct lm85_data *data = lm85_update_device(dev); 872 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr])); 873 } 874 875 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, 876 const char *buf, size_t count) 877 { 878 int nr = to_sensor_dev_attr(attr)->index; 879 struct lm85_data *data = dev_get_drvdata(dev); 880 struct i2c_client *client = data->client; 881 long val; 882 int err; 883 884 err = kstrtol(buf, 10, &val); 885 if (err) 886 return err; 887 888 mutex_lock(&data->update_lock); 889 data->in_min[nr] = INS_TO_REG(nr, val); 890 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]); 891 mutex_unlock(&data->update_lock); 892 return count; 893 } 894 895 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, 896 char *buf) 897 { 898 int nr = to_sensor_dev_attr(attr)->index; 899 struct lm85_data *data = lm85_update_device(dev); 900 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr])); 901 } 902 903 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, 904 const char *buf, size_t count) 905 { 906 int nr = to_sensor_dev_attr(attr)->index; 907 struct lm85_data *data = dev_get_drvdata(dev); 908 struct i2c_client *client = data->client; 909 long val; 910 int err; 911 912 err = kstrtol(buf, 10, &val); 913 if (err) 914 return err; 915 916 mutex_lock(&data->update_lock); 917 data->in_max[nr] = INS_TO_REG(nr, val); 918 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]); 919 mutex_unlock(&data->update_lock); 920 return count; 921 } 922 923 #define show_in_reg(offset) \ 924 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 925 show_in, NULL, offset); \ 926 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 927 show_in_min, set_in_min, offset); \ 928 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 929 show_in_max, set_in_max, offset) 930 931 show_in_reg(0); 932 show_in_reg(1); 933 show_in_reg(2); 934 show_in_reg(3); 935 show_in_reg(4); 936 show_in_reg(5); 937 show_in_reg(6); 938 show_in_reg(7); 939 940 /* Temps */ 941 942 static ssize_t show_temp(struct device *dev, struct device_attribute *attr, 943 char *buf) 944 { 945 int nr = to_sensor_dev_attr(attr)->index; 946 struct lm85_data *data = lm85_update_device(dev); 947 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr], 948 data->temp_ext[nr])); 949 } 950 951 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, 952 char *buf) 953 { 954 int nr = to_sensor_dev_attr(attr)->index; 955 struct lm85_data *data = lm85_update_device(dev); 956 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); 957 } 958 959 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, 960 const char *buf, size_t count) 961 { 962 int nr = to_sensor_dev_attr(attr)->index; 963 struct lm85_data *data = dev_get_drvdata(dev); 964 struct i2c_client *client = data->client; 965 long val; 966 int err; 967 968 err = kstrtol(buf, 10, &val); 969 if (err) 970 return err; 971 972 if (IS_ADT7468_OFF64(data)) 973 val += 64; 974 975 mutex_lock(&data->update_lock); 976 data->temp_min[nr] = TEMP_TO_REG(val); 977 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]); 978 mutex_unlock(&data->update_lock); 979 return count; 980 } 981 982 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, 983 char *buf) 984 { 985 int nr = to_sensor_dev_attr(attr)->index; 986 struct lm85_data *data = lm85_update_device(dev); 987 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); 988 } 989 990 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, 991 const char *buf, size_t count) 992 { 993 int nr = to_sensor_dev_attr(attr)->index; 994 struct lm85_data *data = dev_get_drvdata(dev); 995 struct