xref: /openbmc/linux/drivers/hwmon/lm85.c (revision bc4d45f1)
1 /*
2     lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3              monitoring
4     Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5     Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
6     Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
7     Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
8     Copyright (C) 2007--2009  Jean Delvare <khali@linux-fr.org>
9 
10     Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
11 
12     This program is free software; you can redistribute it and/or modify
13     it under the terms of the GNU General Public License as published by
14     the Free Software Foundation; either version 2 of the License, or
15     (at your option) any later version.
16 
17     This program is distributed in the hope that it will be useful,
18     but WITHOUT ANY WARRANTY; without even the implied warranty of
19     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20     GNU General Public License for more details.
21 
22     You should have received a copy of the GNU General Public License
23     along with this program; if not, write to the Free Software
24     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26 
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/hwmon-sysfs.h>
35 #include <linux/err.h>
36 #include <linux/mutex.h>
37 
38 /* Addresses to scan */
39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
40 
41 enum chips {
42 	any_chip, lm85b, lm85c,
43 	adm1027, adt7463, adt7468,
44 	emc6d100, emc6d102, emc6d103, emc6d103s
45 };
46 
47 /* The LM85 registers */
48 
49 #define	LM85_REG_IN(nr)			(0x20 + (nr))
50 #define	LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
51 #define	LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
52 
53 #define	LM85_REG_TEMP(nr)		(0x25 + (nr))
54 #define	LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
55 #define	LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
56 
57 /* Fan speeds are LSB, MSB (2 bytes) */
58 #define	LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
59 #define	LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
60 
61 #define	LM85_REG_PWM(nr)		(0x30 + (nr))
62 
63 #define	LM85_REG_COMPANY		0x3e
64 #define	LM85_REG_VERSTEP		0x3f
65 
66 #define	ADT7468_REG_CFG5		0x7c
67 #define		ADT7468_OFF64		(1 << 0)
68 #define		ADT7468_HFPWM		(1 << 1)
69 #define	IS_ADT7468_OFF64(data)		\
70 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
71 #define	IS_ADT7468_HFPWM(data)		\
72 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
73 
74 /* These are the recognized values for the above regs */
75 #define	LM85_COMPANY_NATIONAL		0x01
76 #define	LM85_COMPANY_ANALOG_DEV		0x41
77 #define	LM85_COMPANY_SMSC		0x5c
78 #define	LM85_VERSTEP_VMASK              0xf0
79 #define	LM85_VERSTEP_GENERIC		0x60
80 #define	LM85_VERSTEP_GENERIC2		0x70
81 #define	LM85_VERSTEP_LM85C		0x60
82 #define	LM85_VERSTEP_LM85B		0x62
83 #define	LM85_VERSTEP_LM96000_1		0x68
84 #define	LM85_VERSTEP_LM96000_2		0x69
85 #define	LM85_VERSTEP_ADM1027		0x60
86 #define	LM85_VERSTEP_ADT7463		0x62
87 #define	LM85_VERSTEP_ADT7463C		0x6A
88 #define	LM85_VERSTEP_ADT7468_1		0x71
89 #define	LM85_VERSTEP_ADT7468_2		0x72
90 #define	LM85_VERSTEP_EMC6D100_A0        0x60
91 #define	LM85_VERSTEP_EMC6D100_A1        0x61
92 #define	LM85_VERSTEP_EMC6D102		0x65
93 #define	LM85_VERSTEP_EMC6D103_A0	0x68
94 #define	LM85_VERSTEP_EMC6D103_A1	0x69
95 #define	LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
96 
97 #define	LM85_REG_CONFIG			0x40
98 
99 #define	LM85_REG_ALARM1			0x41
100 #define	LM85_REG_ALARM2			0x42
101 
102 #define	LM85_REG_VID			0x43
103 
104 /* Automated FAN control */
105 #define	LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
106 #define	LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
107 #define	LM85_REG_AFAN_SPIKE1		0x62
108 #define	LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
109 #define	LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
110 #define	LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
111 #define	LM85_REG_AFAN_HYST1		0x6d
112 #define	LM85_REG_AFAN_HYST2		0x6e
113 
114 #define	ADM1027_REG_EXTEND_ADC1		0x76
115 #define	ADM1027_REG_EXTEND_ADC2		0x77
116 
117 #define EMC6D100_REG_ALARM3             0x7d
118 /* IN5, IN6 and IN7 */
119 #define	EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
120 #define	EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
121 #define	EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
122 #define	EMC6D102_REG_EXTEND_ADC1	0x85
123 #define	EMC6D102_REG_EXTEND_ADC2	0x86
124 #define	EMC6D102_REG_EXTEND_ADC3	0x87
125 #define	EMC6D102_REG_EXTEND_ADC4	0x88
126 
127 
128 /* Conversions. Rounding and limit checking is only done on the TO_REG
129    variants. Note that you should be a bit careful with which arguments
130    these macros are called: arguments may be evaluated more than once.
131  */
132 
133 /* IN are scaled according to built-in resistors */
134 static const int lm85_scaling[] = {  /* .001 Volts */
135 	2500, 2250, 3300, 5000, 12000,
136 	3300, 1500, 1800 /*EMC6D100*/
137 };
138 #define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
139 
140 #define INS_TO_REG(n, val)	\
141 		SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
142 
143 #define INSEXT_FROM_REG(n, val, ext)	\
144 		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
145 
146 #define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
147 
148 /* FAN speed is measured using 90kHz clock */
149 static inline u16 FAN_TO_REG(unsigned long val)
150 {
151 	if (!val)
152 		return 0xffff;
153 	return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
154 }
155 #define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
156 				 5400000 / (val))
157 
158 /* Temperature is reported in .001 degC increments */
159 #define TEMP_TO_REG(val)	\
160 		SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
161 #define TEMPEXT_FROM_REG(val, ext)	\
162 		SCALE(((val) << 4) + (ext), 16, 1000)
163 #define TEMP_FROM_REG(val)	((val) * 1000)
164 
165 #define PWM_TO_REG(val)			SENSORS_LIMIT(val, 0, 255)
166 #define PWM_FROM_REG(val)		(val)
167 
168 
169 /* ZONEs have the following parameters:
170  *    Limit (low) temp,           1. degC
171  *    Hysteresis (below limit),   1. degC (0-15)
172  *    Range of speed control,     .1 degC (2-80)
173  *    Critical (high) temp,       1. degC
174  *
175  * FAN PWMs have the following parameters:
176  *    Reference Zone,                 1, 2, 3, etc.
177  *    Spinup time,                    .05 sec
178  *    PWM value at limit/low temp,    1 count
179  *    PWM Frequency,                  1. Hz
180  *    PWM is Min or OFF below limit,  flag
181  *    Invert PWM output,              flag
182  *
183  * Some chips filter the temp, others the fan.
