xref: /openbmc/linux/drivers/hwmon/lm85.c (revision 6b66a6f2)
1 /*
2  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	    monitoring
4  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5  * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
6  * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
7  * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
8  * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
9  *
10  * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/hwmon-sysfs.h>
35 #include <linux/err.h>
36 #include <linux/mutex.h>
37 #include <linux/util_macros.h>
38 
39 /* Addresses to scan */
40 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
41 
42 enum chips {
43 	lm85,
44 	adm1027, adt7463, adt7468,
45 	emc6d100, emc6d102, emc6d103, emc6d103s
46 };
47 
48 /* The LM85 registers */
49 
50 #define LM85_REG_IN(nr)			(0x20 + (nr))
51 #define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
52 #define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
53 
54 #define LM85_REG_TEMP(nr)		(0x25 + (nr))
55 #define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
56 #define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
57 
58 /* Fan speeds are LSB, MSB (2 bytes) */
59 #define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
60 #define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
61 
62 #define LM85_REG_PWM(nr)		(0x30 + (nr))
63 
64 #define LM85_REG_COMPANY		0x3e
65 #define LM85_REG_VERSTEP		0x3f
66 
67 #define ADT7468_REG_CFG5		0x7c
68 #define ADT7468_OFF64			(1 << 0)
69 #define ADT7468_HFPWM			(1 << 1)
70 #define IS_ADT7468_OFF64(data)		\
71 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
72 #define IS_ADT7468_HFPWM(data)		\
73 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
74 
75 /* These are the recognized values for the above regs */
76 #define LM85_COMPANY_NATIONAL		0x01
77 #define LM85_COMPANY_ANALOG_DEV		0x41
78 #define LM85_COMPANY_SMSC		0x5c
79 #define LM85_VERSTEP_LM85C		0x60
80 #define LM85_VERSTEP_LM85B		0x62
81 #define LM85_VERSTEP_LM96000_1		0x68
82 #define LM85_VERSTEP_LM96000_2		0x69
83 #define LM85_VERSTEP_ADM1027		0x60
84 #define LM85_VERSTEP_ADT7463		0x62
85 #define LM85_VERSTEP_ADT7463C		0x6A
86 #define LM85_VERSTEP_ADT7468_1		0x71
87 #define LM85_VERSTEP_ADT7468_2		0x72
88 #define LM85_VERSTEP_EMC6D100_A0        0x60
89 #define LM85_VERSTEP_EMC6D100_A1        0x61
90 #define LM85_VERSTEP_EMC6D102		0x65
91 #define LM85_VERSTEP_EMC6D103_A0	0x68
92 #define LM85_VERSTEP_EMC6D103_A1	0x69
93 #define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
94 
95 #define LM85_REG_CONFIG			0x40
96 
97 #define LM85_REG_ALARM1			0x41
98 #define LM85_REG_ALARM2			0x42
99 
100 #define LM85_REG_VID			0x43
101 
102 /* Automated FAN control */
103 #define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
104 #define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
105 #define LM85_REG_AFAN_SPIKE1		0x62
106 #define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
107 #define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
108 #define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
109 #define LM85_REG_AFAN_HYST1		0x6d
110 #define LM85_REG_AFAN_HYST2		0x6e
111 
112 #define ADM1027_REG_EXTEND_ADC1		0x76
113 #define ADM1027_REG_EXTEND_ADC2		0x77
114 
115 #define EMC6D100_REG_ALARM3             0x7d
116 /* IN5, IN6 and IN7 */
117 #define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
118 #define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
119 #define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
120 #define EMC6D102_REG_EXTEND_ADC1	0x85
121 #define EMC6D102_REG_EXTEND_ADC2	0x86
122 #define EMC6D102_REG_EXTEND_ADC3	0x87
123 #define EMC6D102_REG_EXTEND_ADC4	0x88
124 
125 /*
126  * Conversions. Rounding and limit checking is only done on the TO_REG
127  * variants. Note that you should be a bit careful with which arguments
128  * these macros are called: arguments may be evaluated more than once.
129  */
130 
131 /* IN are scaled according to built-in resistors */
132 static const int lm85_scaling[] = {  /* .001 Volts */
133 	2500, 2250, 3300, 5000, 12000,
134 	3300, 1500, 1800 /*EMC6D100*/
135 };
136 #define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
137 
138 #define INS_TO_REG(n, val)	\
139 		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
140 		      lm85_scaling[n], 192)
141 
142 #define INSEXT_FROM_REG(n, val, ext)	\
143 		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
144 
145 #define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
146 
147 /* FAN speed is measured using 90kHz clock */
148 static inline u16 FAN_TO_REG(unsigned long val)
149 {
150 	if (!val)
151 		return 0xffff;
152 	return clamp_val(5400000 / val, 1, 0xfffe);
153 }
154 #define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
155 				 5400000 / (val))
156 
157 /* Temperature is reported in .001 degC increments */
158 #define TEMP_TO_REG(val)	\
159 		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
160 #define TEMPEXT_FROM_REG(val, ext)	\
161 		SCALE(((val) << 4) + (ext), 16, 1000)
162 #define TEMP_FROM_REG(val)	((val) * 1000)
163 
164 #define PWM_TO_REG(val)			clamp_val(val, 0, 255)
165 #define PWM_FROM_REG(val)		(val)
166 
167 
168 /*
169  * ZONEs have the following parameters:
170  *    Limit (low) temp,           1. degC
171  *    Hysteresis (below limit),   1. degC (0-15)
172  *    Range of speed control,     .1 degC (2-80)
173  *    Critical (high) temp,       1. degC
174  *
175  * FAN PWMs have the following parameters:
176  *    Reference Zone,                 1, 2, 3, etc.
177  *    Spinup time,                    .05 sec
178  *    PWM value at limit/low temp,    1 count
179  *    PWM Frequency,                  1. Hz
180  *    PWM is Min or OFF below limit,  flag
181  *    Invert PWM output,              flag
182  *
183  * Some chips filter the temp, others the fan.