i2c_client *client = data->client; 996 long val; 997 int err; 998 999 err = kstrtol(buf, 10, &val); 1000 if (err) 1001 return err; 1002 1003 if (IS_ADT7468_OFF64(data)) 1004 val += 64; 1005 1006 mutex_lock(&data->update_lock); 1007 data->temp_max[nr] = TEMP_TO_REG(val); 1008 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]); 1009 mutex_unlock(&data->update_lock); 1010 return count; 1011 } 1012 1013 #define show_temp_reg(offset) \ 1014 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ 1015 show_temp, NULL, offset - 1); \ 1016 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \ 1017 show_temp_min, set_temp_min, offset - 1); \ 1018 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ 1019 show_temp_max, set_temp_max, offset - 1); 1020 1021 show_temp_reg(1); 1022 show_temp_reg(2); 1023 show_temp_reg(3); 1024 1025 1026 /* Automatic PWM control */ 1027 1028 static ssize_t show_pwm_auto_channels(struct device *dev, 1029 struct device_attribute *attr, char *buf) 1030 { 1031 int nr = to_sensor_dev_attr(attr)->index; 1032 struct lm85_data *data = lm85_update_device(dev); 1033 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config)); 1034 } 1035 1036 static ssize_t set_pwm_auto_channels(struct device *dev, 1037 struct device_attribute *attr, const char *buf, size_t count) 1038 { 1039 int nr = to_sensor_dev_attr(attr)->index; 1040 struct lm85_data *data = dev_get_drvdata(dev); 1041 struct i2c_client *client = data->client; 1042 long val; 1043 int err; 1044 1045 err = kstrtol(buf, 10, &val); 1046 if (err) 1047 return err; 1048 1049 mutex_lock(&data->update_lock); 1050 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0)) 1051 | ZONE_TO_REG(val); 1052 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 1053 data->autofan[nr].config); 1054 mutex_unlock(&data->update_lock); 1055 return count; 1056 } 1057 1058 static ssize_t show_pwm_auto_pwm_min(struct device *dev, 1059 struct device_attribute *attr, char *buf) 1060 { 1061 int nr = to_sensor_dev_attr(attr)->index; 1062 struct lm85_data *data = lm85_update_device(dev); 1063 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm)); 1064 } 1065 1066 static ssize_t set_pwm_auto_pwm_min(struct device *dev, 1067 struct device_attribute *attr, const char *buf, size_t count) 1068 { 1069 int nr = to_sensor_dev_attr(attr)->index; 1070 struct lm85_data *data = dev_get_drvdata(dev); 1071 struct i2c_client *client = data->client; 1072 unsigned long val; 1073 int err; 1074 1075 err = kstrtoul(buf, 10, &val); 1076 if (err) 1077 return err; 1078 1079 mutex_lock(&data->update_lock); 1080 data->autofan[nr].min_pwm = PWM_TO_REG(val); 1081 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr), 1082 data->autofan[nr].min_pwm); 1083 mutex_unlock(&data->update_lock); 1084 return count; 1085 } 1086 1087 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev, 1088 struct device_attribute *attr, char *buf) 1089 { 1090 int nr = to_sensor_dev_attr(attr)->index; 1091 struct lm85_data *data = lm85_update_device(dev); 1092 return sprintf(buf, "%d\n", data->autofan[nr].min_off); 1093 } 1094 1095 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev, 1096 struct device_attribute *attr, const char *buf, size_t count) 1097 { 1098 int nr = to_sensor_dev_attr(attr)->index; 1099 struct lm85_data *data = dev_get_drvdata(dev); 1100 struct i2c_client *client = data->client; 1101 u8 tmp; 1102 long val; 1103 int err; 1104 1105 err = kstrtol(buf, 10, &val); 1106 if (err) 1107 return err; 1108 1109 mutex_lock(&data->update_lock); 1110 data->autofan[nr].min_off = val; 1111 