xref: /openbmc/linux/drivers/hwmon/lm85.c (revision a8fe58ce)
1 /*
2  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	    monitoring
4  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5  * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
6  * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
7  * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
8  * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
9  *
10  * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/hwmon-sysfs.h>
35 #include <linux/err.h>
36 #include <linux/mutex.h>
37 #include <linux/util_macros.h>
38 
39 /* Addresses to scan */
40 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
41 
42 enum chips {
43 	lm85,
44 	adm1027, adt7463, adt7468,
45 	emc6d100, emc6d102, emc6d103, emc6d103s
46 };
47 
48 /* The LM85 registers */
49 
50 #define LM85_REG_IN(nr)			(0x20 + (nr))
51 #define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
52 #define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
53 
54 #define LM85_REG_TEMP(nr)		(0x25 + (nr))
55 #define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
56 #define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
57 
58 /* Fan speeds are LSB, MSB (2 bytes) */
59 #define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
60 #define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
61 
62 #define LM85_REG_PWM(nr)		(0x30 + (nr))
63 
64 #define LM85_REG_COMPANY		0x3e
65 #define LM85_REG_VERSTEP		0x3f
66 
67 #define ADT7468_REG_CFG5		0x7c
68 #define ADT7468_OFF64			(1 << 0)
69 #define ADT7468_HFPWM			(1 << 1)
70 #define IS_ADT7468_OFF64(data)		\
71 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
72 #define IS_ADT7468_HFPWM(data)		\
73 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
74 
75 /* These are the recognized values for the above regs */
76 #define LM85_COMPANY_NATIONAL		0x01
77 #define LM85_COMPANY_ANALOG_DEV		0x41
78 #define LM85_COMPANY_SMSC		0x5c
79 #define LM85_VERSTEP_LM85C		0x60
80 #define LM85_VERSTEP_LM85B		0x62
81 #define LM85_VERSTEP_LM96000_1		0x68
82 #define LM85_VERSTEP_LM96000_2		0x69
83 #define LM85_VERSTEP_ADM1027		0x60
84 #define LM85_VERSTEP_ADT7463		0x62
85 #define LM85_VERSTEP_ADT7463C		0x6A
86 #define LM85_VERSTEP_ADT7468_1		0x71
87 #define LM85_VERSTEP_ADT7468_2		0x72
88 #define LM85_VERSTEP_EMC6D100_A0        0x60
89 #define LM85_VERSTEP_EMC6D100_A1        0x61
90 #define LM85_VERSTEP_EMC6D102		0x65
91 #define LM85_VERSTEP_EMC6D103_A0	0x68
92 #define LM85_VERSTEP_EMC6D103_A1	0x69
93 #define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
94 
95 #define LM85_REG_CONFIG			0x40
96 
97 #define LM85_REG_ALARM1			0x41
98 #define LM85_REG_ALARM2			0x42
99 
100 #define LM85_REG_VID			0x43
101 
102 /* Automated FAN control */
103 #define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
104 #define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
105 #define LM85_REG_AFAN_SPIKE1		0x62
106 #define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
107 #define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
108 #define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
109 #define LM85_REG_AFAN_HYST1		0x6d
110 #define LM85_REG_AFAN_HYST2		0x6e
111 
112 #define ADM1027_REG_EXTEND_ADC1		0x76
113 #define ADM1027_REG_EXTEND_ADC2		0x77
114 
115 #define EMC6D100_REG_ALARM3             0x7d
116 /* IN5, IN6 and IN7 */
117 #define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
118 #define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
119 #define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
120 #define EMC6D102_REG_EXTEND_ADC1	0x85
121 #define EMC6D102_REG_EXTEND_ADC2	0x86
122 #define EMC6D102_REG_EXTEND_ADC3	0x87
123 #define EMC6D102_REG_EXTEND_ADC4	0x88
124 
125 /*
126  * Conversions. Rounding and limit checking is only done on the TO_REG
127  * variants. Note that you should be a bit careful with which arguments
128  * these macros are called: arguments may be evaluated more than once.
129  */
130 
131 /* IN are scaled according to built-in resistors */
132 static const int lm85_scaling[] = {  /* .001 Volts */
133 	2500, 2250, 3300, 5000, 12000,
134 	3300, 1500, 1800 /*EMC6D100*/
135 };
136 #define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
137 
138 #define INS_TO_REG(n, val)	\
139 		clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
140 
141 #define INSEXT_FROM_REG(n, val, ext)	\
142 		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
143 
144 #define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
145 
146 /* FAN speed is measured using 90kHz clock */
147 static inline u16 FAN_TO_REG(unsigned long val)
148 {
149 	if (!val)
150 		return 0xffff;
151 	return clamp_val(5400000 / val, 1, 0xfffe);
152 }
153 #define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
154 				 5400000 / (val))
155 
156 /* Temperature is reported in .001 degC increments */
157 #define TEMP_TO_REG(val)	\
158 		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
159 #define TEMPEXT_FROM_REG(val, ext)	\
160 		SCALE(((val) << 4) + (ext), 16, 1000)
161 #define TEMP_FROM_REG(val)	((val) * 1000)
162 
163 #define PWM_TO_REG(val)			clamp_val(val, 0, 255)
164 #define PWM_FROM_REG(val)		(val)
165 
166 
167 /*
168  * ZONEs have the following parameters:
169  *    Limit (low) temp,           1. degC
170  *    Hysteresis (below limit),   1. degC (0-15)
171  *    Range of speed control,     .1 degC (2-80)
172  *    Critical (high) temp,       1. degC
173  *
174  * FAN PWMs have the following parameters:
175  *    Reference Zone,                 1, 2, 3, etc.
176  *    Spinup time,                    .05 sec
177  *    PWM value at limit/low temp,    1 count
178  *    PWM Frequency,                  1. Hz
179  *    PWM is Min or OFF below limit,  flag
180  *    Invert PWM output,              flag
181  *
182  * Some chips filter the temp, others the fan.
