xref: /openbmc/linux/drivers/hwmon/lm85.c (revision 384740dc)
1 /*
2     lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3              monitoring
4     Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5     Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
6     Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
7     Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
8 
9     Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
10 
11     This program is free software; you can redistribute it and/or modify
12     it under the terms of the GNU General Public License as published by
13     the Free Software Foundation; either version 2 of the License, or
14     (at your option) any later version.
15 
16     This program is distributed in the hope that it will be useful,
17     but WITHOUT ANY WARRANTY; without even the implied warranty of
18     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19     GNU General Public License for more details.
20 
21     You should have received a copy of the GNU General Public License
22     along with this program; if not, write to the Free Software
23     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/jiffies.h>
30 #include <linux/i2c.h>
31 #include <linux/hwmon.h>
32 #include <linux/hwmon-vid.h>
33 #include <linux/hwmon-sysfs.h>
34 #include <linux/err.h>
35 #include <linux/mutex.h>
36 
37 /* Addresses to scan */
38 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
39 
40 /* Insmod parameters */
41 I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
42 
43 /* The LM85 registers */
44 
45 #define	LM85_REG_IN(nr)			(0x20 + (nr))
46 #define	LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
47 #define	LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
48 
49 #define	LM85_REG_TEMP(nr)		(0x25 + (nr))
50 #define	LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
51 #define	LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
52 
53 /* Fan speeds are LSB, MSB (2 bytes) */
54 #define	LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
55 #define	LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
56 
57 #define	LM85_REG_PWM(nr)		(0x30 + (nr))
58 
59 #define	LM85_REG_COMPANY		0x3e
60 #define	LM85_REG_VERSTEP		0x3f
61 /* These are the recognized values for the above regs */
62 #define	LM85_COMPANY_NATIONAL		0x01
63 #define	LM85_COMPANY_ANALOG_DEV		0x41
64 #define	LM85_COMPANY_SMSC		0x5c
65 #define	LM85_VERSTEP_VMASK              0xf0
66 #define	LM85_VERSTEP_GENERIC		0x60
67 #define	LM85_VERSTEP_LM85C		0x60
68 #define	LM85_VERSTEP_LM85B		0x62
69 #define	LM85_VERSTEP_ADM1027		0x60
70 #define	LM85_VERSTEP_ADT7463		0x62
71 #define	LM85_VERSTEP_ADT7463C		0x6A
72 #define	LM85_VERSTEP_EMC6D100_A0        0x60
73 #define	LM85_VERSTEP_EMC6D100_A1        0x61
74 #define	LM85_VERSTEP_EMC6D102		0x65
75 
76 #define	LM85_REG_CONFIG			0x40
77 
78 #define	LM85_REG_ALARM1			0x41
79 #define	LM85_REG_ALARM2			0x42
80 
81 #define	LM85_REG_VID			0x43
82 
83 /* Automated FAN control */
84 #define	LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
85 #define	LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
86 #define	LM85_REG_AFAN_SPIKE1		0x62
87 #define	LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
88 #define	LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
89 #define	LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
90 #define	LM85_REG_AFAN_HYST1		0x6d
91 #define	LM85_REG_AFAN_HYST2		0x6e
92 
93 #define	ADM1027_REG_EXTEND_ADC1		0x76
94 #define	ADM1027_REG_EXTEND_ADC2		0x77
95 
96 #define EMC6D100_REG_ALARM3             0x7d
97 /* IN5, IN6 and IN7 */
98 #define	EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
99 #define	EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
100 #define	EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
101 #define	EMC6D102_REG_EXTEND_ADC1	0x85
102 #define	EMC6D102_REG_EXTEND_ADC2	0x86
103 #define	EMC6D102_REG_EXTEND_ADC3	0x87
104 #define	EMC6D102_REG_EXTEND_ADC4	0x88
105 
106 
107 /* Conversions. Rounding and limit checking is only done on the TO_REG
108    variants. Note that you should be a bit careful with which arguments
109    these macros are called: arguments may be evaluated more than once.
110  */
111 
112 /* IN are scaled acording to built-in resistors */
113 static const int lm85_scaling[] = {  /* .001 Volts */
114 	2500, 2250, 3300, 5000, 12000,
115 	3300, 1500, 1800 /*EMC6D100*/
116 };
117 #define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
118 
119 #define INS_TO_REG(n, val)	\
120 		SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
121 
122 #define INSEXT_FROM_REG(n, val, ext)	\
123 		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
124 
125 #define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
126 
127 /* FAN speed is measured using 90kHz clock */
128 static inline u16 FAN_TO_REG(unsigned long val)
129 {
130 	if (!val)
131 		return 0xffff;
132 	return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
133 }
134 #define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
135 				 5400000 / (val))
136 
137 /* Temperature is reported in .001 degC increments */
138 #define TEMP_TO_REG(val)	\
139 		SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
140 #define TEMPEXT_FROM_REG(val, ext)	\
141 		SCALE(((val) << 4) + (ext), 16, 1000)
142 #define TEMP_FROM_REG(val)	((val) * 1000)
143 
144 #define PWM_TO_REG(val)			SENSORS_LIMIT(val, 0, 255)
145 #define PWM_FROM_REG(val)		(val)
146 
147 
148 /* ZONEs have the following parameters:
149  *    Limit (low) temp,           1. degC
150  *    Hysteresis (below limit),   1. degC (0-15)
151  *    Range of speed control,     .1 degC (2-80)
152  *    Critical (high) temp,       1. degC
153  *
154  * FAN PWMs have the following parameters:
155  *    Reference Zone,                 1, 2, 3, etc.
156  *    Spinup time,                    .05 sec
157  *    PWM value at limit/low temp,    1 count
158  *    PWM Frequency,                  1. Hz
159  *    PWM is Min or OFF below limit,  flag
160  *    Invert PWM output,              flag
161  *
162  * Some chips filter the temp, others the fan.