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 1112 tmp &= ~(0x20 << nr); 1113 if (data->autofan[nr].min_off) 1114 tmp |= 0x20 << nr; 1115 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp); 1116 mutex_unlock(&data->update_lock); 1117 return count; 1118 } 1119 1120 #define pwm_auto(offset) \ 1121 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \ 1122 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \ 1123 set_pwm_auto_channels, offset - 1); \ 1124 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \ 1125 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \ 1126 set_pwm_auto_pwm_min, offset - 1); \ 1127 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \ 1128 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \ 1129 set_pwm_auto_pwm_minctl, offset - 1) 1130 1131 pwm_auto(1); 1132 pwm_auto(2); 1133 pwm_auto(3); 1134 1135 /* Temperature settings for automatic PWM control */ 1136 1137 static ssize_t show_temp_auto_temp_off(struct device *dev, 1138 struct device_attribute *attr, char *buf) 1139 { 1140 int nr = to_sensor_dev_attr(attr)->index; 1141 struct lm85_data *data = lm85_update_device(dev); 1142 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) - 1143 HYST_FROM_REG(data->zone[nr].hyst)); 1144 } 1145 1146 static ssize_t set_temp_auto_temp_off(struct device *dev, 1147 struct device_attribute *attr, const char *buf, size_t count) 1148 { 1149 int nr = to_sensor_dev_attr(attr)->index; 1150 struct lm85_data *data = dev_get_drvdata(dev); 1151 struct i2c_client *client = data->client; 1152 int min; 1153 long val; 1154 int err; 1155 1156 err = kstrtol(buf, 10, &val); 1157 if (err) 1158 return err; 1159 1160 mutex_lock(&data->update_lock); 1161 min = TEMP_FROM_REG(data->zone[nr].limit); 1162 data->zone[nr].hyst = HYST_TO_REG(min - val); 1163 if (nr == 0 || nr == 1) { 1164 lm85_write_value(client, LM85_REG_AFAN_HYST1, 1165 (data->zone[0].hyst << 4) 1166 | data->zone[1].hyst); 1167 } else { 1168 lm85_write_value(client, LM85_REG_AFAN_HYST2, 1169 (data->zone[2].hyst << 4)); 1170 } 1171 mutex_unlock(&data->update_lock); 1172 return count; 1173 } 1174 1175 static ssize_t show_temp_auto_temp_min(struct device *dev, 1176 struct device_attribute *attr, char *buf) 1177 { 1178 int nr = to_sensor_dev_attr(attr)->index; 1179 struct lm85_data *data = lm85_update_device(dev); 1180 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit)); 1181 } 1182 1183 static ssize_t set_temp_auto_temp_min(struct device *dev, 1184 struct device_attribute *attr, const char *buf, size_t count) 1185 { 1186 int nr = to_sensor_dev_attr(attr)->index; 1187 struct lm85_data *data = dev_get_drvdata(dev); 1188 struct i2c_client *client = data->client; 1189 long val; 1190 int err; 1191 1192 err = kstrtol(buf, 10, &val); 1193 if (err) 1194 return err; 1195 1196 mutex_lock(&data->update_lock); 1197 data->zone[nr].limit = TEMP_TO_REG(val); 1198 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr), 1199 data->zone[nr].limit); 1200 1201 /* Update temp_auto_max and temp_auto_range */ 1202 data->zone[nr].range = RANGE_TO_REG( 1203 TEMP_FROM_REG(data->zone[nr].max_desired) - 1204 TEMP_FROM_REG(data->zone[nr].limit)); 1205 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 1206 ((data->zone[nr].range & 0x0f) << 4) 1207 | (data->pwm_freq[nr] & 0x07)); 1208 1209 mutex_unlock(&data->update_lock); 1210 return count; 1211 } 1212 1213 static ssize_t show_temp_auto_temp_max(struct device *dev, 1214 struct device_attribute *attr, char *buf) 1215 { 1216 int nr = to_sensor_dev_attr(attr)->index; 1217 struct lm85_data *data = lm85_update_device(dev); 