xref: /openbmc/linux/drivers/hwmon/lm85.c (revision 8d81cd1a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	    monitoring
5  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
6  * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
7  * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
8  * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
9  * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
10  *
11  * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
12  */
13 
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/jiffies.h>
19 #include <linux/i2c.h>
20 #include <linux/hwmon.h>
21 #include <linux/hwmon-vid.h>
22 #include <linux/hwmon-sysfs.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/util_macros.h>
26 
27 /* Addresses to scan */
28 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
29 
30 enum chips {
31 	lm85, lm96000,
32 	adm1027, adt7463, adt7468,
33 	emc6d100, emc6d102, emc6d103, emc6d103s
34 };
35 
36 /* The LM85 registers */
37 
38 #define LM85_REG_IN(nr)			(0x20 + (nr))
39 #define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
40 #define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
41 
42 #define LM85_REG_TEMP(nr)		(0x25 + (nr))
43 #define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
44 #define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
45 
46 /* Fan speeds are LSB, MSB (2 bytes) */
47 #define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
48 #define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
49 
50 #define LM85_REG_PWM(nr)		(0x30 + (nr))
51 
52 #define LM85_REG_COMPANY		0x3e
53 #define LM85_REG_VERSTEP		0x3f
54 
55 #define ADT7468_REG_CFG5		0x7c
56 #define ADT7468_OFF64			(1 << 0)
57 #define ADT7468_HFPWM			(1 << 1)
58 #define IS_ADT7468_OFF64(data)		\
59 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
60 #define IS_ADT7468_HFPWM(data)		\
61 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
62 
63 /* These are the recognized values for the above regs */
64 #define LM85_COMPANY_NATIONAL		0x01
65 #define LM85_COMPANY_ANALOG_DEV		0x41
66 #define LM85_COMPANY_SMSC		0x5c
67 #define LM85_VERSTEP_LM85C		0x60
68 #define LM85_VERSTEP_LM85B		0x62
69 #define LM85_VERSTEP_LM96000_1		0x68
70 #define LM85_VERSTEP_LM96000_2		0x69
71 #define LM85_VERSTEP_ADM1027		0x60
72 #define LM85_VERSTEP_ADT7463		0x62
73 #define LM85_VERSTEP_ADT7463C		0x6A
74 #define LM85_VERSTEP_ADT7468_1		0x71
75 #define LM85_VERSTEP_ADT7468_2		0x72
76 #define LM85_VERSTEP_EMC6D100_A0        0x60
77 #define LM85_VERSTEP_EMC6D100_A1        0x61
78 #define LM85_VERSTEP_EMC6D102		0x65
79 #define LM85_VERSTEP_EMC6D103_A0	0x68
80 #define LM85_VERSTEP_EMC6D103_A1	0x69
81 #define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
82 
83 #define LM85_REG_CONFIG			0x40
84 
85 #define LM85_REG_ALARM1			0x41
86 #define LM85_REG_ALARM2			0x42
87 
88 #define LM85_REG_VID			0x43
89 
90 /* Automated FAN control */
91 #define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
92 #define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
93 #define LM85_REG_AFAN_SPIKE1		0x62
94 #define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
95 #define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
96 #define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
97 #define LM85_REG_AFAN_HYST1		0x6d
98 #define LM85_REG_AFAN_HYST2		0x6e
99 
100 #define ADM1027_REG_EXTEND_ADC1		0x76
101 #define ADM1027_REG_EXTEND_ADC2		0x77
102 
103 #define EMC6D100_REG_ALARM3             0x7d
104 /* IN5, IN6 and IN7 */
105 #define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
106 #define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
107 #define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
108 #define EMC6D102_REG_EXTEND_ADC1	0x85
109 #define EMC6D102_REG_EXTEND_ADC2	0x86
110 #define EMC6D102_REG_EXTEND_ADC3	0x87
111 #define EMC6D102_REG_EXTEND_ADC4	0x88
112 
113 /*
114  * Conversions. Rounding and limit checking is only done on the TO_REG
115  * variants. Note that you should be a bit careful with which arguments
116  * these macros are called: arguments may be evaluated more than once.
117  */
118 
119 /* IN are scaled according to built-in resistors */
120 static const int lm85_scaling[] = {  /* .001 Volts */
121 	2500, 2250, 3300, 5000, 12000,
122 	3300, 1500, 1800 /*EMC6D100*/
123 };
124 #define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
125 
126 #define INS_TO_REG(n, val)	\
127 		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
128 		      lm85_scaling[n], 192)
129 
130 #define INSEXT_FROM_REG(n, val, ext)	\
131 		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
132 
133 #define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
134 
135 /* FAN speed is measured using 90kHz clock */
136 static inline u16 FAN_TO_REG(unsigned long val)
137 {
138 	if (!val)
139 		return 0xffff;
140 	return clamp_val(5400000 / val, 1, 0xfffe);
141 }
142 #define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
143 				 5400000 / (val))
144 
145 /* Temperature is reported in .001 degC increments */
146 #define TEMP_TO_REG(val)	\
147 		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
148 #define TEMPEXT_FROM_REG(val, ext)	\
149 		SCALE(((val) << 4) + (ext), 16, 1000)
150 #define TEMP_FROM_REG(val)	((val) * 1000)
151 
152 #define PWM_TO_REG(val)			clamp_val(val, 0, 255)
153 #define PWM_FROM_REG(val)		(val)
154 
155 /*
156  * ZONEs have the following parameters:
157  *    Limit (low) temp,           1. degC
158  *    Hysteresis (below limit),   1. degC (0-15)
159  *    Range of speed control,     .1 degC (2-80)
160  *    Critical (high) temp,       1. degC
161  *
162  * FAN PWMs have the following parameters:
163  *    Reference Zone,                 1, 2, 3, etc.
164  *    Spinup time,                    .05 sec
165  *    PWM value at limit/low temp,    1 count
166  *    PWM Frequency,                  1. Hz
167  *    PWM is Min or OFF below limit,  flag
168  *    Invert PWM output,              flag
169  *
170  * Some chips filter the temp, others the fan.
