1 /* 2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> 6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de> 7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com> 8 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de> 9 * 10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/of_device.h> 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/jiffies.h> 32 #include <linux/i2c.h> 33 #include <linux/hwmon.h> 34 #include <linux/hwmon-vid.h> 35 #include <linux/hwmon-sysfs.h> 36 #include <linux/err.h> 37 #include <linux/mutex.h> 38 #include <linux/util_macros.h> 39 40 /* Addresses to scan */ 41 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; 42 43 enum chips { 44 lm85, 45 adm1027, adt7463, adt7468, 46 emc6d100, emc6d102, emc6d103, emc6d103s 47 }; 48 49 /* The LM85 registers */ 50 51 #define LM85_REG_IN(nr) (0x20 + (nr)) 52 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2) 53 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2) 54 55 #define LM85_REG_TEMP(nr) (0x25 + (nr)) 56 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2) 57 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2) 58 59 /* Fan speeds are LSB, MSB (2 bytes) */ 60 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2) 61 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2) 62 63 #define LM85_REG_PWM(nr) (0x30 + (nr)) 64 65 #define LM85_REG_COMPANY 0x3e 66 #define LM85_REG_VERSTEP 0x3f 67 68 #define ADT7468_REG_CFG5 0x7c 69 #define ADT7468_OFF64 (1 << 0) 70 #define ADT7468_HFPWM (1 << 1) 71 #define IS_ADT7468_OFF64(data) \ 72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64)) 73 #define IS_ADT7468_HFPWM(data) \ 74 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM)) 75 76 /* These are the recognized values for the above regs */ 77 #define LM85_COMPANY_NATIONAL 0x01 78 #define LM85_COMPANY_ANALOG_DEV 0x41 79 #define LM85_COMPANY_SMSC 0x5c 80 #define LM85_VERSTEP_LM85C 0x60 81 #define LM85_VERSTEP_LM85B 0x62 82 #define LM85_VERSTEP_LM96000_1 0x68 83 #define LM85_VERSTEP_LM96000_2 0x69 84 #define LM85_VERSTEP_ADM1027 0x60 85 #define LM85_VERSTEP_ADT7463 0x62 86 #define LM85_VERSTEP_ADT7463C 0x6A 87 #define LM85_VERSTEP_ADT7468_1 0x71 88 #define LM85_VERSTEP_ADT7468_2 0x72 89 #define LM85_VERSTEP_EMC6D100_A0 0x60 90 #define LM85_VERSTEP_EMC6D100_A1 0x61 91 #define LM85_VERSTEP_EMC6D102 0x65 92 #define LM85_VERSTEP_EMC6D103_A0 0x68 93 #define LM85_VERSTEP_EMC6D103_A1 0x69 94 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */ 95 96 #define LM85_REG_CONFIG 0x40 97 98 #define LM85_REG_ALARM1 0x41 99 #define LM85_REG_ALARM2 0x42 100 101 #define LM85_REG_VID 0x43 102 103 /* Automated FAN control */ 104 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr)) 105 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr)) 106 #define LM85_REG_AFAN_SPIKE1 0x62 107 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr)) 108 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr)) 109 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr)) 110 #define LM85_REG_AFAN_HYST1 0x6d 111 #define LM85_REG_AFAN_HYST2 0x6e 112 113 #define ADM1027_REG_EXTEND_ADC1 0x76 114 #define ADM1027_REG_EXTEND_ADC2 0x77 115 116 #define EMC6D100_REG_ALARM3 0x7d 117 /* IN5, IN6 and IN7 */ 118 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5)) 119 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2) 120 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2) 121 #define EMC6D102_REG_EXTEND_ADC1 0x85 122 #define EMC6D102_REG_EXTEND_ADC2 0x86 123 #define EMC6D102_REG_EXTEND_ADC3 0x87 124 #define EMC6D102_REG_EXTEND_ADC4 0x88 125 126 /* 127 * Conversions. Rounding and limit checking is only done on the TO_REG 128 * variants. Note that you should be a bit careful with which arguments 129 * these macros are called: arguments may be evaluated more than once. 130 */ 131 132 /* IN are scaled according to built-in resistors */ 133 static const int lm85_scaling[] = { /* .001 Volts */ 134 2500, 2250, 3300, 5000, 12000, 135 3300, 1500, 1800 /*EMC6D100*/ 136 }; 137 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from)) 138 139 #define INS_TO_REG(n, val) \ 140 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \ 141 lm85_scaling[n], 192) 142 143 #define INSEXT_FROM_REG(n, val, ext) \ 144 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n]) 145 146 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n]) 147 148 /* FAN speed is measured using 90kHz clock */ 149 static inline u16 FAN_TO_REG(unsigned long val) 150 { 151 if (!val) 152 return 0xffff; 153 return clamp_val(5400000 / val, 1, 0xfffe); 154 } 155 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \ 156 5400000 / (val)) 157 158 /* Temperature is reported in .001 degC increments */ 159 #define TEMP_TO_REG(val) \ 160 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000) 161 #define TEMPEXT_FROM_REG(val, ext) \ 162 SCALE(((val) << 4) + (ext), 16, 1000) 163 #define TEMP_FROM_REG(val) ((val) * 1000) 164 165 #define PWM_TO_REG(val) clamp_val(val, 0, 255) 166 #define PWM_FROM_REG(val) (val) 167 168 169 /* 170 * ZONEs have the following parameters: 171 * Limit (low) temp, 1. degC 172 * Hysteresis (below limit), 1. degC (0-15) 173 * Range of speed control, .1 degC (2-80) 174 * Critical (high) temp, 1. degC 175 * 176 * FAN PWMs have the following parameters: 177 * Reference Zone, 1, 2, 3, etc. 178 * Spinup time, .05 sec 179 * PWM value at limit/low temp, 1 count 180 * PWM Frequency, 1. Hz 181 * PWM is Min or OFF below limit, flag 182 * Invert PWM output, flag 183 * 184 * Some chips filter the temp, others the fan. 185 * Filter constant (or disabled) .1 seconds 186 */ 187 188 /* These are the zone temperature range encodings in .001 degree C */ 189 static const int lm85_range_map[] = { 190 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000, 191 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000 192 }; 193 194 static int RANGE_TO_REG(long range) 195 { 196 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map)); 197 } 198 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f] 199 200 /* These are the PWM frequency encodings */ 201 static const int lm85_freq_map[8] = { /* 1 Hz */ 202 10, 15, 23, 30, 38, 47, 61, 94 203 }; 204 static const int adm1027_freq_map[8] = { /* 1 Hz */ 205 11, 15, 22, 29, 35, 44, 59, 88 206 }; 207 #define FREQ_MAP_LEN 8 208 209 static int FREQ_TO_REG(const int *map, 210 unsigned int map_size, unsigned long freq) 211 { 212 return find_closest(freq, map, map_size); 213 } 214 215 static int FREQ_FROM_REG(const