183  *    Filter constant (or disabled)   .1 seconds
184  */
185 
186 /* These are the zone temperature range encodings in .001 degree C */
187 static const int lm85_range_map[] = {
188 	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
189 	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
190 };
191 
192 static int RANGE_TO_REG(long range)
193 {
194 	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
195 }
196 #define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
197 
198 /* These are the PWM frequency encodings */
199 static const int lm85_freq_map[8] = { /* 1 Hz */
200 	10, 15, 23, 30, 38, 47, 61, 94
201 };
202 static const int adm1027_freq_map[8] = { /* 1 Hz */
203 	11, 15, 22, 29, 35, 44, 59, 88
204 };
205 #define FREQ_MAP_LEN	8
206 
207 static int FREQ_TO_REG(const int *map,
208 		       unsigned int map_size, unsigned long freq)
209 {
210 	return find_closest(freq, map, map_size);
211 }
212 
213 static int FREQ_FROM_REG(const int *map, u8 reg)
214 {
215 	return map[reg & 0x07];
216 }
217 
218 /*
219  * Since we can't use strings, I'm abusing these numbers
220  *   to stand in for the following meanings:
221  *      1 -- PWM responds to Zone 1
222  *      2 -- PWM responds to Zone 2
223  *      3 -- PWM responds to Zone 3
224  *     23 -- PWM responds to the higher temp of Zone 2 or 3
225  *    123 -- PWM responds to highest of Zone 1, 2, or 3
226  *      0 -- PWM is always at 0% (ie, off)
227  *     -1 -- PWM is always at 100%
228  *     -2 -- PWM responds to manual control
229  */
230 
231 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
232 #define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
233 
234 static int ZONE_TO_REG(int zone)
235 {
236 	int i;
237 
238 	for (i = 0; i <= 7; ++i)
239 		if (zone == lm85_zone_map[i])
240 			break;
241 	if (i > 7)   /* Not found. */
242 		i = 3;  /* Always 100% */
243 	return i << 5;
244 }
245 
246 #define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
247 #define HYST_FROM_REG(val)	((val) * 1000)
248 
249 /*
250  * Chip sampling rates
251  *
252  * Some sensors are not updated more frequently than once per second
253  *    so it doesn't make sense to read them more often than that.
254  *    We cache the results and return the saved data if the driver
255  *    is called again before a second has elapsed.
256  *
257  * Also, there is significant configuration data for this chip
258  *    given the automatic PWM fan control that is possible.  There
259  *    are about 47 bytes of config data to only 22 bytes of actual
260  *    readings.  So, we keep the config data up to date in the cache
261  *    when it is written and only sample it once every 1 *minute*
262  */
263 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
264 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
265 
266 /*
267  * LM85 can automatically adjust fan speeds based on temperature
268  * This structure encapsulates an entire Zone config.  There are
269  * three zones (one for each temperature input) on the lm85
270  */
271 struct lm85_zone {
272 	s8 limit;	/* Low temp limit */
273 	u8 hyst;	/* Low limit hysteresis. (0-15) */
274 	u8 range;	/* Temp range, encoded */
275 	s8 critical;	/* "All fans ON" temp limit */
276 	u8 max_desired; /*
277 			 * Actual "max" temperature specified.  Preserved
278 			 * to prevent "drift" as other autofan control
279 			 * values change.
280 			 */
281 };
282 
283 struct lm85_autofan {
284 	u8 config;	/* Register value */
285 	u8 min_pwm;	/* Minimum PWM value, encoded */
286 	u8 min_off;	/* Min PWM or OFF below "limit", flag */
287 };
288 
289 /*
290  * For each registered chip, we need to keep some data in memory.
291  * The structure is dynamically allocated.
292  */
293 struct lm85_data {
294 	struct i2c_client *client;
295 	const struct attribute_group *groups[6];
296 	const int *freq_map;
297 	enum chips type;
298 
299 	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
300 
301 	struct mutex update_lock;
302 	int valid;		/* !=0 if following fields are valid */
303 	unsigned long last_reading;	/* In jiffies */
304 	unsigned long last_config;	/* In jiffies */
305 
306 	u8 in[8];		/* Register value */
307 	u8 in_max[8];		/* Register value */
308 	u8 in_min[8];		/* Register value */
309 	s8 temp[3];		/* Register value */
310 	s8 temp_min[3];		/* Register value */
311 	s8 temp_max[3];		/* Register value */
312 	u16 fan[4];		/* Register value */
313 	u16 fan_min[4];		/* Register value */
314 	u8 pwm[3];		/* Register value */
315 	u8 pwm_freq[3];		/* Register encoding */
316 	u8 temp_ext[3];		/* Decoded values */
317 	u8 in_ext[8];		/* Decoded values */
318 	u8 vid;			/* Register value */
319 	u8 vrm;			/* VRM version */
320 	u32 alarms;		/* Register encoding, combined */
321 	u8 cfg5;		/* Config Register 5 on ADT7468 */
322 	struct lm85_autofan autofan[3];
323 	struct lm85_zone zone[3];
324 };
325 
326 static int lm85_read_value(struct i2c_client *client, u8 reg)
327 {
328 	int res;
329 
330 	/* What size location is it? */
331 	switch (reg) {
332 	case LM85_REG_FAN(0):  /* Read WORD data */
333 	case LM85_REG_FAN(1):
334 	case LM85_REG_FAN(2):
335 	case LM85_REG_FAN(3):
336 	case LM85_REG_FAN_MIN(0):
337 	case LM85_REG_FAN_MIN(1):
338 	case LM85_REG_FAN_MIN(2):
339 	case LM85_REG_FAN_MIN(3):
340 	case LM85_REG_ALARM1:	/* Read both bytes at once */
341 		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
342 		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
343 		break;
344 	default:	/* Read BYTE data */
345 		res = i2c_smbus_read_byte_data(client, reg);
346 		break;
347 	}
348 
349 	return res;
350 }
351 
352 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
353 {
354 	switch (reg) {
355 	case LM85_REG_FAN(0):  /* Write WORD data */
356 	case LM85_REG_FAN(1):
357 	case LM85_REG_FAN(2):
358 	case LM85_REG_FAN(3):
359 	case LM85_REG_FAN_MIN(0):
360 	case LM85_REG_FAN_MIN(1):
361 	case LM85_REG_FAN_MIN(2):
362 	case LM85_REG_FAN_MIN(3):
363 	/* NOTE: ALARM is read only, so not included here */
364 		i2c_smbus_write_byte_data(client, reg, value & 0xff);
365 		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
366 		break;
367 	default:	/* Write BYTE data */
368 		i2c_smbus_write_byte_data(client, reg, value);
369 		break;
370 	}
371 }
372 
373 static struct lm85_data *lm85_update_device(struct device *dev)
374 {
375 	struct lm85_data *data = dev_get_drvdata(dev);
376 	struct i2c_client *client = data->client;
377 	int i;
378 
379 	mutex_lock(&data->update_lock);
380 
381 	if (!data->valid ||
382 	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
383 		/* Things that change quickly */
384 		dev_dbg(&client->dev, "Reading sensor values\n");
385 
386 		/*
387 		 * Have to read extended bits first to "freeze" the
388 		 * more significant bits that are read later.
389 		 * There are 2 additional resolution bits per channel and we
390 		 * have room for 4, so we shift them to the left.