171  *    Filter constant (or disabled)   .1 seconds
172  */
173 
174 /* These are the zone temperature range encodings in .001 degree C */
175 static const int lm85_range_map[] = {
176 	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
177 	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
178 };
179 
180 static int RANGE_TO_REG(long range)
181 {
182 	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
183 }
184 #define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
185 
186 /* These are the PWM frequency encodings */
187 static const int lm85_freq_map[] = { /* 1 Hz */
188 	10, 15, 23, 30, 38, 47, 61, 94
189 };
190 
191 static const int lm96000_freq_map[] = { /* 1 Hz */
192 	10, 15, 23, 30, 38, 47, 61, 94,
193 	22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
194 };
195 
196 static const int adm1027_freq_map[] = { /* 1 Hz */
197 	11, 15, 22, 29, 35, 44, 59, 88
198 };
199 
200 static int FREQ_TO_REG(const int *map,
201 		       unsigned int map_size, unsigned long freq)
202 {
203 	return find_closest(freq, map, map_size);
204 }
205 
206 static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
207 {
208 	return map[reg % map_size];
209 }
210 
211 /*
212  * Since we can't use strings, I'm abusing these numbers
213  *   to stand in for the following meanings:
214  *      1 -- PWM responds to Zone 1
215  *      2 -- PWM responds to Zone 2
216  *      3 -- PWM responds to Zone 3
217  *     23 -- PWM responds to the higher temp of Zone 2 or 3
218  *    123 -- PWM responds to highest of Zone 1, 2, or 3
219  *      0 -- PWM is always at 0% (ie, off)
220  *     -1 -- PWM is always at 100%
221  *     -2 -- PWM responds to manual control
222  */
223 
224 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
225 #define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
226 
227 static int ZONE_TO_REG(int zone)
228 {
229 	int i;
230 
231 	for (i = 0; i <= 7; ++i)
232 		if (zone == lm85_zone_map[i])
233 			break;
234 	if (i > 7)   /* Not found. */
235 		i = 3;  /* Always 100% */
236 	return i << 5;
237 }
238 
239 #define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
240 #define HYST_FROM_REG(val)	((val) * 1000)
241 
242 /*
243  * Chip sampling rates
244  *
245  * Some sensors are not updated more frequently than once per second
246  *    so it doesn't make sense to read them more often than that.
247  *    We cache the results and return the saved data if the driver
248  *    is called again before a second has elapsed.
249  *
250  * Also, there is significant configuration data for this chip
251  *    given the automatic PWM fan control that is possible.  There
252  *    are about 47 bytes of config data to only 22 bytes of actual
253  *    readings.  So, we keep the config data up to date in the cache
254  *    when it is written and only sample it once every 1 *minute*
255  */
256 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
257 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
258 
259 /*
260  * LM85 can automatically adjust fan speeds based on temperature
261  * This structure encapsulates an entire Zone config.  There are
262  * three zones (one for each temperature input) on the lm85
263  */
264 struct lm85_zone {
265 	s8 limit;	/* Low temp limit */
266 	u8 hyst;	/* Low limit hysteresis. (0-15) */
267 	u8 range;	/* Temp range, encoded */
268 	s8 critical;	/* "All fans ON" temp limit */
269 	u8 max_desired; /*
270 			 * Actual "max" temperature specified.  Preserved
271 			 * to prevent "drift" as other autofan control
272 			 * values change.
273 			 */
274 };
275 
276 struct lm85_autofan {
277 	u8 config;	/* Register value */
278 	u8 min_pwm;	/* Minimum PWM value, encoded */
279 	u8 min_off;	/* Min PWM or OFF below "limit", flag */
280 };
281 
282 /*
283  * For each registered chip, we need to keep some data in memory.
284  * The structure is dynamically allocated.
285  */
286 struct lm85_data {
287 	struct i2c_client *client;
288 	const struct attribute_group *groups[6];
289 	const int *freq_map;
290 	unsigned int freq_map_size;
291 
292 	enum chips type;
293 
294 	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
295 
296 	struct mutex update_lock;
297 	bool valid;		/* true if following fields are valid */
298 	unsigned long last_reading;	/* In jiffies */
299 	unsigned long last_config;	/* In jiffies */
300 
301 	u8 in[8];		/* Register value */
302 	u8 in_max[8];		/* Register value */
303 	u8 in_min[8];		/* Register value */
304 	s8 temp[3];		/* Register value */
305 	s8 temp_min[3];		/* Register value */
306 	s8 temp_max[3];		/* Register value */
307 	u16 fan[4];		/* Register value */
308 	u16 fan_min[4];		/* Register value */
309 	u8 pwm[3];		/* Register value */
310 	u8 pwm_freq[3];		/* Register encoding */
311 	u8 temp_ext[3];		/* Decoded values */
312 	u8 in_ext[8];		/* Decoded values */
313 	u8 vid;			/* Register value */
314 	u8 vrm;			/* VRM version */
315 	u32 alarms;		/* Register encoding, combined */
316 	u8 cfg5;		/* Config Register 5 on ADT7468 */
317 	struct lm85_autofan autofan[3];
318 	struct lm85_zone zone[3];
319 };
320 
321 static int lm85_read_value(struct i2c_client *client, u8 reg)
322 {
323 	int res;
324 
325 	/* What size location is it? */
326 	switch (reg) {
327 	case LM85_REG_FAN(0):  /* Read WORD data */
328 	case LM85_REG_FAN(1):
329 	case LM85_REG_FAN(2):
330 	case LM85_REG_FAN(3):
331 	case LM85_REG_FAN_MIN(0):
332 	case LM85_REG_FAN_MIN(1):
333 	case LM85_REG_FAN_MIN(2):
334 	case LM85_REG_FAN_MIN(3):
335 	case LM85_REG_ALARM1:	/* Read both bytes at once */
336 		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
337 		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
338 		break;
339 	default:	/* Read BYTE data */
340 		res = i2c_smbus_read_byte_data(client, reg);
341 		break;
342 	}
343 
344 	return res;
345 }
346 
347 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
348 {
349 	switch (reg) {
350 	case LM85_REG_FAN(0):  /* Write WORD data */
351 	case LM85_REG_FAN(1):
352 	case LM85_REG_FAN(2):
353 	case LM85_REG_FAN(3):
354 	case LM85_REG_FAN_MIN(0):
355 	case LM85_REG_FAN_MIN(1):
356 	case LM85_REG_FAN_MIN(2):
357 	case LM85_REG_FAN_MIN(3):
358 	/* NOTE: ALARM is read only, so not included here */
359 		i2c_smbus_write_byte_data(client, reg, value & 0xff);
360 		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
361 		break;
362 	default:	/* Write BYTE data */
363 		i2c_smbus_write_byte_data(client, reg, value);
364 		break;
365 	}
366 }
367 
368 static struct lm85_data *lm85_update_device(struct device *dev)
369 {
370 	struct lm85_data *data = dev_get_drvdata(dev);
371 	struct i2c_client *client = data->client;
372 	int i;
373 
374 	mutex_lock(&data->update_lock);
375 
376 	if (!data->valid ||
377 	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
378 		/* Things that change quickly */
379 		dev_dbg(&client->dev, "Reading sensor values\n");
380 
381 		/*
382 		 * Have to read extended bits first to "freeze" the
383 		 * more significant bits that are read later.
384 		 * There are 2 additional resolution bits per channel and we
385 		 * have room for 4, so we shift them to the left.