int *map, u8 reg) 216 { 217 return map[reg & 0x07]; 218 } 219 220 /* 221 * Since we can't use strings, I'm abusing these numbers 222 * to stand in for the following meanings: 223 * 1 -- PWM responds to Zone 1 224 * 2 -- PWM responds to Zone 2 225 * 3 -- PWM responds to Zone 3 226 * 23 -- PWM responds to the higher temp of Zone 2 or 3 227 * 123 -- PWM responds to highest of Zone 1, 2, or 3 228 * 0 -- PWM is always at 0% (ie, off) 229 * -1 -- PWM is always at 100% 230 * -2 -- PWM responds to manual control 231 */ 232 233 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 }; 234 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5] 235 236 static int ZONE_TO_REG(int zone) 237 { 238 int i; 239 240 for (i = 0; i <= 7; ++i) 241 if (zone == lm85_zone_map[i]) 242 break; 243 if (i > 7) /* Not found. */ 244 i = 3; /* Always 100% */ 245 return i << 5; 246 } 247 248 #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15) 249 #define HYST_FROM_REG(val) ((val) * 1000) 250 251 /* 252 * Chip sampling rates 253 * 254 * Some sensors are not updated more frequently than once per second 255 * so it doesn't make sense to read them more often than that. 256 * We cache the results and return the saved data if the driver 257 * is called again before a second has elapsed. 258 * 259 * Also, there is significant configuration data for this chip 260 * given the automatic PWM fan control that is possible. There 261 * are about 47 bytes of config data to only 22 bytes of actual 262 * readings. So, we keep the config data up to date in the cache 263 * when it is written and only sample it once every 1 *minute* 264 */ 265 #define LM85_DATA_INTERVAL (HZ + HZ / 2) 266 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ) 267 268 /* 269 * LM85 can automatically adjust fan speeds based on temperature 270 * This structure encapsulates an entire Zone config. There are 271 * three zones (one for each temperature input) on the lm85 272 */ 273 struct lm85_zone { 274 s8 limit; /* Low temp limit */ 275 u8 hyst; /* Low limit hysteresis. (0-15) */ 276 u8 range; /* Temp range, encoded */ 277 s8 critical; /* "All fans ON" temp limit */ 278 u8 max_desired; /* 279 * Actual "max" temperature specified. Preserved 280 * to prevent "drift" as other autofan control 281 * values change. 282 */ 283 }; 284 285 struct lm85_autofan { 286 u8 config; /* Register value */ 287 u8 min_pwm; /* Minimum PWM value, encoded */ 288 u8 min_off; /* Min PWM or OFF below "limit", flag */ 289 }; 290 291 /* 292 * For each registered chip, we need to keep some data in memory. 293 * The structure is dynamically allocated. 294 */ 295 struct lm85_data { 296 struct i2c_client *client; 297 const struct attribute_group *groups[6]; 298 const int *freq_map; 299 enum chips type; 300 301 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */ 302 303 struct mutex update_lock; 304 int valid; /* !=0 if following fields are valid */ 305 unsigned long last_reading; /* In jiffies */ 306 unsigned long last_config; /* In jiffies */ 307 308 u8 in[8]; /* Register value */ 309 u8 in_max[8]; /* Register value */ 310 u8 in_min[8]; /* Register value */ 311 s8 temp[3]; /* Register value */ 312 s8 temp_min[3]; /* Register value */ 313 s8 temp_max[3]; /* Register value */ 314 u16 fan[4]; /* Register value */ 315 u16 fan_min[4]; /* Register value */ 316 u8 pwm[3]; /* Register value */ 317 u8 pwm_freq[3]; /* Register encoding */ 318 u8 temp_ext[3]; /* Decoded values */ 319 u8 in_ext[8]; /* Decoded values */ 320 u8 vid; /* Register value */ 321 u8 vrm; /* VRM version */ 322 u32 alarms; /* Register encoding, combined */ 323 u8 cfg5; /* Config Register 5 on ADT7468 */ 324 struct lm85_autofan autofan[3]; 325 struct lm85_zone zone[3]; 326 }; 327 328 static int lm85_read_value(struct i2c_client *client, u8 reg) 329 { 330 int res; 331 332 /* What size location is it? */ 333 switch (reg) { 334 case LM85_REG_FAN(0): /* Read WORD data */ 335 case LM85_REG_FAN(1): 336 case LM85_REG_FAN(2): 337 case LM85_REG_FAN(3): 338 case LM85_REG_FAN_MIN(0): 339 case LM85_REG_FAN_MIN(1): 340 case LM85_REG_FAN_MIN(2): 341 case LM85_REG_FAN_MIN(3): 342 case LM85_REG_ALARM1: /* Read both bytes at once */ 343 res = i2c_smbus_read_byte_data(client, reg) & 0xff; 344 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8; 345 break; 346 default: /* Read BYTE data */ 347 res = i2c_smbus_read_byte_data(client, reg); 348 break; 349 } 350 351 return res; 352 } 353 354 static void lm85_write_value(struct i2c_client *client, u8 reg, int value) 355 { 356 switch (reg) { 357 case LM85_REG_FAN(0): /* Write WORD data */ 358 case LM85_REG_FAN(1): 359 case LM85_REG_FAN(2): 360 case LM85_REG_FAN(3): 361 case LM85_REG_FAN_MIN(0): 362 case LM85_REG_FAN_MIN(1): 363 case LM85_REG_FAN_MIN(2): 364 case LM85_REG_FAN_MIN(3): 365 /* NOTE: ALARM is read only, so not included here */ 366 i2c_smbus_write_byte_data(client, reg, value & 0xff); 367 i2c_smbus_write_byte_data(client, reg + 1, value >> 8); 368 break; 369 default: /* Write BYTE data */ 370 i2c_smbus_write_byte_data(client, reg, value); 371 break; 372 } 373 } 374 375 static struct lm85_data *lm85_update_device(struct device *dev) 376 { 377 struct lm85_data *data = dev_get_drvdata(dev); 378 struct i2c_client *client = data->client; 379 int i; 380 381 mutex_lock(&data->update_lock); 382 383 if (!data->valid || 384 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) { 385 /* Things that change quickly */ 386 dev_dbg(&client->dev, "Reading sensor values\n"); 387 388 /* 389 * Have to read extended bits first to "freeze" the 390 * more significant bits that are read later. 391 * There are 2 additional resolution bits per channel and we 392 * have room for 4, so we shift them to the left. 393 */ 394 if (data->type == adm1027 || data->type == adt7463 || 395 data->type == adt7468) { 396 int ext1 = lm85_read_value(client, 397 ADM1027_REG_EXTEND_ADC1); 398 int ext2 = lm85_read_value(client, 399 ADM1027_REG_EXTEND_ADC2); 400 int val = (ext1 << 8) + ext2; 401 402 for (i = 0; i <= 4; i++) 403 data->in_ext[i] = 404 ((val >> (i * 2)) & 0x03) << 2; 405 406 for (i = 0; i <= 2; i++) 407 data->temp_ext[i] = 408 (val >> ((i + 4) * 2)) & 0x0c; 409 } 410 411 data->vid = lm85_read_value(client, LM85_REG_VID); 412 413 for (i = 0; i <= 3; ++i) { 414 data->in[i] = 415 lm85_read_value(client, LM85_REG_IN(i)); 416 data->fan[i] = 417 lm85_read_value(client, LM85_REG_FAN(i)); 418 } 419 420 if (!data->has_vid5) 421 data->in[4] = lm85_read_value(client, LM85_REG_IN(4)); 422 423 if (data->type == adt7468) 424 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5); 425 426 for (i = 0; i <= 2; ++i) { 427 data->temp[i] = 428 lm85_read_value(client, LM85_REG_TEMP(i)); 429 data->pwm[i] = 430 lm85_read_value(client, LM85_REG_PWM(i)); 431 432 if (IS_ADT7468_OFF64(data)) 433 data->temp[i] -= 64; 434 } 435 436 data->alarms = lm85_read_value(client, LM85_REG_ALARM1); 437 438 if (data->type == emc6d100) { 439 /* Three more voltage sensors */ 440 for (i = 5; i <= 7; ++i) { 441 data->in[i] = lm85_read_value(client, 442 EMC6D100_REG_IN(i)); 443 } 444 /* More alarm bits */ 445 data->alarms |= lm85_read_value(client, 446 EMC6D100_REG_ALARM3) << 16; 447 } else if (data->type == emc6d102 || data->type == emc6d103 || 448 data->type == emc6d103s) { 449 /* 450 * Have to read LSB bits after the MSB ones because 451 * the reading of the MSB bits has frozen the 452 * LSBs (backward from the ADM1027). 