184  *    Filter constant (or disabled)   .1 seconds
185  */
186 
187 /* These are the zone temperature range encodings in .001 degree C */
188 static const int lm85_range_map[] = {
189 	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
190 	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
191 };
192 
193 static int RANGE_TO_REG(int range)
194 {
195 	int i;
196 
197 	/* Find the closest match */
198 	for (i = 0; i < 15; ++i) {
199 		if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
200 			break;
201 	}
202 
203 	return i;
204 }
205 #define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
206 
207 /* These are the PWM frequency encodings */
208 static const int lm85_freq_map[8] = { /* 1 Hz */
209 	10, 15, 23, 30, 38, 47, 61, 94
210 };
211 static const int adm1027_freq_map[8] = { /* 1 Hz */
212 	11, 15, 22, 29, 35, 44, 59, 88
213 };
214 
215 static int FREQ_TO_REG(const int *map, int freq)
216 {
217 	int i;
218 
219 	/* Find the closest match */
220 	for (i = 0; i < 7; ++i)
221 		if (freq <= (map[i] + map[i + 1]) / 2)
222 			break;
223 	return i;
224 }
225 
226 static int FREQ_FROM_REG(const int *map, u8 reg)
227 {
228 	return map[reg & 0x07];
229 }
230 
231 /* Since we can't use strings, I'm abusing these numbers
232  *   to stand in for the following meanings:
233  *      1 -- PWM responds to Zone 1
234  *      2 -- PWM responds to Zone 2
235  *      3 -- PWM responds to Zone 3
236  *     23 -- PWM responds to the higher temp of Zone 2 or 3
237  *    123 -- PWM responds to highest of Zone 1, 2, or 3
238  *      0 -- PWM is always at 0% (ie, off)
239  *     -1 -- PWM is always at 100%
240  *     -2 -- PWM responds to manual control
241  */
242 
243 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
244 #define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
245 
246 static int ZONE_TO_REG(int zone)
247 {
248 	int i;
249 
250 	for (i = 0; i <= 7; ++i)
251 		if (zone == lm85_zone_map[i])
252 			break;
253 	if (i > 7)   /* Not found. */
254 		i = 3;  /* Always 100% */
255 	return i << 5;
256 }
257 
258 #define HYST_TO_REG(val)	SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
259 #define HYST_FROM_REG(val)	((val) * 1000)
260 
261 /* Chip sampling rates
262  *
263  * Some sensors are not updated more frequently than once per second
264  *    so it doesn't make sense to read them more often than that.
265  *    We cache the results and return the saved data if the driver
266  *    is called again before a second has elapsed.
267  *
268  * Also, there is significant configuration data for this chip
269  *    given the automatic PWM fan control that is possible.  There
270  *    are about 47 bytes of config data to only 22 bytes of actual
271  *    readings.  So, we keep the config data up to date in the cache
272  *    when it is written and only sample it once every 1 *minute*
273  */
274 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
275 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
276 
277 /* LM85 can automatically adjust fan speeds based on temperature
278  * This structure encapsulates an entire Zone config.  There are
279  * three zones (one for each temperature input) on the lm85
280  */
281 struct lm85_zone {
282 	s8 limit;	/* Low temp limit */
283 	u8 hyst;	/* Low limit hysteresis. (0-15) */
284 	u8 range;	/* Temp range, encoded */
285 	s8 critical;	/* "All fans ON" temp limit */
286 	u8 max_desired; /* Actual "max" temperature specified.  Preserved
287 			 * to prevent "drift" as other autofan control
288 			 * values change.
289 			 */
290 };
291 
292 struct lm85_autofan {
293 	u8 config;	/* Register value */
294 	u8 min_pwm;	/* Minimum PWM value, encoded */
295 	u8 min_off;	/* Min PWM or OFF below "limit", flag */
296 };
297 
298 /* For each registered chip, we need to keep some data in memory.
299    The structure is dynamically allocated. */
300 struct lm85_data {
301 	struct device *hwmon_dev;
302 	const int *freq_map;
303 	enum chips type;
304 
305 	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
306 
307 	struct mutex update_lock;
308 	int valid;		/* !=0 if following fields are valid */
309 	unsigned long last_reading;	/* In jiffies */
310 	unsigned long last_config;	/* In jiffies */
311 
312 	u8 in[8];		/* Register value */
313 	u8 in_max[8];		/* Register value */
314 	u8 in_min[8];		/* Register value */
315 	s8 temp[3];		/* Register value */
316 	s8 temp_min[3];		/* Register value */
317 	s8 temp_max[3];		/* Register value */
318 	u16 fan[4];		/* Register value */
319 	u16 fan_min[4];		/* Register value */
320 	u8 pwm[3];		/* Register value */
321 	u8 pwm_freq[3];		/* Register encoding */
322 	u8 temp_ext[3];		/* Decoded values */
323 	u8 in_ext[8];		/* Decoded values */
324 	u8 vid;			/* Register value */
325 	u8 vrm;			/* VRM version */
326 	u32 alarms;		/* Register encoding, combined */
327 	u8 cfg5;		/* Config Register 5 on ADT7468 */
328 	struct lm85_autofan autofan[3];
329 	struct lm85_zone zone[3];
330 };
331 
332 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info);
333 static int lm85_probe(struct i2c_client *client,
334 		      const struct i2c_device_id *id);
335 static int lm85_remove(struct i2c_client *client);
336 
337 static int lm85_read_value(struct i2c_client *client, u8 reg);
338 static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
339 static struct lm85_data *lm85_update_device(struct device *dev);
340 
341 
342 static const struct i2c_device_id lm85_id[] = {
343 	{ "adm1027", adm1027 },
344 	{ "adt7463", adt7463 },
345 	{ "adt7468", adt7468 },
346 	{ "lm85", any_chip },
347 	{ "lm85b", lm85b },
348 	{ "lm85c", lm85c },
349 	{ "emc6d100", emc6d100 },
350 	{ "emc6d101", emc6d100 },
351 	{ "emc6d102", emc6d102 },
352 	{ "emc6d103", emc6d103 },
353 	{ "emc6d103s", emc6d103s },
354 	{ }
355 };
356 MODULE_DEVICE_TABLE(i2c, lm85_id);
357 
358 static struct i2c_driver lm85_driver = {
359 	.class		= I2C_CLASS_HWMON,
360 	.driver = {
361 		.name   = "lm85",
362 	},
363 	.probe		= lm85_probe,
364 	.remove		= lm85_remove,
365 	.id_table	= lm85_id,
366 	.detect		= lm85_detect,
367 	.address_list	= normal_i2c,
368 };
369 
370 
371 /* 4 Fans */
372 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
373 		char *buf)
374 {
375 	int nr = to_sensor_dev_attr(attr)->index;
376 	struct lm85_data *data = lm85_update_device(dev);
377 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
378 }
379 
380 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
381 		char *buf)
382 {
383 	int nr = to_sensor_dev_attr(attr)->index;
384 	struct lm85_data *data = lm85_update_device(dev);
385 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
386 }
387 
388 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