386 		 */
387 		if (data->type == adm1027 || data->type == adt7463 ||
388 		    data->type == adt7468) {
389 			int ext1 = lm85_read_value(client,
390 						   ADM1027_REG_EXTEND_ADC1);
391 			int ext2 =  lm85_read_value(client,
392 						    ADM1027_REG_EXTEND_ADC2);
393 			int val = (ext1 << 8) + ext2;
394 
395 			for (i = 0; i <= 4; i++)
396 				data->in_ext[i] =
397 					((val >> (i * 2)) & 0x03) << 2;
398 
399 			for (i = 0; i <= 2; i++)
400 				data->temp_ext[i] =
401 					(val >> ((i + 4) * 2)) & 0x0c;
402 		}
403 
404 		data->vid = lm85_read_value(client, LM85_REG_VID);
405 
406 		for (i = 0; i <= 3; ++i) {
407 			data->in[i] =
408 			    lm85_read_value(client, LM85_REG_IN(i));
409 			data->fan[i] =
410 			    lm85_read_value(client, LM85_REG_FAN(i));
411 		}
412 
413 		if (!data->has_vid5)
414 			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
415 
416 		if (data->type == adt7468)
417 			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
418 
419 		for (i = 0; i <= 2; ++i) {
420 			data->temp[i] =
421 			    lm85_read_value(client, LM85_REG_TEMP(i));
422 			data->pwm[i] =
423 			    lm85_read_value(client, LM85_REG_PWM(i));
424 
425 			if (IS_ADT7468_OFF64(data))
426 				data->temp[i] -= 64;
427 		}
428 
429 		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
430 
431 		if (data->type == emc6d100) {
432 			/* Three more voltage sensors */
433 			for (i = 5; i <= 7; ++i) {
434 				data->in[i] = lm85_read_value(client,
435 							EMC6D100_REG_IN(i));
436 			}
437 			/* More alarm bits */
438 			data->alarms |= lm85_read_value(client,
439 						EMC6D100_REG_ALARM3) << 16;
440 		} else if (data->type == emc6d102 || data->type == emc6d103 ||
441 			   data->type == emc6d103s) {
442 			/*
443 			 * Have to read LSB bits after the MSB ones because
444 			 * the reading of the MSB bits has frozen the
445 			 * LSBs (backward from the ADM1027).
446 			 */
447 			int ext1 = lm85_read_value(client,
448 						   EMC6D102_REG_EXTEND_ADC1);
449 			int ext2 = lm85_read_value(client,
450 						   EMC6D102_REG_EXTEND_ADC2);
451 			int ext3 = lm85_read_value(client,
452 						   EMC6D102_REG_EXTEND_ADC3);
453 			int ext4 = lm85_read_value(client,
454 						   EMC6D102_REG_EXTEND_ADC4);
455 			data->in_ext[0] = ext3 & 0x0f;
456 			data->in_ext[1] = ext4 & 0x0f;
457 			data->in_ext[2] = ext4 >> 4;
458 			data->in_ext[3] = ext3 >> 4;
459 			data->in_ext[4] = ext2 >> 4;
460 
461 			data->temp_ext[0] = ext1 & 0x0f;
462 			data->temp_ext[1] = ext2 & 0x0f;
463 			data->temp_ext[2] = ext1 >> 4;
464 		}
465 
466 		data->last_reading = jiffies;
467 	}  /* last_reading */
468 
469 	if (!data->valid ||
470 	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
471 		/* Things that don't change often */
472 		dev_dbg(&client->dev, "Reading config values\n");
473 
474 		for (i = 0; i <= 3; ++i) {
475 			data->in_min[i] =
476 			    lm85_read_value(client, LM85_REG_IN_MIN(i));
477 			data->in_max[i] =
478 			    lm85_read_value(client, LM85_REG_IN_MAX(i));
479 			data->fan_min[i] =
480 			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
481 		}
482 
483 		if (!data->has_vid5)  {
484 			data->in_min[4] = lm85_read_value(client,
485 					  LM85_REG_IN_MIN(4));
486 			data->in_max[4] = lm85_read_value(client,
487 					  LM85_REG_IN_MAX(4));
488 		}
489 
490 		if (data->type == emc6d100) {
491 			for (i = 5; i <= 7; ++i) {
492 				data->in_min[i] = lm85_read_value(client,
493 						EMC6D100_REG_IN_MIN(i));
494 				data->in_max[i] = lm85_read_value(client,
495 						EMC6D100_REG_IN_MAX(i));
496 			}
497 		}
498 
499 		for (i = 0; i <= 2; ++i) {
500 			int val;
501 
502 			data->temp_min[i] =
503 			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
504 			data->temp_max[i] =
505 			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
506 
507 			data->autofan[i].config =
508 			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
509 			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
510 			data->pwm_freq[i] = val % data->freq_map_size;
511 			data->zone[i].range = val >> 4;
512 			data->autofan[i].min_pwm =
513 			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
514 			data->zone[i].limit =
515 			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
516 			data->zone[i].critical =
517 			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
518 
519 			if (IS_ADT7468_OFF64(data)) {
520 				data->temp_min[i] -= 64;
521 				data->temp_max[i] -= 64;
522 				data->zone[i].limit -= 64;
523 				data->zone[i].critical -= 64;
524 			}
525 		}
526 
527 		if (data->type != emc6d103s) {
528 			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
529 			data->autofan[0].min_off = (i & 0x20) != 0;
530 			data->autofan[1].min_off = (i & 0x40) != 0;
531 			data->autofan[2].min_off = (i & 0x80) != 0;
532 
533 			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
534 			data->zone[0].hyst = i >> 4;
535 			data->zone[1].hyst = i & 0x0f;
536 
537 			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
538 			data->zone[2].hyst = i >> 4;
539 		}
540 
541 		data->last_config = jiffies;
542 	}  /* last_config */
543 
544 	data->valid = true;
545 
546 	mutex_unlock(&data->update_lock);
547 
548 	return data;
549 }
550 
551 /* 4 Fans */
552 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
553 			char *buf)
554 {
555 	int nr = to_sensor_dev_attr(attr)->index;
556 	struct lm85_data *data = lm85_update_device(dev);
557 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
558 }
559 
560 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
561 			    char *buf)
562 {
563 	int nr = to_sensor_dev_attr(attr)->index;
564 	struct lm85_data *data = lm85_update_device(dev);
565 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
566 }
567 
568 static ssize_t fan_min_store(struct device *dev,
569 			     struct device_attribute *attr, const char *buf,
570 			     size_t count)
571 {
572 	int nr = to_sensor_dev_attr(attr)->index;
573 	struct lm85_data *data = dev_get_drvdata(dev);
574 	struct i2c_client *client = data->client;
575 	unsigned long val;
576 	int err;
577 
578 	err = kstrtoul(buf, 10, &val);
579 	if (err)
580 		return err;
581 
582 	mutex_lock(&data->update_lock);
583 	data->fan_min[nr] = FAN_TO_REG(val);
584 	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
585 	mutex_unlock(&data->update_lock);
586 	return count;
587 }
588 
589 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
590 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
591 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
592 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