163  *    Filter constant (or disabled)   .1 seconds
164  */
165 
166 /* These are the zone temperature range encodings in .001 degree C */
167 static const int lm85_range_map[] = {
168 	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
169 	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
170 };
171 
172 static int RANGE_TO_REG(int range)
173 {
174 	int i;
175 
176 	if (range >= lm85_range_map[15])
177 		return 15;
178 
179 	/* Find the closest match */
180 	for (i = 14; i >= 0; --i) {
181 		if (range >= lm85_range_map[i]) {
182 			if ((lm85_range_map[i + 1] - range) <
183 					(range - lm85_range_map[i]))
184 				return i + 1;
185 			return i;
186 		}
187 	}
188 
189 	return 0;
190 }
191 #define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
192 
193 /* These are the PWM frequency encodings */
194 static const int lm85_freq_map[] = { /* .1 Hz */
195 	100, 150, 230, 300, 380, 470, 620, 940
196 };
197 
198 static int FREQ_TO_REG(int freq)
199 {
200 	int i;
201 
202 	if (freq >= lm85_freq_map[7])
203 		return 7;
204 	for (i = 0; i < 7; ++i)
205 		if (freq <= lm85_freq_map[i])
206 			break;
207 	return i;
208 }
209 #define FREQ_FROM_REG(val)	lm85_freq_map[(val) & 0x07]
210 
211 /* Since we can't use strings, I'm abusing these numbers
212  *   to stand in for the following meanings:
213  *      1 -- PWM responds to Zone 1
214  *      2 -- PWM responds to Zone 2
215  *      3 -- PWM responds to Zone 3
216  *     23 -- PWM responds to the higher temp of Zone 2 or 3
217  *    123 -- PWM responds to highest of Zone 1, 2, or 3
218  *      0 -- PWM is always at 0% (ie, off)
219  *     -1 -- PWM is always at 100%
220  *     -2 -- PWM responds to manual control
221  */
222 
223 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
224 #define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
225 
226 static int ZONE_TO_REG(int zone)
227 {
228 	int i;
229 
230 	for (i = 0; i <= 7; ++i)
231 		if (zone == lm85_zone_map[i])
232 			break;
233 	if (i > 7)   /* Not found. */
234 		i = 3;  /* Always 100% */
235 	return i << 5;
236 }
237 
238 #define HYST_TO_REG(val)	SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
239 #define HYST_FROM_REG(val)	((val) * 1000)
240 
241 /* Chip sampling rates
242  *
243  * Some sensors are not updated more frequently than once per second
244  *    so it doesn't make sense to read them more often than that.
245  *    We cache the results and return the saved data if the driver
246  *    is called again before a second has elapsed.
247  *
248  * Also, there is significant configuration data for this chip
249  *    given the automatic PWM fan control that is possible.  There
250  *    are about 47 bytes of config data to only 22 bytes of actual
251  *    readings.  So, we keep the config data up to date in the cache
252  *    when it is written and only sample it once every 1 *minute*
253  */
254 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
255 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
256 
257 /* LM85 can automatically adjust fan speeds based on temperature
258  * This structure encapsulates an entire Zone config.  There are
259  * three zones (one for each temperature input) on the lm85
260  */
261 struct lm85_zone {
262 	s8 limit;	/* Low temp limit */
263 	u8 hyst;	/* Low limit hysteresis. (0-15) */
264 	u8 range;	/* Temp range, encoded */
265 	s8 critical;	/* "All fans ON" temp limit */
266 	u8 off_desired; /* Actual "off" temperature specified.  Preserved
267 			 * to prevent "drift" as other autofan control
268 			 * values change.
269 			 */
270 	u8 max_desired; /* Actual "max" temperature specified.  Preserved
271 			 * to prevent "drift" as other autofan control
272 			 * values change.
273 			 */
274 };
275 
276 struct lm85_autofan {
277 	u8 config;	/* Register value */
278 	u8 freq;	/* PWM frequency, encoded */
279 	u8 min_pwm;	/* Minimum PWM value, encoded */
280 	u8 min_off;	/* Min PWM or OFF below "limit", flag */
281 };
282 
283 /* For each registered chip, we need to keep some data in memory.
284    The structure is dynamically allocated. */
285 struct lm85_data {
286 	struct i2c_client client;
287 	struct device *hwmon_dev;
288 	enum chips type;
289 
290 	struct mutex update_lock;
291 	int valid;		/* !=0 if following fields are valid */
292 	unsigned long last_reading;	/* In jiffies */
293 	unsigned long last_config;	/* In jiffies */
294 
295 	u8 in[8];		/* Register value */
296 	u8 in_max[8];		/* Register value */
297 	u8 in_min[8];		/* Register value */
298 	s8 temp[3];		/* Register value */
299 	s8 temp_min[3];		/* Register value */
300 	s8 temp_max[3];		/* Register value */
301 	u16 fan[4];		/* Register value */
302 	u16 fan_min[4];		/* Register value */
303 	u8 pwm[3];		/* Register value */
304 	u8 temp_ext[3];		/* Decoded values */
305 	u8 in_ext[8];		/* Decoded values */
306 	u8 vid;			/* Register value */
307 	u8 vrm;			/* VRM version */
308 	u32 alarms;		/* Register encoding, combined */
309 	struct lm85_autofan autofan[3];
310 	struct lm85_zone zone[3];
311 };
312 
313 static int lm85_attach_adapter(struct i2c_adapter *adapter);
314 static int lm85_detect(struct i2c_adapter *adapter, int address,
315 			int kind);
316 static int lm85_detach_client(struct i2c_client *client);
317 
318 static int lm85_read_value(struct i2c_client *client, u8 reg);
319 static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
320 static struct lm85_data *lm85_update_device(struct device *dev);
321 
322 
323 static struct i2c_driver lm85_driver = {
324 	.driver = {
325 		.name   = "lm85",
326 	},
327 	.attach_adapter = lm85_attach_adapter,
328 	.detach_client  = lm85_detach_client,
329 };
330 
331 
332 /* 4 Fans */
333 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
334 		char *buf)
335 {
336 	int nr = to_sensor_dev_attr(attr)->index;
337 	struct lm85_data *data = lm85_update_device(dev);
338 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
339 }
340 
341 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
342 		char *buf)
343 {
344 	int nr = to_sensor_dev_attr(attr)->index;
345 	struct lm85_data *data = lm85_update_device(dev);
346 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
347 }
348 
349 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
350 		const char *buf, size_t count)
351 {
352 	int nr = to_sensor_dev_attr(attr)->index;
353 	struct i2c_client *client = to_i2c_client(dev);
354 	struct lm85_data *data = i2c_get_clientdata(client);
355 	unsigned long val = simple_strtoul(buf, NULL, 10);
356 
357 	mutex_lock(&data->update_lock);
358 	data->fan_min[nr] = FAN_TO_REG(val);
359 	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
360 	mutex_unlock(&data->update_lock);
361 	return count;
362 }
363 
364 #define show_fan_offset(offset)						\
365 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
366 		show_fan, NULL, offset - 1);				\
367 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
368 		show_fan_min, set_fan_min, offset - 1)
369 
370 show_fan_offset(1);
371 show_fan_offset(2);
372 show_fan_offset(3);
373 show_fan_offset(4);
374 
375 /* vid, vrm, alarms */
376 
377 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
378 		char *buf)
379 {
380 	struct lm85_data *data = lm85_update_device(dev);
381 	int vid;
382 