389 		const char *buf, size_t count)
390 {
391 	int nr = to_sensor_dev_attr(attr)->index;
392 	struct i2c_client *client = to_i2c_client(dev);
393 	struct lm85_data *data = i2c_get_clientdata(client);
394 	unsigned long val = simple_strtoul(buf, NULL, 10);
395 
396 	mutex_lock(&data->update_lock);
397 	data->fan_min[nr] = FAN_TO_REG(val);
398 	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
399 	mutex_unlock(&data->update_lock);
400 	return count;
401 }
402 
403 #define show_fan_offset(offset)						\
404 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
405 		show_fan, NULL, offset - 1);				\
406 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
407 		show_fan_min, set_fan_min, offset - 1)
408 
409 show_fan_offset(1);
410 show_fan_offset(2);
411 show_fan_offset(3);
412 show_fan_offset(4);
413 
414 /* vid, vrm, alarms */
415 
416 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
417 		char *buf)
418 {
419 	struct lm85_data *data = lm85_update_device(dev);
420 	int vid;
421 
422 	if (data->has_vid5) {
423 		/* 6-pin VID (VRM 10) */
424 		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
425 	} else {
426 		/* 5-pin VID (VRM 9) */
427 		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
428 	}
429 
430 	return sprintf(buf, "%d\n", vid);
431 }
432 
433 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
434 
435 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
436 		char *buf)
437 {
438 	struct lm85_data *data = dev_get_drvdata(dev);
439 	return sprintf(buf, "%ld\n", (long) data->vrm);
440 }
441 
442 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
443 		const char *buf, size_t count)
444 {
445 	struct lm85_data *data = dev_get_drvdata(dev);
446 	data->vrm = simple_strtoul(buf, NULL, 10);
447 	return count;
448 }
449 
450 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
451 
452 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
453 		*attr, char *buf)
454 {
455 	struct lm85_data *data = lm85_update_device(dev);
456 	return sprintf(buf, "%u\n", data->alarms);
457 }
458 
459 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
460 
461 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
462 		char *buf)
463 {
464 	int nr = to_sensor_dev_attr(attr)->index;
465 	struct lm85_data *data = lm85_update_device(dev);
466 	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
467 }
468 
469 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
470 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
471 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
472 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
473 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
474 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
475 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
476 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
477 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
478 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
479 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
480 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
481 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
482 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
483 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
484 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
485 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
486 
487 /* pwm */
488 
489 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
490 		char *buf)
491 {
492 	int nr = to_sensor_dev_attr(attr)->index;
493 	struct lm85_data *data = lm85_update_device(dev);
494 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
495 }
496 
497 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
498 		const char *buf, size_t count)
499 {
500 	int nr = to_sensor_dev_attr(attr)->index;
501 	struct i2c_client *client = to_i2c_client(dev);
502 	struct lm85_data *data = i2c_get_clientdata(client);
503 	long val = simple_strtol(buf, NULL, 10);
504 
505 	mutex_lock(&data->update_lock);
506 	data->pwm[nr] = PWM_TO_REG(val);
507 	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
508 	mutex_unlock(&data->update_lock);
509 	return count;
510 }
511 
512 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
513 		*attr, char *buf)
514 {
515 	int nr = to_sensor_dev_attr(attr)->index;
516 	struct lm85_data *data = lm85_update_device(dev);
517 	int pwm_zone, enable;
518 
519 	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
520 	switch (pwm_zone) {
521 	case -1:	/* PWM is always at 100% */
522 		enable = 0;
523 		break;
524 	case 0:		/* PWM is always at 0% */
525 	case -2:	/* PWM responds to manual control */
526 		enable = 1;
527 		break;
528 	default:	/* PWM in automatic mode */
529 		enable = 2;
530 	}
531 	return sprintf(buf, "%d\n", enable);
532 }
533 
534 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
535 		*attr, const char *buf, size_t count)
536 {
537 	int nr = to_sensor_dev_attr(attr)->index;
538 	struct i2c_client *client = to_i2c_client(dev);
539 	struct lm85_data *data = i2c_get_clientdata(client);
540 	long val = simple_strtol(buf, NULL, 10);
541 	u8 config;
542 
543 	switch (val) {
544 	case 0:
545 		config = 3;
546 		break;
547 	case 1:
548 		config = 7;
549 		break;
550 	case 2:
551 		/* Here we have to choose arbitrarily one of the 5 possible
552 		   configurations; I go for the safest */
553 		config = 6;
554 		break;
555 	default:
556 		return -EINVAL;
557 	}
558 
559 	mutex_lock(&data->update_lock);
560 	data->autofan[nr].config = lm85_read_value(client,
561 		LM85_REG_AFAN_CONFIG(nr));
562 	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
563 		| (config << 5);
564 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
565 		data->autofan[nr].config);
566 	mutex_unlock(&data->update_lock);
567 	return count;
568 }
569 
570 static ssize_t show_pwm_freq(struct device *dev,
571 		struct device_attribute *attr, char *buf)
572 {
573 	int nr = to_sensor_dev_attr(attr)->index;
574 	struct lm85_data *data = lm85_update_device(dev);
575 	int freq;
576 
577 	if (IS_ADT7468_HFPWM(data))
578 		freq = 22500;
579 	else
580 		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
581 
582 	return sprintf(buf, "%d\n", freq);
583 }
584 
585 static ssize_t set_pwm_freq(struct device *dev,
586 		struct device_attribute *attr, const char *buf, size_t count)
587 {
588 	int nr = to_sensor_dev_attr(attr)->index;
589 	struct i2c_client *client = to_i2c_client(dev);
590 	struct lm85_data *data = i2c_get_clientdata(client);
591 	long val = simple_strtol(buf, NULL, 10);
592 
593 	mutex_lock(&data->update_lock);
594 	/* The ADT7468 has a special high-frequency PWM output mode,
595 	 * where all PWM outputs are driven by a 22.5 kHz clock.