391 		 */
392 		if (data->type == adm1027 || data->type == adt7463 ||
393 		    data->type == adt7468) {
394 			int ext1 = lm85_read_value(client,
395 						   ADM1027_REG_EXTEND_ADC1);
396 			int ext2 =  lm85_read_value(client,
397 						    ADM1027_REG_EXTEND_ADC2);
398 			int val = (ext1 << 8) + ext2;
399 
400 			for (i = 0; i <= 4; i++)
401 				data->in_ext[i] =
402 					((val >> (i * 2)) & 0x03) << 2;
403 
404 			for (i = 0; i <= 2; i++)
405 				data->temp_ext[i] =
406 					(val >> ((i + 4) * 2)) & 0x0c;
407 		}
408 
409 		data->vid = lm85_read_value(client, LM85_REG_VID);
410 
411 		for (i = 0; i <= 3; ++i) {
412 			data->in[i] =
413 			    lm85_read_value(client, LM85_REG_IN(i));
414 			data->fan[i] =
415 			    lm85_read_value(client, LM85_REG_FAN(i));
416 		}
417 
418 		if (!data->has_vid5)
419 			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
420 
421 		if (data->type == adt7468)
422 			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
423 
424 		for (i = 0; i <= 2; ++i) {
425 			data->temp[i] =
426 			    lm85_read_value(client, LM85_REG_TEMP(i));
427 			data->pwm[i] =
428 			    lm85_read_value(client, LM85_REG_PWM(i));
429 
430 			if (IS_ADT7468_OFF64(data))
431 				data->temp[i] -= 64;
432 		}
433 
434 		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
435 
436 		if (data->type == emc6d100) {
437 			/* Three more voltage sensors */
438 			for (i = 5; i <= 7; ++i) {
439 				data->in[i] = lm85_read_value(client,
440 							EMC6D100_REG_IN(i));
441 			}
442 			/* More alarm bits */
443 			data->alarms |= lm85_read_value(client,
444 						EMC6D100_REG_ALARM3) << 16;
445 		} else if (data->type == emc6d102 || data->type == emc6d103 ||
446 			   data->type == emc6d103s) {
447 			/*
448 			 * Have to read LSB bits after the MSB ones because
449 			 * the reading of the MSB bits has frozen the
450 			 * LSBs (backward from the ADM1027).
451 			 */
452 			int ext1 = lm85_read_value(client,
453 						   EMC6D102_REG_EXTEND_ADC1);
454 			int ext2 = lm85_read_value(client,
455 						   EMC6D102_REG_EXTEND_ADC2);
456 			int ext3 = lm85_read_value(client,
457 						   EMC6D102_REG_EXTEND_ADC3);
458 			int ext4 = lm85_read_value(client,
459 						   EMC6D102_REG_EXTEND_ADC4);
460 			data->in_ext[0] = ext3 & 0x0f;
461 			data->in_ext[1] = ext4 & 0x0f;
462 			data->in_ext[2] = ext4 >> 4;
463 			data->in_ext[3] = ext3 >> 4;
464 			data->in_ext[4] = ext2 >> 4;
465 
466 			data->temp_ext[0] = ext1 & 0x0f;
467 			data->temp_ext[1] = ext2 & 0x0f;
468 			data->temp_ext[2] = ext1 >> 4;
469 		}
470 
471 		data->last_reading = jiffies;
472 	}  /* last_reading */
473 
474 	if (!data->valid ||
475 	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
476 		/* Things that don't change often */
477 		dev_dbg(&client->dev, "Reading config values\n");
478 
479 		for (i = 0; i <= 3; ++i) {
480 			data->in_min[i] =
481 			    lm85_read_value(client, LM85_REG_IN_MIN(i));
482 			data->in_max[i] =
483 			    lm85_read_value(client, LM85_REG_IN_MAX(i));
484 			data->fan_min[i] =
485 			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
486 		}
487 
488 		if (!data->has_vid5)  {
489 			data->in_min[4] = lm85_read_value(client,
490 					  LM85_REG_IN_MIN(4));
491 			data->in_max[4] = lm85_read_value(client,
492 					  LM85_REG_IN_MAX(4));
493 		}
494 
495 		if (data->type == emc6d100) {
496 			for (i = 5; i <= 7; ++i) {
497 				data->in_min[i] = lm85_read_value(client,
498 						EMC6D100_REG_IN_MIN(i));
499 				data->in_max[i] = lm85_read_value(client,
500 						EMC6D100_REG_IN_MAX(i));
501 			}
502 		}
503 
504 		for (i = 0; i <= 2; ++i) {
505 			int val;
506 
507 			data->temp_min[i] =
508 			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
509 			data->temp_max[i] =
510 			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
511 
512 			data->autofan[i].config =
513 			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
514 			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
515 			data->pwm_freq[i] = val & 0x07;
516 			data->zone[i].range = val >> 4;
517 			data->autofan[i].min_pwm =
518 			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
519 			data->zone[i].limit =
520 			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
521 			data->zone[i].critical =
522 			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
523 
524 			if (IS_ADT7468_OFF64(data)) {
525 				data->temp_min[i] -= 64;
526 				data->temp_max[i] -= 64;
527 				data->zone[i].limit -= 64;
528 				data->zone[i].critical -= 64;
529 			}
530 		}
531 
532 		if (data->type != emc6d103s) {
533 			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
534 			data->autofan[0].min_off = (i & 0x20) != 0;
535 			data->autofan[1].min_off = (i & 0x40) != 0;
536 			data->autofan[2].min_off = (i & 0x80) != 0;
537 
538 			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
539 			data->zone[0].hyst = i >> 4;
540 			data->zone[1].hyst = i & 0x0f;
541 
542 			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
543 			data->zone[2].hyst = i >> 4;
544 		}
545 
546 		data->last_config = jiffies;
547 	}  /* last_config */
548 
549 	data->valid = 1;
550 
551 	mutex_unlock(&data->update_lock);
552 
553 	return data;
554 }
555 
556 /* 4 Fans */
557 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
558 		char *buf)
559 {
560 	int nr = to_sensor_dev_attr(attr)->index;
561 	struct lm85_data *data = lm85_update_device(dev);
562 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
563 }
564 
565 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
566 		char *buf)
567 {
568 	int nr = to_sensor_dev_attr(attr)->index;
569 	struct lm85_data *data = lm85_update_device(dev);
570 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
571 }
572 
573 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
574 		const char *buf, size_t count)
575 {
576 	int nr = to_sensor_dev_attr(attr)->index;
577 	struct lm85_data *data = dev_get_drvdata(dev);
578 	struct i2c_client *client = data->client;
579 	unsigned long val;
580 	int err;
581 
582 	err = kstrtoul(buf, 10, &val);
583 	if (err)
584 		return err;
585 
586 	mutex_lock(&data->update_lock);
587 	data->fan_min[nr] = FAN_TO_REG(val);
588 	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
589 	mutex_unlock(&data->update_lock);
590 	return count;
591 }
592 
593 #define show_fan_offset(offset)						\
594 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
595 		show_fan, NULL, offset - 1);				\