453 */ 454 int ext1 = lm85_read_value(client, 455 EMC6D102_REG_EXTEND_ADC1); 456 int ext2 = lm85_read_value(client, 457 EMC6D102_REG_EXTEND_ADC2); 458 int ext3 = lm85_read_value(client, 459 EMC6D102_REG_EXTEND_ADC3); 460 int ext4 = lm85_read_value(client, 461 EMC6D102_REG_EXTEND_ADC4); 462 data->in_ext[0] = ext3 & 0x0f; 463 data->in_ext[1] = ext4 & 0x0f; 464 data->in_ext[2] = ext4 >> 4; 465 data->in_ext[3] = ext3 >> 4; 466 data->in_ext[4] = ext2 >> 4; 467 468 data->temp_ext[0] = ext1 & 0x0f; 469 data->temp_ext[1] = ext2 & 0x0f; 470 data->temp_ext[2] = ext1 >> 4; 471 } 472 473 data->last_reading = jiffies; 474 } /* last_reading */ 475 476 if (!data->valid || 477 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) { 478 /* Things that don't change often */ 479 dev_dbg(&client->dev, "Reading config values\n"); 480 481 for (i = 0; i <= 3; ++i) { 482 data->in_min[i] = 483 lm85_read_value(client, LM85_REG_IN_MIN(i)); 484 data->in_max[i] = 485 lm85_read_value(client, LM85_REG_IN_MAX(i)); 486 data->fan_min[i] = 487 lm85_read_value(client, LM85_REG_FAN_MIN(i)); 488 } 489 490 if (!data->has_vid5) { 491 data->in_min[4] = lm85_read_value(client, 492 LM85_REG_IN_MIN(4)); 493 data->in_max[4] = lm85_read_value(client, 494 LM85_REG_IN_MAX(4)); 495 } 496 497 if (data->type == emc6d100) { 498 for (i = 5; i <= 7; ++i) { 499 data->in_min[i] = lm85_read_value(client, 500 EMC6D100_REG_IN_MIN(i)); 501 data->in_max[i] = lm85_read_value(client, 502 EMC6D100_REG_IN_MAX(i)); 503 } 504 } 505 506 for (i = 0; i <= 2; ++i) { 507 int val; 508 509 data->temp_min[i] = 510 lm85_read_value(client, LM85_REG_TEMP_MIN(i)); 511 data->temp_max[i] = 512 lm85_read_value(client, LM85_REG_TEMP_MAX(i)); 513 514 data->autofan[i].config = 515 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i)); 516 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i)); 517 data->pwm_freq[i] = val & 0x07; 518 data->zone[i].range = val >> 4; 519 data->autofan[i].min_pwm = 520 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i)); 521 data->zone[i].limit = 522 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i)); 523 data->zone[i].critical = 524 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i)); 525 526 if (IS_ADT7468_OFF64(data)) { 527 data->temp_min[i] -= 64; 528 data->temp_max[i] -= 64; 529 data->zone[i].limit -= 64; 530 data->zone[i].critical -= 64; 531 } 532 } 533 534 if (data->type != emc6d103s) { 535 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 536 data->autofan[0].min_off = (i & 0x20) != 0; 537 data->autofan[1].min_off = (i & 0x40) != 0; 538 data->autofan[2].min_off = (i & 0x80) != 0; 539 540 i = lm85_read_value(client, LM85_REG_AFAN_HYST1); 541 data->zone[0].hyst = i >> 4; 542 data->zone[1].hyst = i & 0x0f; 543 544 i = lm85_read_value(client, LM85_REG_AFAN_HYST2); 545 data->zone[2].hyst = i >> 4; 546 } 547 548 data->last_config = jiffies; 549 } /* last_config */ 550 551 data->valid = 1; 552 553 mutex_unlock(&data->update_lock); 554 555 return data; 556 } 557 558 /* 4 Fans */ 559 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 560 char *buf) 561 { 562 int nr = to_sensor_dev_attr(attr)->index; 563 struct lm85_data *data = lm85_update_device(dev); 564 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr])); 565 } 566 567 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 568 char *buf) 569 { 570 int nr = to_sensor_dev_attr(attr)->index; 571 struct lm85_data *data = lm85_update_device(dev); 572 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr])); 573 } 574 575 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 576 const char *buf, size_t count) 577 { 578 int nr = to_sensor_dev_attr(attr)->index; 579 struct lm85_data *data = dev_get_drvdata(dev); 580 struct i2c_client *client = data->client; 581 unsigned long val; 582 int err; 583 584 err = kstrtoul(buf, 10, &val); 585 if (err) 586 return err; 587 588 mutex_lock(&data->update_lock); 589 data->fan_min[nr] = FAN_TO_REG(val); 590 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]); 591 mutex_unlock(&data->update_lock); 592 return count; 593 } 594 595 #define show_fan_offset(offset) \ 596 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 597 show_fan, NULL, offset - 1); \ 598 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 599 show_fan_min, set_fan_min, offset - 1) 600 601 show_fan_offset(1); 602 show_fan_offset(2); 603 show_fan_offset(3); 604 show_fan_offset(4); 605 606 /* vid, vrm, alarms */ 607 608 static ssize_t cpu0_vid_show(struct device *dev, 609 struct device_attribute *attr, char *buf) 610 { 611 struct lm85_data *data = lm85_update_device(dev); 612 int vid; 613 614 if (data->has_vid5) { 615 /* 6-pin VID (VRM 10) */ 616 vid = vid_from_reg(data->vid & 0x3f, data->vrm); 617 } else { 618 /* 5-pin VID (VRM 9) */ 619 vid = vid_from_reg(data->vid & 0x1f, data->vrm); 620 } 621 622 return sprintf(buf, "%d\n", vid); 623 } 624 625 static DEVICE_ATTR_RO(cpu0_vid); 626 627 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, 628 char *buf) 629 { 630 struct lm85_data *data = dev_get_drvdata(dev); 631 return sprintf(buf, "%ld\n", (long) data->vrm); 632 } 633 634 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, 635 const char *buf, size_t count) 636 { 637 struct lm85_data *data = dev_get_drvdata(dev); 638 unsigned long val; 639 int err; 640 641 err = kstrtoul(buf, 10, &val); 642 if (err) 643 return err; 644 645 if (val > 255) 646 return -EINVAL; 647 648 data->vrm = val; 649 return count; 650 } 651 652 static DEVICE_ATTR_RW(vrm); 653 654 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 655 char *buf) 656 { 657 struct lm85_data *data = lm85_update_device(dev); 658 return sprintf(buf, "%u\n", data->alarms); 659 } 660 661 static DEVICE_ATTR_RO(alarms); 662 663 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 664 char *buf) 665 { 666 int nr = to_sensor_dev_attr(attr)->index; 667 struct lm85_data *data = lm85_update_device(dev); 668 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); 669 } 670 671 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 672 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 673 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 674 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 675 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 676 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18); 677 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16); 678 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17); 679 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 680 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14); 681 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 682 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6); 683 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15); 684 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); 685 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); 686 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12); 687 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13); 688 689 /* pwm */ 690 691 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 692 char *buf) 693 { 694 int nr = to_sensor_dev_attr(attr)->index; 695 struct lm85_data *data = lm85_update_device(dev); 696 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); 697 } 698 699 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr, 700 const char *buf, size_t count) 701 { 702 int nr = to_sensor_dev_attr(attr)->index; 703 struct lm85_data *data = dev_get_drvdata(dev); 704 struct i2c_client *client = data->client; 705 unsigned long val; 706 int err; 707 708 err = kstrtoul(buf, 10, &val); 709 if (err) 710 return err; 711 712 mutex_lock(&data->update_lock); 713 data->pwm[nr] = PWM_TO_REG(val); 714 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]); 715 mutex_unlock(&data->update_lock); 716 return count; 717 } 718 719 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute 720 *attr, char *buf) 721 { 722 int nr = to_sensor_dev_attr(attr)->index; 723 struct lm85_data *data = lm85_update_device(dev); 724 int pwm_zone, enable; 725 726 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config); 727 switch (pwm_zone) { 728 case -1: /* PWM is always at 100% */ 729 enable = 0; 730 break; 731 case 0: /* PWM is always at 0% */ 732 case -2: /* PWM responds to manual control */ 733 enable = 1; 734 break; 735 default: /* PWM in automatic mode */ 736 enable = 2; 737 } 738 return sprintf(buf, "%d\n", enable); 739 } 740 741 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute 742 *attr, const char *buf, size_t count) 743 { 744 int nr = to_sensor_dev_attr(attr)->index; 745 struct lm85_data *data = dev_get_drvdata(dev); 746 struct i2c_client *client = data->client; 747 u8 config; 748 unsigned long val; 749 int err; 750 751 err = kstrtoul(buf, 10, &val); 752 if (err) 753 return err; 754 755 switch (val) { 756 case 0: 757 config = 3; 758 break; 759 case 1: 760 config = 7; 761 break; 762 case 2: 763 /* 764 * Here we have to choose arbitrarily one of the 5 possible 765 * configurations; I go for the safest 766 */ 767 config = 6; 768 break; 769 default: 770 return -EINVAL; 771 } 772 773 mutex_lock(&data->update_lock); 774 data->autofan[nr].config = lm85_read_value(client, 775 LM85_REG_AFAN_CONFIG(nr)); 776 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0) 777 | (config << 5); 778 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 779 data->autofan[nr].config); 780 mutex_unlock(&data->update_lock); 781 return count; 782 } 783 784 static ssize_t show_pwm_freq(struct device *dev, 785 struct device_attribute *attr, char *buf) 786 { 787 int nr = to_sensor_dev_attr(attr)->index; 788 struct lm85_data *data = lm85_update_device(dev); 789 int freq; 790 791 if (IS_ADT7468_HFPWM(data)) 792 freq = 22500; 793 else 794 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]); 795 796 return sprintf(buf, "%d\n", freq); 797 } 798 799 static ssize_t set_pwm_freq(struct device *dev, 800 struct device_attribute *attr, const char *buf, size_t count) 801 { 802 int nr = to_sensor_dev_attr(attr)->index; 803 struct lm85_data *data = dev_get_drvdata(dev); 804 struct i2c_client *client = data->client; 805 unsigned long val; 806 int err; 807 808 err = kstrtoul(buf, 10, &val); 809 if (err) 810 return err; 811 812 mutex_lock(&data->update_lock); 813 /* 814 * The ADT7468 has a special high-frequency PWM output mode, 815 * where all PWM outputs are driven by a 22.5 kHz clock. 816 * This might confuse the user, but there's not much we can do. 817 */ 818 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */ 819 data->cfg5 &= ~ADT7468_HFPWM; 820 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 821 } else { /* Low freq. mode */ 822 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, 823 FREQ_MAP_LEN, val); 824 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 825 (data->zone[nr].range << 4) 826 | data->pwm_freq[nr]); 827 if (data->type == adt7468) { 828 data->cfg5 |= ADT7468_HFPWM; 829 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 830 } 831 } 832 mutex_unlock(&data->update_lock); 833 return count; 834 } 835 836 #define show_pwm_reg(offset) \ 837 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \ 838 show_pwm, set_pwm, offset - 1); \ 839 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \ 840 show_pwm_enable, set_pwm_enable, offset - 1); \ 841 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \ 842 show_pwm_freq, set_pwm_freq, offset - 1) 843 844 show_pwm_reg(1); 845 show_pwm_reg(2); 846 show_pwm_reg(3); 847 848 /* Voltages */ 849 850 static ssize_t show_in(struct device *dev, struct device_attribute *attr, 851 char *buf) 852 { 853 int nr = to_sensor_dev_attr(attr)->index; 854 struct lm85_data *data = lm85_update_device(dev); 855 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr], 856 data->in_ext[nr])); 857 } 858 859 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, 860 char *buf) 861 { 862 int nr = to_sensor_dev_attr(attr)->index; 863 struct lm85_data *data = lm85_update_device(dev); 864 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr])); 865 } 866 867 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, 