596 	 * This might confuse the user, but there's not much we can do. */
597 	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
598 		data->cfg5 &= ~ADT7468_HFPWM;
599 		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
600 	} else {					/* Low freq. mode */
601 		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
602 		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
603 				 (data->zone[nr].range << 4)
604 				 | data->pwm_freq[nr]);
605 		if (data->type == adt7468) {
606 			data->cfg5 |= ADT7468_HFPWM;
607 			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
608 		}
609 	}
610 	mutex_unlock(&data->update_lock);
611 	return count;
612 }
613 
614 #define show_pwm_reg(offset)						\
615 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
616 		show_pwm, set_pwm, offset - 1);				\
617 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
618 		show_pwm_enable, set_pwm_enable, offset - 1);		\
619 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
620 		show_pwm_freq, set_pwm_freq, offset - 1)
621 
622 show_pwm_reg(1);
623 show_pwm_reg(2);
624 show_pwm_reg(3);
625 
626 /* Voltages */
627 
628 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
629 		char *buf)
630 {
631 	int nr = to_sensor_dev_attr(attr)->index;
632 	struct lm85_data *data = lm85_update_device(dev);
633 	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
634 						    data->in_ext[nr]));
635 }
636 
637 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
638 		char *buf)
639 {
640 	int nr = to_sensor_dev_attr(attr)->index;
641 	struct lm85_data *data = lm85_update_device(dev);
642 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
643 }
644 
645 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
646 		const char *buf, size_t count)
647 {
648 	int nr = to_sensor_dev_attr(attr)->index;
649 	struct i2c_client *client = to_i2c_client(dev);
650 	struct lm85_data *data = i2c_get_clientdata(client);
651 	long val = simple_strtol(buf, NULL, 10);
652 
653 	mutex_lock(&data->update_lock);
654 	data->in_min[nr] = INS_TO_REG(nr, val);
655 	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
656 	mutex_unlock(&data->update_lock);
657 	return count;
658 }
659 
660 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
661 		char *buf)
662 {
663 	int nr = to_sensor_dev_attr(attr)->index;
664 	struct lm85_data *data = lm85_update_device(dev);
665 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
666 }
667 
668 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
669 		const char *buf, size_t count)
670 {
671 	int nr = to_sensor_dev_attr(attr)->index;
672 	struct i2c_client *client = to_i2c_client(dev);
673 	struct lm85_data *data = i2c_get_clientdata(client);
674 	long val = simple_strtol(buf, NULL, 10);
675 
676 	mutex_lock(&data->update_lock);
677 	data->in_max[nr] = INS_TO_REG(nr, val);
678 	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
679 	mutex_unlock(&data->update_lock);
680 	return count;
681 }
682 
683 #define show_in_reg(offset)						\
684 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
685 		show_in, NULL, offset);					\
686 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
687 		show_in_min, set_in_min, offset);			\
688 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
689 		show_in_max, set_in_max, offset)
690 
691 show_in_reg(0);
692 show_in_reg(1);
693 show_in_reg(2);
694 show_in_reg(3);
695 show_in_reg(4);
696 show_in_reg(5);
697 show_in_reg(6);
698 show_in_reg(7);
699 
700 /* Temps */
701 
702 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
703 		char *buf)
704 {
705 	int nr = to_sensor_dev_attr(attr)->index;
706 	struct lm85_data *data = lm85_update_device(dev);
707 	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
708 						     data->temp_ext[nr]));
709 }
710 
711 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
712 		char *buf)
713 {
714 	int nr = to_sensor_dev_attr(attr)->index;
715 	struct lm85_data *data = lm85_update_device(dev);
716 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
717 }
718 
719 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
720 		const char *buf, size_t count)
721 {
722 	int nr = to_sensor_dev_attr(attr)->index;
723 	struct i2c_client *client = to_i2c_client(dev);
724 	struct lm85_data *data = i2c_get_clientdata(client);
725 	long val = simple_strtol(buf, NULL, 10);
726 
727 	if (IS_ADT7468_OFF64(data))
728 		val += 64;
729 
730 	mutex_lock(&data->update_lock);
731 	data->temp_min[nr] = TEMP_TO_REG(val);
732 	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
733 	mutex_unlock(&data->update_lock);
734 	return count;
735 }
736 
737 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
738 		char *buf)
739 {
740 	int nr = to_sensor_dev_attr(attr)->index;
741 	struct lm85_data *data = lm85_update_device(dev);
742 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
743 }
744 
745 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
746 		const char *buf, size_t count)
747 {
748 	int nr = to_sensor_dev_attr(attr)->index;
749 	struct i2c_client *client = to_i2c_client(dev);
750 	struct lm85_data *data = i2c_get_clientdata(client);
751 	long val = simple_strtol(buf, NULL, 10);
752 
753 	if (IS_ADT7468_OFF64(data))
754 		val += 64;
755 
756 	mutex_lock(&data->update_lock);
757 	data->temp_max[nr] = TEMP_TO_REG(val);
758 	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
759 	mutex_unlock(&data->update_lock);
760 	return count;
761 }
762 
763 #define show_temp_reg(offset)						\
764 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
765 		show_temp, NULL, offset - 1);				\
766 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
767 		show_temp_min, set_temp_min, offset - 1);		\
768 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
769 		show_temp_max, set_temp_max, offset - 1);
770 
771 show_temp_reg(1);
772 show_temp_reg(2);
773 show_temp_reg(3);
774 
775 
776 /* Automatic PWM control */
777 
778 static ssize_t show_pwm_auto_channels(struct device *dev,
779 		struct device_attribute *attr, char *buf)
780 {
781 	int nr = to_sensor_dev_attr(attr)->index;
782 	struct lm85_data *data = lm85_update_device(dev);
783 	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
784 }
785 
786 static ssize_t set_pwm_auto_channels(struct device *dev,
787 		struct device_attribute *attr, const char *buf, size_t count)
788 {
789 	int nr = to_sensor_dev_attr(attr)->index;
790 	struct i2c_client *client = to_i2c_client(dev);
791 	struct lm85_data *data = i2c_get_clientdata(client);
792 	long val = simple_strtol(buf, NULL, 10);
793 
794 	mutex_lock(&data->update_lock);
795 	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
796 		| ZONE_TO_REG(val);
797 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
798 		data->autofan[nr].config);
799 	mutex_unlock(&data->update_lock);
800 	return count;
801 }
802 
803 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
804 		struct device_attribute *attr, char *buf)
805 {
806 	int nr = to_sensor_dev_attr(attr)->index;
807 	struct lm85_data *data = lm85_update_device(dev);
808 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
809 }
810 
811 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
812 		struct device_attribute *attr, const char *buf, size_t count)
813 {
814 	int nr = to_sensor_dev_attr(attr)->index;
815 	struct i2c_client *client = to_i2c_client(dev);
816 	struct lm85_data *data = i2c_get_clientdata(client);