593 static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
594 static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
595 static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
596 static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
597 
598 /* vid, vrm, alarms */
599 
600 static ssize_t cpu0_vid_show(struct device *dev,
601 			     struct device_attribute *attr, char *buf)
602 {
603 	struct lm85_data *data = lm85_update_device(dev);
604 	int vid;
605 
606 	if (data->has_vid5) {
607 		/* 6-pin VID (VRM 10) */
608 		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
609 	} else {
610 		/* 5-pin VID (VRM 9) */
611 		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
612 	}
613 
614 	return sprintf(buf, "%d\n", vid);
615 }
616 
617 static DEVICE_ATTR_RO(cpu0_vid);
618 
619 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
620 			char *buf)
621 {
622 	struct lm85_data *data = dev_get_drvdata(dev);
623 	return sprintf(buf, "%ld\n", (long) data->vrm);
624 }
625 
626 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
627 			 const char *buf, size_t count)
628 {
629 	struct lm85_data *data = dev_get_drvdata(dev);
630 	unsigned long val;
631 	int err;
632 
633 	err = kstrtoul(buf, 10, &val);
634 	if (err)
635 		return err;
636 
637 	if (val > 255)
638 		return -EINVAL;
639 
640 	data->vrm = val;
641 	return count;
642 }
643 
644 static DEVICE_ATTR_RW(vrm);
645 
646 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
647 			   char *buf)
648 {
649 	struct lm85_data *data = lm85_update_device(dev);
650 	return sprintf(buf, "%u\n", data->alarms);
651 }
652 
653 static DEVICE_ATTR_RO(alarms);
654 
655 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
656 			  char *buf)
657 {
658 	int nr = to_sensor_dev_attr(attr)->index;
659 	struct lm85_data *data = lm85_update_device(dev);
660 	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
661 }
662 
663 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
664 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
665 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
666 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
667 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
668 static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
669 static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
670 static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
671 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
672 static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
673 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
674 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
675 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
676 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
677 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
678 static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
679 static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
680 
681 /* pwm */
682 
683 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
684 			char *buf)
685 {
686 	int nr = to_sensor_dev_attr(attr)->index;
687 	struct lm85_data *data = lm85_update_device(dev);
688 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
689 }
690 
691 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
692 			 const char *buf, size_t count)
693 {
694 	int nr = to_sensor_dev_attr(attr)->index;
695 	struct lm85_data *data = dev_get_drvdata(dev);
696 	struct i2c_client *client = data->client;
697 	unsigned long val;
698 	int err;
699 
700 	err = kstrtoul(buf, 10, &val);
701 	if (err)
702 		return err;
703 
704 	mutex_lock(&data->update_lock);
705 	data->pwm[nr] = PWM_TO_REG(val);
706 	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
707 	mutex_unlock(&data->update_lock);
708 	return count;
709 }
710 
711 static ssize_t pwm_enable_show(struct device *dev,
712 			       struct device_attribute *attr, char *buf)
713 {
714 	int nr = to_sensor_dev_attr(attr)->index;
715 	struct lm85_data *data = lm85_update_device(dev);
716 	int pwm_zone, enable;
717 
718 	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
719 	switch (pwm_zone) {
720 	case -1:	/* PWM is always at 100% */
721 		enable = 0;
722 		break;
723 	case 0:		/* PWM is always at 0% */
724 	case -2:	/* PWM responds to manual control */
725 		enable = 1;
726 		break;
727 	default:	/* PWM in automatic mode */
728 		enable = 2;
729 	}
730 	return sprintf(buf, "%d\n", enable);
731 }
732 
733 static ssize_t pwm_enable_store(struct device *dev,
734 				struct device_attribute *attr,
735 				const char *buf, size_t count)
736 {
737 	int nr = to_sensor_dev_attr(attr)->index;
738 	struct lm85_data *data = dev_get_drvdata(dev);
739 	struct i2c_client *client = data->client;
740 	u8 config;
741 	unsigned long val;
742 	int err;
743 
744 	err = kstrtoul(buf, 10, &val);
745 	if (err)
746 		return err;
747 
748 	switch (val) {
749 	case 0:
750 		config = 3;
751 		break;
752 	case 1:
753 		config = 7;
754 		break;
755 	case 2:
756 		/*
757 		 * Here we have to choose arbitrarily one of the 5 possible
758 		 * configurations; I go for the safest
759 		 */
760 		config = 6;
761 		break;
762 	default:
763 		return -EINVAL;
764 	}
765 
766 	mutex_lock(&data->update_lock);
767 	data->autofan[nr].config = lm85_read_value(client,
768 		LM85_REG_AFAN_CONFIG(nr));
769 	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
770 		| (config << 5);
771 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
772 		data->autofan[nr].config);
773 	mutex_unlock(&data->update_lock);
774 	return count;
775 }
776 
777 static ssize_t pwm_freq_show(struct device *dev,
778 			     struct device_attribute *attr, char *buf)
779 {
780 	int nr = to_sensor_dev_attr(attr)->index;
781 	struct lm85_data *data = lm85_update_device(dev);
782 	int freq;
783 
784 	if (IS_ADT7468_HFPWM(data))
785 		freq = 22500;
786 	else
787 		freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
788 				     data->pwm_freq[nr]);
789 
790 	return sprintf(buf, "%d\n", freq);
791 }
792 
793 static ssize_t pwm_freq_store(struct device *dev,
794 			      struct device_attribute *attr, const char *buf,
795 			      size_t count)
796 {
797 	int nr = to_sensor_dev_attr(attr)->index;
798 	struct lm85_data *data = dev_get_drvdata(dev);
799 	struct i2c_client *client = data->client;
800 	unsigned long val;
801 	int err;
802 
803 	err = kstrtoul(buf, 10, &val);
804 	if (err)
805 		return err;
806 
807 	mutex_lock(&data->update_lock);
808 	/*
809 	 * The ADT7468 has a special high-frequency PWM output mode,
810 	 * where all PWM outputs are driven by a 22.5 kHz clock.
811 	 * This might confuse the user, but there's not much we can do.