596 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
597 		show_fan_min, set_fan_min, offset - 1)
598 
599 show_fan_offset(1);
600 show_fan_offset(2);
601 show_fan_offset(3);
602 show_fan_offset(4);
603 
604 /* vid, vrm, alarms */
605 
606 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
607 		char *buf)
608 {
609 	struct lm85_data *data = lm85_update_device(dev);
610 	int vid;
611 
612 	if (data->has_vid5) {
613 		/* 6-pin VID (VRM 10) */
614 		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
615 	} else {
616 		/* 5-pin VID (VRM 9) */
617 		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
618 	}
619 
620 	return sprintf(buf, "%d\n", vid);
621 }
622 
623 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
624 
625 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
626 		char *buf)
627 {
628 	struct lm85_data *data = dev_get_drvdata(dev);
629 	return sprintf(buf, "%ld\n", (long) data->vrm);
630 }
631 
632 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
633 		const char *buf, size_t count)
634 {
635 	struct lm85_data *data = dev_get_drvdata(dev);
636 	unsigned long val;
637 	int err;
638 
639 	err = kstrtoul(buf, 10, &val);
640 	if (err)
641 		return err;
642 
643 	if (val > 255)
644 		return -EINVAL;
645 
646 	data->vrm = val;
647 	return count;
648 }
649 
650 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
651 
652 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
653 		*attr, char *buf)
654 {
655 	struct lm85_data *data = lm85_update_device(dev);
656 	return sprintf(buf, "%u\n", data->alarms);
657 }
658 
659 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
660 
661 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
662 		char *buf)
663 {
664 	int nr = to_sensor_dev_attr(attr)->index;
665 	struct lm85_data *data = lm85_update_device(dev);
666 	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
667 }
668 
669 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
670 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
671 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
672 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
673 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
674 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
675 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
676 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
677 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
678 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
679 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
680 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
681 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
682 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
683 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
684 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
685 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
686 
687 /* pwm */
688 
689 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
690 		char *buf)
691 {
692 	int nr = to_sensor_dev_attr(attr)->index;
693 	struct lm85_data *data = lm85_update_device(dev);
694 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
695 }
696 
697 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
698 		const char *buf, size_t count)
699 {
700 	int nr = to_sensor_dev_attr(attr)->index;
701 	struct lm85_data *data = dev_get_drvdata(dev);
702 	struct i2c_client *client = data->client;
703 	unsigned long val;
704 	int err;
705 
706 	err = kstrtoul(buf, 10, &val);
707 	if (err)
708 		return err;
709 
710 	mutex_lock(&data->update_lock);
711 	data->pwm[nr] = PWM_TO_REG(val);
712 	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
713 	mutex_unlock(&data->update_lock);
714 	return count;
715 }
716 
717 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
718 		*attr, char *buf)
719 {
720 	int nr = to_sensor_dev_attr(attr)->index;
721 	struct lm85_data *data = lm85_update_device(dev);
722 	int pwm_zone, enable;
723 
724 	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
725 	switch (pwm_zone) {
726 	case -1:	/* PWM is always at 100% */
727 		enable = 0;
728 		break;
729 	case 0:		/* PWM is always at 0% */
730 	case -2:	/* PWM responds to manual control */
731 		enable = 1;
732 		break;
733 	default:	/* PWM in automatic mode */
734 		enable = 2;
735 	}
736 	return sprintf(buf, "%d\n", enable);
737 }
738 
739 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
740 		*attr, const char *buf, size_t count)
741 {
742 	int nr = to_sensor_dev_attr(attr)->index;
743 	struct lm85_data *data = dev_get_drvdata(dev);
744 	struct i2c_client *client = data->client;
745 	u8 config;
746 	unsigned long val;
747 	int err;
748 
749 	err = kstrtoul(buf, 10, &val);
750 	if (err)
751 		return err;
752 
753 	switch (val) {
754 	case 0:
755 		config = 3;
756 		break;
757 	case 1:
758 		config = 7;
759 		break;
760 	case 2:
761 		/*
762 		 * Here we have to choose arbitrarily one of the 5 possible
763 		 * configurations; I go for the safest
764 		 */
765 		config = 6;
766 		break;
767 	default:
768 		return -EINVAL;
769 	}
770 
771 	mutex_lock(&data->update_lock);
772 	data->autofan[nr].config = lm85_read_value(client,
773 		LM85_REG_AFAN_CONFIG(nr));
774 	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
775 		| (config << 5);
776 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
777 		data->autofan[nr].config);
778 	mutex_unlock(&data->update_lock);
779 	return count;
780 }
781 
782 static ssize_t show_pwm_freq(struct device *dev,
783 		struct device_attribute *attr, char *buf)
784 {
785 	int nr = to_sensor_dev_attr(attr)->index;
786 	struct lm85_data *data = lm85_update_device(dev);
787 	int freq;
788 
789 	if (IS_ADT7468_HFPWM(data))
790 		freq = 22500;
791 	else
792 		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
793 
794 	return sprintf(buf, "%d\n", freq);
795 }
796 
797 static ssize_t set_pwm_freq(struct device *dev,
798 		struct device_attribute *attr, const char *buf, size_t count)
799 {
800 	int nr = to_sensor_dev_attr(attr)->index;
801 	struct lm85_data *data = dev_get_drvdata(dev);
802 	struct i2c_client *client = data->client;
803 	unsigned long val;
804 	int err;
805 
806 	err = kstrtoul(buf, 10, &val);
807 	if (err)
808 		return err;
809 
810 	mutex_lock(&data->update_lock);
811 	/*
812 	 * The ADT7468 has a special high-frequency PWM output mode,
813 	 * where all PWM outputs are driven by a 22.5 kHz clock.
814 	 * This might confuse the user, but there's not much we can do.