817 	long val = simple_strtol(buf, NULL, 10);
818 
819 	mutex_lock(&data->update_lock);
820 	data->autofan[nr].min_pwm = PWM_TO_REG(val);
821 	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
822 		data->autofan[nr].min_pwm);
823 	mutex_unlock(&data->update_lock);
824 	return count;
825 }
826 
827 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
828 		struct device_attribute *attr, char *buf)
829 {
830 	int nr = to_sensor_dev_attr(attr)->index;
831 	struct lm85_data *data = lm85_update_device(dev);
832 	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
833 }
834 
835 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
836 		struct device_attribute *attr, const char *buf, size_t count)
837 {
838 	int nr = to_sensor_dev_attr(attr)->index;
839 	struct i2c_client *client = to_i2c_client(dev);
840 	struct lm85_data *data = i2c_get_clientdata(client);
841 	long val = simple_strtol(buf, NULL, 10);
842 	u8 tmp;
843 
844 	mutex_lock(&data->update_lock);
845 	data->autofan[nr].min_off = val;
846 	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
847 	tmp &= ~(0x20 << nr);
848 	if (data->autofan[nr].min_off)
849 		tmp |= 0x20 << nr;
850 	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
851 	mutex_unlock(&data->update_lock);
852 	return count;
853 }
854 
855 #define pwm_auto(offset)						\
856 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
857 		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
858 		set_pwm_auto_channels, offset - 1);			\
859 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
860 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
861 		set_pwm_auto_pwm_min, offset - 1);			\
862 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
863 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
864 		set_pwm_auto_pwm_minctl, offset - 1)
865 
866 pwm_auto(1);
867 pwm_auto(2);
868 pwm_auto(3);
869 
870 /* Temperature settings for automatic PWM control */
871 
872 static ssize_t show_temp_auto_temp_off(struct device *dev,
873 		struct device_attribute *attr, char *buf)
874 {
875 	int nr = to_sensor_dev_attr(attr)->index;
876 	struct lm85_data *data = lm85_update_device(dev);
877 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
878 		HYST_FROM_REG(data->zone[nr].hyst));
879 }
880 
881 static ssize_t set_temp_auto_temp_off(struct device *dev,
882 		struct device_attribute *attr, const char *buf, size_t count)
883 {
884 	int nr = to_sensor_dev_attr(attr)->index;
885 	struct i2c_client *client = to_i2c_client(dev);
886 	struct lm85_data *data = i2c_get_clientdata(client);
887 	int min;
888 	long val = simple_strtol(buf, NULL, 10);
889 
890 	mutex_lock(&data->update_lock);
891 	min = TEMP_FROM_REG(data->zone[nr].limit);
892 	data->zone[nr].hyst = HYST_TO_REG(min - val);
893 	if (nr == 0 || nr == 1) {
894 		lm85_write_value(client, LM85_REG_AFAN_HYST1,
895 			(data->zone[0].hyst << 4)
896 			| data->zone[1].hyst);
897 	} else {
898 		lm85_write_value(client, LM85_REG_AFAN_HYST2,
899 			(data->zone[2].hyst << 4));
900 	}
901 	mutex_unlock(&data->update_lock);
902 	return count;
903 }
904 
905 static ssize_t show_temp_auto_temp_min(struct device *dev,
906 		struct device_attribute *attr, char *buf)
907 {
908 	int nr = to_sensor_dev_attr(attr)->index;
909 	struct lm85_data *data = lm85_update_device(dev);
910 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
911 }
912 
913 static ssize_t set_temp_auto_temp_min(struct device *dev,
914 		struct device_attribute *attr, const char *buf, size_t count)
915 {
916 	int nr = to_sensor_dev_attr(attr)->index;
917 	struct i2c_client *client = to_i2c_client(dev);
918 	struct lm85_data *data = i2c_get_clientdata(client);
919 	long val = simple_strtol(buf, NULL, 10);
920 
921 	mutex_lock(&data->update_lock);
922 	data->zone[nr].limit = TEMP_TO_REG(val);
923 	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
924 		data->zone[nr].limit);
925 
926 /* Update temp_auto_max and temp_auto_range */
927 	data->zone[nr].range = RANGE_TO_REG(
928 		TEMP_FROM_REG(data->zone[nr].max_desired) -
929 		TEMP_FROM_REG(data->zone[nr].limit));
930 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
931 		((data->zone[nr].range & 0x0f) << 4)
932 		| (data->pwm_freq[nr] & 0x07));
933 
934 	mutex_unlock(&data->update_lock);
935 	return count;
936 }
937 
938 static ssize_t show_temp_auto_temp_max(struct device *dev,
939 		struct device_attribute *attr, char *buf)
940 {
941 	int nr = to_sensor_dev_attr(attr)->index;
942 	struct lm85_data *data = lm85_update_device(dev);
943 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
944 		RANGE_FROM_REG(data->zone[nr].range));
945 }
946 
947 static ssize_t set_temp_auto_temp_max(struct device *dev,
948 		struct device_attribute *attr, const char *buf, size_t count)
949 {
950 	int nr = to_sensor_dev_attr(attr)->index;
951 	struct i2c_client *client = to_i2c_client(dev);
952 	struct lm85_data *data = i2c_get_clientdata(client);
953 	int min;
954 	long val = simple_strtol(buf, NULL, 10);
955 
956 	mutex_lock(&data->update_lock);
957 	min = TEMP_FROM_REG(data->zone[nr].limit);
958 	data->zone[nr].max_desired = TEMP_TO_REG(val);
959 	data->zone[nr].range = RANGE_TO_REG(
960 		val - min);
961 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
962 		((data->zone[nr].range & 0x0f) << 4)
963 		| (data->pwm_freq[nr] & 0x07));
964 	mutex_unlock(&data->update_lock);
965 	return count;
966 }
967 
968 static ssize_t show_temp_auto_temp_crit(struct device *dev,
969 		struct device_attribute *attr, char *buf)
970 {
971 	int nr = to_sensor_dev_attr(attr)->index;
972 	struct lm85_data *data = lm85_update_device(dev);
973 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
974 }
975 
976 static ssize_t set_temp_auto_temp_crit(struct device *dev,
977 		struct device_attribute *attr, const char *buf, size_t count)
978 {
979 	int nr = to_sensor_dev_attr(attr)->index;
980 	struct i2c_client *client = to_i2c_client(dev);
981 	struct lm85_data *data = i2c_get_clientdata(client);
982 	long val = simple_strtol(buf, NULL, 10);
983 
984 	mutex_lock(&data->update_lock);
985 	data->zone[nr].critical = TEMP_TO_REG(val);
986 	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
987 		data->zone[nr].critical);
988 	mutex_unlock(&data->update_lock);
989 	return count;
990 }
991 
992 #define temp_auto(offset)						\
993 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
994 		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
995 		set_temp_auto_temp_off, offset - 1);			\
996 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
997 		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
998 		set_temp_auto_temp_min, offset - 1);			\
999 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1000 		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1001 		set_temp_auto_temp_max, offset - 1);			\
1002 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1003 		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1004 		set_temp_auto_temp_crit, offset - 1);
1005 
1006 temp_auto(1);
1007 temp_auto(2);
1008 temp_auto(3);
1009 
1010 static struct attribute *lm85_attributes[] = {
1011 	&sensor_dev_attr_fan1_input.dev_attr.attr,
1012 	&sensor_dev_attr_fan2_input.dev_attr.attr,
1013 	&sensor_dev_attr_fan3_input.dev_attr.attr,
1014 	&sensor_dev_attr_fan4_input.dev_attr.attr,
1015 	&sensor_dev_attr_fan1_min.dev_attr.attr,
1016 	&sensor_dev_attr_fan2_min.dev_attr.attr,