184  *    Filter constant (or disabled)   .1 seconds
185  */
186 
187 /* These are the zone temperature range encodings in .001 degree C */
188 static const int lm85_range_map[] = {
189 	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
190 	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
191 };
192 
193 static int RANGE_TO_REG(long range)
194 {
195 	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
196 }
197 #define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
198 
199 /* These are the PWM frequency encodings */
200 static const int lm85_freq_map[8] = { /* 1 Hz */
201 	10, 15, 23, 30, 38, 47, 61, 94
202 };
203 static const int adm1027_freq_map[8] = { /* 1 Hz */
204 	11, 15, 22, 29, 35, 44, 59, 88
205 };
206 #define FREQ_MAP_LEN	8
207 
208 static int FREQ_TO_REG(const int *map,
209 		       unsigned int map_size, unsigned long freq)
210 {
211 	return find_closest(freq, map, map_size);
212 }
213 
214 static int FREQ_FROM_REG(const int *map, u8 reg)
215 {
216 	return map[reg & 0x07];
217 }
218 
219 /*
220  * Since we can't use strings, I'm abusing these numbers
221  *   to stand in for the following meanings:
222  *      1 -- PWM responds to Zone 1
223  *      2 -- PWM responds to Zone 2
224  *      3 -- PWM responds to Zone 3
225  *     23 -- PWM responds to the higher temp of Zone 2 or 3
226  *    123 -- PWM responds to highest of Zone 1, 2, or 3
227  *      0 -- PWM is always at 0% (ie, off)
228  *     -1 -- PWM is always at 100%
229  *     -2 -- PWM responds to manual control
230  */
231 
232 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
233 #define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
234 
235 static int ZONE_TO_REG(int zone)
236 {
237 	int i;
238 
239 	for (i = 0; i <= 7; ++i)
240 		if (zone == lm85_zone_map[i])
241 			break;
242 	if (i > 7)   /* Not found. */
243 		i = 3;  /* Always 100% */
244 	return i << 5;
245 }
246 
247 #define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
248 #define HYST_FROM_REG(val)	((val) * 1000)
249 
250 /*
251  * Chip sampling rates
252  *
253  * Some sensors are not updated more frequently than once per second
254  *    so it doesn't make sense to read them more often than that.
255  *    We cache the results and return the saved data if the driver
256  *    is called again before a second has elapsed.
257  *
258  * Also, there is significant configuration data for this chip
259  *    given the automatic PWM fan control that is possible.  There
260  *    are about 47 bytes of config data to only 22 bytes of actual
261  *    readings.  So, we keep the config data up to date in the cache
262  *    when it is written and only sample it once every 1 *minute*
263  */
264 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
265 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
266 
267 /*
268  * LM85 can automatically adjust fan speeds based on temperature
269  * This structure encapsulates an entire Zone config.  There are
270  * three zones (one for each temperature input) on the lm85
271  */
272 struct lm85_zone {
273 	s8 limit;	/* Low temp limit */
274 	u8 hyst;	/* Low limit hysteresis. (0-15) */
275 	u8 range;	/* Temp range, encoded */
276 	s8 critical;	/* "All fans ON" temp limit */
277 	u8 max_desired; /*
278 			 * Actual "max" temperature specified.  Preserved
279 			 * to prevent "drift" as other autofan control
280 			 * values change.
281 			 */
282 };
283 
284 struct lm85_autofan {
285 	u8 config;	/* Register value */
286 	u8 min_pwm;	/* Minimum PWM value, encoded */
287 	u8 min_off;	/* Min PWM or OFF below "limit", flag */
288 };
289 
290 /*
291  * For each registered chip, we need to keep some data in memory.
292  * The structure is dynamically allocated.
293  */
294 struct lm85_data {
295 	struct i2c_client *client;
296 	const struct attribute_group *groups[6];
297 	const int *freq_map;
298 	enum chips type;
299 
300 	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
301 
302 	struct mutex update_lock;
303 	int valid;		/* !=0 if following fields are valid */
304 	unsigned long last_reading;	/* In jiffies */
305 	unsigned long last_config;	/* In jiffies */
306 
307 	u8 in[8];		/* Register value */
308 	u8 in_max[8];		/* Register value */
309 	u8 in_min[8];		/* Register value */
310 	s8 temp[3];		/* Register value */
311 	s8 temp_min[3];		/* Register value */
312 	s8 temp_max[3];		/* Register value */
313 	u16 fan[4];		/* Register value */
314 	u16 fan_min[4];		/* Register value */
315 	u8 pwm[3];		/* Register value */
316 	u8 pwm_freq[3];		/* Register encoding */
317 	u8 temp_ext[3];		/* Decoded values */
318 	u8 in_ext[8];		/* Decoded values */
319 	u8 vid;			/* Register value */
320 	u8 vrm;			/* VRM version */
321 	u32 alarms;		/* Register encoding, combined */
322 	u8 cfg5;		/* Config Register 5 on ADT7468 */
323 	struct lm85_autofan autofan[3];
324 	struct lm85_zone zone[3];
325 };
326 
327 static int lm85_read_value(struct i2c_client *client, u8 reg)
328 {
329 	int res;
330 
331 	/* What size location is it? */
332 	switch (reg) {
333 	case LM85_REG_FAN(0):  /* Read WORD data */
334 	case LM85_REG_FAN(1):
335 	case LM85_REG_FAN(2):
336 	case LM85_REG_FAN(3):
337 	case LM85_REG_FAN_MIN(0):
338 	case LM85_REG_FAN_MIN(1):
339 	case LM85_REG_FAN_MIN(2):
340 	case LM85_REG_FAN_MIN(3):
341 	case LM85_REG_ALARM1:	/* Read both bytes at once */
342 		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
343 		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
344 		break;
345 	default:	/* Read BYTE data */
346 		res = i2c_smbus_read_byte_data(client, reg);
347 		break;
348 	}
349 
350 	return res;
351 }
352 
353 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
354 {
355 	switch (reg) {
356 	case LM85_REG_FAN(0):  /* Write WORD data */
357 	case LM85_REG_FAN(1):
358 	case LM85_REG_FAN(2):
359 	case LM85_REG_FAN(3):
360 	case LM85_REG_FAN_MIN(0):
361 	case LM85_REG_FAN_MIN(1):
362 	case LM85_REG_FAN_MIN(2):
363 	case LM85_REG_FAN_MIN(3):
364 	/* NOTE: ALARM is read only, so not included here */
365 		i2c_smbus_write_byte_data(client, reg, value & 0xff);
366 		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
367 		break;
368 	default:	/* Write BYTE data */
369 		i2c_smbus_write_byte_data(client, reg, value);
370 		break;
371 	}
372 }
373 
374 static struct lm85_data *lm85_update_device(struct device *dev)
375 {
376 	struct lm85_data *data = dev_get_drvdata(dev);
377 	struct i2c_client *client = data->client;
378 	int i;
379 
380 	mutex_lock(&data->update_lock);
381 
382 	if (!data->valid ||
383 	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
384 		/* Things that change quickly */
385 		dev_dbg(&client->dev, "Reading sensor values\n");
386 
387 		/*
388 		 * Have to read extended bits first to "freeze" the
389 		 * more significant bits that are read later.
390 		 * There are 2 additional resolution bits per channel and we
391 		 * have room for 4, so we shift them to the left.