868 const char *buf, size_t count) 869 { 870 int nr = to_sensor_dev_attr(attr)->index; 871 struct lm85_data *data = dev_get_drvdata(dev); 872 struct i2c_client *client = data->client; 873 long val; 874 int err; 875 876 err = kstrtol(buf, 10, &val); 877 if (err) 878 return err; 879 880 mutex_lock(&data->update_lock); 881 data->in_min[nr] = INS_TO_REG(nr, val); 882 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]); 883 mutex_unlock(&data->update_lock); 884 return count; 885 } 886 887 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, 888 char *buf) 889 { 890 int nr = to_sensor_dev_attr(attr)->index; 891 struct lm85_data *data = lm85_update_device(dev); 892 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr])); 893 } 894 895 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, 896 const char *buf, size_t count) 897 { 898 int nr = to_sensor_dev_attr(attr)->index; 899 struct lm85_data *data = dev_get_drvdata(dev); 900 struct i2c_client *client = data->client; 901 long val; 902 int err; 903 904 err = kstrtol(buf, 10, &val); 905 if (err) 906 return err; 907 908 mutex_lock(&data->update_lock); 909 data->in_max[nr] = INS_TO_REG(nr, val); 910 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]); 911 mutex_unlock(&data->update_lock); 912 return count; 913 } 914 915 #define show_in_reg(offset) \ 916 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 917 show_in, NULL, offset); \ 918 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 919 show_in_min, set_in_min, offset); \ 920 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 921 show_in_max, set_in_max, offset) 922 923 show_in_reg(0); 924 show_in_reg(1); 925 show_in_reg(2); 926 show_in_reg(3); 927 show_in_reg(4); 928 show_in_reg(5); 929 show_in_reg(6); 930 show_in_reg(7); 931 932 /* Temps */ 933 934 static ssize_t show_temp(struct device *dev, struct device_attribute *attr, 935 char *buf) 936 { 937 int nr = to_sensor_dev_attr(attr)->index; 938 struct lm85_data *data = lm85_update_device(dev); 939 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr], 940 data->temp_ext[nr])); 941 } 942 943 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, 944 char *buf) 945 { 946 int nr = to_sensor_dev_attr(attr)->index; 947 struct lm85_data *data = lm85_update_device(dev); 948 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); 949 } 950 951 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, 952 const char *buf, size_t count) 953 { 954 int nr = to_sensor_dev_attr(attr)->index; 955 struct lm85_data *data = dev_get_drvdata(dev); 956 struct i2c_client *client = data->client; 957 long val; 958 int err; 959 960 err = kstrtol(buf, 10, &val); 961 if (err) 962 return err; 963 964 if (IS_ADT7468_OFF64(data)) 965 val += 64; 966 967 mutex_lock(&data->update_lock); 968 data->temp_min[nr] = TEMP_TO_REG(val); 969 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]); 970 mutex_unlock(&data->update_lock); 971 return count; 972 } 973 974 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, 975 char *buf) 976 { 977 int nr = to_sensor_dev_attr(attr)->index; 978 struct lm85_data *data = lm85_update_device(dev); 979 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); 980 } 981 982 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, 983 const char *buf, size_t count) 984 { 985 int nr = to_sensor_dev_attr(attr)->index; 986 struct lm85_data *data = dev_get_drvdata(dev); 987 struct i2c_client *client = data->client; 988 long val; 989 int err; 990 991 err = kstrtol(buf, 10, &val); 992 if (err) 993 return err; 994 995 if (IS_ADT7468_OFF64(data)) 996 val += 64; 997 998 mutex_lock(&data->update_lock); 999 data->temp_max[nr] = TEMP_TO_REG(val); 1000 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]); 1001 mutex_unlock(&data->update_lock); 1002 return count; 1003 } 1004 1005 #define show_temp_reg(offset) \ 1006 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ 1007 show_temp, NULL, offset - 1); \ 1008 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \ 1009 show_temp_min, set_temp_min, offset - 1); \ 1010 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ 1011 show_temp_max, set_temp_max, offset - 1); 1012 1013 show_temp_reg(1); 1014 show_temp_reg(2); 1015 show_temp_reg(3); 1016 1017 1018 /* Automatic PWM control */ 1019 1020 static ssize_t show_pwm_auto_channels(struct device *dev, 1021 struct device_attribute *attr, char *buf) 1022 { 1023 int nr = to_sensor_dev_attr(attr)->index; 1024 struct lm85_data *data = lm85_update_device(dev); 1025 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config)); 1026 } 1027 1028 static ssize_t set_pwm_auto_channels(struct device *dev, 1029 struct device_attribute *attr, const char *buf, size_t count) 1030 { 1031 int nr = to_sensor_dev_attr(attr)->index; 1032 struct lm85_data *data = dev_get_drvdata(dev); 1033 struct i2c_client *client = data->client; 1034 long val; 1035 int err; 1036 1037 err = kstrtol(buf, 10, &val); 1038 if (err) 1039 return err; 1040 1041 mutex_lock(&data->update_lock); 1042 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0)) 1043 | ZONE_TO_REG(val); 1044 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 1045 data->autofan[nr].config); 1046 mutex_unlock(&data->update_lock); 1047 return count; 1048 } 1049 1050 static ssize_t show_pwm_auto_pwm_min(struct device *dev, 1051 struct device_attribute *attr, char *buf) 1052 { 1053 int nr = to_sensor_dev_attr(attr)->index; 1054 struct lm85_data *data = lm85_update_device(dev); 1055 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm)); 1056 } 1057 1058 static ssize_t set_pwm_auto_pwm_min(struct device *dev, 1059 struct device_attribute *attr, const char *buf, size_t count) 1060 { 1061 int nr = to_sensor_dev_attr(attr)->index; 1062 struct lm85_data *data = dev_get_drvdata(dev); 1063 struct i2c_client *client = data->client; 1064 unsigned long val; 1065 int err; 1066 1067 err = kstrtoul(buf, 10, &val); 1068 if (err) 1069 return err; 1070 1071 mutex_lock(&data->update_lock); 1072 data->autofan[nr].min_pwm = PWM_TO_REG(val); 1073 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr), 1074 data->autofan[nr].min_pwm); 1075 mutex_unlock(&data->update_lock); 1076 return count; 1077 } 1078 1079 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev, 1080 struct device_attribute *attr, char *buf) 1081 { 1082 int nr = to_sensor_dev_attr(attr)->index; 1083 struct lm85_data *data = lm85_update_device(dev); 1084 return sprintf(buf, "%d\n", data->autofan[nr].min_off); 1085 } 1086 1087 