812 	 */
813 	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
814 		data->cfg5 &= ~ADT7468_HFPWM;
815 		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
816 	} else {					/* Low freq. mode */
817 		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
818 						 data->freq_map_size, val);
819 		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
820 				 (data->zone[nr].range << 4)
821 				 | data->pwm_freq[nr]);
822 		if (data->type == adt7468) {
823 			data->cfg5 |= ADT7468_HFPWM;
824 			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
825 		}
826 	}
827 	mutex_unlock(&data->update_lock);
828 	return count;
829 }
830 
831 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
832 static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
833 static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
834 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
835 static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
836 static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
837 static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
838 static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
839 static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
840 
841 /* Voltages */
842 
843 static ssize_t in_show(struct device *dev, struct device_attribute *attr,
844 		       char *buf)
845 {
846 	int nr = to_sensor_dev_attr(attr)->index;
847 	struct lm85_data *data = lm85_update_device(dev);
848 	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
849 						    data->in_ext[nr]));
850 }
851 
852 static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
853 			   char *buf)
854 {
855 	int nr = to_sensor_dev_attr(attr)->index;
856 	struct lm85_data *data = lm85_update_device(dev);
857 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
858 }
859 
860 static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
861 			    const char *buf, size_t count)
862 {
863 	int nr = to_sensor_dev_attr(attr)->index;
864 	struct lm85_data *data = dev_get_drvdata(dev);
865 	struct i2c_client *client = data->client;
866 	long val;
867 	int err;
868 
869 	err = kstrtol(buf, 10, &val);
870 	if (err)
871 		return err;
872 
873 	mutex_lock(&data->update_lock);
874 	data->in_min[nr] = INS_TO_REG(nr, val);
875 	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
876 	mutex_unlock(&data->update_lock);
877 	return count;
878 }
879 
880 static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
881 			   char *buf)
882 {
883 	int nr = to_sensor_dev_attr(attr)->index;
884 	struct lm85_data *data = lm85_update_device(dev);
885 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
886 }
887 
888 static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
889 			    const char *buf, size_t count)
890 {
891 	int nr = to_sensor_dev_attr(attr)->index;
892 	struct lm85_data *data = dev_get_drvdata(dev);
893 	struct i2c_client *client = data->client;
894 	long val;
895 	int err;
896 
897 	err = kstrtol(buf, 10, &val);
898 	if (err)
899 		return err;
900 
901 	mutex_lock(&data->update_lock);
902 	data->in_max[nr] = INS_TO_REG(nr, val);
903 	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
904 	mutex_unlock(&data->update_lock);
905 	return count;
906 }
907 
908 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
909 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
910 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
911 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
912 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
913 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
914 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
915 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
916 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
917 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
918 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
919 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
920 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
921 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
922 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
923 static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
924 static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
925 static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
926 static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
927 static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
928 static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
929 static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
930 static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
931 static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
932 
933 /* Temps */
934 
935 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
936 			 char *buf)
937 {
938 	int nr = to_sensor_dev_attr(attr)->index;
939 	struct lm85_data *data = lm85_update_device(dev);
940 	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
941 						     data->temp_ext[nr]));
942 }
943 
944 static ssize_t temp_min_show(struct device *dev,
945 			     struct device_attribute *attr, char *buf)
946 {
947 	int nr = to_sensor_dev_attr(attr)->index;
948 	struct lm85_data *data = lm85_update_device(dev);
949 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
950 }
951 
952 static ssize_t temp_min_store(struct device *dev,
953 			      struct device_attribute *attr, const char *buf,
954 			      size_t count)
955 {
956 	int nr = to_sensor_dev_attr(attr)->index;
957 	struct lm85_data *data = dev_get_drvdata(dev);
958 	struct i2c_client *client = data->client;
959 	long val;
960 	int err;
961 
962 	err = kstrtol(buf, 10, &val);
963 	if (err)
964 		return err;
965 
966 	if (IS_ADT7468_OFF64(data))
967 		val += 64;
968 
969 	mutex_lock(&data->update_lock);
970 	data->temp_min[nr] = TEMP_TO_REG(val);
971 	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
972 	mutex_unlock(&data->update_lock);
973 	return count;
974 }
975 
976 static ssize_t temp_max_show(struct device *dev,
977 			     struct device_attribute *attr, char *buf)
978 {
979 	int nr = to_sensor_dev_attr(attr)->index;
980 	struct lm85_data *data = lm85_update_device(dev);
981 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
982 }
983 
984 static ssize_t temp_max_store(struct device *dev,
985 			      struct device_attribute *attr, const char *buf,
986 			      size_t count)
987 {
988 	int nr = to_sensor_dev_attr(attr)->index;
989 	struct lm85_data *data = dev_get_drvdata(dev);
990 	struct i2c_client *client = data->client;
991 	long val;
992 	int err;
993 
994 	err = kstrtol(buf, 10, &val);
995 	if (err)
996 		return err;
997 
998 	if (IS_ADT7468_OFF64(data))
999 		val += 64;
1000 
1001 	mutex_lock(&data->update_lock);
1002 	data->temp_max[nr] = TEMP_TO_REG(val);
1003 	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004 	mutex_unlock(&data->update_lock);
1005 	return count;
1006 }
1007 
1008 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1017 
1018 /* Automatic PWM control */
1019 
1020 static ssize_t pwm_auto_channels_show(struct device *dev,
1021 				      struct device_attribute *attr,
1022 				      char *buf)
1023 {
1024 	int nr = to_sensor_dev_attr(attr)->index;