1218 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) + 1219 RANGE_FROM_REG(data->zone[nr].range)); 1220 } 1221 1222 static ssize_t set_temp_auto_temp_max(struct device *dev, 1223 struct device_attribute *attr, const char *buf, size_t count) 1224 { 1225 int nr = to_sensor_dev_attr(attr)->index; 1226 struct lm85_data *data = dev_get_drvdata(dev); 1227 struct i2c_client *client = data->client; 1228 int min; 1229 long val; 1230 int err; 1231 1232 err = kstrtol(buf, 10, &val); 1233 if (err) 1234 return err; 1235 1236 mutex_lock(&data->update_lock); 1237 min = TEMP_FROM_REG(data->zone[nr].limit); 1238 data->zone[nr].max_desired = TEMP_TO_REG(val); 1239 data->zone[nr].range = RANGE_TO_REG( 1240 val - min); 1241 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 1242 ((data->zone[nr].range & 0x0f) << 4) 1243 | (data->pwm_freq[nr] & 0x07)); 1244 mutex_unlock(&data->update_lock); 1245 return count; 1246 } 1247 1248 static ssize_t show_temp_auto_temp_crit(struct device *dev, 1249 struct device_attribute *attr, char *buf) 1250 { 1251 int nr = to_sensor_dev_attr(attr)->index; 1252 struct lm85_data *data = lm85_update_device(dev); 1253 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical)); 1254 } 1255 1256 static ssize_t set_temp_auto_temp_crit(struct device *dev, 1257 struct device_attribute *attr, const char *buf, size_t count) 1258 { 1259 int nr = to_sensor_dev_attr(attr)->index; 1260 struct lm85_data *data = dev_get_drvdata(dev); 1261 struct i2c_client *client = data->client; 1262 long val; 1263 int err; 1264 1265 err = kstrtol(buf, 10, &val); 1266 if (err) 1267 return err; 1268 1269 mutex_lock(&data->update_lock); 1270 data->zone[nr].critical = TEMP_TO_REG(val); 1271 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr), 1272 data->zone[nr].critical); 1273 mutex_unlock(&data->update_lock); 1274 return count; 1275 } 1276 1277 #define temp_auto(offset) \ 1278 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \ 1279 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \ 1280 set_temp_auto_temp_off, offset - 1); \ 1281 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \ 1282 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \ 1283 set_temp_auto_temp_min, offset - 1); \ 1284 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \ 1285 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \ 1286 set_temp_auto_temp_max, offset - 1); \ 1287 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \ 1288 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \ 1289 set_temp_auto_temp_crit, offset - 1); 1290 1291 temp_auto(1); 1292 temp_auto(2); 1293 temp_auto(3); 1294 1295 static struct attribute *lm85_attributes[] = { 1296 &sensor_dev_attr_fan1_input.dev_attr.attr, 1297 &sensor_dev_attr_fan2_input.dev_attr.attr, 1298 &sensor_dev_attr_fan3_input.dev_attr.attr, 1299 &sensor_dev_attr_fan4_input.dev_attr.attr, 1300 &sensor_dev_attr_fan1_min.dev_attr.attr, 1301 &sensor_dev_attr_fan2_min.dev_attr.attr, 1302 &sensor_dev_attr_fan3_min.dev_attr.attr, 1303 &sensor_dev_attr_fan4_min.dev_attr.attr, 1304 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 1305 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 1306 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 1307 &sensor_dev_attr_fan4_alarm.dev_attr.attr, 1308 1309 &sensor_dev_attr_pwm1.dev_attr.attr, 1310 &sensor_dev_attr_pwm2.dev_attr.attr, 1311 &sensor_dev_attr_pwm3.dev_attr.attr, 1312 &sensor_dev_attr_pwm1_enable.dev_attr.attr, 1313 &sensor_dev_attr_pwm2_enable.dev_attr.attr, 1314 &sensor_dev_attr_pwm3_enable.dev_attr.attr, 1315 &sensor_dev_attr_pwm1_freq.dev_attr.attr, 1316 &sensor_dev_attr_pwm2_freq.dev_attr.attr, 1317 &sensor_dev_attr_pwm3_freq.dev_attr.attr, 1318 1319 &sensor_dev_attr_in0_input.dev_attr.attr, 1320 &sensor_dev_attr_in1_input.dev_attr.attr, 1321 &sensor_dev_attr_in2_input.dev_attr.attr, 1322 &sensor_dev_attr_in3_input.dev_attr.attr, 1323 &sensor_dev_attr_in0_min.dev_attr.attr, 1324 &sensor_dev_attr_in1_min.dev_attr.attr, 1325 &sensor_dev_attr_in2_min.dev_attr.attr, 1326 &sensor_dev_attr_in3_min.dev_attr.attr, 1327 &sensor_dev_attr_in0_max.dev_attr.attr, 1328 &sensor_dev_attr_in1_max.dev_attr.attr, 1329 &sensor_dev_attr_in2_max.dev_attr.attr, 1330 &sensor_dev_attr_in3_max.dev_attr.attr, 1331 &sensor_dev_attr_in0_alarm.dev_attr.attr, 1332 &sensor_dev_attr_in1_alarm.dev_attr.attr, 1333 &sensor_dev_attr_in2_alarm.dev_attr.attr, 1334 &sensor_dev_attr_in3_alarm.dev_attr.attr, 1335 1336 &sensor_dev_attr_temp1_input.dev_attr.attr, 1337 &sensor_dev_attr_temp2_input.dev_attr.attr, 1338 &sensor_dev_attr_temp3_input.dev_attr.attr, 1339 &sensor_dev_attr_temp1_min.dev_attr.attr, 1340 &sensor_dev_attr_temp2_min.dev_attr.attr, 1341 &sensor_dev_attr_temp3_min.dev_attr.attr, 1342 &sensor_dev_attr_temp1_max.dev_attr.attr, 1343 &sensor_dev_attr_temp2_max.dev_attr.attr, 1344 &sensor_dev_attr_temp3_max.dev_attr.attr, 1345 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 1346 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 1347 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 1348 &sensor_dev_attr_temp1_fault.dev_attr.attr, 1349 &sensor_dev_attr_temp3_fault.dev_attr.attr, 1350 1351 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr, 1352 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr, 1353 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr, 1354 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr, 1355 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr, 1356 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr, 1357 1358 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr, 1359 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr, 1360 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr, 1361 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr, 1362 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr, 1363 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr, 1364 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr, 1365 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr, 1366 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr, 1367 1368 &dev_attr_vrm.attr, 1369 &dev_attr_cpu0_vid.attr, 1370 &dev_attr_alarms.attr, 1371 NULL 1372 }; 1373 1374 static const struct attribute_group lm85_group = { 1375 .attrs = lm85_attributes, 1376 }; 1377 1378 static struct attribute *lm85_attributes_minctl[] = { 1379 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr, 1380 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr, 1381 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr, 1382 NULL 1383 }; 1384 1385 static const struct attribute_group lm85_group_minctl = { 1386 .attrs = lm85_attributes_minctl, 1387 }; 1388 1389 static struct attribute *lm85_attributes_temp_off[] = { 1390 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr, 1391 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr, 1392 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr, 1393 NULL 1394 }; 1395 1396 static const struct attribute_group lm85_group_temp_off = { 1397 .attrs = lm85_attributes_temp_off, 1398 }; 1399 1400 static struct attribute *lm85_attributes_in4[] = { 1401 &sensor_dev_attr_in4_input.dev_attr.attr, 