383 	if (data->type == adt7463 && (data->vid & 0x80)) {
384 		/* 6-pin VID (VRM 10) */
385 		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
386 	} else {
387 		/* 5-pin VID (VRM 9) */
388 		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
389 	}
390 
391 	return sprintf(buf, "%d\n", vid);
392 }
393 
394 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
395 
396 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
397 		char *buf)
398 {
399 	struct lm85_data *data = dev_get_drvdata(dev);
400 	return sprintf(buf, "%ld\n", (long) data->vrm);
401 }
402 
403 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
404 		const char *buf, size_t count)
405 {
406 	struct lm85_data *data = dev_get_drvdata(dev);
407 	data->vrm = simple_strtoul(buf, NULL, 10);
408 	return count;
409 }
410 
411 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
412 
413 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
414 		*attr, char *buf)
415 {
416 	struct lm85_data *data = lm85_update_device(dev);
417 	return sprintf(buf, "%u\n", data->alarms);
418 }
419 
420 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
421 
422 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
423 		char *buf)
424 {
425 	int nr = to_sensor_dev_attr(attr)->index;
426 	struct lm85_data *data = lm85_update_device(dev);
427 	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
428 }
429 
430 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
431 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
432 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
433 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
434 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
435 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
436 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
437 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
438 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
439 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
440 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
441 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
442 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
443 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
444 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
445 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
446 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
447 
448 /* pwm */
449 
450 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
451 		char *buf)
452 {
453 	int nr = to_sensor_dev_attr(attr)->index;
454 	struct lm85_data *data = lm85_update_device(dev);
455 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
456 }
457 
458 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
459 		const char *buf, size_t count)
460 {
461 	int nr = to_sensor_dev_attr(attr)->index;
462 	struct i2c_client *client = to_i2c_client(dev);
463 	struct lm85_data *data = i2c_get_clientdata(client);
464 	long val = simple_strtol(buf, NULL, 10);
465 
466 	mutex_lock(&data->update_lock);
467 	data->pwm[nr] = PWM_TO_REG(val);
468 	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
469 	mutex_unlock(&data->update_lock);
470 	return count;
471 }
472 
473 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
474 		*attr, char *buf)
475 {
476 	int nr = to_sensor_dev_attr(attr)->index;
477 	struct lm85_data *data = lm85_update_device(dev);
478 	int pwm_zone, enable;
479 
480 	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
481 	switch (pwm_zone) {
482 	case -1:	/* PWM is always at 100% */
483 		enable = 0;
484 		break;
485 	case 0:		/* PWM is always at 0% */
486 	case -2:	/* PWM responds to manual control */
487 		enable = 1;
488 		break;
489 	default:	/* PWM in automatic mode */
490 		enable = 2;
491 	}
492 	return sprintf(buf, "%d\n", enable);
493 }
494 
495 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
496 		*attr, const char *buf, size_t count)
497 {
498 	int nr = to_sensor_dev_attr(attr)->index;
499 	struct i2c_client *client = to_i2c_client(dev);
500 	struct lm85_data *data = i2c_get_clientdata(client);
501 	long val = simple_strtol(buf, NULL, 10);
502 	u8 config;
503 
504 	switch (val) {
505 	case 0:
506 		config = 3;
507 		break;
508 	case 1:
509 		config = 7;
510 		break;
511 	case 2:
512 		/* Here we have to choose arbitrarily one of the 5 possible
513 		   configurations; I go for the safest */
514 		config = 6;
515 		break;
516 	default:
517 		return -EINVAL;
518 	}
519 
520 	mutex_lock(&data->update_lock);
521 	data->autofan[nr].config = lm85_read_value(client,
522 		LM85_REG_AFAN_CONFIG(nr));
523 	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
524 		| (config << 5);
525 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
526 		data->autofan[nr].config);
527 	mutex_unlock(&data->update_lock);
528 	return count;
529 }
530 
531 #define show_pwm_reg(offset)						\
532 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
533 		show_pwm, set_pwm, offset - 1);				\
534 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
535 		show_pwm_enable, set_pwm_enable, offset - 1)
536 
537 show_pwm_reg(1);
538 show_pwm_reg(2);
539 show_pwm_reg(3);
540 
541 /* Voltages */
542 
543 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
544 		char *buf)
545 {
546 	int nr = to_sensor_dev_attr(attr)->index;
547 	struct lm85_data *data = lm85_update_device(dev);
548 	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
549 						    data->in_ext[nr]));
550 }
551 
552 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
553 		char *buf)
554 {
555 	int nr = to_sensor_dev_attr(attr)->index;
556 	struct lm85_data *data = lm85_update_device(dev);
557 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
558 }
559 
560 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
561 		const char *buf, size_t count)
562 {
563 	int nr = to_sensor_dev_attr(attr)->index;
564 	struct i2c_client *client = to_i2c_client(dev);
565 	struct lm85_data *data = i2c_get_clientdata(client);
566 	long val = simple_strtol(buf, NULL, 10);
567 
568 	mutex_lock(&data->update_lock);
569 	data->in_min[nr] = INS_TO_REG(nr, val);
570 	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
571 	mutex_unlock(&data->update_lock);
572 	return count;
573 }
574 
575 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
576 		char *buf)
577 {
578 	int nr = to_sensor_dev_attr(attr)->index;
579 	struct lm85_data *data = lm85_update_device(dev);
580 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
581 }
582 
583 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
584 		const char *buf, size_t count)
585 {
586 	int nr = to_sensor_dev_attr(attr)->index;
587 	struct i2c_client *client = to_i2c_client(dev);
588 	struct lm85_data *data = i2c_get_clientdata(client);
589 	long val = simple_strtol(buf, NULL, 10);
590 
591 	mutex_lock(&data->update_lock);
592 	data->in_max[nr] = INS_TO_REG(nr, val);
593 	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
594 	mutex_unlock(&data->update_lock);
595 	return count;
596 }
597 
598 #define show_in_reg(offset)						\
599 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
600 		show_in, NULL, offset);					\
601 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
602 		show_in_min, set_in_min, offset);			\
603 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