1025 	struct lm85_data *data = lm85_update_device(dev);
1026 	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027 }
1028 
1029 static ssize_t pwm_auto_channels_store(struct device *dev,
1030 				       struct device_attribute *attr,
1031 				       const char *buf, size_t count)
1032 {
1033 	int nr = to_sensor_dev_attr(attr)->index;
1034 	struct lm85_data *data = dev_get_drvdata(dev);
1035 	struct i2c_client *client = data->client;
1036 	long val;
1037 	int err;
1038 
1039 	err = kstrtol(buf, 10, &val);
1040 	if (err)
1041 		return err;
1042 
1043 	mutex_lock(&data->update_lock);
1044 	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045 		| ZONE_TO_REG(val);
1046 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047 		data->autofan[nr].config);
1048 	mutex_unlock(&data->update_lock);
1049 	return count;
1050 }
1051 
1052 static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053 				     struct device_attribute *attr, char *buf)
1054 {
1055 	int nr = to_sensor_dev_attr(attr)->index;
1056 	struct lm85_data *data = lm85_update_device(dev);
1057 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058 }
1059 
1060 static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061 				      struct device_attribute *attr,
1062 				      const char *buf, size_t count)
1063 {
1064 	int nr = to_sensor_dev_attr(attr)->index;
1065 	struct lm85_data *data = dev_get_drvdata(dev);
1066 	struct i2c_client *client = data->client;
1067 	unsigned long val;
1068 	int err;
1069 
1070 	err = kstrtoul(buf, 10, &val);
1071 	if (err)
1072 		return err;
1073 
1074 	mutex_lock(&data->update_lock);
1075 	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076 	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077 		data->autofan[nr].min_pwm);
1078 	mutex_unlock(&data->update_lock);
1079 	return count;
1080 }
1081 
1082 static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083 					struct device_attribute *attr,
1084 					char *buf)
1085 {
1086 	int nr = to_sensor_dev_attr(attr)->index;
1087 	struct lm85_data *data = lm85_update_device(dev);
1088 	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089 }
1090 
1091 static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092 					 struct device_attribute *attr,
1093 					 const char *buf, size_t count)
1094 {
1095 	int nr = to_sensor_dev_attr(attr)->index;
1096 	struct lm85_data *data = dev_get_drvdata(dev);
1097 	struct i2c_client *client = data->client;
1098 	u8 tmp;
1099 	long val;
1100 	int err;
1101 
1102 	err = kstrtol(buf, 10, &val);
1103 	if (err)
1104 		return err;
1105 
1106 	mutex_lock(&data->update_lock);
1107 	data->autofan[nr].min_off = val;
1108 	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109 	tmp &= ~(0x20 << nr);
1110 	if (data->autofan[nr].min_off)
1111 		tmp |= 0x20 << nr;
1112 	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113 	mutex_unlock(&data->update_lock);
1114 	return count;
1115 }
1116 
1117 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1126 
1127 /* Temperature settings for automatic PWM control */
1128 
1129 static ssize_t temp_auto_temp_off_show(struct device *dev,
1130 				       struct device_attribute *attr,
1131 				       char *buf)
1132 {
1133 	int nr = to_sensor_dev_attr(attr)->index;
1134 	struct lm85_data *data = lm85_update_device(dev);
1135 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136 		HYST_FROM_REG(data->zone[nr].hyst));
1137 }
1138 
1139 static ssize_t temp_auto_temp_off_store(struct device *dev,
1140 					struct device_attribute *attr,
1141 					const char *buf, size_t count)
1142 {
1143 	int nr = to_sensor_dev_attr(attr)->index;
1144 	struct lm85_data *data = dev_get_drvdata(dev);
1145 	struct i2c_client *client = data->client;
1146 	int min;
1147 	long val;
1148 	int err;
1149 
1150 	err = kstrtol(buf, 10, &val);
1151 	if (err)
1152 		return err;
1153 
1154 	mutex_lock(&data->update_lock);
1155 	min = TEMP_FROM_REG(data->zone[nr].limit);
1156 	data->zone[nr].hyst = HYST_TO_REG(min - val);
1157 	if (nr == 0 || nr == 1) {
1158 		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159 			(data->zone[0].hyst << 4)
1160 			| data->zone[1].hyst);
1161 	} else {
1162 		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163 			(data->zone[2].hyst << 4));
1164 	}
1165 	mutex_unlock(&data->update_lock);
1166 	return count;
1167 }
1168 
1169 static ssize_t temp_auto_temp_min_show(struct device *dev,
1170 				       struct device_attribute *attr,
1171 				       char *buf)
1172 {
1173 	int nr = to_sensor_dev_attr(attr)->index;
1174 	struct lm85_data *data = lm85_update_device(dev);
1175 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176 }
1177 
1178 static ssize_t temp_auto_temp_min_store(struct device *dev,
1179 					struct device_attribute *attr,
1180 					const char *buf, size_t count)
1181 {
1182 	int nr = to_sensor_dev_attr(attr)->index;
1183 	struct lm85_data *data = dev_get_drvdata(dev);
1184 	struct i2c_client *client = data->client;
1185 	long val;
1186 	int err;
1187 
1188 	err = kstrtol(buf, 10, &val);
1189 	if (err)
1190 		return err;
1191 
1192 	mutex_lock(&data->update_lock);
1193 	data->zone[nr].limit = TEMP_TO_REG(val);
1194 	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195 		data->zone[nr].limit);
1196 
1197 /* Update temp_auto_max and temp_auto_range */
1198 	data->zone[nr].range = RANGE_TO_REG(
1199 		TEMP_FROM_REG(data->zone[nr].max_desired) -
1200 		TEMP_FROM_REG(data->zone[nr].limit));
1201 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202 		((data->zone[nr].range & 0x0f) << 4)
1203 		| data->pwm_freq[nr]);
1204 
1205 	mutex_unlock(&data->update_lock);
1206 	return count;
1207 }
1208 
1209 static ssize_t temp_auto_temp_max_show(struct device *dev,
1210 				       struct device_attribute *attr,
1211 				       char *buf)
1212 {
1213 	int nr = to_sensor_dev_attr(attr)->index;
1214 	struct lm85_data *data = lm85_update_device(dev);
1215 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216 		RANGE_FROM_REG(data->zone[nr].range));
1217 }
1218 
1219 static ssize_t temp_auto_temp_max_store(struct device *dev,
1220 					struct device_attribute *attr,
1221 					const char *buf, size_t count)
1222 {
1223 	int nr = to_sensor_dev_attr(attr)->index;
1224 	struct lm85_data *data = dev_get_drvdata(dev);
1225 	struct i2c_client *client = data->client;
1226 	int min;
1227 	long val;
1228 	int err;
1229 
1230 	err = kstrtol(buf, 10, &val);
1231 	if (err)
1232 		return err;
1233 
1234 	mutex_lock(&data->update_lock);
1235 	min = TEMP_FROM_REG(data->zone[nr].limit);
1236 	data->zone[nr].max_desired = TEMP_TO_REG(val);
1237 	data->zone[nr].range = RANGE_TO_REG(
1238 		val - min);
1239 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240 		((data->zone[nr].range & 0x0f) << 4)
1241 		| data->pwm_freq[nr]);
1242 	mutex_unlock(&data->update_lock);
1243 	return count;
1244 }
1245 
1246 static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247 					struct device_attribute *attr,
1248 					char *buf)
1249 {
1250 	int nr = to_sensor_dev_attr(attr)->index;
1251 	struct lm85_data *data = lm85_update_device(dev);
1252 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253 }
1254 