392 		 */
393 		if (data->type == adm1027 || data->type == adt7463 ||
394 		    data->type == adt7468) {
395 			int ext1 = lm85_read_value(client,
396 						   ADM1027_REG_EXTEND_ADC1);
397 			int ext2 =  lm85_read_value(client,
398 						    ADM1027_REG_EXTEND_ADC2);
399 			int val = (ext1 << 8) + ext2;
400 
401 			for (i = 0; i <= 4; i++)
402 				data->in_ext[i] =
403 					((val >> (i * 2)) & 0x03) << 2;
404 
405 			for (i = 0; i <= 2; i++)
406 				data->temp_ext[i] =
407 					(val >> ((i + 4) * 2)) & 0x0c;
408 		}
409 
410 		data->vid = lm85_read_value(client, LM85_REG_VID);
411 
412 		for (i = 0; i <= 3; ++i) {
413 			data->in[i] =
414 			    lm85_read_value(client, LM85_REG_IN(i));
415 			data->fan[i] =
416 			    lm85_read_value(client, LM85_REG_FAN(i));
417 		}
418 
419 		if (!data->has_vid5)
420 			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
421 
422 		if (data->type == adt7468)
423 			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
424 
425 		for (i = 0; i <= 2; ++i) {
426 			data->temp[i] =
427 			    lm85_read_value(client, LM85_REG_TEMP(i));
428 			data->pwm[i] =
429 			    lm85_read_value(client, LM85_REG_PWM(i));
430 
431 			if (IS_ADT7468_OFF64(data))
432 				data->temp[i] -= 64;
433 		}
434 
435 		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
436 
437 		if (data->type == emc6d100) {
438 			/* Three more voltage sensors */
439 			for (i = 5; i <= 7; ++i) {
440 				data->in[i] = lm85_read_value(client,
441 							EMC6D100_REG_IN(i));
442 			}
443 			/* More alarm bits */
444 			data->alarms |= lm85_read_value(client,
445 						EMC6D100_REG_ALARM3) << 16;
446 		} else if (data->type == emc6d102 || data->type == emc6d103 ||
447 			   data->type == emc6d103s) {
448 			/*
449 			 * Have to read LSB bits after the MSB ones because
450 			 * the reading of the MSB bits has frozen the
451 			 * LSBs (backward from the ADM1027).
452 			 */
453 			int ext1 = lm85_read_value(client,
454 						   EMC6D102_REG_EXTEND_ADC1);
455 			int ext2 = lm85_read_value(client,
456 						   EMC6D102_REG_EXTEND_ADC2);
457 			int ext3 = lm85_read_value(client,
458 						   EMC6D102_REG_EXTEND_ADC3);
459 			int ext4 = lm85_read_value(client,
460 						   EMC6D102_REG_EXTEND_ADC4);
461 			data->in_ext[0] = ext3 & 0x0f;
462 			data->in_ext[1] = ext4 & 0x0f;
463 			data->in_ext[2] = ext4 >> 4;
464 			data->in_ext[3] = ext3 >> 4;
465 			data->in_ext[4] = ext2 >> 4;
466 
467 			data->temp_ext[0] = ext1 & 0x0f;
468 			data->temp_ext[1] = ext2 & 0x0f;
469 			data->temp_ext[2] = ext1 >> 4;
470 		}
471 
472 		data->last_reading = jiffies;
473 	}  /* last_reading */
474 
475 	if (!data->valid ||
476 	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
477 		/* Things that don't change often */
478 		dev_dbg(&client->dev, "Reading config values\n");
479 
480 		for (i = 0; i <= 3; ++i) {
481 			data->in_min[i] =
482 			    lm85_read_value(client, LM85_REG_IN_MIN(i));
483 			data->in_max[i] =
484 			    lm85_read_value(client, LM85_REG_IN_MAX(i));
485 			data->fan_min[i] =
486 			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
487 		}
488 
489 		if (!data->has_vid5)  {
490 			data->in_min[4] = lm85_read_value(client,
491 					  LM85_REG_IN_MIN(4));
492 			data->in_max[4] = lm85_read_value(client,
493 					  LM85_REG_IN_MAX(4));
494 		}
495 
496 		if (data->type == emc6d100) {
497 			for (i = 5; i <= 7; ++i) {
498 				data->in_min[i] = lm85_read_value(client,
499 						EMC6D100_REG_IN_MIN(i));
500 				data->in_max[i] = lm85_read_value(client,
501 						EMC6D100_REG_IN_MAX(i));
502 			}
503 		}
504 
505 		for (i = 0; i <= 2; ++i) {
506 			int val;
507 
508 			data->temp_min[i] =
509 			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
510 			data->temp_max[i] =
511 			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
512 
513 			data->autofan[i].config =
514 			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
515 			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
516 			data->pwm_freq[i] = val & 0x07;
517 			data->zone[i].range = val >> 4;
518 			data->autofan[i].min_pwm =
519 			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
520 			data->zone[i].limit =
521 			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
522 			data->zone[i].critical =
523 			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
524 
525 			if (IS_ADT7468_OFF64(data)) {
526 				data->temp_min[i] -= 64;
527 				data->temp_max[i] -= 64;
528 				data->zone[i].limit -= 64;
529 				data->zone[i].critical -= 64;
530 			}
531 		}
532 
533 		if (data->type != emc6d103s) {
534 			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
535 			data->autofan[0].min_off = (i & 0x20) != 0;
536 			data->autofan[1].min_off = (i & 0x40) != 0;
537 			data->autofan[2].min_off = (i & 0x80) != 0;
538 
539 			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
540 			data->zone[0].hyst = i >> 4;
541 			data->zone[1].hyst = i & 0x0f;
542 
543 			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
544 			data->zone[2].hyst = i >> 4;
545 		}
546 
547 		data->last_config = jiffies;
548 	}  /* last_config */
549 
550 	data->valid = 1;
551 
552 	mutex_unlock(&data->update_lock);
553 
554 	return data;
555 }
556 
557 /* 4 Fans */
558 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
559 		char *buf)
560 {
561 	int nr = to_sensor_dev_attr(attr)->index;
562 	struct lm85_data *data = lm85_update_device(dev);
563 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
564 }
565 
566 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
567 		char *buf)
568 {
569 	int nr = to_sensor_dev_attr(attr)->index;
570 	struct lm85_data *data = lm85_update_device(dev);
571 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
572 }
573 
574 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
575 		const char *buf, size_t count)
576 {
577 	int nr = to_sensor_dev_attr(attr)->index;
578 	struct lm85_data *data = dev_get_drvdata(dev);
579 	struct i2c_client *client = data->client;
580 	unsigned long val;
581 	int err;
582 
583 	err = kstrtoul(buf, 10, &val);
584 	if (err)
585 		return err;
586 
587 	mutex_lock(&data->update_lock);
588 	data->fan_min[nr] = FAN_TO_REG(val);
589 	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
590 	mutex_unlock(&data->update_lock);
591 	return count;
592 }
593 
594 #define show_fan_offset(offset)						\
595 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
596 		show_fan, NULL, offset - 1);				\