604 		show_in_max, set_in_max, offset)
605 
606 show_in_reg(0);
607 show_in_reg(1);
608 show_in_reg(2);
609 show_in_reg(3);
610 show_in_reg(4);
611 show_in_reg(5);
612 show_in_reg(6);
613 show_in_reg(7);
614 
615 /* Temps */
616 
617 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
618 		char *buf)
619 {
620 	int nr = to_sensor_dev_attr(attr)->index;
621 	struct lm85_data *data = lm85_update_device(dev);
622 	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
623 						     data->temp_ext[nr]));
624 }
625 
626 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
627 		char *buf)
628 {
629 	int nr = to_sensor_dev_attr(attr)->index;
630 	struct lm85_data *data = lm85_update_device(dev);
631 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
632 }
633 
634 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
635 		const char *buf, size_t count)
636 {
637 	int nr = to_sensor_dev_attr(attr)->index;
638 	struct i2c_client *client = to_i2c_client(dev);
639 	struct lm85_data *data = i2c_get_clientdata(client);
640 	long val = simple_strtol(buf, NULL, 10);
641 
642 	mutex_lock(&data->update_lock);
643 	data->temp_min[nr] = TEMP_TO_REG(val);
644 	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
645 	mutex_unlock(&data->update_lock);
646 	return count;
647 }
648 
649 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
650 		char *buf)
651 {
652 	int nr = to_sensor_dev_attr(attr)->index;
653 	struct lm85_data *data = lm85_update_device(dev);
654 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
655 }
656 
657 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
658 		const char *buf, size_t count)
659 {
660 	int nr = to_sensor_dev_attr(attr)->index;
661 	struct i2c_client *client = to_i2c_client(dev);
662 	struct lm85_data *data = i2c_get_clientdata(client);
663 	long val = simple_strtol(buf, NULL, 10);
664 
665 	mutex_lock(&data->update_lock);
666 	data->temp_max[nr] = TEMP_TO_REG(val);
667 	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
668 	mutex_unlock(&data->update_lock);
669 	return count;
670 }
671 
672 #define show_temp_reg(offset)						\
673 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
674 		show_temp, NULL, offset - 1);				\
675 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
676 		show_temp_min, set_temp_min, offset - 1);		\
677 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
678 		show_temp_max, set_temp_max, offset - 1);
679 
680 show_temp_reg(1);
681 show_temp_reg(2);
682 show_temp_reg(3);
683 
684 
685 /* Automatic PWM control */
686 
687 static ssize_t show_pwm_auto_channels(struct device *dev,
688 		struct device_attribute *attr, char *buf)
689 {
690 	int nr = to_sensor_dev_attr(attr)->index;
691 	struct lm85_data *data = lm85_update_device(dev);
692 	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
693 }
694 
695 static ssize_t set_pwm_auto_channels(struct device *dev,
696 		struct device_attribute *attr, const char *buf, size_t count)
697 {
698 	int nr = to_sensor_dev_attr(attr)->index;
699 	struct i2c_client *client = to_i2c_client(dev);
700 	struct lm85_data *data = i2c_get_clientdata(client);
701 	long val = simple_strtol(buf, NULL, 10);
702 
703 	mutex_lock(&data->update_lock);
704 	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
705 		| ZONE_TO_REG(val);
706 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
707 		data->autofan[nr].config);
708 	mutex_unlock(&data->update_lock);
709 	return count;
710 }
711 
712 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
713 		struct device_attribute *attr, char *buf)
714 {
715 	int nr = to_sensor_dev_attr(attr)->index;
716 	struct lm85_data *data = lm85_update_device(dev);
717 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
718 }
719 
720 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
721 		struct device_attribute *attr, const char *buf, size_t count)
722 {
723 	int nr = to_sensor_dev_attr(attr)->index;
724 	struct i2c_client *client = to_i2c_client(dev);
725 	struct lm85_data *data = i2c_get_clientdata(client);
726 	long val = simple_strtol(buf, NULL, 10);
727 
728 	mutex_lock(&data->update_lock);
729 	data->autofan[nr].min_pwm = PWM_TO_REG(val);
730 	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
731 		data->autofan[nr].min_pwm);
732 	mutex_unlock(&data->update_lock);
733 	return count;
734 }
735 
736 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
737 		struct device_attribute *attr, char *buf)
738 {
739 	int nr = to_sensor_dev_attr(attr)->index;
740 	struct lm85_data *data = lm85_update_device(dev);
741 	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
742 }
743 
744 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
745 		struct device_attribute *attr, const char *buf, size_t count)
746 {
747 	int nr = to_sensor_dev_attr(attr)->index;
748 	struct i2c_client *client = to_i2c_client(dev);
749 	struct lm85_data *data = i2c_get_clientdata(client);
750 	long val = simple_strtol(buf, NULL, 10);
751 	u8 tmp;
752 
753 	mutex_lock(&data->update_lock);
754 	data->autofan[nr].min_off = val;
755 	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
756 	tmp &= ~(0x20 << nr);
757 	if (data->autofan[nr].min_off)
758 		tmp |= 0x20 << nr;
759 	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
760 	mutex_unlock(&data->update_lock);
761 	return count;
762 }
763 
764 static ssize_t show_pwm_auto_pwm_freq(struct device *dev,
765 		struct device_attribute *attr, char *buf)
766 {
767 	int nr = to_sensor_dev_attr(attr)->index;
768 	struct lm85_data *data = lm85_update_device(dev);
769 	return sprintf(buf, "%d\n", FREQ_FROM_REG(data->autofan[nr].freq));
770 }
771 
772 static ssize_t set_pwm_auto_pwm_freq(struct device *dev,
773 		struct device_attribute *attr, const char *buf, size_t count)
774 {
775 	int nr = to_sensor_dev_attr(attr)->index;
776 	struct i2c_client *client = to_i2c_client(dev);
777 	struct lm85_data *data = i2c_get_clientdata(client);
778 	long val = simple_strtol(buf, NULL, 10);
779 
780 	mutex_lock(&data->update_lock);
781 	data->autofan[nr].freq = FREQ_TO_REG(val);
782 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
783 		(data->zone[nr].range << 4)
784 		| data->autofan[nr].freq);
785 	mutex_unlock(&data->update_lock);
786 	return count;
787 }
788 
789 #define pwm_auto(offset)						\
790 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
791 		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
792 		set_pwm_auto_channels, offset - 1);			\
793 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
794 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
795 		set_pwm_auto_pwm_min, offset - 1);			\
796 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
797 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
798 		set_pwm_auto_pwm_minctl, offset - 1);			\
799 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_freq,			\
800 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_freq,		\
801 		set_pwm_auto_pwm_freq, offset - 1);
802 
803 pwm_auto(1);
804 pwm_auto(2);
805 pwm_auto(3);
806 
807 /* Temperature settings for automatic PWM control */
808 
809 static ssize_t show_temp_auto_temp_off(struct device *dev,
810 		struct device_attribute *attr, char *buf)
811 {
812 	int nr = to_sensor_dev_attr(attr)->index;
813 	struct lm85_data *data = lm85_update_device(dev);