815 	 */
816 	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
817 		data->cfg5 &= ~ADT7468_HFPWM;
818 		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
819 	} else {					/* Low freq. mode */
820 		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
821 						 FREQ_MAP_LEN, val);
822 		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
823 				 (data->zone[nr].range << 4)
824 				 | data->pwm_freq[nr]);
825 		if (data->type == adt7468) {
826 			data->cfg5 |= ADT7468_HFPWM;
827 			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
828 		}
829 	}
830 	mutex_unlock(&data->update_lock);
831 	return count;
832 }
833 
834 #define show_pwm_reg(offset)						\
835 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
836 		show_pwm, set_pwm, offset - 1);				\
837 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
838 		show_pwm_enable, set_pwm_enable, offset - 1);		\
839 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
840 		show_pwm_freq, set_pwm_freq, offset - 1)
841 
842 show_pwm_reg(1);
843 show_pwm_reg(2);
844 show_pwm_reg(3);
845 
846 /* Voltages */
847 
848 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
849 		char *buf)
850 {
851 	int nr = to_sensor_dev_attr(attr)->index;
852 	struct lm85_data *data = lm85_update_device(dev);
853 	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
854 						    data->in_ext[nr]));
855 }
856 
857 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
858 		char *buf)
859 {
860 	int nr = to_sensor_dev_attr(attr)->index;
861 	struct lm85_data *data = lm85_update_device(dev);
862 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
863 }
864 
865 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
866 		const char *buf, size_t count)
867 {
868 	int nr = to_sensor_dev_attr(attr)->index;
869 	struct lm85_data *data = dev_get_drvdata(dev);
870 	struct i2c_client *client = data->client;
871 	long val;
872 	int err;
873 
874 	err = kstrtol(buf, 10, &val);
875 	if (err)
876 		return err;
877 
878 	mutex_lock(&data->update_lock);
879 	data->in_min[nr] = INS_TO_REG(nr, val);
880 	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
881 	mutex_unlock(&data->update_lock);
882 	return count;
883 }
884 
885 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
886 		char *buf)
887 {
888 	int nr = to_sensor_dev_attr(attr)->index;
889 	struct lm85_data *data = lm85_update_device(dev);
890 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
891 }
892 
893 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
894 		const char *buf, size_t count)
895 {
896 	int nr = to_sensor_dev_attr(attr)->index;
897 	struct lm85_data *data = dev_get_drvdata(dev);
898 	struct i2c_client *client = data->client;
899 	long val;
900 	int err;
901 
902 	err = kstrtol(buf, 10, &val);
903 	if (err)
904 		return err;
905 
906 	mutex_lock(&data->update_lock);
907 	data->in_max[nr] = INS_TO_REG(nr, val);
908 	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
909 	mutex_unlock(&data->update_lock);
910 	return count;
911 }
912 
913 #define show_in_reg(offset)						\
914 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
915 		show_in, NULL, offset);					\
916 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
917 		show_in_min, set_in_min, offset);			\
918 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
919 		show_in_max, set_in_max, offset)
920 
921 show_in_reg(0);
922 show_in_reg(1);
923 show_in_reg(2);
924 show_in_reg(3);
925 show_in_reg(4);
926 show_in_reg(5);
927 show_in_reg(6);
928 show_in_reg(7);
929 
930 /* Temps */
931 
932 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
933 		char *buf)
934 {
935 	int nr = to_sensor_dev_attr(attr)->index;
936 	struct lm85_data *data = lm85_update_device(dev);
937 	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
938 						     data->temp_ext[nr]));
939 }
940 
941 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
942 		char *buf)
943 {
944 	int nr = to_sensor_dev_attr(attr)->index;
945 	struct lm85_data *data = lm85_update_device(dev);
946 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
947 }
948 
949 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
950 		const char *buf, size_t count)
951 {
952 	int nr = to_sensor_dev_attr(attr)->index;
953 	struct lm85_data *data = dev_get_drvdata(dev);
954 	struct i2c_client *client = data->client;
955 	long val;
956 	int err;
957 
958 	err = kstrtol(buf, 10, &val);
959 	if (err)
960 		return err;
961 
962 	if (IS_ADT7468_OFF64(data))
963 		val += 64;
964 
965 	mutex_lock(&data->update_lock);
966 	data->temp_min[nr] = TEMP_TO_REG(val);
967 	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
968 	mutex_unlock(&data->update_lock);
969 	return count;
970 }
971 
972 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
973 		char *buf)
974 {
975 	int nr = to_sensor_dev_attr(attr)->index;
976 	struct lm85_data *data = lm85_update_device(dev);
977 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
978 }
979 
980 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
981 		const char *buf, size_t count)
982 {
983 	int nr = to_sensor_dev_attr(attr)->index;
984 	struct lm85_data *data = dev_get_drvdata(dev);
985 	struct i2c_client *client = data->client;
986 	long val;
987 	int err;
988 
989 	err = kstrtol(buf, 10, &val);
990 	if (err)
991 		return err;
992 
993 	if (IS_ADT7468_OFF64(data))
994 		val += 64;
995 
996 	mutex_lock(&data->update_lock);
997 	data->temp_max[nr] = TEMP_TO_REG(val);
998 	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
999 	mutex_unlock(&data->update_lock);
1000 	return count;
1001 }
1002 
1003 #define show_temp_reg(offset)						\
1004 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1005 		show_temp, NULL, offset - 1);				\
1006 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1007 		show_temp_min, set_temp_min, offset - 1);		\
1008 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1009 		show_temp_max, set_temp_max, offset - 1);
1010 
1011 show_temp_reg(1);
1012 show_temp_reg(2);
1013 show_temp_reg(3);
1014 
1015 
1016 /* Automatic PWM control */
1017 
1018 static ssize_t show_pwm_auto_channels(struct device *dev,
1019 		struct device_attribute *attr, char *buf)
1020 {
1021 	int nr = to_sensor_dev_attr(attr)->index;
1022 	struct lm85_data *data = lm85_update_device(dev);
1023 	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1024 }
1025 
1026 static ssize_t set_pwm_auto_channels(struct device *dev,
1027 		struct device_attribute *attr, const char *buf, size_t count)
1028 {
1029 	int nr = to_sensor_dev_attr(attr)->index;
1030 	struct lm85_data *data = dev_get_drvdata(dev);
1031 	struct i2c_client *client = data->client;
1032 	long val;
1033 	int err;
1034 
1035 	err = kstrtol(buf, 10, &val);
1036 	if (err)
1037 		return err;
1038 
1039 	mutex_lock(&data->update_lock);
1040 	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1041 		| ZONE_TO_REG(val);
1042 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1043 		data->autofan[nr].config);
1044 	mutex_unlock(&data->update_lock);
1045 	return count;
1046 }
1047 
1048 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1049 		struct device_attribute *attr, char *buf)
1050 {
1051 	int nr = to_sensor_dev_attr(attr)->index;
1052 	struct lm85_data *data = lm85_update_device(dev);