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev, 1088 struct device_attribute *attr, const char *buf, size_t count) 1089 { 1090 int nr = to_sensor_dev_attr(attr)->index; 1091 struct lm85_data *data = dev_get_drvdata(dev); 1092 struct i2c_client *client = data->client; 1093 u8 tmp; 1094 long val; 1095 int err; 1096 1097 err = kstrtol(buf, 10, &val); 1098 if (err) 1099 return err; 1100 1101 mutex_lock(&data->update_lock); 1102 data->autofan[nr].min_off = val; 1103 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 1104 tmp &= ~(0x20 << nr); 1105 if (data->autofan[nr].min_off) 1106 tmp |= 0x20 << nr; 1107 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp); 1108 mutex_unlock(&data->update_lock); 1109 return count; 1110 } 1111 1112 #define pwm_auto(offset) \ 1113 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \ 1114 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \ 1115 set_pwm_auto_channels, offset - 1); \ 1116 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \ 1117 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \ 1118 set_pwm_auto_pwm_min, offset - 1); \ 1119 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \ 1120 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \ 1121 set_pwm_auto_pwm_minctl, offset - 1) 1122 1123 pwm_auto(1); 1124 pwm_auto(2); 1125 pwm_auto(3); 1126 1127 /* Temperature settings for automatic PWM control */ 1128 1129 static ssize_t show_temp_auto_temp_off(struct device *dev, 1130 struct device_attribute *attr, char *buf) 1131 { 1132 int nr = to_sensor_dev_attr(attr)->index; 1133 struct lm85_data *data = lm85_update_device(dev); 1134 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) - 1135 HYST_FROM_REG(data->zone[nr].hyst)); 1136 } 1137 1138 static ssize_t set_temp_auto_temp_off(struct device *dev, 1139 struct device_attribute *attr, const char *buf, size_t count) 1140 { 1141 int nr = to_sensor_dev_attr(attr)->index; 1142 struct lm85_data *data = dev_get_drvdata(dev); 1143 struct i2c_client *client = data->client; 1144 int min; 1145 long val; 1146 int err; 1147 1148 err = kstrtol(buf, 10, &val); 1149 if (err) 1150 return err; 1151 1152 mutex_lock(&data->update_lock); 1153 min = TEMP_FROM_REG(data->zone[nr].limit); 1154 data->zone[nr].hyst = HYST_TO_REG(min - val); 1155 if (nr == 0 || nr == 1) { 1156 lm85_write_value(client, LM85_REG_AFAN_HYST1, 1157 (data->zone[0].hyst << 4) 1158 | data->zone[1].hyst); 1159 } else { 1160 lm85_write_value(client, LM85_REG_AFAN_HYST2, 1161 (data->zone[2].hyst << 4)); 1162 } 1163 mutex_unlock(&data->update_lock); 1164 return count; 1165 } 1166 1167 static ssize_t show_temp_auto_temp_min(struct device *dev, 1168 struct device_attribute *attr, char *buf) 1169 { 1170 int nr = to_sensor_dev_attr(attr)->index; 1171 struct lm85_data *data = lm85_update_device(dev); 1172 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit)); 1173 } 1174 1175 static ssize_t set_temp_auto_temp_min(struct device *dev, 1176 struct device_attribute *attr, const char *buf, size_t count) 1177 { 1178 int nr = to_sensor_dev_attr(attr)->index; 1179 struct lm85_data *data = dev_get_drvdata(dev); 1180 struct i2c_client *client = data->client; 1181 long val; 1182 int err; 1183 1184 err = kstrtol(buf, 10, &val); 1185 if (err) 1186 return err; 1187 1188 mutex_lock(&data->update_lock); 1189 data->zone[nr].limit = TEMP_TO_REG(val); 1190 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr), 1191 data->zone[nr].limit); 1192 1193 /* Update temp_auto_max and temp_auto_range */ 1194 data->zone[nr].range = RANGE_TO_REG( 1195 TEMP_FROM_REG(data->zone[nr].max_desired) - 1196 TEMP_FROM_REG(data->zone[nr].limit)); 1197 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 1198 ((data->zone[nr].range & 0x0f) << 4) 1199 | (data->pwm_freq[nr] & 0x07)); 1200 1201 mutex_unlock(&data->update_lock); 1202 return count; 1203 } 1204 1205 static ssize_t show_temp_auto_temp_max(struct device *dev, 1206 struct device_attribute *attr, char *buf) 1207 { 1208 int nr = to_sensor_dev_attr(attr)->index; 1209 struct lm85_data *data = lm85_update_device(dev); 1210 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) + 1211 RANGE_FROM_REG(data->zone[nr].range)); 1212 } 1213 1214 static ssize_t set_temp_auto_temp_max(struct device *dev, 1215 struct device_attribute *attr, const char *buf, size_t count) 1216 { 1217 int nr = to_sensor_dev_attr(attr)->index; 1218 struct lm85_data *data = dev_get_drvdata(dev); 1219 struct i2c_client *client = data->client; 1220 int min; 1221 long val; 1222 int err; 1223 1224 err = kstrtol(buf, 10, &val); 1225 if (err) 1226 return err; 1227 1228 mutex_lock(&data->update_lock); 1229 min = TEMP_FROM_REG(data->zone[nr].limit); 1230 data->zone[nr].max_desired = TEMP_TO_REG(val); 1231 data->zone[nr].range = RANGE_TO_REG( 1232 val - min); 1233 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 1234 ((data->zone[nr].range & 0x0f) << 4) 1235 | (data->pwm_freq[nr] & 0x07)); 1236 mutex_unlock(&data->update_lock); 1237 return count; 1238 } 1239 1240 static ssize_t show_temp_auto_temp_crit(struct device *dev, 1241 struct device_attribute *attr, char *buf) 1242 { 1243 int nr = to_sensor_dev_attr(attr)->index; 1244 struct lm85_data *data = lm85_update_device(dev); 1245 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical)); 1246 } 1247 1248 static ssize_t set_temp_auto_temp_crit(struct device *dev, 1249 struct device_attribute *attr, const char *buf, size_t count) 1250 { 1251 int nr = to_sensor_dev_attr(attr)->index; 1252 struct lm85_data *data = dev_get_drvdata(dev); 1253 struct i2c_client *client = data->client; 1254 long val; 1255 int err; 1256 1257 err = kstrtol(buf, 10, &val); 1258 if (err) 1259 return err; 1260 1261 mutex_lock(&data->update_lock); 1262 data->zone[nr].critical = TEMP_TO_REG(val); 1263 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr), 1264 data->zone[nr].critical); 1265 mutex_unlock(&data->update_lock); 1266 return count; 1267 } 1268 1269 #define temp_auto(offset) \ 1270 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \ 1271 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \ 1272 set_temp_auto_temp_off, offset - 1); \ 1273 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \ 1274 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \ 1275 set_temp_auto_temp_min, offset - 1); \ 1276 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \ 1277 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \ 1278 set_temp_auto_temp_max, offset - 1); \ 1279 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \ 1280 