814 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
815 		HYST_FROM_REG(data->zone[nr].hyst));
816 }
817 
818 static ssize_t set_temp_auto_temp_off(struct device *dev,
819 		struct device_attribute *attr, const char *buf, size_t count)
820 {
821 	int nr = to_sensor_dev_attr(attr)->index;
822 	struct i2c_client *client = to_i2c_client(dev);
823 	struct lm85_data *data = i2c_get_clientdata(client);
824 	int min;
825 	long val = simple_strtol(buf, NULL, 10);
826 
827 	mutex_lock(&data->update_lock);
828 	min = TEMP_FROM_REG(data->zone[nr].limit);
829 	data->zone[nr].off_desired = TEMP_TO_REG(val);
830 	data->zone[nr].hyst = HYST_TO_REG(min - val);
831 	if (nr == 0 || nr == 1) {
832 		lm85_write_value(client, LM85_REG_AFAN_HYST1,
833 			(data->zone[0].hyst << 4)
834 			| data->zone[1].hyst);
835 	} else {
836 		lm85_write_value(client, LM85_REG_AFAN_HYST2,
837 			(data->zone[2].hyst << 4));
838 	}
839 	mutex_unlock(&data->update_lock);
840 	return count;
841 }
842 
843 static ssize_t show_temp_auto_temp_min(struct device *dev,
844 		struct device_attribute *attr, char *buf)
845 {
846 	int nr = to_sensor_dev_attr(attr)->index;
847 	struct lm85_data *data = lm85_update_device(dev);
848 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
849 }
850 
851 static ssize_t set_temp_auto_temp_min(struct device *dev,
852 		struct device_attribute *attr, const char *buf, size_t count)
853 {
854 	int nr = to_sensor_dev_attr(attr)->index;
855 	struct i2c_client *client = to_i2c_client(dev);
856 	struct lm85_data *data = i2c_get_clientdata(client);
857 	long val = simple_strtol(buf, NULL, 10);
858 
859 	mutex_lock(&data->update_lock);
860 	data->zone[nr].limit = TEMP_TO_REG(val);
861 	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
862 		data->zone[nr].limit);
863 
864 /* Update temp_auto_max and temp_auto_range */
865 	data->zone[nr].range = RANGE_TO_REG(
866 		TEMP_FROM_REG(data->zone[nr].max_desired) -
867 		TEMP_FROM_REG(data->zone[nr].limit));
868 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
869 		((data->zone[nr].range & 0x0f) << 4)
870 		| (data->autofan[nr].freq & 0x07));
871 
872 /* Update temp_auto_hyst and temp_auto_off */
873 	data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
874 		data->zone[nr].limit) - TEMP_FROM_REG(
875 		data->zone[nr].off_desired));
876 	if (nr == 0 || nr == 1) {
877 		lm85_write_value(client, LM85_REG_AFAN_HYST1,
878 			(data->zone[0].hyst << 4)
879 			| data->zone[1].hyst);
880 	} else {
881 		lm85_write_value(client, LM85_REG_AFAN_HYST2,
882 			(data->zone[2].hyst << 4));
883 	}
884 	mutex_unlock(&data->update_lock);
885 	return count;
886 }
887 
888 static ssize_t show_temp_auto_temp_max(struct device *dev,
889 		struct device_attribute *attr, char *buf)
890 {
891 	int nr = to_sensor_dev_attr(attr)->index;
892 	struct lm85_data *data = lm85_update_device(dev);
893 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
894 		RANGE_FROM_REG(data->zone[nr].range));
895 }
896 
897 static ssize_t set_temp_auto_temp_max(struct device *dev,
898 		struct device_attribute *attr, const char *buf, size_t count)
899 {
900 	int nr = to_sensor_dev_attr(attr)->index;
901 	struct i2c_client *client = to_i2c_client(dev);
902 	struct lm85_data *data = i2c_get_clientdata(client);
903 	int min;
904 	long val = simple_strtol(buf, NULL, 10);
905 
906 	mutex_lock(&data->update_lock);
907 	min = TEMP_FROM_REG(data->zone[nr].limit);
908 	data->zone[nr].max_desired = TEMP_TO_REG(val);
909 	data->zone[nr].range = RANGE_TO_REG(
910 		val - min);
911 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
912 		((data->zone[nr].range & 0x0f) << 4)
913 		| (data->autofan[nr].freq & 0x07));
914 	mutex_unlock(&data->update_lock);
915 	return count;
916 }
917 
918 static ssize_t show_temp_auto_temp_crit(struct device *dev,
919 		struct device_attribute *attr, char *buf)
920 {
921 	int nr = to_sensor_dev_attr(attr)->index;
922 	struct lm85_data *data = lm85_update_device(dev);
923 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
924 }
925 
926 static ssize_t set_temp_auto_temp_crit(struct device *dev,
927 		struct device_attribute *attr, const char *buf, size_t count)
928 {
929 	int nr = to_sensor_dev_attr(attr)->index;
930 	struct i2c_client *client = to_i2c_client(dev);
931 	struct lm85_data *data = i2c_get_clientdata(client);
932 	long val = simple_strtol(buf, NULL, 10);
933 
934 	mutex_lock(&data->update_lock);
935 	data->zone[nr].critical = TEMP_TO_REG(val);
936 	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
937 		data->zone[nr].critical);
938 	mutex_unlock(&data->update_lock);
939 	return count;
940 }
941 
942 #define temp_auto(offset)						\
943 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
944 		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
945 		set_temp_auto_temp_off, offset - 1);			\
946 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
947 		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
948 		set_temp_auto_temp_min, offset - 1);			\
949 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
950 		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
951 		set_temp_auto_temp_max, offset - 1);			\
952 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
953 		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
954 		set_temp_auto_temp_crit, offset - 1);
955 
956 temp_auto(1);
957 temp_auto(2);
958 temp_auto(3);
959 
960 static int lm85_attach_adapter(struct i2c_adapter *adapter)
961 {
962 	if (!(adapter->class & I2C_CLASS_HWMON))
963 		return 0;
964 	return i2c_probe(adapter, &addr_data, lm85_detect);
965 }
966 
967 static struct attribute *lm85_attributes[] = {
968 	&sensor_dev_attr_fan1_input.dev_attr.attr,
969 	&sensor_dev_attr_fan2_input.dev_attr.attr,
970 	&sensor_dev_attr_fan3_input.dev_attr.attr,
971 	&sensor_dev_attr_fan4_input.dev_attr.attr,
972 	&sensor_dev_attr_fan1_min.dev_attr.attr,
973 	&sensor_dev_attr_fan2_min.dev_attr.attr,
974 	&sensor_dev_attr_fan3_min.dev_attr.attr,
975 	&sensor_dev_attr_fan4_min.dev_attr.attr,
976 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
977 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
978 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
979 	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
980 
981 	&sensor_dev_attr_pwm1.dev_attr.attr,
982 	&sensor_dev_attr_pwm2.dev_attr.attr,
983 	&sensor_dev_attr_pwm3.dev_attr.attr,
984 	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
985 	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
986 	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
987 
988 	&sensor_dev_attr_in0_input.dev_attr.attr,
989 	&sensor_dev_attr_in1_input.dev_attr.attr,
990 	&sensor_dev_attr_in2_input.dev_attr.attr,
991 	&sensor_dev_attr_in3_input.dev_attr.attr,
992 	&sensor_dev_attr_in0_min.dev_attr.attr,
993 	&sensor_dev_attr_in1_min.dev_attr.attr,
994 	&sensor_dev_attr_in2_min.dev_attr.attr,
995 	&sensor_dev_attr_in3_min.dev_attr.attr,
996 	&sensor_dev_attr_in0_max.dev_attr.attr,
997 	&sensor_dev_attr_in1_max.dev_attr.attr,
998 	&sensor_dev_attr_in2_max.dev_attr.attr,
999 	&sensor_dev_attr_in3_max.dev_attr.attr,
1000 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1001 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1002 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1003 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1004 