1402 &sensor_dev_attr_in4_min.dev_attr.attr, 1403 &sensor_dev_attr_in4_max.dev_attr.attr, 1404 &sensor_dev_attr_in4_alarm.dev_attr.attr, 1405 NULL 1406 }; 1407 1408 static const struct attribute_group lm85_group_in4 = { 1409 .attrs = lm85_attributes_in4, 1410 }; 1411 1412 static struct attribute *lm85_attributes_in567[] = { 1413 &sensor_dev_attr_in5_input.dev_attr.attr, 1414 &sensor_dev_attr_in6_input.dev_attr.attr, 1415 &sensor_dev_attr_in7_input.dev_attr.attr, 1416 &sensor_dev_attr_in5_min.dev_attr.attr, 1417 &sensor_dev_attr_in6_min.dev_attr.attr, 1418 &sensor_dev_attr_in7_min.dev_attr.attr, 1419 &sensor_dev_attr_in5_max.dev_attr.attr, 1420 &sensor_dev_attr_in6_max.dev_attr.attr, 1421 &sensor_dev_attr_in7_max.dev_attr.attr, 1422 &sensor_dev_attr_in5_alarm.dev_attr.attr, 1423 &sensor_dev_attr_in6_alarm.dev_attr.attr, 1424 &sensor_dev_attr_in7_alarm.dev_attr.attr, 1425 NULL 1426 }; 1427 1428 static const struct attribute_group lm85_group_in567 = { 1429 .attrs = lm85_attributes_in567, 1430 }; 1431 1432 static void lm85_init_client(struct i2c_client *client) 1433 { 1434 int value; 1435 1436 /* Start monitoring if needed */ 1437 value = lm85_read_value(client, LM85_REG_CONFIG); 1438 if (!(value & 0x01)) { 1439 dev_info(&client->dev, "Starting monitoring\n"); 1440 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01); 1441 } 1442 1443 /* Warn about unusual configuration bits */ 1444 if (value & 0x02) 1445 dev_warn(&client->dev, "Device configuration is locked\n"); 1446 if (!(value & 0x04)) 1447 dev_warn(&client->dev, "Device is not ready\n"); 1448 } 1449 1450 static int lm85_is_fake(struct i2c_client *client) 1451 { 1452 /* 1453 * Differenciate between real LM96000 and Winbond WPCD377I. The latter 1454 * emulate the former except that it has no hardware monitoring function 1455 * so the readings are always 0. 1456 */ 1457 int i; 1458 u8 in_temp, fan; 1459 1460 for (i = 0; i < 8; i++) { 1461 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i); 1462 fan = i2c_smbus_read_byte_data(client, 0x28 + i); 1463 if (in_temp != 0x00 || fan != 0xff) 1464 return 0; 1465 } 1466 1467 return 1; 1468 } 1469 1470 /* Return 0 if detection is successful, -ENODEV otherwise */ 1471 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info) 1472 { 1473 struct i2c_adapter *adapter = client->adapter; 1474 int address = client->addr; 1475 const char *type_name = NULL; 1476 int company, verstep; 1477 1478 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 1479 /* We need to be able to do byte I/O */ 1480 return -ENODEV; 1481 } 1482 1483 /* Determine the chip type */ 1484 company = lm85_read_value(client, LM85_REG_COMPANY); 1485 verstep = lm85_read_value(client, LM85_REG_VERSTEP); 1486 1487 dev_dbg(&adapter->dev, 1488 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n", 1489 address, company, verstep); 1490 1491 if (company == LM85_COMPANY_NATIONAL) { 1492 switch (verstep) { 1493 case LM85_VERSTEP_LM85C: 1494 type_name = "lm85c"; 1495 break; 1496 case LM85_VERSTEP_LM85B: 1497 type_name = "lm85b"; 1498 break; 1499 case LM85_VERSTEP_LM96000_1: 1500 case LM85_VERSTEP_LM96000_2: 1501 /* Check for Winbond WPCD377I */ 1502 if (lm85_is_fake(client)) { 1503 dev_dbg(&adapter->dev, 1504 "Found Winbond WPCD377I, ignoring\n"); 1505 return -ENODEV; 1506 } 1507 type_name = "lm85"; 1508 break; 1509 } 1510 } else if (company == LM85_COMPANY_ANALOG_DEV) { 1511 switch (verstep) { 1512 case LM85_VERSTEP_ADM1027: 1513 type_name = "adm1027"; 1514 break; 1515 case LM85_VERSTEP_ADT7463: 1516 case LM85_VERSTEP_ADT7463C: 1517 type_name = "adt7463"; 