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \ 1281 set_temp_auto_temp_crit, offset - 1); 1282 1283 temp_auto(1); 1284 temp_auto(2); 1285 temp_auto(3); 1286 1287 static struct attribute *lm85_attributes[] = { 1288 &sensor_dev_attr_fan1_input.dev_attr.attr, 1289 &sensor_dev_attr_fan2_input.dev_attr.attr, 1290 &sensor_dev_attr_fan3_input.dev_attr.attr, 1291 &sensor_dev_attr_fan4_input.dev_attr.attr, 1292 &sensor_dev_attr_fan1_min.dev_attr.attr, 1293 &sensor_dev_attr_fan2_min.dev_attr.attr, 1294 &sensor_dev_attr_fan3_min.dev_attr.attr, 1295 &sensor_dev_attr_fan4_min.dev_attr.attr, 1296 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 1297 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 1298 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 1299 &sensor_dev_attr_fan4_alarm.dev_attr.attr, 1300 1301 &sensor_dev_attr_pwm1.dev_attr.attr, 1302 &sensor_dev_attr_pwm2.dev_attr.attr, 1303 &sensor_dev_attr_pwm3.dev_attr.attr, 1304 &sensor_dev_attr_pwm1_enable.dev_attr.attr, 1305 &sensor_dev_attr_pwm2_enable.dev_attr.attr, 1306 &sensor_dev_attr_pwm3_enable.dev_attr.attr, 1307 &sensor_dev_attr_pwm1_freq.dev_attr.attr, 1308 &sensor_dev_attr_pwm2_freq.dev_attr.attr, 1309 &sensor_dev_attr_pwm3_freq.dev_attr.attr, 1310 1311 &sensor_dev_attr_in0_input.dev_attr.attr, 1312 &sensor_dev_attr_in1_input.dev_attr.attr, 1313 &sensor_dev_attr_in2_input.dev_attr.attr, 1314 &sensor_dev_attr_in3_input.dev_attr.attr, 1315 &sensor_dev_attr_in0_min.dev_attr.attr, 1316 &sensor_dev_attr_in1_min.dev_attr.attr, 1317 &sensor_dev_attr_in2_min.dev_attr.attr, 1318 &sensor_dev_attr_in3_min.dev_attr.attr, 1319 &sensor_dev_attr_in0_max.dev_attr.attr, 1320 &sensor_dev_attr_in1_max.dev_attr.attr, 1321 &sensor_dev_attr_in2_max.dev_attr.attr, 1322 &sensor_dev_attr_in3_max.dev_attr.attr, 1323 &sensor_dev_attr_in0_alarm.dev_attr.attr, 1324 &sensor_dev_attr_in1_alarm.dev_attr.attr, 1325 &sensor_dev_attr_in2_alarm.dev_attr.attr, 1326 &sensor_dev_attr_in3_alarm.dev_attr.attr, 1327 1328 &sensor_dev_attr_temp1_input.dev_attr.attr, 1329 &sensor_dev_attr_temp2_input.dev_attr.attr, 1330 &sensor_dev_attr_temp3_input.dev_attr.attr, 1331 &sensor_dev_attr_temp1_min.dev_attr.attr, 1332 &sensor_dev_attr_temp2_min.dev_attr.attr, 1333 &sensor_dev_attr_temp3_min.dev_attr.attr, 1334 &sensor_dev_attr_temp1_max.dev_attr.attr, 1335 &sensor_dev_attr_temp2_max.dev_attr.attr, 1336 &sensor_dev_attr_temp3_max.dev_attr.attr, 1337 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 1338 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 1339 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 1340 &sensor_dev_attr_temp1_fault.dev_attr.attr, 1341 &sensor_dev_attr_temp3_fault.dev_attr.attr, 1342 1343 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr, 1344 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr, 1345 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr, 1346 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr, 1347 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr, 1348 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr, 1349 1350 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr, 1351 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr, 1352 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr, 1353 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr, 1354 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr, 1355 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr, 1356 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr, 1357 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr, 1358 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr, 1359 1360 &dev_attr_vrm.attr, 1361 &dev_attr_cpu0_vid.attr, 1362 &dev_attr_alarms.attr, 1363 NULL 1364 }; 1365 1366 static const struct attribute_group lm85_group = { 1367 .attrs = lm85_attributes, 1368 }; 1369 1370 static struct attribute *lm85_attributes_minctl[] = { 1371 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr, 1372 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr, 1373 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr, 1374 NULL 1375 }; 1376 1377 static const struct attribute_group lm85_group_minctl = { 1378 .attrs = lm85_attributes_minctl, 1379 }; 1380 1381 static struct attribute *lm85_attributes_temp_off[] = { 1382 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr, 1383 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr, 1384 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr, 1385 NULL 1386 }; 1387 1388 static const struct attribute_group lm85_group_temp_off = { 1389 .attrs = lm85_attributes_temp_off, 1390 }; 1391 1392 static struct attribute *lm85_attributes_in4[] = { 1393 &sensor_dev_attr_in4_input.dev_attr.attr, 1394 &sensor_dev_attr_in4_min.dev_attr.attr, 1395 &sensor_dev_attr_in4_max.dev_attr.attr, 1396 &sensor_dev_attr_in4_alarm.dev_attr.attr, 1397 NULL 1398 }; 1399 1400 static const struct attribute_group lm85_group_in4 = { 1401 .attrs = lm85_attributes_in4, 1402 }; 1403 1404 static struct attribute *lm85_attributes_in567[] = { 1405 &sensor_dev_attr_in5_input.dev_attr.attr, 1406 &sensor_dev_attr_in6_input.dev_attr.attr, 1407 &sensor_dev_attr_in7_input.dev_attr.attr, 1408 &sensor_dev_attr_in5_min.dev_attr.attr, 1409 &sensor_dev_attr_in6_min.dev_attr.attr, 1410 &sensor_dev_attr_in7_min.dev_attr.attr, 1411 &sensor_dev_attr_in5_max.dev_attr.attr, 1412 &sensor_dev_attr_in6_max.dev_attr.attr, 1413 &sensor_dev_attr_in7_max.dev_attr.attr, 1414 &sensor_dev_attr_in5_alarm.dev_attr.attr, 1415 &sensor_dev_attr_in6_alarm.dev_attr.attr, 1416 &sensor_dev_attr_in7_alarm.dev_attr.attr, 1417 NULL 1418 }; 1419 1420 static const struct attribute_group lm85_group_in567 = { 1421 .attrs = lm85_attributes_in567, 1422 }; 1423 1424 static void lm85_init_client(struct i2c_client *client) 1425 { 1426 int value; 1427 1428 /* Start monitoring if needed */ 1429 value = lm85_read_value(client, LM85_REG_CONFIG); 1430 if (!(value & 0x01)) { 1431 dev_info(&client->dev, "Starting monitoring\n"); 1432 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01); 1433 } 1434 1435 /* Warn about unusual configuration bits */ 1436 if (value & 0x02) 1437 dev_warn(&client->dev, "Device configuration is locked\n"); 1438 if (!(value & 0x04)) 1439 dev_warn(&client->dev, "Device is not ready\n"); 1440 } 1441 1442 static int lm85_is_fake(struct i2c_client *client) 1443 { 1444 /* 1445 * Differenciate between real LM96000 and Winbond WPCD377I. The latter 1446 * emulate the former except that it has no hardware monitoring function 1447 * so the readings are always 0. 