1005 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1006 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1007 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1008 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1009 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1010 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1011 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1012 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1013 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1014 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1015 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1016 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1017 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1018 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1019 
1020 	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1021 	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1022 	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1023 	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1024 	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1025 	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1026 	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1027 	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1028 	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1029 	&sensor_dev_attr_pwm1_auto_pwm_freq.dev_attr.attr,
1030 	&sensor_dev_attr_pwm2_auto_pwm_freq.dev_attr.attr,
1031 	&sensor_dev_attr_pwm3_auto_pwm_freq.dev_attr.attr,
1032 
1033 	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1034 	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1035 	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1036 	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1037 	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1038 	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1039 	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1040 	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1041 	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1042 	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1043 	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1044 	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1045 
1046 	&dev_attr_vrm.attr,
1047 	&dev_attr_cpu0_vid.attr,
1048 	&dev_attr_alarms.attr,
1049 	NULL
1050 };
1051 
1052 static const struct attribute_group lm85_group = {
1053 	.attrs = lm85_attributes,
1054 };
1055 
1056 static struct attribute *lm85_attributes_in4[] = {
1057 	&sensor_dev_attr_in4_input.dev_attr.attr,
1058 	&sensor_dev_attr_in4_min.dev_attr.attr,
1059 	&sensor_dev_attr_in4_max.dev_attr.attr,
1060 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1061 	NULL
1062 };
1063 
1064 static const struct attribute_group lm85_group_in4 = {
1065 	.attrs = lm85_attributes_in4,
1066 };
1067 
1068 static struct attribute *lm85_attributes_in567[] = {
1069 	&sensor_dev_attr_in5_input.dev_attr.attr,
1070 	&sensor_dev_attr_in6_input.dev_attr.attr,
1071 	&sensor_dev_attr_in7_input.dev_attr.attr,
1072 	&sensor_dev_attr_in5_min.dev_attr.attr,
1073 	&sensor_dev_attr_in6_min.dev_attr.attr,
1074 	&sensor_dev_attr_in7_min.dev_attr.attr,
1075 	&sensor_dev_attr_in5_max.dev_attr.attr,
1076 	&sensor_dev_attr_in6_max.dev_attr.attr,
1077 	&sensor_dev_attr_in7_max.dev_attr.attr,
1078 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1079 	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1080 	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1081 	NULL
1082 };
1083 
1084 static const struct attribute_group lm85_group_in567 = {
1085 	.attrs = lm85_attributes_in567,
1086 };
1087 
1088 static void lm85_init_client(struct i2c_client *client)
1089 {
1090 	int value;
1091 
1092 	/* Start monitoring if needed */
1093 	value = lm85_read_value(client, LM85_REG_CONFIG);
1094 	if (!(value & 0x01)) {
1095 		dev_info(&client->dev, "Starting monitoring\n");
1096 		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1097 	}
1098 
1099 	/* Warn about unusual configuration bits */
1100 	if (value & 0x02)
1101 		dev_warn(&client->dev, "Device configuration is locked\n");
1102 	if (!(value & 0x04))
1103 		dev_warn(&client->dev, "Device is not ready\n");
1104 }
1105 
1106 static int lm85_detect(struct i2c_adapter *adapter, int address,
1107 		int kind)
1108 {
1109 	int company, verstep;
1110 	struct i2c_client *client;
1111 	struct lm85_data *data;
1112 	int err = 0;
1113 	const char *type_name;
1114 
1115 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1116 		/* We need to be able to do byte I/O */
1117 		goto ERROR0;
1118 	}
1119 
1120 	/* OK. For now, we presume we have a valid client. We now create the
1121 	   client structure, even though we cannot fill it completely yet.
1122 	   But it allows us to access lm85_{read,write}_value. */
1123 
1124 	if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
1125 		err = -ENOMEM;
1126 		goto ERROR0;
1127 	}
1128 
1129 	client = &data->client;
1130 	i2c_set_clientdata(client, data);
1131 	client->addr = address;
1132 	client->adapter = adapter;
1133 	client->driver = &lm85_driver;
1134 
1135 	/* Now, we do the remaining detection. */
1136 
1137 	company = lm85_read_value(client, LM85_REG_COMPANY);
1138 	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1139 
1140 	dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with"
1141 		" COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1142 		i2c_adapter_id(client->adapter), client->addr,
1143 		company, verstep);
1144 
1145 	/* If auto-detecting, Determine the chip type. */
1146 	if (kind <= 0) {
1147 		dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n",
1148 			i2c_adapter_id(adapter), address);
1149 		if (company == LM85_COMPANY_NATIONAL
1150 		    && verstep == LM85_VERSTEP_LM85C) {
1151 			kind = lm85c;
1152 		} else if (company == LM85_COMPANY_NATIONAL
1153 		    && verstep == LM85_VERSTEP_LM85B) {
1154 			kind = lm85b;
1155 		} else if (company == LM85_COMPANY_NATIONAL
1156 		    && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1157 			dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
1158 				" Defaulting to LM85.\n", verstep);
1159 			kind = any_chip;
1160 		} else if (company == LM85_COMPANY_ANALOG_DEV
1161 		    && verstep == LM85_VERSTEP_ADM1027) {
1162 			kind = adm1027;
1163 		} else if (company == LM85_COMPANY_ANALOG_DEV
1164 		    && (verstep == LM85_VERSTEP_ADT7463
1165 			 || verstep == LM85_VERSTEP_ADT7463C)) {
1166 			kind = adt7463;
1167 		} else if (company == LM85_COMPANY_ANALOG_DEV
1168 		    && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1169 			dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
1170 				" Defaulting to Generic LM85.\n", verstep);
1171 			kind = any_chip;
1172 		} else if (company == LM85_COMPANY_SMSC
1173 		    && (verstep == LM85_VERSTEP_EMC6D100_A0
1174 			 || verstep == LM85_VERSTEP_EMC6D100_A1)) {
1175 			/* Unfortunately, we can't tell a '100 from a '101
1176 			 * from the registers.  Since a '101 is a '100
1177 			 * in a package with fewer pins and therefore no
1178 			 * 3.3V, 1.5V or 1.8V inputs, perhaps if those
1179 			 * inputs read 0, then it's a '101.