1017 	&sensor_dev_attr_fan3_min.dev_attr.attr,
1018 	&sensor_dev_attr_fan4_min.dev_attr.attr,
1019 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1020 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1021 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1022 	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1023 
1024 	&sensor_dev_attr_pwm1.dev_attr.attr,
1025 	&sensor_dev_attr_pwm2.dev_attr.attr,
1026 	&sensor_dev_attr_pwm3.dev_attr.attr,
1027 	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1028 	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1029 	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1030 	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1031 	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1032 	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1033 
1034 	&sensor_dev_attr_in0_input.dev_attr.attr,
1035 	&sensor_dev_attr_in1_input.dev_attr.attr,
1036 	&sensor_dev_attr_in2_input.dev_attr.attr,
1037 	&sensor_dev_attr_in3_input.dev_attr.attr,
1038 	&sensor_dev_attr_in0_min.dev_attr.attr,
1039 	&sensor_dev_attr_in1_min.dev_attr.attr,
1040 	&sensor_dev_attr_in2_min.dev_attr.attr,
1041 	&sensor_dev_attr_in3_min.dev_attr.attr,
1042 	&sensor_dev_attr_in0_max.dev_attr.attr,
1043 	&sensor_dev_attr_in1_max.dev_attr.attr,
1044 	&sensor_dev_attr_in2_max.dev_attr.attr,
1045 	&sensor_dev_attr_in3_max.dev_attr.attr,
1046 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1047 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1048 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1049 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1050 
1051 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1052 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1053 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1054 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1055 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1056 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1057 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1058 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1059 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1060 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1061 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1062 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1063 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1064 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1065 
1066 	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1067 	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1068 	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1069 	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1070 	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1071 	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1072 
1073 	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1074 	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1075 	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1076 	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1077 	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1078 	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1079 	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1080 	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1081 	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1082 
1083 	&dev_attr_vrm.attr,
1084 	&dev_attr_cpu0_vid.attr,
1085 	&dev_attr_alarms.attr,
1086 	NULL
1087 };
1088 
1089 static const struct attribute_group lm85_group = {
1090 	.attrs = lm85_attributes,
1091 };
1092 
1093 static struct attribute *lm85_attributes_minctl[] = {
1094 	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1095 	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1096 	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1097 	NULL
1098 };
1099 
1100 static const struct attribute_group lm85_group_minctl = {
1101 	.attrs = lm85_attributes_minctl,
1102 };
1103 
1104 static struct attribute *lm85_attributes_temp_off[] = {
1105 	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1106 	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1107 	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1108 	NULL
1109 };
1110 
1111 static const struct attribute_group lm85_group_temp_off = {
1112 	.attrs = lm85_attributes_temp_off,
1113 };
1114 
1115 static struct attribute *lm85_attributes_in4[] = {
1116 	&sensor_dev_attr_in4_input.dev_attr.attr,
1117 	&sensor_dev_attr_in4_min.dev_attr.attr,
1118 	&sensor_dev_attr_in4_max.dev_attr.attr,
1119 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1120 	NULL
1121 };
1122 
1123 static const struct attribute_group lm85_group_in4 = {
1124 	.attrs = lm85_attributes_in4,
1125 };
1126 
1127 static struct attribute *lm85_attributes_in567[] = {
1128 	&sensor_dev_attr_in5_input.dev_attr.attr,
1129 	&sensor_dev_attr_in6_input.dev_attr.attr,
1130 	&sensor_dev_attr_in7_input.dev_attr.attr,
1131 	&sensor_dev_attr_in5_min.dev_attr.attr,
1132 	&sensor_dev_attr_in6_min.dev_attr.attr,
1133 	&sensor_dev_attr_in7_min.dev_attr.attr,
1134 	&sensor_dev_attr_in5_max.dev_attr.attr,
1135 	&sensor_dev_attr_in6_max.dev_attr.attr,
1136 	&sensor_dev_attr_in7_max.dev_attr.attr,
1137 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1138 	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1139 	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1140 	NULL
1141 };
1142 
1143 static const struct attribute_group lm85_group_in567 = {
1144 	.attrs = lm85_attributes_in567,
1145 };
1146 
1147 static void lm85_init_client(struct i2c_client *client)
1148 {
1149 	int value;
1150 
1151 	/* Start monitoring if needed */
1152 	value = lm85_read_value(client, LM85_REG_CONFIG);
1153 	if (!(value & 0x01)) {
1154 		dev_info(&client->dev, "Starting monitoring\n");
1155 		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1156 	}
1157 
1158 	/* Warn about unusual configuration bits */
1159 	if (value & 0x02)
1160 		dev_warn(&client->dev, "Device configuration is locked\n");
1161 	if (!(value & 0x04))
1162 		dev_warn(&client->dev, "Device is not ready\n");
1163 }
1164 
1165 static int lm85_is_fake(struct i2c_client *client)
1166 {
1167 	/*
1168 	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1169 	 * emulate the former except that it has no hardware monitoring function
1170 	 * so the readings are always 0.
1171 	 */
1172 	int i;
1173 	u8 in_temp, fan;
1174 
1175 	for (i = 0; i < 8; i++) {
1176 		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1177 		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1178 		if (in_temp != 0x00 || fan != 0xff)
1179 			return 0;
1180 	}
1181 
1182 	return 1;
1183 }
1184 
1185 /* Return 0 if detection is successful, -ENODEV otherwise */
1186 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1187 {
1188 	struct i2c_adapter *adapter = client->adapter;
1189 	int address = client->addr;
1190 	const char *type_name;
1191 	int company, verstep;
1192 
1193 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1194 		/* We need to be able to do byte I/O */
1195 		return -ENODEV;
1196 	}
1197 
1198 	/* Determine the chip type */
1199 	company = lm85_read_value(client, LM85_REG_COMPANY);
1200 	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1201 
1202 	dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
1203 		"COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1204 		address, company, verstep);
1205 