597 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
598 		show_fan_min, set_fan_min, offset - 1)
599 
600 show_fan_offset(1);
601 show_fan_offset(2);
602 show_fan_offset(3);
603 show_fan_offset(4);
604 
605 /* vid, vrm, alarms */
606 
607 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
608 		char *buf)
609 {
610 	struct lm85_data *data = lm85_update_device(dev);
611 	int vid;
612 
613 	if (data->has_vid5) {
614 		/* 6-pin VID (VRM 10) */
615 		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
616 	} else {
617 		/* 5-pin VID (VRM 9) */
618 		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
619 	}
620 
621 	return sprintf(buf, "%d\n", vid);
622 }
623 
624 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
625 
626 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
627 		char *buf)
628 {
629 	struct lm85_data *data = dev_get_drvdata(dev);
630 	return sprintf(buf, "%ld\n", (long) data->vrm);
631 }
632 
633 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
634 		const char *buf, size_t count)
635 {
636 	struct lm85_data *data = dev_get_drvdata(dev);
637 	unsigned long val;
638 	int err;
639 
640 	err = kstrtoul(buf, 10, &val);
641 	if (err)
642 		return err;
643 
644 	if (val > 255)
645 		return -EINVAL;
646 
647 	data->vrm = val;
648 	return count;
649 }
650 
651 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
652 
653 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
654 		*attr, char *buf)
655 {
656 	struct lm85_data *data = lm85_update_device(dev);
657 	return sprintf(buf, "%u\n", data->alarms);
658 }
659 
660 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
661 
662 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
663 		char *buf)
664 {
665 	int nr = to_sensor_dev_attr(attr)->index;
666 	struct lm85_data *data = lm85_update_device(dev);
667 	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
668 }
669 
670 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
671 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
672 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
673 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
674 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
675 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
676 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
677 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
678 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
679 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
680 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
681 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
682 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
683 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
684 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
685 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
686 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
687 
688 /* pwm */
689 
690 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
691 		char *buf)
692 {
693 	int nr = to_sensor_dev_attr(attr)->index;
694 	struct lm85_data *data = lm85_update_device(dev);
695 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
696 }
697 
698 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
699 		const char *buf, size_t count)
700 {
701 	int nr = to_sensor_dev_attr(attr)->index;
702 	struct lm85_data *data = dev_get_drvdata(dev);
703 	struct i2c_client *client = data->client;
704 	unsigned long val;
705 	int err;
706 
707 	err = kstrtoul(buf, 10, &val);
708 	if (err)
709 		return err;
710 
711 	mutex_lock(&data->update_lock);
712 	data->pwm[nr] = PWM_TO_REG(val);
713 	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
714 	mutex_unlock(&data->update_lock);
715 	return count;
716 }
717 
718 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
719 		*attr, char *buf)
720 {
721 	int nr = to_sensor_dev_attr(attr)->index;
722 	struct lm85_data *data = lm85_update_device(dev);
723 	int pwm_zone, enable;
724 
725 	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
726 	switch (pwm_zone) {
727 	case -1:	/* PWM is always at 100% */
728 		enable = 0;
729 		break;
730 	case 0:		/* PWM is always at 0% */
731 	case -2:	/* PWM responds to manual control */
732 		enable = 1;
733 		break;
734 	default:	/* PWM in automatic mode */
735 		enable = 2;
736 	}
737 	return sprintf(buf, "%d\n", enable);
738 }
739 
740 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
741 		*attr, const char *buf, size_t count)
742 {
743 	int nr = to_sensor_dev_attr(attr)->index;
744 	struct lm85_data *data = dev_get_drvdata(dev);
745 	struct i2c_client *client = data->client;
746 	u8 config;
747 	unsigned long val;
748 	int err;
749 
750 	err = kstrtoul(buf, 10, &val);
751 	if (err)
752 		return err;
753 
754 	switch (val) {
755 	case 0:
756 		config = 3;
757 		break;
758 	case 1:
759 		config = 7;
760 		break;
761 	case 2:
762 		/*
763 		 * Here we have to choose arbitrarily one of the 5 possible
764 		 * configurations; I go for the safest
765 		 */
766 		config = 6;
767 		break;
768 	default:
769 		return -EINVAL;
770 	}
771 
772 	mutex_lock(&data->update_lock);
773 	data->autofan[nr].config = lm85_read_value(client,
774 		LM85_REG_AFAN_CONFIG(nr));
775 	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
776 		| (config << 5);
777 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
778 		data->autofan[nr].config);
779 	mutex_unlock(&data->update_lock);
780 	return count;
781 }
782 
783 static ssize_t show_pwm_freq(struct device *dev,
784 		struct device_attribute *attr, char *buf)
785 {
786 	int nr = to_sensor_dev_attr(attr)->index;
787 	struct lm85_data *data = lm85_update_device(dev);
788 	int freq;
789 
790 	if (IS_ADT7468_HFPWM(data))
791 		freq = 22500;
792 	else
793 		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
794 
795 	return sprintf(buf, "%d\n", freq);
796 }
797 
798 static ssize_t set_pwm_freq(struct device *dev,
799 		struct device_attribute *attr, const char *buf, size_t count)
800 {
801 	int nr = to_sensor_dev_attr(attr)->index;
802 	struct lm85_data *data = dev_get_drvdata(dev);
803 	struct i2c_client *client = data->client;
804 	unsigned long val;
805 	int err;
806 
807 	err = kstrtoul(buf, 10, &val);
808 	if (err)
809 		return err;
810 
811 	mutex_lock(&data->update_lock);
812 	/*
813 	 * The ADT7468 has a special high-frequency PWM output mode,
814 	 * where all PWM outputs are driven by a 22.5 kHz clock.
815 	 * This might confuse the user, but there's not much we can do.