1180 			 */
1181 			kind = emc6d100;
1182 		} else if (company == LM85_COMPANY_SMSC
1183 		    && verstep == LM85_VERSTEP_EMC6D102) {
1184 			kind = emc6d102;
1185 		} else if (company == LM85_COMPANY_SMSC
1186 		    && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1187 			dev_err(&adapter->dev, "lm85: Detected SMSC chip\n");
1188 			dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x"
1189 			    " Defaulting to Generic LM85.\n", verstep);
1190 			kind = any_chip;
1191 		} else if (kind == any_chip
1192 		    && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
1193 			dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n");
1194 			/* Leave kind as "any_chip" */
1195 		} else {
1196 			dev_dbg(&adapter->dev, "Autodetection failed\n");
1197 			/* Not an LM85... */
1198 			if (kind == any_chip) {  /* User used force=x,y */
1199 				dev_err(&adapter->dev, "Generic LM85 Version 6 not"
1200 					" found at %d,0x%02x. Try force_lm85c.\n",
1201 					i2c_adapter_id(adapter), address);
1202 			}
1203 			err = 0;
1204 			goto ERROR1;
1205 		}
1206 	}
1207 
1208 	/* Fill in the chip specific driver values */
1209 	switch (kind) {
1210 	case lm85b:
1211 		type_name = "lm85b";
1212 		break;
1213 	case lm85c:
1214 		type_name = "lm85c";
1215 		break;
1216 	case adm1027:
1217 		type_name = "adm1027";
1218 		break;
1219 	case adt7463:
1220 		type_name = "adt7463";
1221 		break;
1222 	case emc6d100:
1223 		type_name = "emc6d100";
1224 		break;
1225 	case emc6d102:
1226 		type_name = "emc6d102";
1227 		break;
1228 	default:
1229 		type_name = "lm85";
1230 	}
1231 	strlcpy(client->name, type_name, I2C_NAME_SIZE);
1232 
1233 	/* Fill in the remaining client fields */
1234 	data->type = kind;
1235 	mutex_init(&data->update_lock);
1236 
1237 	/* Tell the I2C layer a new client has arrived */
1238 	err = i2c_attach_client(client);
1239 	if (err)
1240 		goto ERROR1;
1241 
1242 	/* Set the VRM version */
1243 	data->vrm = vid_which_vrm();
1244 
1245 	/* Initialize the LM85 chip */
1246 	lm85_init_client(client);
1247 
1248 	/* Register sysfs hooks */
1249 	err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1250 	if (err)
1251 		goto ERROR2;
1252 
1253 	/* The ADT7463 has an optional VRM 10 mode where pin 21 is used
1254 	   as a sixth digital VID input rather than an analog input. */
1255 	data->vid = lm85_read_value(client, LM85_REG_VID);
1256 	if (!(kind == adt7463 && (data->vid & 0x80)))
1257 		if ((err = sysfs_create_group(&client->dev.kobj,
1258 					&lm85_group_in4)))
1259 			goto ERROR3;
1260 
1261 	/* The EMC6D100 has 3 additional voltage inputs */
1262 	if (kind == emc6d100)
1263 		if ((err = sysfs_create_group(&client->dev.kobj,
1264 					&lm85_group_in567)))
1265 			goto ERROR3;
1266 
1267 	data->hwmon_dev = hwmon_device_register(&client->dev);
1268 	if (IS_ERR(data->hwmon_dev)) {
1269 		err = PTR_ERR(data->hwmon_dev);
1270 		goto ERROR3;
1271 	}
1272 
1273 	return 0;
1274 
1275 	/* Error out and cleanup code */
1276  ERROR3:
1277 	sysfs_remove_group(&client->dev.kobj, &lm85_group);
1278 	sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1279 	if (kind == emc6d100)
1280 		sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1281  ERROR2:
1282 	i2c_detach_client(client);
1283  ERROR1:
1284 	kfree(data);
1285  ERROR0:
1286 	return err;
1287 }
1288 
1289 static int lm85_detach_client(struct i2c_client *client)
1290 {
1291 	struct lm85_data *data = i2c_get_clientdata(client);
1292 	hwmon_device_unregister(data->hwmon_dev);
1293 	sysfs_remove_group(&client->dev.kobj, &lm85_group);
1294 	sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1295 	if (data->type == emc6d100)
1296 		sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1297 	i2c_detach_client(client);
1298 	kfree(data);
1299 	return 0;
1300 }
1301 
1302 
1303 static int lm85_read_value(struct i2c_client *client, u8 reg)
1304 {
1305 	int res;
1306 
1307 	/* What size location is it? */
1308 	switch (reg) {
1309 	case LM85_REG_FAN(0):  /* Read WORD data */
1310 	case LM85_REG_FAN(1):
1311 	case LM85_REG_FAN(2):
1312 	case LM85_REG_FAN(3):
1313 	case LM85_REG_FAN_MIN(0):
1314 	case LM85_REG_FAN_MIN(1):
1315 	case LM85_REG_FAN_MIN(2):
1316 	case LM85_REG_FAN_MIN(3):
1317 	case LM85_REG_ALARM1:	/* Read both bytes at once */
1318 		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1319 		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1320 		break;
1321 	default:	/* Read BYTE data */
1322 		res = i2c_smbus_read_byte_data(client, reg);
1323 		break;
1324 	}
1325 
1326 	return res;
1327 }
1328 
1329 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1330 {
1331 	switch (reg) {
1332 	case LM85_REG_FAN(0):  /* Write WORD data */
1333 	case LM85_REG_FAN(1):
1334 	case LM85_REG_FAN(2):
1335 	case LM85_REG_FAN(3):
1336 	case LM85_REG_FAN_MIN(0):
1337 	case LM85_REG_FAN_MIN(1):
1338 	case LM85_REG_FAN_MIN(2):
1339 	case LM85_REG_FAN_MIN(3):
1340 	/* NOTE: ALARM is read only, so not included here */
1341 		i2c_smbus_write_byte_data(client, reg, value & 0xff);
1342 		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1343 		break;
1344 	default:	/* Write BYTE data */
1345 		i2c_smbus_write_byte_data(client, reg, value);
1346 		break;
1347 	}
1348 }
1349 
1350 static struct lm85_data *lm85_update_device(struct device *dev)
1351 {
1352 	struct i2c_client *client = to_i2c_client(dev);
1353 	struct lm85_data *data = i2c_get_clientdata(client);
1354 	int i;
1355 
1356 	mutex_lock(&data->update_lock);
1357 
1358 	if (!data->valid ||
1359 	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1360 		/* Things that change quickly */
1361 		dev_dbg(&client->dev, "Reading sensor values\n");
1362 
1363 		/* Have to read extended bits first to "freeze" the
1364 		 * more significant bits that are read later.