1518 break; 1519 case LM85_VERSTEP_ADT7468_1: 1520 case LM85_VERSTEP_ADT7468_2: 1521 type_name = "adt7468"; 1522 break; 1523 } 1524 } else if (company == LM85_COMPANY_SMSC) { 1525 switch (verstep) { 1526 case LM85_VERSTEP_EMC6D100_A0: 1527 case LM85_VERSTEP_EMC6D100_A1: 1528 /* Note: we can't tell a '100 from a '101 */ 1529 type_name = "emc6d100"; 1530 break; 1531 case LM85_VERSTEP_EMC6D102: 1532 type_name = "emc6d102"; 1533 break; 1534 case LM85_VERSTEP_EMC6D103_A0: 1535 case LM85_VERSTEP_EMC6D103_A1: 1536 type_name = "emc6d103"; 1537 break; 1538 case LM85_VERSTEP_EMC6D103S: 1539 type_name = "emc6d103s"; 1540 break; 1541 } 1542 } 1543 1544 if (!type_name) 1545 return -ENODEV; 1546 1547 strlcpy(info->type, type_name, I2C_NAME_SIZE); 1548 1549 return 0; 1550 } 1551 1552 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id) 1553 { 1554 struct device *dev = &client->dev; 1555 struct device *hwmon_dev; 1556 struct lm85_data *data; 1557 int idx = 0; 1558 1559 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL); 1560 if (!data) 1561 return -ENOMEM; 1562 1563 data->client = client; 1564 data->type = id->driver_data; 1565 mutex_init(&data->update_lock); 1566 1567 /* Fill in the chip specific driver values */ 1568 switch (data->type) { 1569 case adm1027: 1570 case adt7463: 1571 case adt7468: 1572 case emc6d100: 1573 case emc6d102: 1574 case emc6d103: 1575 case emc6d103s: 1576 data->freq_map = adm1027_freq_map; 1577 break; 1578 default: 1579 data->freq_map = lm85_freq_map; 1580 } 1581 1582 /* Set the VRM version */ 1583 data->vrm = vid_which_vrm(); 1584 1585 /* Initialize the LM85 chip */ 1586 lm85_init_client(client); 1587 1588 /* sysfs hooks */ 1589 data->groups[idx++] = &lm85_group; 1590 1591 /* minctl and temp_off exist on all chips except emc6d103s */ 1592 if (data->type != emc6d103s) { 1593 data->groups[idx++] = &lm85_group_minctl; 1594 data->groups[idx++] = &lm85_group_temp_off; 1595 } 1596 1597 /* 1598 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used 1599 * as a sixth digital VID input rather than an analog input. 1600 */ 1601 if (data->type == adt7463 || data->type == adt7468) { 1602 u8 vid = lm85_read_value(client, LM85_REG_VID); 1603 if (vid & 0x80) 1604 data->has_vid5 = true; 1605 } 1606 1607 if (!data->has_vid5) 1608 data->groups[idx++] = &lm85_group_in4; 1609 1610 /* The EMC6D100 has 3 additional voltage inputs */ 1611 if (data->type == emc6d100) 1612 data->groups[idx++] = &lm85_group_in567; 1613 1614 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 1615 data, data->groups); 1616 return PTR_ERR_OR_ZERO(hwmon_dev); 1617 } 1618 1619 static const struct i2c_device_id lm85_id[] = { 1620 { "adm1027", adm1027 }, 1621 { "adt7463", adt7463 }, 1622 { "adt7468", adt7468 }, 1623 { "lm85", lm85 }, 1624 { "lm85b", lm85 }, 1625 { "lm85c", lm85 }, 1626 { "emc6d100", emc6d100 }, 1627 { "emc6d101", emc6d100 }, 1628 { "emc6d102", emc6d102 }, 1629 { "emc6d103", emc6d103 }, 1630 { "emc6d103s", emc6d103s }, 1631 { } 1632 }; 1633 MODULE_DEVICE_TABLE(i2c, lm85_id); 1634 1635 static struct i2c_driver lm85_driver = { 1636 .class = I2C_CLASS_HWMON, 1637 .driver = { 1638 .name = "lm85", 1639 }, 1640 .probe = lm85_probe, 1641 .id_table = lm85_id, 1642 .detect = lm85_detect, 1643 .address_list = normal_i2c, 1644 }; 1645 1646 module_i2c_driver(lm85_driver); 1647 1648 MODULE_LICENSE("GPL"); 1649 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, " 1650 "Margit Schubert-While <margitsw@t-online.de>, " 1651 "Justin Thiessen <jthiessen@penguincomputing.com>"); 1652 MODULE_DESCRIPTION("LM85-B, LM85-C driver"); 1653