816 	 */
817 	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
818 		data->cfg5 &= ~ADT7468_HFPWM;
819 		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
820 	} else {					/* Low freq. mode */
821 		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
822 						 FREQ_MAP_LEN, val);
823 		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
824 				 (data->zone[nr].range << 4)
825 				 | data->pwm_freq[nr]);
826 		if (data->type == adt7468) {
827 			data->cfg5 |= ADT7468_HFPWM;
828 			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
829 		}
830 	}
831 	mutex_unlock(&data->update_lock);
832 	return count;
833 }
834 
835 #define show_pwm_reg(offset)						\
836 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
837 		show_pwm, set_pwm, offset - 1);				\
838 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
839 		show_pwm_enable, set_pwm_enable, offset - 1);		\
840 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
841 		show_pwm_freq, set_pwm_freq, offset - 1)
842 
843 show_pwm_reg(1);
844 show_pwm_reg(2);
845 show_pwm_reg(3);
846 
847 /* Voltages */
848 
849 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
850 		char *buf)
851 {
852 	int nr = to_sensor_dev_attr(attr)->index;
853 	struct lm85_data *data = lm85_update_device(dev);
854 	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
855 						    data->in_ext[nr]));
856 }
857 
858 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
859 		char *buf)
860 {
861 	int nr = to_sensor_dev_attr(attr)->index;
862 	struct lm85_data *data = lm85_update_device(dev);
863 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
864 }
865 
866 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
867 		const char *buf, size_t count)
868 {
869 	int nr = to_sensor_dev_attr(attr)->index;
870 	struct lm85_data *data = dev_get_drvdata(dev);
871 	struct i2c_client *client = data->client;
872 	long val;
873 	int err;
874 
875 	err = kstrtol(buf, 10, &val);
876 	if (err)
877 		return err;
878 
879 	mutex_lock(&data->update_lock);
880 	data->in_min[nr] = INS_TO_REG(nr, val);
881 	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
882 	mutex_unlock(&data->update_lock);
883 	return count;
884 }
885 
886 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
887 		char *buf)
888 {
889 	int nr = to_sensor_dev_attr(attr)->index;
890 	struct lm85_data *data = lm85_update_device(dev);
891 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
892 }
893 
894 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
895 		const char *buf, size_t count)
896 {
897 	int nr = to_sensor_dev_attr(attr)->index;
898 	struct lm85_data *data = dev_get_drvdata(dev);
899 	struct i2c_client *client = data->client;
900 	long val;
901 	int err;
902 
903 	err = kstrtol(buf, 10, &val);
904 	if (err)
905 		return err;
906 
907 	mutex_lock(&data->update_lock);
908 	data->in_max[nr] = INS_TO_REG(nr, val);
909 	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
910 	mutex_unlock(&data->update_lock);
911 	return count;
912 }
913 
914 #define show_in_reg(offset)						\
915 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
916 		show_in, NULL, offset);					\
917 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
918 		show_in_min, set_in_min, offset);			\
919 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
920 		show_in_max, set_in_max, offset)
921 
922 show_in_reg(0);
923 show_in_reg(1);
924 show_in_reg(2);
925 show_in_reg(3);
926 show_in_reg(4);
927 show_in_reg(5);
928 show_in_reg(6);
929 show_in_reg(7);
930 
931 /* Temps */
932 
933 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
934 		char *buf)
935 {
936 	int nr = to_sensor_dev_attr(attr)->index;
937 	struct lm85_data *data = lm85_update_device(dev);
938 	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
939 						     data->temp_ext[nr]));
940 }
941 
942 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
943 		char *buf)
944 {
945 	int nr = to_sensor_dev_attr(attr)->index;
946 	struct lm85_data *data = lm85_update_device(dev);
947 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
948 }
949 
950 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
951 		const char *buf, size_t count)
952 {
953 	int nr = to_sensor_dev_attr(attr)->index;
954 	struct lm85_data *data = dev_get_drvdata(dev);
955 	struct i2c_client *client = data->client;
956 	long val;
957 	int err;
958 
959 	err = kstrtol(buf, 10, &val);
960 	if (err)
961 		return err;
962 
963 	if (IS_ADT7468_OFF64(data))
964 		val += 64;
965 
966 	mutex_lock(&data->update_lock);
967 	data->temp_min[nr] = TEMP_TO_REG(val);
968 	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
969 	mutex_unlock(&data->update_lock);
970 	return count;
971 }
972 
973 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
974 		char *buf)
975 {
976 	int nr = to_sensor_dev_attr(attr)->index;
977 	struct lm85_data *data = lm85_update_device(dev);
978 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
979 }
980 
981 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
982 		const char *buf, size_t count)
983 {
984 	int nr = to_sensor_dev_attr(attr)->index;
985 	struct lm85_data *data = dev_get_drvdata(dev);
986 	struct i2c_client *client = data->client;
987 	long val;
988 	int err;
989 
990 	err = kstrtol(buf, 10, &val);
991 	if (err)
992 		return err;
993 
994 	if (IS_ADT7468_OFF64(data))
995 		val += 64;
996 
997 	mutex_lock(&data->update_lock);
998 	data->temp_max[nr] = TEMP_TO_REG(val);
999 	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1000 	mutex_unlock(&data->update_lock);
1001 	return count;
1002 }
1003 
1004 #define show_temp_reg(offset)						\
1005 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1006 		show_temp, NULL, offset - 1);				\
1007 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1008 		show_temp_min, set_temp_min, offset - 1);		\
1009 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1010 		show_temp_max, set_temp_max, offset - 1);
1011 
1012 show_temp_reg(1);
1013 show_temp_reg(2);
1014 show_temp_reg(3);
1015 
1016 
1017 /* Automatic PWM control */
1018 
1019 static ssize_t show_pwm_auto_channels(struct device *dev,
1020 		struct device_attribute *attr, char *buf)
1021 {
1022 	int nr = to_sensor_dev_attr(attr)->index;
1023 	struct lm85_data *data = lm85_update_device(dev);
1024 	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1025 }
1026 
1027 static ssize_t set_pwm_auto_channels(struct device *dev,
1028 		struct device_attribute *attr, const char *buf, size_t count)
1029 {
1030 	int nr = to_sensor_dev_attr(attr)->index;
1031 	struct lm85_data *data = dev_get_drvdata(dev);
1032 	struct i2c_client *client = data->client;
1033 	long val;
1034 	int err;
1035 
1036 	err = kstrtol(buf, 10, &val);
1037 	if (err)
1038 		return err;
1039 
1040 	mutex_lock(&data->update_lock);
1041 	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1042 		| ZONE_TO_REG(val);
1043 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1044 		data->autofan[nr].config);
1045 	mutex_unlock(&data->update_lock);
1046 	return count;
1047 }
1048 
1049 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1050 		struct device_attribute *attr, char *buf)
1051 {
1052 	int nr = to_sensor_dev_attr(attr)->index;
1053 	struct lm85_data *data = lm85_update_device(dev);