1255 static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256 					 struct device_attribute *attr,
1257 					 const char *buf, size_t count)
1258 {
1259 	int nr = to_sensor_dev_attr(attr)->index;
1260 	struct lm85_data *data = dev_get_drvdata(dev);
1261 	struct i2c_client *client = data->client;
1262 	long val;
1263 	int err;
1264 
1265 	err = kstrtol(buf, 10, &val);
1266 	if (err)
1267 		return err;
1268 
1269 	mutex_lock(&data->update_lock);
1270 	data->zone[nr].critical = TEMP_TO_REG(val);
1271 	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272 		data->zone[nr].critical);
1273 	mutex_unlock(&data->update_lock);
1274 	return count;
1275 }
1276 
1277 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1289 
1290 static struct attribute *lm85_attributes[] = {
1291 	&sensor_dev_attr_fan1_input.dev_attr.attr,
1292 	&sensor_dev_attr_fan2_input.dev_attr.attr,
1293 	&sensor_dev_attr_fan3_input.dev_attr.attr,
1294 	&sensor_dev_attr_fan4_input.dev_attr.attr,
1295 	&sensor_dev_attr_fan1_min.dev_attr.attr,
1296 	&sensor_dev_attr_fan2_min.dev_attr.attr,
1297 	&sensor_dev_attr_fan3_min.dev_attr.attr,
1298 	&sensor_dev_attr_fan4_min.dev_attr.attr,
1299 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302 	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303 
1304 	&sensor_dev_attr_pwm1.dev_attr.attr,
1305 	&sensor_dev_attr_pwm2.dev_attr.attr,
1306 	&sensor_dev_attr_pwm3.dev_attr.attr,
1307 	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308 	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309 	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310 	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311 	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312 	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313 
1314 	&sensor_dev_attr_in0_input.dev_attr.attr,
1315 	&sensor_dev_attr_in1_input.dev_attr.attr,
1316 	&sensor_dev_attr_in2_input.dev_attr.attr,
1317 	&sensor_dev_attr_in3_input.dev_attr.attr,
1318 	&sensor_dev_attr_in0_min.dev_attr.attr,
1319 	&sensor_dev_attr_in1_min.dev_attr.attr,
1320 	&sensor_dev_attr_in2_min.dev_attr.attr,
1321 	&sensor_dev_attr_in3_min.dev_attr.attr,
1322 	&sensor_dev_attr_in0_max.dev_attr.attr,
1323 	&sensor_dev_attr_in1_max.dev_attr.attr,
1324 	&sensor_dev_attr_in2_max.dev_attr.attr,
1325 	&sensor_dev_attr_in3_max.dev_attr.attr,
1326 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1327 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1328 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1329 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1330 
1331 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1332 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1333 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1334 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1335 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1336 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1337 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1338 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1339 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1340 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1344 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1345 
1346 	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347 	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348 	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349 	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350 	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351 	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352 
1353 	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354 	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355 	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356 	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357 	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358 	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359 	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360 	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361 	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362 
1363 	&dev_attr_vrm.attr,
1364 	&dev_attr_cpu0_vid.attr,
1365 	&dev_attr_alarms.attr,
1366 	NULL
1367 };
1368 
1369 static const struct attribute_group lm85_group = {
1370 	.attrs = lm85_attributes,
1371 };
1372 
1373 static struct attribute *lm85_attributes_minctl[] = {
1374 	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375 	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376 	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377 	NULL
1378 };
1379 
1380 static const struct attribute_group lm85_group_minctl = {
1381 	.attrs = lm85_attributes_minctl,
1382 };
1383 
1384 static struct attribute *lm85_attributes_temp_off[] = {
1385 	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386 	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387 	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388 	NULL
1389 };
1390 
1391 static const struct attribute_group lm85_group_temp_off = {
1392 	.attrs = lm85_attributes_temp_off,
1393 };
1394 
1395 static struct attribute *lm85_attributes_in4[] = {
1396 	&sensor_dev_attr_in4_input.dev_attr.attr,
1397 	&sensor_dev_attr_in4_min.dev_attr.attr,
1398 	&sensor_dev_attr_in4_max.dev_attr.attr,
1399 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1400 	NULL
1401 };
1402 
1403 static const struct attribute_group lm85_group_in4 = {
1404 	.attrs = lm85_attributes_in4,
1405 };
1406 
1407 static struct attribute *lm85_attributes_in567[] = {
1408 	&sensor_dev_attr_in5_input.dev_attr.attr,
1409 	&sensor_dev_attr_in6_input.dev_attr.attr,
1410 	&sensor_dev_attr_in7_input.dev_attr.attr,
1411 	&sensor_dev_attr_in5_min.dev_attr.attr,
1412 	&sensor_dev_attr_in6_min.dev_attr.attr,
1413 	&sensor_dev_attr_in7_min.dev_attr.attr,
1414 	&sensor_dev_attr_in5_max.dev_attr.attr,
1415 	&sensor_dev_attr_in6_max.dev_attr.attr,
1416 	&sensor_dev_attr_in7_max.dev_attr.attr,
1417 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1418 	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1419 	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1420 	NULL
1421 };
1422 
1423 static const struct attribute_group lm85_group_in567 = {
1424 	.attrs = lm85_attributes_in567,
1425 };
1426 
1427 static void lm85_init_client(struct i2c_client *client)
1428 {
1429 	int value;
1430 
1431 	/* Start monitoring if needed */
1432 	value = lm85_read_value(client, LM85_REG_CONFIG);
1433 	if (!(value & 0x01)) {
1434 		dev_info(&client->dev, "Starting monitoring\n");
1435 		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436 	}
1437 
1438 	/* Warn about unusual configuration bits */
1439 	if (value & 0x02)
1440 		dev_warn(&client->dev, "Device configuration is locked\n");
1441 	if (!(value & 0x04))
1442 		dev_warn(&client->dev, "Device is not ready\n");
1443 }
1444 
1445 static int lm85_is_fake(struct i2c_client *client)
1446 {
1447 	/*
1448 	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449 	 * emulate the former except that it has no hardware monitoring function
1450 	 * so the readings are always 0.
1451 	 */
1452 	int i;
1453 	u8 in_temp, fan;
1454 
1455 	for (i = 0; i < 8; i++) {