1053 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1054 }
1055 
1056 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1057 		struct device_attribute *attr, const char *buf, size_t count)
1058 {
1059 	int nr = to_sensor_dev_attr(attr)->index;
1060 	struct lm85_data *data = dev_get_drvdata(dev);
1061 	struct i2c_client *client = data->client;
1062 	unsigned long val;
1063 	int err;
1064 
1065 	err = kstrtoul(buf, 10, &val);
1066 	if (err)
1067 		return err;
1068 
1069 	mutex_lock(&data->update_lock);
1070 	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1071 	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1072 		data->autofan[nr].min_pwm);
1073 	mutex_unlock(&data->update_lock);
1074 	return count;
1075 }
1076 
1077 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1078 		struct device_attribute *attr, char *buf)
1079 {
1080 	int nr = to_sensor_dev_attr(attr)->index;
1081 	struct lm85_data *data = lm85_update_device(dev);
1082 	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1083 }
1084 
1085 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1086 		struct device_attribute *attr, const char *buf, size_t count)
1087 {
1088 	int nr = to_sensor_dev_attr(attr)->index;
1089 	struct lm85_data *data = dev_get_drvdata(dev);
1090 	struct i2c_client *client = data->client;
1091 	u8 tmp;
1092 	long val;
1093 	int err;
1094 
1095 	err = kstrtol(buf, 10, &val);
1096 	if (err)
1097 		return err;
1098 
1099 	mutex_lock(&data->update_lock);
1100 	data->autofan[nr].min_off = val;
1101 	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1102 	tmp &= ~(0x20 << nr);
1103 	if (data->autofan[nr].min_off)
1104 		tmp |= 0x20 << nr;
1105 	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1106 	mutex_unlock(&data->update_lock);
1107 	return count;
1108 }
1109 
1110 #define pwm_auto(offset)						\
1111 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1112 		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1113 		set_pwm_auto_channels, offset - 1);			\
1114 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1115 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1116 		set_pwm_auto_pwm_min, offset - 1);			\
1117 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1118 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1119 		set_pwm_auto_pwm_minctl, offset - 1)
1120 
1121 pwm_auto(1);
1122 pwm_auto(2);
1123 pwm_auto(3);
1124 
1125 /* Temperature settings for automatic PWM control */
1126 
1127 static ssize_t show_temp_auto_temp_off(struct device *dev,
1128 		struct device_attribute *attr, char *buf)
1129 {
1130 	int nr = to_sensor_dev_attr(attr)->index;
1131 	struct lm85_data *data = lm85_update_device(dev);
1132 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1133 		HYST_FROM_REG(data->zone[nr].hyst));
1134 }
1135 
1136 static ssize_t set_temp_auto_temp_off(struct device *dev,
1137 		struct device_attribute *attr, const char *buf, size_t count)
1138 {
1139 	int nr = to_sensor_dev_attr(attr)->index;
1140 	struct lm85_data *data = dev_get_drvdata(dev);
1141 	struct i2c_client *client = data->client;
1142 	int min;
1143 	long val;
1144 	int err;
1145 
1146 	err = kstrtol(buf, 10, &val);
1147 	if (err)
1148 		return err;
1149 
1150 	mutex_lock(&data->update_lock);
1151 	min = TEMP_FROM_REG(data->zone[nr].limit);
1152 	data->zone[nr].hyst = HYST_TO_REG(min - val);
1153 	if (nr == 0 || nr == 1) {
1154 		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1155 			(data->zone[0].hyst << 4)
1156 			| data->zone[1].hyst);
1157 	} else {
1158 		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1159 			(data->zone[2].hyst << 4));
1160 	}
1161 	mutex_unlock(&data->update_lock);
1162 	return count;
1163 }
1164 
1165 static ssize_t show_temp_auto_temp_min(struct device *dev,
1166 		struct device_attribute *attr, char *buf)
1167 {
1168 	int nr = to_sensor_dev_attr(attr)->index;
1169 	struct lm85_data *data = lm85_update_device(dev);
1170 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1171 }
1172 
1173 static ssize_t set_temp_auto_temp_min(struct device *dev,
1174 		struct device_attribute *attr, const char *buf, size_t count)
1175 {
1176 	int nr = to_sensor_dev_attr(attr)->index;
1177 	struct lm85_data *data = dev_get_drvdata(dev);
1178 	struct i2c_client *client = data->client;
1179 	long val;
1180 	int err;
1181 
1182 	err = kstrtol(buf, 10, &val);
1183 	if (err)
1184 		return err;
1185 
1186 	mutex_lock(&data->update_lock);
1187 	data->zone[nr].limit = TEMP_TO_REG(val);
1188 	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1189 		data->zone[nr].limit);
1190 
1191 /* Update temp_auto_max and temp_auto_range */
1192 	data->zone[nr].range = RANGE_TO_REG(
1193 		TEMP_FROM_REG(data->zone[nr].max_desired) -
1194 		TEMP_FROM_REG(data->zone[nr].limit));
1195 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1196 		((data->zone[nr].range & 0x0f) << 4)
1197 		| (data->pwm_freq[nr] & 0x07));
1198 
1199 	mutex_unlock(&data->update_lock);
1200 	return count;
1201 }
1202 
1203 static ssize_t show_temp_auto_temp_max(struct device *dev,
1204 		struct device_attribute *attr, char *buf)
1205 {
1206 	int nr = to_sensor_dev_attr(attr)->index;
1207 	struct lm85_data *data = lm85_update_device(dev);
1208 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1209 		RANGE_FROM_REG(data->zone[nr].range));
1210 }
1211 
1212 static ssize_t set_temp_auto_temp_max(struct device *dev,
1213 		struct device_attribute *attr, const char *buf, size_t count)
1214 {
1215 	int nr = to_sensor_dev_attr(attr)->index;
1216 	struct lm85_data *data = dev_get_drvdata(dev);
1217 	struct i2c_client *client = data->client;
1218 	int min;
1219 	long val;
1220 	int err;
1221 
1222 	err = kstrtol(buf, 10, &val);
1223 	if (err)
1224 		return err;
1225 
1226 	mutex_lock(&data->update_lock);
1227 	min = TEMP_FROM_REG(data->zone[nr].limit);
1228 	data->zone[nr].max_desired = TEMP_TO_REG(val);
1229 	data->zone[nr].range = RANGE_TO_REG(
1230 		val - min);
1231 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1232 		((data->zone[nr].range & 0x0f) << 4)
1233 		| (data->pwm_freq[nr] & 0x07));
1234 	mutex_unlock(&data->update_lock);
1235 	return count;
1236 }
1237 
1238 static ssize_t show_temp_auto_temp_crit(struct device *dev,
1239 		struct device_attribute *attr, char *buf)
1240 {
1241 	int nr = to_sensor_dev_attr(attr)->index;
1242 	struct lm85_data *data = lm85_update_device(dev);
1243 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1244 }
1245 
1246 static ssize_t set_temp_auto_temp_crit(struct device *dev,
1247 		struct device_attribute *attr, const char *buf, size_t count)
1248 {
1249 	int nr = to_sensor_dev_attr(attr)->index;
1250 	struct lm85_data *data = dev_get_drvdata(dev);
1251 	struct i2c_client *client = data->client;
1252 	long val;
1253 	int err;
1254 
1255 	err = kstrtol(buf, 10, &val);
1256 	if (err)
1257 		return err;
1258 
1259 	mutex_lock(&data->update_lock);
1260 	data->zone[nr].critical = TEMP_TO_REG(val);
1261 	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1262 		data->zone[nr].critical);
1263 	mutex_unlock(&data->update_lock);
1264 	return count;
1265 }
1266 
1267 #define temp_auto(offset)						\
1268 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1269 		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1270 		set_temp_auto_temp_off, offset - 1);			\