1054 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1055 }
1056 
1057 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1058 		struct device_attribute *attr, const char *buf, size_t count)
1059 {
1060 	int nr = to_sensor_dev_attr(attr)->index;
1061 	struct lm85_data *data = dev_get_drvdata(dev);
1062 	struct i2c_client *client = data->client;
1063 	unsigned long val;
1064 	int err;
1065 
1066 	err = kstrtoul(buf, 10, &val);
1067 	if (err)
1068 		return err;
1069 
1070 	mutex_lock(&data->update_lock);
1071 	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1072 	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1073 		data->autofan[nr].min_pwm);
1074 	mutex_unlock(&data->update_lock);
1075 	return count;
1076 }
1077 
1078 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1079 		struct device_attribute *attr, char *buf)
1080 {
1081 	int nr = to_sensor_dev_attr(attr)->index;
1082 	struct lm85_data *data = lm85_update_device(dev);
1083 	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1084 }
1085 
1086 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1087 		struct device_attribute *attr, const char *buf, size_t count)
1088 {
1089 	int nr = to_sensor_dev_attr(attr)->index;
1090 	struct lm85_data *data = dev_get_drvdata(dev);
1091 	struct i2c_client *client = data->client;
1092 	u8 tmp;
1093 	long val;
1094 	int err;
1095 
1096 	err = kstrtol(buf, 10, &val);
1097 	if (err)
1098 		return err;
1099 
1100 	mutex_lock(&data->update_lock);
1101 	data->autofan[nr].min_off = val;
1102 	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1103 	tmp &= ~(0x20 << nr);
1104 	if (data->autofan[nr].min_off)
1105 		tmp |= 0x20 << nr;
1106 	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1107 	mutex_unlock(&data->update_lock);
1108 	return count;
1109 }
1110 
1111 #define pwm_auto(offset)						\
1112 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1113 		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1114 		set_pwm_auto_channels, offset - 1);			\
1115 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1116 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1117 		set_pwm_auto_pwm_min, offset - 1);			\
1118 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1119 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1120 		set_pwm_auto_pwm_minctl, offset - 1)
1121 
1122 pwm_auto(1);
1123 pwm_auto(2);
1124 pwm_auto(3);
1125 
1126 /* Temperature settings for automatic PWM control */
1127 
1128 static ssize_t show_temp_auto_temp_off(struct device *dev,
1129 		struct device_attribute *attr, char *buf)
1130 {
1131 	int nr = to_sensor_dev_attr(attr)->index;
1132 	struct lm85_data *data = lm85_update_device(dev);
1133 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1134 		HYST_FROM_REG(data->zone[nr].hyst));
1135 }
1136 
1137 static ssize_t set_temp_auto_temp_off(struct device *dev,
1138 		struct device_attribute *attr, const char *buf, size_t count)
1139 {
1140 	int nr = to_sensor_dev_attr(attr)->index;
1141 	struct lm85_data *data = dev_get_drvdata(dev);
1142 	struct i2c_client *client = data->client;
1143 	int min;
1144 	long val;
1145 	int err;
1146 
1147 	err = kstrtol(buf, 10, &val);
1148 	if (err)
1149 		return err;
1150 
1151 	mutex_lock(&data->update_lock);
1152 	min = TEMP_FROM_REG(data->zone[nr].limit);
1153 	data->zone[nr].hyst = HYST_TO_REG(min - val);
1154 	if (nr == 0 || nr == 1) {
1155 		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1156 			(data->zone[0].hyst << 4)
1157 			| data->zone[1].hyst);
1158 	} else {
1159 		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1160 			(data->zone[2].hyst << 4));
1161 	}
1162 	mutex_unlock(&data->update_lock);
1163 	return count;
1164 }
1165 
1166 static ssize_t show_temp_auto_temp_min(struct device *dev,
1167 		struct device_attribute *attr, char *buf)
1168 {
1169 	int nr = to_sensor_dev_attr(attr)->index;
1170 	struct lm85_data *data = lm85_update_device(dev);
1171 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1172 }
1173 
1174 static ssize_t set_temp_auto_temp_min(struct device *dev,
1175 		struct device_attribute *attr, const char *buf, size_t count)
1176 {
1177 	int nr = to_sensor_dev_attr(attr)->index;
1178 	struct lm85_data *data = dev_get_drvdata(dev);
1179 	struct i2c_client *client = data->client;
1180 	long val;
1181 	int err;
1182 
1183 	err = kstrtol(buf, 10, &val);
1184 	if (err)
1185 		return err;
1186 
1187 	mutex_lock(&data->update_lock);
1188 	data->zone[nr].limit = TEMP_TO_REG(val);
1189 	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1190 		data->zone[nr].limit);
1191 
1192 /* Update temp_auto_max and temp_auto_range */
1193 	data->zone[nr].range = RANGE_TO_REG(
1194 		TEMP_FROM_REG(data->zone[nr].max_desired) -
1195 		TEMP_FROM_REG(data->zone[nr].limit));
1196 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1197 		((data->zone[nr].range & 0x0f) << 4)
1198 		| (data->pwm_freq[nr] & 0x07));
1199 
1200 	mutex_unlock(&data->update_lock);
1201 	return count;
1202 }
1203 
1204 static ssize_t show_temp_auto_temp_max(struct device *dev,
1205 		struct device_attribute *attr, char *buf)
1206 {
1207 	int nr = to_sensor_dev_attr(attr)->index;
1208 	struct lm85_data *data = lm85_update_device(dev);
1209 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1210 		RANGE_FROM_REG(data->zone[nr].range));
1211 }
1212 
1213 static ssize_t set_temp_auto_temp_max(struct device *dev,
1214 		struct device_attribute *attr, const char *buf, size_t count)
1215 {
1216 	int nr = to_sensor_dev_attr(attr)->index;
1217 	struct lm85_data *data = dev_get_drvdata(dev);
1218 	struct i2c_client *client = data->client;
1219 	int min;
1220 	long val;
1221 	int err;
1222 
1223 	err = kstrtol(buf, 10, &val);
1224 	if (err)
1225 		return err;
1226 
1227 	mutex_lock(&data->update_lock);
1228 	min = TEMP_FROM_REG(data->zone[nr].limit);
1229 	data->zone[nr].max_desired = TEMP_TO_REG(val);
1230 	data->zone[nr].range = RANGE_TO_REG(
1231 		val - min);
1232 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1233 		((data->zone[nr].range & 0x0f) << 4)
1234 		| (data->pwm_freq[nr] & 0x07));
1235 	mutex_unlock(&data->update_lock);
1236 	return count;
1237 }
1238 
1239 static ssize_t show_temp_auto_temp_crit(struct device *dev,
1240 		struct device_attribute *attr, char *buf)
1241 {
1242 	int nr = to_sensor_dev_attr(attr)->index;
1243 	struct lm85_data *data = lm85_update_device(dev);
1244 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1245 }
1246 
1247 static ssize_t set_temp_auto_temp_crit(struct device *dev,
1248 		struct device_attribute *attr, const char *buf, size_t count)
1249 {
1250 	int nr = to_sensor_dev_attr(attr)->index;
1251 	struct lm85_data *data = dev_get_drvdata(dev);
1252 	struct i2c_client *client = data->client;
1253 	long val;
1254 	int err;
1255 
1256 	err = kstrtol(buf, 10, &val);
1257 	if (err)
1258 		return err;
1259 
1260 	mutex_lock(&data->update_lock);
1261 	data->zone[nr].critical = TEMP_TO_REG(val);
1262 	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1263 		data->zone[nr].critical);
1264 	mutex_unlock(&data->update_lock);
1265 	return count;
1266 }
1267 
1268 #define temp_auto(offset)						\
1269 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1270 		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1271 		set_temp_auto_temp_off, offset - 1);			\