1456 		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457 		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458 		if (in_temp != 0x00 || fan != 0xff)
1459 			return 0;
1460 	}
1461 
1462 	return 1;
1463 }
1464 
1465 /* Return 0 if detection is successful, -ENODEV otherwise */
1466 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467 {
1468 	struct i2c_adapter *adapter = client->adapter;
1469 	int address = client->addr;
1470 	const char *type_name = NULL;
1471 	int company, verstep;
1472 
1473 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474 		/* We need to be able to do byte I/O */
1475 		return -ENODEV;
1476 	}
1477 
1478 	/* Determine the chip type */
1479 	company = lm85_read_value(client, LM85_REG_COMPANY);
1480 	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481 
1482 	dev_dbg(&adapter->dev,
1483 		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484 		address, company, verstep);
1485 
1486 	if (company == LM85_COMPANY_NATIONAL) {
1487 		switch (verstep) {
1488 		case LM85_VERSTEP_LM85C:
1489 			type_name = "lm85c";
1490 			break;
1491 		case LM85_VERSTEP_LM85B:
1492 			type_name = "lm85b";
1493 			break;
1494 		case LM85_VERSTEP_LM96000_1:
1495 		case LM85_VERSTEP_LM96000_2:
1496 			/* Check for Winbond WPCD377I */
1497 			if (lm85_is_fake(client)) {
1498 				dev_dbg(&adapter->dev,
1499 					"Found Winbond WPCD377I, ignoring\n");
1500 				return -ENODEV;
1501 			}
1502 			type_name = "lm96000";
1503 			break;
1504 		}
1505 	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1506 		switch (verstep) {
1507 		case LM85_VERSTEP_ADM1027:
1508 			type_name = "adm1027";
1509 			break;
1510 		case LM85_VERSTEP_ADT7463:
1511 		case LM85_VERSTEP_ADT7463C:
1512 			type_name = "adt7463";
1513 			break;
1514 		case LM85_VERSTEP_ADT7468_1:
1515 		case LM85_VERSTEP_ADT7468_2:
1516 			type_name = "adt7468";
1517 			break;
1518 		}
1519 	} else if (company == LM85_COMPANY_SMSC) {
1520 		switch (verstep) {
1521 		case LM85_VERSTEP_EMC6D100_A0:
1522 		case LM85_VERSTEP_EMC6D100_A1:
1523 			/* Note: we can't tell a '100 from a '101 */
1524 			type_name = "emc6d100";
1525 			break;
1526 		case LM85_VERSTEP_EMC6D102:
1527 			type_name = "emc6d102";
1528 			break;
1529 		case LM85_VERSTEP_EMC6D103_A0:
1530 		case LM85_VERSTEP_EMC6D103_A1:
1531 			type_name = "emc6d103";
1532 			break;
1533 		case LM85_VERSTEP_EMC6D103S:
1534 			type_name = "emc6d103s";
1535 			break;
1536 		}
1537 	}
1538 
1539 	if (!type_name)
1540 		return -ENODEV;
1541 
1542 	strscpy(info->type, type_name, I2C_NAME_SIZE);
1543 
1544 	return 0;
1545 }
1546 
1547 static const struct i2c_device_id lm85_id[];
1548 
1549 static int lm85_probe(struct i2c_client *client)
1550 {
1551 	struct device *dev = &client->dev;
1552 	struct device *hwmon_dev;
1553 	struct lm85_data *data;
1554 	int idx = 0;
1555 
1556 	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1557 	if (!data)
1558 		return -ENOMEM;
1559 
1560 	data->client = client;
1561 	if (client->dev.of_node)
1562 		data->type = (uintptr_t)of_device_get_match_data(&client->dev);
1563 	else
1564 		data->type = i2c_match_id(lm85_id, client)->driver_data;
1565 	mutex_init(&data->update_lock);
1566 
1567 	/* Fill in the chip specific driver values */
1568 	switch (data->type) {
1569 	case adm1027:
1570 	case adt7463:
1571 	case adt7468:
1572 	case emc6d100:
1573 	case emc6d102:
1574 	case emc6d103:
1575 	case emc6d103s:
1576 		data->freq_map = adm1027_freq_map;
1577 		data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1578 		break;
1579 	case lm96000:
1580 		data->freq_map = lm96000_freq_map;
1581 		data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1582 		break;
1583 	default:
1584 		data->freq_map = lm85_freq_map;
1585 		data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1586 	}
1587 
1588 	/* Set the VRM version */
1589 	data->vrm = vid_which_vrm();
1590 
1591 	/* Initialize the LM85 chip */
1592 	lm85_init_client(client);
1593 
1594 	/* sysfs hooks */
1595 	data->groups[idx++] = &lm85_group;
1596 
1597 	/* minctl and temp_off exist on all chips except emc6d103s */
1598 	if (data->type != emc6d103s) {
1599 		data->groups[idx++] = &lm85_group_minctl;
1600 		data->groups[idx++] = &lm85_group_temp_off;
1601 	}
1602 
1603 	/*
1604 	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1605 	 * as a sixth digital VID input rather than an analog input.
1606 	 */
1607 	if (data->type == adt7463 || data->type == adt7468) {
1608 		u8 vid = lm85_read_value(client, LM85_REG_VID);
1609 		if (vid & 0x80)
1610 			data->has_vid5 = true;
1611 	}
1612 
1613 	if (!data->has_vid5)
1614 		data->groups[idx++] = &lm85_group_in4;
1615 
1616 	/* The EMC6D100 has 3 additional voltage inputs */
1617 	if (data->type == emc6d100)
1618 		data->groups[idx++] = &lm85_group_in567;
1619 
1620 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1621 							   data, data->groups);
1622 	return PTR_ERR_OR_ZERO(hwmon_dev);
1623 }
1624 
1625 static const struct i2c_device_id lm85_id[] = {
1626 	{ "adm1027", adm1027 },
1627 	{ "adt7463", adt7463 },
1628 	{ "adt7468", adt7468 },
1629 	{ "lm85", lm85 },
1630 	{ "lm85b", lm85 },
1631 	{ "lm85c", lm85 },
1632 	{ "lm96000", lm96000 },
1633 	{ "emc6d100", emc6d100 },
1634 	{ "emc6d101", emc6d100 },
1635 	{ "emc6d102", emc6d102 },
1636 	{ "emc6d103", emc6d103 },
1637 	{ "emc6d103s", emc6d103s },
1638 	{ }
1639 };
1640 MODULE_DEVICE_TABLE(i2c, lm85_id);
1641 
1642 static const struct of_device_id __maybe_unused lm85_of_match[] = {
1643 	{
1644 		.compatible = "adi,adm1027",
1645 		.data = (void *)adm1027
1646 	},
1647 	{
1648 		.compatible = "adi,adt7463",
1649 		.data = (void *)adt7463
1650 	},
1651 	{
1652 		.compatible = "adi,adt7468",
1653 		.data = (void *)adt7468
1654 	},
1655 	{
1656 		.compatible = "national,lm85",
1657 		.data = (void *)lm85
1658 	},
1659 	{
1660 		.compatible = "national,lm85b",
1661 		.data = (void *)lm85
1662 	},
1663 	{
1664 		.compatible = "national,lm85c",
1665 		.data = (void *)lm85
1666 	},
1667 	{
1668 		.compatible = "ti,lm96000",
1669 		.data = (void *)lm96000
1670 	},
1671 	{
1672 		.compatible = "smsc,emc6d100",
1673 		.data = (void *)emc6d100
1674 	},
1675 	{
1676 		.compatible = "smsc,emc6d101",
1677 		.data = (void *)emc6d100
1678 	},
1679 	{
1680 		.compatible = "smsc,emc6d102",
1681 		.data = (void *)emc6d102
1682 	},
1683 	{
1684 		.compatible = "smsc,emc6d103",
1685 		.data = (void *)emc6d103
1686 	},
1687 	{
1688 		.compatible = "smsc,emc6d103s",
1689 		.data = (void *)emc6d103s
1690 	},
1691 	{ },
1692 };
1693 MODULE_DEVICE_TABLE(of, lm85_of_match);
1694 
1695 static struct i2c_driver lm85_driver = {
1696 	.class		= I2C_CLASS_HWMON,
1697 	.driver = {
1698 		.name   = "lm85",
1699 		.of_match_table = of_match_ptr(lm85_of_match),
1700 	},
1701 	.probe		= lm85_probe,
1702 	.id_table	= lm85_id,
1703 	.detect		= lm85_detect,
1704 	.address_list	= normal_i2c,
1705 };
1706 
1707 module_i2c_driver(lm85_driver);
1708 
1709 MODULE_LICENSE("GPL");
1710 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1711 	"Margit Schubert-While <margitsw@t-online.de>, "
1712 	"Justin Thiessen <jthiessen@penguincomputing.com>");
1713 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1714