1271 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1272 		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1273 		set_temp_auto_temp_min, offset - 1);			\
1274 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1275 		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1276 		set_temp_auto_temp_max, offset - 1);			\
1277 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1278 		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1279 		set_temp_auto_temp_crit, offset - 1);
1280 
1281 temp_auto(1);
1282 temp_auto(2);
1283 temp_auto(3);
1284 
1285 static struct attribute *lm85_attributes[] = {
1286 	&sensor_dev_attr_fan1_input.dev_attr.attr,
1287 	&sensor_dev_attr_fan2_input.dev_attr.attr,
1288 	&sensor_dev_attr_fan3_input.dev_attr.attr,
1289 	&sensor_dev_attr_fan4_input.dev_attr.attr,
1290 	&sensor_dev_attr_fan1_min.dev_attr.attr,
1291 	&sensor_dev_attr_fan2_min.dev_attr.attr,
1292 	&sensor_dev_attr_fan3_min.dev_attr.attr,
1293 	&sensor_dev_attr_fan4_min.dev_attr.attr,
1294 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1295 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1296 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1297 	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1298 
1299 	&sensor_dev_attr_pwm1.dev_attr.attr,
1300 	&sensor_dev_attr_pwm2.dev_attr.attr,
1301 	&sensor_dev_attr_pwm3.dev_attr.attr,
1302 	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1303 	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1304 	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1305 	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1306 	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1307 	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1308 
1309 	&sensor_dev_attr_in0_input.dev_attr.attr,
1310 	&sensor_dev_attr_in1_input.dev_attr.attr,
1311 	&sensor_dev_attr_in2_input.dev_attr.attr,
1312 	&sensor_dev_attr_in3_input.dev_attr.attr,
1313 	&sensor_dev_attr_in0_min.dev_attr.attr,
1314 	&sensor_dev_attr_in1_min.dev_attr.attr,
1315 	&sensor_dev_attr_in2_min.dev_attr.attr,
1316 	&sensor_dev_attr_in3_min.dev_attr.attr,
1317 	&sensor_dev_attr_in0_max.dev_attr.attr,
1318 	&sensor_dev_attr_in1_max.dev_attr.attr,
1319 	&sensor_dev_attr_in2_max.dev_attr.attr,
1320 	&sensor_dev_attr_in3_max.dev_attr.attr,
1321 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1322 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1323 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1324 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1325 
1326 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1327 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1328 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1329 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1330 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1331 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1332 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1333 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1334 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1335 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1336 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1337 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1338 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1339 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1340 
1341 	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1342 	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1343 	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1344 	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1345 	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1346 	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1347 
1348 	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1349 	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1350 	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1351 	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1352 	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1353 	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1354 	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1355 	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1356 	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1357 
1358 	&dev_attr_vrm.attr,
1359 	&dev_attr_cpu0_vid.attr,
1360 	&dev_attr_alarms.attr,
1361 	NULL
1362 };
1363 
1364 static const struct attribute_group lm85_group = {
1365 	.attrs = lm85_attributes,
1366 };
1367 
1368 static struct attribute *lm85_attributes_minctl[] = {
1369 	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1370 	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1371 	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1372 	NULL
1373 };
1374 
1375 static const struct attribute_group lm85_group_minctl = {
1376 	.attrs = lm85_attributes_minctl,
1377 };
1378 
1379 static struct attribute *lm85_attributes_temp_off[] = {
1380 	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1381 	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1382 	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1383 	NULL
1384 };
1385 
1386 static const struct attribute_group lm85_group_temp_off = {
1387 	.attrs = lm85_attributes_temp_off,
1388 };
1389 
1390 static struct attribute *lm85_attributes_in4[] = {
1391 	&sensor_dev_attr_in4_input.dev_attr.attr,
1392 	&sensor_dev_attr_in4_min.dev_attr.attr,
1393 	&sensor_dev_attr_in4_max.dev_attr.attr,
1394 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1395 	NULL
1396 };
1397 
1398 static const struct attribute_group lm85_group_in4 = {
1399 	.attrs = lm85_attributes_in4,
1400 };
1401 
1402 static struct attribute *lm85_attributes_in567[] = {
1403 	&sensor_dev_attr_in5_input.dev_attr.attr,
1404 	&sensor_dev_attr_in6_input.dev_attr.attr,
1405 	&sensor_dev_attr_in7_input.dev_attr.attr,
1406 	&sensor_dev_attr_in5_min.dev_attr.attr,
1407 	&sensor_dev_attr_in6_min.dev_attr.attr,
1408 	&sensor_dev_attr_in7_min.dev_attr.attr,
1409 	&sensor_dev_attr_in5_max.dev_attr.attr,
1410 	&sensor_dev_attr_in6_max.dev_attr.attr,
1411 	&sensor_dev_attr_in7_max.dev_attr.attr,
1412 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1413 	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1414 	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1415 	NULL
1416 };
1417 
1418 static const struct attribute_group lm85_group_in567 = {
1419 	.attrs = lm85_attributes_in567,
1420 };
1421 
1422 static void lm85_init_client(struct i2c_client *client)
1423 {
1424 	int value;
1425 
1426 	/* Start monitoring if needed */
1427 	value = lm85_read_value(client, LM85_REG_CONFIG);
1428 	if (!(value & 0x01)) {
1429 		dev_info(&client->dev, "Starting monitoring\n");
1430 		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1431 	}
1432 
1433 	/* Warn about unusual configuration bits */
1434 	if (value & 0x02)
1435 		dev_warn(&client->dev, "Device configuration is locked\n");
1436 	if (!(value & 0x04))
1437 		dev_warn(&client->dev, "Device is not ready\n");
1438 }
1439 
1440 static int lm85_is_fake(struct i2c_client *client)
1441 {
1442 	/*
1443 	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1444 	 * emulate the former except that it has no hardware monitoring function
1445 	 * so the readings are always 0.