1206 	/* All supported chips have the version in common */
1207 	if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
1208 	    (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
1209 		dev_dbg(&adapter->dev,
1210 			"Autodetection failed: unsupported version\n");
1211 		return -ENODEV;
1212 	}
1213 	type_name = "lm85";
1214 
1215 	/* Now, refine the detection */
1216 	if (company == LM85_COMPANY_NATIONAL) {
1217 		switch (verstep) {
1218 		case LM85_VERSTEP_LM85C:
1219 			type_name = "lm85c";
1220 			break;
1221 		case LM85_VERSTEP_LM85B:
1222 			type_name = "lm85b";
1223 			break;
1224 		case LM85_VERSTEP_LM96000_1:
1225 		case LM85_VERSTEP_LM96000_2:
1226 			/* Check for Winbond WPCD377I */
1227 			if (lm85_is_fake(client)) {
1228 				dev_dbg(&adapter->dev,
1229 					"Found Winbond WPCD377I, ignoring\n");
1230 				return -ENODEV;
1231 			}
1232 			break;
1233 		}
1234 	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1235 		switch (verstep) {
1236 		case LM85_VERSTEP_ADM1027:
1237 			type_name = "adm1027";
1238 			break;
1239 		case LM85_VERSTEP_ADT7463:
1240 		case LM85_VERSTEP_ADT7463C:
1241 			type_name = "adt7463";
1242 			break;
1243 		case LM85_VERSTEP_ADT7468_1:
1244 		case LM85_VERSTEP_ADT7468_2:
1245 			type_name = "adt7468";
1246 			break;
1247 		}
1248 	} else if (company == LM85_COMPANY_SMSC) {
1249 		switch (verstep) {
1250 		case LM85_VERSTEP_EMC6D100_A0:
1251 		case LM85_VERSTEP_EMC6D100_A1:
1252 			/* Note: we can't tell a '100 from a '101 */
1253 			type_name = "emc6d100";
1254 			break;
1255 		case LM85_VERSTEP_EMC6D102:
1256 			type_name = "emc6d102";
1257 			break;
1258 		case LM85_VERSTEP_EMC6D103_A0:
1259 		case LM85_VERSTEP_EMC6D103_A1:
1260 			type_name = "emc6d103";
1261 			break;
1262 		case LM85_VERSTEP_EMC6D103S:
1263 			type_name = "emc6d103s";
1264 			break;
1265 		}
1266 	} else {
1267 		dev_dbg(&adapter->dev,
1268 			"Autodetection failed: unknown vendor\n");
1269 		return -ENODEV;
1270 	}
1271 
1272 	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1273 
1274 	return 0;
1275 }
1276 
1277 static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data)
1278 {
1279 	sysfs_remove_group(&client->dev.kobj, &lm85_group);
1280 	if (data->type != emc6d103s) {
1281 		sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl);
1282 		sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off);
1283 	}
1284 	if (!data->has_vid5)
1285 		sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1286 	if (data->type == emc6d100)
1287 		sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1288 }
1289 
1290 static int lm85_probe(struct i2c_client *client,
1291 		      const struct i2c_device_id *id)
1292 {
1293 	struct lm85_data *data;
1294 	int err;
1295 
1296 	data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
1297 	if (!data)
1298 		return -ENOMEM;
1299 
1300 	i2c_set_clientdata(client, data);
1301 	data->type = id->driver_data;
1302 	mutex_init(&data->update_lock);
1303 
1304 	/* Fill in the chip specific driver values */
1305 	switch (data->type) {
1306 	case adm1027:
1307 	case adt7463:
1308 	case adt7468:
1309 	case emc6d100:
1310 	case emc6d102:
1311 	case emc6d103:
1312 	case emc6d103s:
1313 		data->freq_map = adm1027_freq_map;
1314 		break;
1315 	default:
1316 		data->freq_map = lm85_freq_map;
1317 	}
1318 
1319 	/* Set the VRM version */
1320 	data->vrm = vid_which_vrm();
1321 
1322 	/* Initialize the LM85 chip */
1323 	lm85_init_client(client);
1324 
1325 	/* Register sysfs hooks */
1326 	err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1327 	if (err)
1328 		goto err_kfree;
1329 
1330 	/* minctl and temp_off exist on all chips except emc6d103s */
1331 	if (data->type != emc6d103s) {
1332 		err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl);
1333 		if (err)
1334 			goto err_remove_files;
1335 		err = sysfs_create_group(&client->dev.kobj,
1336 					 &lm85_group_temp_off);
1337 		if (err)
1338 			goto err_remove_files;
1339 	}
1340 
1341 	/* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1342 	   as a sixth digital VID input rather than an analog input. */
1343 	if (data->type == adt7463 || data->type == adt7468) {
1344 		u8 vid = lm85_read_value(client, LM85_REG_VID);
1345 		if (vid & 0x80)
1346 			data->has_vid5 = true;
1347 	}
1348 
1349 	if (!data->has_vid5)
1350 		if ((err = sysfs_create_group(&client->dev.kobj,
1351 					&lm85_group_in4)))
1352 			goto err_remove_files;
1353 
1354 	/* The EMC6D100 has 3 additional voltage inputs */
1355 	if (data->type == emc6d100)
1356 		if ((err = sysfs_create_group(&client->dev.kobj,
1357 					&lm85_group_in567)))
1358 			goto err_remove_files;
1359 
1360 	data->hwmon_dev = hwmon_device_register(&client->dev);
1361 	if (IS_ERR(data->hwmon_dev)) {
1362 		err = PTR_ERR(data->hwmon_dev);
1363 		goto err_remove_files;
1364 	}
1365 
1366 	return 0;
1367 
1368 	/* Error out and cleanup code */
1369  err_remove_files:
1370 	lm85_remove_files(client, data);
1371  err_kfree:
1372 	kfree(data);
1373 	return err;
1374 }
1375 
1376 static int lm85_remove(struct i2c_client *client)
1377 {
1378 	struct lm85_data *data = i2c_get_clientdata(client);
1379 	hwmon_device_unregister(data->hwmon_dev);
1380 	lm85_remove_files(client, data);
1381 	kfree(data);
1382 	return 0;
1383 }
1384 
1385 
1386 static int lm85_read_value(struct i2c_client *client, u8 reg)
1387 {
1388 	int res;
1389 
1390 	/* What size location is it? */
1391 	switch (reg) {
1392 	case LM85_REG_FAN(0):  /* Read WORD data */
1393 	case LM85_REG_FAN(1):
1394 	case LM85_REG_FAN(2):
1395 	case LM85_REG_FAN(3):
1396 	case LM85_REG_FAN_MIN(0):
1397 	case LM85_REG_FAN_MIN(1):
1398 	case LM85_REG_FAN_MIN(2):
1399 	case LM85_REG_FAN_MIN(3):
1400 	case LM85_REG_ALARM1:	/* Read both bytes at once */
1401 		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1402 		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1403 		break;
1404 	default:	/* Read BYTE data */
1405 		res = i2c_smbus_read_byte_data(client, reg);
1406 		break;
1407 	}
1408 
1409 	return res;
1410 }
1411 
1412 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1413 {
1414 	switch (reg) {
1415 	case LM85_REG_FAN(0):  /* Write WORD data */
1416 	case LM85_REG_FAN(1):
1417 	case LM85_REG_FAN(2):
1418 	case LM85_REG_FAN(3):
1419 	case LM85_REG_FAN_MIN(0):
1420 	case LM85_REG_FAN_MIN(1):
1421 	case LM85_REG_FAN_MIN(2):
1422 	case LM85_REG_FAN_MIN(3):
1423 	/* NOTE: ALARM is read only, so not included here */
1424 		i2c_smbus_write_byte_data(client, reg, value & 0xff);
1425 		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1426 		break;
1427 	default:	/* Write BYTE data */
1428 		i2c_smbus_write_byte_data(client, reg, value);
1429 		break;
1430 	}
1431 }
1432 
1433 static struct lm85_data *lm85_update_device(struct device *dev)
1434 {
1435 	struct i2c_client *client = to_i2c_client(dev);
1436 	struct lm85_data *data = i2c_get_clientdata(client);
1437 	int i;
1438 
1439 	mutex_lock(&data->update_lock);
1440 
1441 	if (!data->valid ||
1442 	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1443 		/* Things that change quickly */
1444 		dev_dbg(&client->dev, "Reading sensor values\n");
1445 
1446 		/* Have to read extended bits first to "freeze" the
1447 		 * more significant bits that are read later.
1448 		 * There are 2 additional resolution bits per channel and we
1449 		 * have room for 4, so we shift them to the left.