1272 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1273 		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1274 		set_temp_auto_temp_min, offset - 1);			\
1275 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1276 		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1277 		set_temp_auto_temp_max, offset - 1);			\
1278 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1279 		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1280 		set_temp_auto_temp_crit, offset - 1);
1281 
1282 temp_auto(1);
1283 temp_auto(2);
1284 temp_auto(3);
1285 
1286 static struct attribute *lm85_attributes[] = {
1287 	&sensor_dev_attr_fan1_input.dev_attr.attr,
1288 	&sensor_dev_attr_fan2_input.dev_attr.attr,
1289 	&sensor_dev_attr_fan3_input.dev_attr.attr,
1290 	&sensor_dev_attr_fan4_input.dev_attr.attr,
1291 	&sensor_dev_attr_fan1_min.dev_attr.attr,
1292 	&sensor_dev_attr_fan2_min.dev_attr.attr,
1293 	&sensor_dev_attr_fan3_min.dev_attr.attr,
1294 	&sensor_dev_attr_fan4_min.dev_attr.attr,
1295 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1296 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1297 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1298 	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1299 
1300 	&sensor_dev_attr_pwm1.dev_attr.attr,
1301 	&sensor_dev_attr_pwm2.dev_attr.attr,
1302 	&sensor_dev_attr_pwm3.dev_attr.attr,
1303 	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1304 	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1305 	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1306 	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1307 	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1308 	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1309 
1310 	&sensor_dev_attr_in0_input.dev_attr.attr,
1311 	&sensor_dev_attr_in1_input.dev_attr.attr,
1312 	&sensor_dev_attr_in2_input.dev_attr.attr,
1313 	&sensor_dev_attr_in3_input.dev_attr.attr,
1314 	&sensor_dev_attr_in0_min.dev_attr.attr,
1315 	&sensor_dev_attr_in1_min.dev_attr.attr,
1316 	&sensor_dev_attr_in2_min.dev_attr.attr,
1317 	&sensor_dev_attr_in3_min.dev_attr.attr,
1318 	&sensor_dev_attr_in0_max.dev_attr.attr,
1319 	&sensor_dev_attr_in1_max.dev_attr.attr,
1320 	&sensor_dev_attr_in2_max.dev_attr.attr,
1321 	&sensor_dev_attr_in3_max.dev_attr.attr,
1322 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1323 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1324 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1325 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1326 
1327 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1328 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1329 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1330 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1331 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1332 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1333 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1334 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1335 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1336 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1337 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1338 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1339 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1340 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1341 
1342 	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1343 	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1344 	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1345 	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1346 	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1347 	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1348 
1349 	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1350 	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1351 	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1352 	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1353 	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1354 	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1355 	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1356 	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1357 	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1358 
1359 	&dev_attr_vrm.attr,
1360 	&dev_attr_cpu0_vid.attr,
1361 	&dev_attr_alarms.attr,
1362 	NULL
1363 };
1364 
1365 static const struct attribute_group lm85_group = {
1366 	.attrs = lm85_attributes,
1367 };
1368 
1369 static struct attribute *lm85_attributes_minctl[] = {
1370 	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1371 	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1372 	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1373 	NULL
1374 };
1375 
1376 static const struct attribute_group lm85_group_minctl = {
1377 	.attrs = lm85_attributes_minctl,
1378 };
1379 
1380 static struct attribute *lm85_attributes_temp_off[] = {
1381 	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1382 	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1383 	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1384 	NULL
1385 };
1386 
1387 static const struct attribute_group lm85_group_temp_off = {
1388 	.attrs = lm85_attributes_temp_off,
1389 };
1390 
1391 static struct attribute *lm85_attributes_in4[] = {
1392 	&sensor_dev_attr_in4_input.dev_attr.attr,
1393 	&sensor_dev_attr_in4_min.dev_attr.attr,
1394 	&sensor_dev_attr_in4_max.dev_attr.attr,
1395 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1396 	NULL
1397 };
1398 
1399 static const struct attribute_group lm85_group_in4 = {
1400 	.attrs = lm85_attributes_in4,
1401 };
1402 
1403 static struct attribute *lm85_attributes_in567[] = {
1404 	&sensor_dev_attr_in5_input.dev_attr.attr,
1405 	&sensor_dev_attr_in6_input.dev_attr.attr,
1406 	&sensor_dev_attr_in7_input.dev_attr.attr,
1407 	&sensor_dev_attr_in5_min.dev_attr.attr,
1408 	&sensor_dev_attr_in6_min.dev_attr.attr,
1409 	&sensor_dev_attr_in7_min.dev_attr.attr,
1410 	&sensor_dev_attr_in5_max.dev_attr.attr,
1411 	&sensor_dev_attr_in6_max.dev_attr.attr,
1412 	&sensor_dev_attr_in7_max.dev_attr.attr,
1413 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1414 	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1415 	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1416 	NULL
1417 };
1418 
1419 static const struct attribute_group lm85_group_in567 = {
1420 	.attrs = lm85_attributes_in567,
1421 };
1422 
1423 static void lm85_init_client(struct i2c_client *client)
1424 {
1425 	int value;
1426 
1427 	/* Start monitoring if needed */
1428 	value = lm85_read_value(client, LM85_REG_CONFIG);
1429 	if (!(value & 0x01)) {
1430 		dev_info(&client->dev, "Starting monitoring\n");
1431 		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1432 	}
1433 
1434 	/* Warn about unusual configuration bits */
1435 	if (value & 0x02)
1436 		dev_warn(&client->dev, "Device configuration is locked\n");
1437 	if (!(value & 0x04))
1438 		dev_warn(&client->dev, "Device is not ready\n");
1439 }
1440 
1441 static int lm85_is_fake(struct i2c_client *client)
1442 {
1443 	/*
1444 	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1445 	 * emulate the former except that it has no hardware monitoring function
1446 	 * so the readings are always 0.