1446 	 */
1447 	int i;
1448 	u8 in_temp, fan;
1449 
1450 	for (i = 0; i < 8; i++) {
1451 		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1452 		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1453 		if (in_temp != 0x00 || fan != 0xff)
1454 			return 0;
1455 	}
1456 
1457 	return 1;
1458 }
1459 
1460 /* Return 0 if detection is successful, -ENODEV otherwise */
1461 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1462 {
1463 	struct i2c_adapter *adapter = client->adapter;
1464 	int address = client->addr;
1465 	const char *type_name = NULL;
1466 	int company, verstep;
1467 
1468 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1469 		/* We need to be able to do byte I/O */
1470 		return -ENODEV;
1471 	}
1472 
1473 	/* Determine the chip type */
1474 	company = lm85_read_value(client, LM85_REG_COMPANY);
1475 	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1476 
1477 	dev_dbg(&adapter->dev,
1478 		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1479 		address, company, verstep);
1480 
1481 	if (company == LM85_COMPANY_NATIONAL) {
1482 		switch (verstep) {
1483 		case LM85_VERSTEP_LM85C:
1484 			type_name = "lm85c";
1485 			break;
1486 		case LM85_VERSTEP_LM85B:
1487 			type_name = "lm85b";
1488 			break;
1489 		case LM85_VERSTEP_LM96000_1:
1490 		case LM85_VERSTEP_LM96000_2:
1491 			/* Check for Winbond WPCD377I */
1492 			if (lm85_is_fake(client)) {
1493 				dev_dbg(&adapter->dev,
1494 					"Found Winbond WPCD377I, ignoring\n");
1495 				return -ENODEV;
1496 			}
1497 			type_name = "lm85";
1498 			break;
1499 		}
1500 	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1501 		switch (verstep) {
1502 		case LM85_VERSTEP_ADM1027:
1503 			type_name = "adm1027";
1504 			break;
1505 		case LM85_VERSTEP_ADT7463:
1506 		case LM85_VERSTEP_ADT7463C:
1507 			type_name = "adt7463";
1508 			break;
1509 		case LM85_VERSTEP_ADT7468_1:
1510 		case LM85_VERSTEP_ADT7468_2:
1511 			type_name = "adt7468";
1512 			break;
1513 		}
1514 	} else if (company == LM85_COMPANY_SMSC) {
1515 		switch (verstep) {
1516 		case LM85_VERSTEP_EMC6D100_A0:
1517 		case LM85_VERSTEP_EMC6D100_A1:
1518 			/* Note: we can't tell a '100 from a '101 */
1519 			type_name = "emc6d100";
1520 			break;
1521 		case LM85_VERSTEP_EMC6D102:
1522 			type_name = "emc6d102";
1523 			break;
1524 		case LM85_VERSTEP_EMC6D103_A0:
1525 		case LM85_VERSTEP_EMC6D103_A1:
1526 			type_name = "emc6d103";
1527 			break;
1528 		case LM85_VERSTEP_EMC6D103S:
1529 			type_name = "emc6d103s";
1530 			break;
1531 		}
1532 	}
1533 
1534 	if (!type_name)
1535 		return -ENODEV;
1536 
1537 	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1538 
1539 	return 0;
1540 }
1541 
1542 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1543 {
1544 	struct device *dev = &client->dev;
1545 	struct device *hwmon_dev;
1546 	struct lm85_data *data;
1547 	int idx = 0;
1548 
1549 	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1550 	if (!data)
1551 		return -ENOMEM;
1552 
1553 	data->client = client;
1554 	data->type = id->driver_data;
1555 	mutex_init(&data->update_lock);
1556 
1557 	/* Fill in the chip specific driver values */
1558 	switch (data->type) {
1559 	case adm1027:
1560 	case adt7463:
1561 	case adt7468:
1562 	case emc6d100:
1563 	case emc6d102:
1564 	case emc6d103:
1565 	case emc6d103s:
1566 		data->freq_map = adm1027_freq_map;
1567 		break;
1568 	default:
1569 		data->freq_map = lm85_freq_map;
1570 	}
1571 
1572 	/* Set the VRM version */
1573 	data->vrm = vid_which_vrm();
1574 
1575 	/* Initialize the LM85 chip */
1576 	lm85_init_client(client);
1577 
1578 	/* sysfs hooks */
1579 	data->groups[idx++] = &lm85_group;
1580 
1581 	/* minctl and temp_off exist on all chips except emc6d103s */
1582 	if (data->type != emc6d103s) {
1583 		data->groups[idx++] = &lm85_group_minctl;
1584 		data->groups[idx++] = &lm85_group_temp_off;
1585 	}
1586 
1587 	/*
1588 	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1589 	 * as a sixth digital VID input rather than an analog input.
1590 	 */
1591 	if (data->type == adt7463 || data->type == adt7468) {
1592 		u8 vid = lm85_read_value(client, LM85_REG_VID);
1593 		if (vid & 0x80)
1594 			data->has_vid5 = true;
1595 	}
1596 
1597 	if (!data->has_vid5)
1598 		data->groups[idx++] = &lm85_group_in4;
1599 
1600 	/* The EMC6D100 has 3 additional voltage inputs */
1601 	if (data->type == emc6d100)
1602 		data->groups[idx++] = &lm85_group_in567;
1603 
1604 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1605 							   data, data->groups);
1606 	return PTR_ERR_OR_ZERO(hwmon_dev);
1607 }
1608 
1609 static const struct i2c_device_id lm85_id[] = {
1610 	{ "adm1027", adm1027 },
1611 	{ "adt7463", adt7463 },
1612 	{ "adt7468", adt7468 },
1613 	{ "lm85", lm85 },
1614 	{ "lm85b", lm85 },
1615 	{ "lm85c", lm85 },
1616 	{ "emc6d100", emc6d100 },
1617 	{ "emc6d101", emc6d100 },
1618 	{ "emc6d102", emc6d102 },
1619 	{ "emc6d103", emc6d103 },
1620 	{ "emc6d103s", emc6d103s },
1621 	{ }
1622 };
1623 MODULE_DEVICE_TABLE(i2c, lm85_id);
1624 
1625 static struct i2c_driver lm85_driver = {
1626 	.class		= I2C_CLASS_HWMON,
1627 	.driver = {
1628 		.name   = "lm85",
1629 	},
1630 	.probe		= lm85_probe,
1631 	.id_table	= lm85_id,
1632 	.detect		= lm85_detect,
1633 	.address_list	= normal_i2c,
1634 };
1635 
1636 module_i2c_driver(lm85_driver);
1637 
1638 MODULE_LICENSE("GPL");
1639 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1640 	"Margit Schubert-While <margitsw@t-online.de>, "
1641 	"Justin Thiessen <jthiessen@penguincomputing.com>");
1642 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1643