1450 		 */
1451 		if (data->type == adm1027 || data->type == adt7463 ||
1452 		    data->type == adt7468) {
1453 			int ext1 = lm85_read_value(client,
1454 						   ADM1027_REG_EXTEND_ADC1);
1455 			int ext2 =  lm85_read_value(client,
1456 						    ADM1027_REG_EXTEND_ADC2);
1457 			int val = (ext1 << 8) + ext2;
1458 
1459 			for (i = 0; i <= 4; i++)
1460 				data->in_ext[i] =
1461 					((val >> (i * 2)) & 0x03) << 2;
1462 
1463 			for (i = 0; i <= 2; i++)
1464 				data->temp_ext[i] =
1465 					(val >> ((i + 4) * 2)) & 0x0c;
1466 		}
1467 
1468 		data->vid = lm85_read_value(client, LM85_REG_VID);
1469 
1470 		for (i = 0; i <= 3; ++i) {
1471 			data->in[i] =
1472 			    lm85_read_value(client, LM85_REG_IN(i));
1473 			data->fan[i] =
1474 			    lm85_read_value(client, LM85_REG_FAN(i));
1475 		}
1476 
1477 		if (!data->has_vid5)
1478 			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
1479 
1480 		if (data->type == adt7468)
1481 			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
1482 
1483 		for (i = 0; i <= 2; ++i) {
1484 			data->temp[i] =
1485 			    lm85_read_value(client, LM85_REG_TEMP(i));
1486 			data->pwm[i] =
1487 			    lm85_read_value(client, LM85_REG_PWM(i));
1488 
1489 			if (IS_ADT7468_OFF64(data))
1490 				data->temp[i] -= 64;
1491 		}
1492 
1493 		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1494 
1495 		if (data->type == emc6d100) {
1496 			/* Three more voltage sensors */
1497 			for (i = 5; i <= 7; ++i) {
1498 				data->in[i] = lm85_read_value(client,
1499 							EMC6D100_REG_IN(i));
1500 			}
1501 			/* More alarm bits */
1502 			data->alarms |= lm85_read_value(client,
1503 						EMC6D100_REG_ALARM3) << 16;
1504 		} else if (data->type == emc6d102 || data->type == emc6d103 ||
1505 			   data->type == emc6d103s) {
1506 			/* Have to read LSB bits after the MSB ones because
1507 			   the reading of the MSB bits has frozen the
1508 			   LSBs (backward from the ADM1027).
1509 			 */
1510 			int ext1 = lm85_read_value(client,
1511 						   EMC6D102_REG_EXTEND_ADC1);
1512 			int ext2 = lm85_read_value(client,
1513 						   EMC6D102_REG_EXTEND_ADC2);
1514 			int ext3 = lm85_read_value(client,
1515 						   EMC6D102_REG_EXTEND_ADC3);
1516 			int ext4 = lm85_read_value(client,
1517 						   EMC6D102_REG_EXTEND_ADC4);
1518 			data->in_ext[0] = ext3 & 0x0f;
1519 			data->in_ext[1] = ext4 & 0x0f;
1520 			data->in_ext[2] = ext4 >> 4;
1521 			data->in_ext[3] = ext3 >> 4;
1522 			data->in_ext[4] = ext2 >> 4;
1523 
1524 			data->temp_ext[0] = ext1 & 0x0f;
1525 			data->temp_ext[1] = ext2 & 0x0f;
1526 			data->temp_ext[2] = ext1 >> 4;
1527 		}
1528 
1529 		data->last_reading = jiffies;
1530 	}  /* last_reading */
1531 
1532 	if (!data->valid ||
1533 	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1534 		/* Things that don't change often */
1535 		dev_dbg(&client->dev, "Reading config values\n");
1536 
1537 		for (i = 0; i <= 3; ++i) {
1538 			data->in_min[i] =
1539 			    lm85_read_value(client, LM85_REG_IN_MIN(i));
1540 			data->in_max[i] =
1541 			    lm85_read_value(client, LM85_REG_IN_MAX(i));
1542 			data->fan_min[i] =
1543 			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
1544 		}
1545 
1546 		if (!data->has_vid5)  {
1547 			data->in_min[4] = lm85_read_value(client,
1548 					  LM85_REG_IN_MIN(4));
1549 			data->in_max[4] = lm85_read_value(client,
1550 					  LM85_REG_IN_MAX(4));
1551 		}
1552 
1553 		if (data->type == emc6d100) {
1554 			for (i = 5; i <= 7; ++i) {
1555 				data->in_min[i] = lm85_read_value(client,
1556 						EMC6D100_REG_IN_MIN(i));
1557 				data->in_max[i] = lm85_read_value(client,
1558 						EMC6D100_REG_IN_MAX(i));
1559 			}
1560 		}
1561 
1562 		for (i = 0; i <= 2; ++i) {
1563 			int val;
1564 
1565 			data->temp_min[i] =
1566 			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1567 			data->temp_max[i] =
1568 			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1569 
1570 			data->autofan[i].config =
1571 			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1572 			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1573 			data->pwm_freq[i] = val & 0x07;
1574 			data->zone[i].range = val >> 4;
1575 			data->autofan[i].min_pwm =
1576 			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1577 			data->zone[i].limit =
1578 			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1579 			data->zone[i].critical =
1580 			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1581 
1582 			if (IS_ADT7468_OFF64(data)) {
1583 				data->temp_min[i] -= 64;
1584 				data->temp_max[i] -= 64;
1585 				data->zone[i].limit -= 64;
1586 				data->zone[i].critical -= 64;
1587 			}
1588 		}
1589 
1590 		if (data->type != emc6d103s) {
1591 			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1592 			data->autofan[0].min_off = (i & 0x20) != 0;
1593 			data->autofan[1].min_off = (i & 0x40) != 0;
1594 			data->autofan[2].min_off = (i & 0x80) != 0;
1595 
1596 			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1597 			data->zone[0].hyst = i >> 4;
1598 			data->zone[1].hyst = i & 0x0f;
1599 
1600 			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1601 			data->zone[2].hyst = i >> 4;
1602 		}
1603 
1604 		data->last_config = jiffies;
1605 	}  /* last_config */
1606 
1607 	data->valid = 1;
1608 
1609 	mutex_unlock(&data->update_lock);
1610 
1611 	return data;
1612 }
1613 
1614 
1615 static int __init sm_lm85_init(void)
1616 {
1617 	return i2c_add_driver(&lm85_driver);
1618 }
1619 
1620 static void __exit sm_lm85_exit(void)
1621 {
1622 	i2c_del_driver(&lm85_driver);
1623 }
1624 
1625 MODULE_LICENSE("GPL");
1626 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1627 	"Margit Schubert-While <margitsw@t-online.de>, "
1628 	"Justin Thiessen <jthiessen@penguincomputing.com>");
1629 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1630 
1631 module_init(sm_lm85_init);
1632 module_exit(sm_lm85_exit);
1633