1447 	 */
1448 	int i;
1449 	u8 in_temp, fan;
1450 
1451 	for (i = 0; i < 8; i++) {
1452 		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1453 		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1454 		if (in_temp != 0x00 || fan != 0xff)
1455 			return 0;
1456 	}
1457 
1458 	return 1;
1459 }
1460 
1461 /* Return 0 if detection is successful, -ENODEV otherwise */
1462 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1463 {
1464 	struct i2c_adapter *adapter = client->adapter;
1465 	int address = client->addr;
1466 	const char *type_name = NULL;
1467 	int company, verstep;
1468 
1469 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1470 		/* We need to be able to do byte I/O */
1471 		return -ENODEV;
1472 	}
1473 
1474 	/* Determine the chip type */
1475 	company = lm85_read_value(client, LM85_REG_COMPANY);
1476 	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1477 
1478 	dev_dbg(&adapter->dev,
1479 		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1480 		address, company, verstep);
1481 
1482 	if (company == LM85_COMPANY_NATIONAL) {
1483 		switch (verstep) {
1484 		case LM85_VERSTEP_LM85C:
1485 			type_name = "lm85c";
1486 			break;
1487 		case LM85_VERSTEP_LM85B:
1488 			type_name = "lm85b";
1489 			break;
1490 		case LM85_VERSTEP_LM96000_1:
1491 		case LM85_VERSTEP_LM96000_2:
1492 			/* Check for Winbond WPCD377I */
1493 			if (lm85_is_fake(client)) {
1494 				dev_dbg(&adapter->dev,
1495 					"Found Winbond WPCD377I, ignoring\n");
1496 				return -ENODEV;
1497 			}
1498 			type_name = "lm85";
1499 			break;
1500 		}
1501 	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1502 		switch (verstep) {
1503 		case LM85_VERSTEP_ADM1027:
1504 			type_name = "adm1027";
1505 			break;
1506 		case LM85_VERSTEP_ADT7463:
1507 		case LM85_VERSTEP_ADT7463C:
1508 			type_name = "adt7463";
1509 			break;
1510 		case LM85_VERSTEP_ADT7468_1:
1511 		case LM85_VERSTEP_ADT7468_2:
1512 			type_name = "adt7468";
1513 			break;
1514 		}
1515 	} else if (company == LM85_COMPANY_SMSC) {
1516 		switch (verstep) {
1517 		case LM85_VERSTEP_EMC6D100_A0:
1518 		case LM85_VERSTEP_EMC6D100_A1:
1519 			/* Note: we can't tell a '100 from a '101 */
1520 			type_name = "emc6d100";
1521 			break;
1522 		case LM85_VERSTEP_EMC6D102:
1523 			type_name = "emc6d102";
1524 			break;
1525 		case LM85_VERSTEP_EMC6D103_A0:
1526 		case LM85_VERSTEP_EMC6D103_A1:
1527 			type_name = "emc6d103";
1528 			break;
1529 		case LM85_VERSTEP_EMC6D103S:
1530 			type_name = "emc6d103s";
1531 			break;
1532 		}
1533 	}
1534 
1535 	if (!type_name)
1536 		return -ENODEV;
1537 
1538 	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1539 
1540 	return 0;
1541 }
1542 
1543 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1544 {
1545 	struct device *dev = &client->dev;
1546 	struct device *hwmon_dev;
1547 	struct lm85_data *data;
1548 	int idx = 0;
1549 
1550 	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1551 	if (!data)
1552 		return -ENOMEM;
1553 
1554 	data->client = client;
1555 	data->type = id->driver_data;
1556 	mutex_init(&data->update_lock);
1557 
1558 	/* Fill in the chip specific driver values */
1559 	switch (data->type) {
1560 	case adm1027:
1561 	case adt7463:
1562 	case adt7468:
1563 	case emc6d100:
1564 	case emc6d102:
1565 	case emc6d103:
1566 	case emc6d103s:
1567 		data->freq_map = adm1027_freq_map;
1568 		break;
1569 	default:
1570 		data->freq_map = lm85_freq_map;
1571 	}
1572 
1573 	/* Set the VRM version */
1574 	data->vrm = vid_which_vrm();
1575 
1576 	/* Initialize the LM85 chip */
1577 	lm85_init_client(client);
1578 
1579 	/* sysfs hooks */
1580 	data->groups[idx++] = &lm85_group;
1581 
1582 	/* minctl and temp_off exist on all chips except emc6d103s */
1583 	if (data->type != emc6d103s) {
1584 		data->groups[idx++] = &lm85_group_minctl;
1585 		data->groups[idx++] = &lm85_group_temp_off;
1586 	}
1587 
1588 	/*
1589 	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1590 	 * as a sixth digital VID input rather than an analog input.
1591 	 */
1592 	if (data->type == adt7463 || data->type == adt7468) {
1593 		u8 vid = lm85_read_value(client, LM85_REG_VID);
1594 		if (vid & 0x80)
1595 			data->has_vid5 = true;
1596 	}
1597 
1598 	if (!data->has_vid5)
1599 		data->groups[idx++] = &lm85_group_in4;
1600 
1601 	/* The EMC6D100 has 3 additional voltage inputs */
1602 	if (data->type == emc6d100)
1603 		data->groups[idx++] = &lm85_group_in567;
1604 
1605 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1606 							   data, data->groups);
1607 	return PTR_ERR_OR_ZERO(hwmon_dev);
1608 }
1609 
1610 static const struct i2c_device_id lm85_id[] = {
1611 	{ "adm1027", adm1027 },
1612 	{ "adt7463", adt7463 },
1613 	{ "adt7468", adt7468 },
1614 	{ "lm85", lm85 },
1615 	{ "lm85b", lm85 },
1616 	{ "lm85c", lm85 },
1617 	{ "emc6d100", emc6d100 },
1618 	{ "emc6d101", emc6d100 },
1619 	{ "emc6d102", emc6d102 },
1620 	{ "emc6d103", emc6d103 },
1621 	{ "emc6d103s", emc6d103s },
1622 	{ }
1623 };
1624 MODULE_DEVICE_TABLE(i2c, lm85_id);
1625 
1626 static struct i2c_driver lm85_driver = {
1627 	.class		= I2C_CLASS_HWMON,
1628 	.driver = {
1629 		.name   = "lm85",
1630 	},
1631 	.probe		= lm85_probe,
1632 	.id_table	= lm85_id,
1633 	.detect		= lm85_detect,
1634 	.address_list	= normal_i2c,
1635 };
1636 
1637 module_i2c_driver(lm85_driver);
1638 
1639 MODULE_LICENSE("GPL");
1640 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1641 	"Margit Schubert-While <margitsw@t-online.de>, "
1642 	"Justin Thiessen <jthiessen@penguincomputing.com>");
1643 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1644