1448 */ 1449 int i; 1450 u8 in_temp, fan; 1451 1452 for (i = 0; i < 8; i++) { 1453 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i); 1454 fan = i2c_smbus_read_byte_data(client, 0x28 + i); 1455 if (in_temp != 0x00 || fan != 0xff) 1456 return 0; 1457 } 1458 1459 return 1; 1460 } 1461 1462 /* Return 0 if detection is successful, -ENODEV otherwise */ 1463 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info) 1464 { 1465 struct i2c_adapter *adapter = client->adapter; 1466 int address = client->addr; 1467 const char *type_name = NULL; 1468 int company, verstep; 1469 1470 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 1471 /* We need to be able to do byte I/O */ 1472 return -ENODEV; 1473 } 1474 1475 /* Determine the chip type */ 1476 company = lm85_read_value(client, LM85_REG_COMPANY); 1477 verstep = lm85_read_value(client, LM85_REG_VERSTEP); 1478 1479 dev_dbg(&adapter->dev, 1480 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n", 1481 address, company, verstep); 1482 1483 if (company == LM85_COMPANY_NATIONAL) { 1484 switch (verstep) { 1485 case LM85_VERSTEP_LM85C: 1486 type_name = "lm85c"; 1487 break; 1488 case LM85_VERSTEP_LM85B: 1489 type_name = "lm85b"; 1490 break; 1491 case LM85_VERSTEP_LM96000_1: 1492 case LM85_VERSTEP_LM96000_2: 1493 /* Check for Winbond WPCD377I */ 1494 if (lm85_is_fake(client)) { 1495 dev_dbg(&adapter->dev, 1496 "Found Winbond WPCD377I, ignoring\n"); 1497 return -ENODEV; 1498 } 1499 type_name = "lm85"; 1500 break; 1501 } 1502 } else if (company == LM85_COMPANY_ANALOG_DEV) { 1503 switch (verstep) { 1504 case LM85_VERSTEP_ADM1027: 1505 type_name = "adm1027"; 1506 break; 1507 case LM85_VERSTEP_ADT7463: 1508 case LM85_VERSTEP_ADT7463C: 1509 type_name = "adt7463"; 1510 break; 1511 case LM85_VERSTEP_ADT7468_1: 1512 case LM85_VERSTEP_ADT7468_2: 1513 type_name = "adt7468"; 1514 break; 1515 } 1516 } else if (company == LM85_COMPANY_SMSC) { 1517 switch (verstep) { 1518 case LM85_VERSTEP_EMC6D100_A0: 1519 case LM85_VERSTEP_EMC6D100_A1: 1520 /* Note: we can't tell a '100 from a '101 */ 1521 type_name = "emc6d100"; 1522 break; 1523 case LM85_VERSTEP_EMC6D102: 1524 type_name = "emc6d102"; 1525 break; 1526 case LM85_VERSTEP_EMC6D103_A0: 1527 case LM85_VERSTEP_EMC6D103_A1: 1528 type_name = "emc6d103"; 1529 break; 1530 case LM85_VERSTEP_EMC6D103S: 1531 type_name = "emc6d103s"; 1532 break; 1533 } 1534 } 1535 1536 if (!type_name) 1537 return -ENODEV; 1538 1539 strlcpy(info->type, type_name, I2C_NAME_SIZE); 1540 1541 return 0; 1542 } 1543 1544 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id) 1545 { 1546 struct device *dev = &client->dev; 1547 struct device *hwmon_dev; 1548 struct lm85_data *data; 1549 int idx = 0; 1550 1551 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL); 1552 if (!data) 1553 return -ENOMEM; 1554 1555 data->client = client; 1556 if (client->dev.of_node) 1557 data->type = (enum chips)of_device_get_match_data(&client->dev); 1558 else 1559 data->type = id->driver_data; 1560 mutex_init(&data->update_lock); 1561 1562 /* Fill in the chip specific driver values */ 1563 switch (data->type) { 1564 case adm1027: 1565 case adt7463: 1566 case adt7468: 1567 case emc6d100: 1568 case emc6d102: 1569 case emc6d103: 1570 case emc6d103s: 1571 data->freq_map = adm1027_freq_map; 1572 break; 1573 default: 1574 data->freq_map = lm85_freq_map; 1575 } 1576 1577 /* Set the VRM version */ 1578 data->vrm = vid_which_vrm(); 1579 1580 /* Initialize the LM85 chip */ 1581 lm85_init_client(client); 1582 1583 /* sysfs hooks */ 1584 data->groups[idx++] = &lm85_group; 1585 1586 /* minctl and temp_off exist on all chips except emc6d103s */ 1587 if (data->type != emc6d103s) { 1588 data->groups[idx++] = &lm85_group_minctl; 1589 data->groups[idx++] = &lm85_group_temp_off; 1590 } 1591 1592 /* 1593 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used 1594 * as a sixth digital VID input rather than an analog input. 1595 */ 1596 if (data->type == adt7463 || data->type == adt7468) { 1597 u8 vid = lm85_read_value(client, LM85_REG_VID); 1598 if (vid & 0x80) 1599 data->has_vid5 = true; 1600 } 1601 1602 if (!data->has_vid5) 1603 data->groups[idx++] = &lm85_group_in4; 1604 1605 /* The EMC6D100 has 3 additional voltage inputs */ 1606 if (data->type == emc6d100) 1607 data->groups[idx++] = &lm85_group_in567; 1608 1609 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 1610 data, data->groups); 1611 return PTR_ERR_OR_ZERO(hwmon_dev); 1612 } 1613 1614 static const struct i2c_device_id lm85_id[] = { 1615 { "adm1027", adm1027 }, 1616 { "adt7463", adt7463 }, 1617 { "adt7468", adt7468 }, 1618 { "lm85", lm85 }, 1619 { "lm85b", lm85 }, 1620 { "lm85c", lm85 }, 1621 { "emc6d100", emc6d100 }, 1622 { "emc6d101", emc6d100 }, 1623 { "emc6d102", emc6d102 }, 1624 { "emc6d103", emc6d103 }, 1625 { "emc6d103s", emc6d103s }, 1626 { } 1627 }; 1628 MODULE_DEVICE_TABLE(i2c, lm85_id); 1629 1630 static const struct of_device_id lm85_of_match[] = { 1631 { 1632 .compatible = "adi,adm1027", 1633 .data = (void *)adm1027 1634 }, 1635 { 1636 .compatible = "adi,adt7463", 1637 .data = (void *)adt7463 1638 }, 1639 { 1640 .compatible = "adi,adt7468", 1641 .data = (void *)adt7468 1642 }, 1643 { 1644 .compatible = "national,lm85", 1645 .data = (void *)lm85 1646 }, 1647 { 1648 .compatible = "national,lm85b", 1649 .data = (void *)lm85 1650 }, 1651 { 1652 .compatible = "national,lm85c", 1653 .data = (void *)lm85 1654 }, 1655 { 1656 .compatible = "smsc,emc6d100", 1657 .data = (void *)emc6d100 1658 }, 1659 { 1660 .compatible = "smsc,emc6d101", 1661 .data = (void *)emc6d100 1662 }, 1663 { 1664 .compatible = "smsc,emc6d102", 1665 .data = (void *)emc6d102 1666 }, 1667 { 1668 .compatible = "smsc,emc6d103", 1669 .data = (void *)emc6d103 1670 }, 1671 { 1672 .compatible = "smsc,emc6d103s", 1673 .data = (void *)emc6d103s 1674 }, 1675 { }, 1676 }; 1677 MODULE_DEVICE_TABLE(of, lm85_of_match); 1678 1679 static struct i2c_driver lm85_driver = { 1680 .class = I2C_CLASS_HWMON, 1681 .driver = { 1682 .name = "lm85", 1683 .of_match_table = of_match_ptr(lm85_of_match), 1684 }, 1685 .probe = lm85_probe, 1686 .id_table = lm85_id, 1687 .detect = lm85_detect, 1688 .address_list = normal_i2c, 1689 }; 1690 1691 module_i2c_driver(lm85_driver); 1692 1693 MODULE_LICENSE("GPL"); 1694 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, " 1695 "Margit Schubert-While <margitsw@t-online.de>, " 1696 "Justin Thiessen <jthiessen@penguincomputing.com>"); 1697 MODULE_DESCRIPTION("LM85-B, LM85-C driver"); 1698