1365 		 * There are 2 additional resolution bits per channel and we
1366 		 * have room for 4, so we shift them to the left.
1367 		 */
1368 		if (data->type == adm1027 || data->type == adt7463) {
1369 			int ext1 = lm85_read_value(client,
1370 						   ADM1027_REG_EXTEND_ADC1);
1371 			int ext2 =  lm85_read_value(client,
1372 						    ADM1027_REG_EXTEND_ADC2);
1373 			int val = (ext1 << 8) + ext2;
1374 
1375 			for (i = 0; i <= 4; i++)
1376 				data->in_ext[i] =
1377 					((val >> (i * 2)) & 0x03) << 2;
1378 
1379 			for (i = 0; i <= 2; i++)
1380 				data->temp_ext[i] =
1381 					(val >> ((i + 4) * 2)) & 0x0c;
1382 		}
1383 
1384 		data->vid = lm85_read_value(client, LM85_REG_VID);
1385 
1386 		for (i = 0; i <= 3; ++i) {
1387 			data->in[i] =
1388 			    lm85_read_value(client, LM85_REG_IN(i));
1389 			data->fan[i] =
1390 			    lm85_read_value(client, LM85_REG_FAN(i));
1391 		}
1392 
1393 		if (!(data->type == adt7463 && (data->vid & 0x80))) {
1394 			data->in[4] = lm85_read_value(client,
1395 				      LM85_REG_IN(4));
1396 		}
1397 
1398 		for (i = 0; i <= 2; ++i) {
1399 			data->temp[i] =
1400 			    lm85_read_value(client, LM85_REG_TEMP(i));
1401 			data->pwm[i] =
1402 			    lm85_read_value(client, LM85_REG_PWM(i));
1403 		}
1404 
1405 		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1406 
1407 		if (data->type == emc6d100) {
1408 			/* Three more voltage sensors */
1409 			for (i = 5; i <= 7; ++i) {
1410 				data->in[i] = lm85_read_value(client,
1411 							EMC6D100_REG_IN(i));
1412 			}
1413 			/* More alarm bits */
1414 			data->alarms |= lm85_read_value(client,
1415 						EMC6D100_REG_ALARM3) << 16;
1416 		} else if (data->type == emc6d102) {
1417 			/* Have to read LSB bits after the MSB ones because
1418 			   the reading of the MSB bits has frozen the
1419 			   LSBs (backward from the ADM1027).
1420 			 */
1421 			int ext1 = lm85_read_value(client,
1422 						   EMC6D102_REG_EXTEND_ADC1);
1423 			int ext2 = lm85_read_value(client,
1424 						   EMC6D102_REG_EXTEND_ADC2);
1425 			int ext3 = lm85_read_value(client,
1426 						   EMC6D102_REG_EXTEND_ADC3);
1427 			int ext4 = lm85_read_value(client,
1428 						   EMC6D102_REG_EXTEND_ADC4);
1429 			data->in_ext[0] = ext3 & 0x0f;
1430 			data->in_ext[1] = ext4 & 0x0f;
1431 			data->in_ext[2] = ext4 >> 4;
1432 			data->in_ext[3] = ext3 >> 4;
1433 			data->in_ext[4] = ext2 >> 4;
1434 
1435 			data->temp_ext[0] = ext1 & 0x0f;
1436 			data->temp_ext[1] = ext2 & 0x0f;
1437 			data->temp_ext[2] = ext1 >> 4;
1438 		}
1439 
1440 		data->last_reading = jiffies;
1441 	}  /* last_reading */
1442 
1443 	if (!data->valid ||
1444 	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1445 		/* Things that don't change often */
1446 		dev_dbg(&client->dev, "Reading config values\n");
1447 
1448 		for (i = 0; i <= 3; ++i) {
1449 			data->in_min[i] =
1450 			    lm85_read_value(client, LM85_REG_IN_MIN(i));
1451 			data->in_max[i] =
1452 			    lm85_read_value(client, LM85_REG_IN_MAX(i));
1453 			data->fan_min[i] =
1454 			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
1455 		}
1456 
1457 		if (!(data->type == adt7463 && (data->vid & 0x80))) {
1458 			data->in_min[4] = lm85_read_value(client,
1459 					  LM85_REG_IN_MIN(4));
1460 			data->in_max[4] = lm85_read_value(client,
1461 					  LM85_REG_IN_MAX(4));
1462 		}
1463 
1464 		if (data->type == emc6d100) {
1465 			for (i = 5; i <= 7; ++i) {
1466 				data->in_min[i] = lm85_read_value(client,
1467 						EMC6D100_REG_IN_MIN(i));
1468 				data->in_max[i] = lm85_read_value(client,
1469 						EMC6D100_REG_IN_MAX(i));
1470 			}
1471 		}
1472 
1473 		for (i = 0; i <= 2; ++i) {
1474 			int val;
1475 
1476 			data->temp_min[i] =
1477 			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1478 			data->temp_max[i] =
1479 			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1480 
1481 			data->autofan[i].config =
1482 			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1483 			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1484 			data->autofan[i].freq = val & 0x07;
1485 			data->zone[i].range = val >> 4;
1486 			data->autofan[i].min_pwm =
1487 			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1488 			data->zone[i].limit =
1489 			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1490 			data->zone[i].critical =
1491 			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1492 		}
1493 
1494 		i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1495 		data->autofan[0].min_off = (i & 0x20) != 0;
1496 		data->autofan[1].min_off = (i & 0x40) != 0;
1497 		data->autofan[2].min_off = (i & 0x80) != 0;
1498 
1499 		i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1500 		data->zone[0].hyst = i >> 4;
1501 		data->zone[1].hyst = i & 0x0f;
1502 
1503 		i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1504 		data->zone[2].hyst = i >> 4;
1505 
1506 		data->last_config = jiffies;
1507 	}  /* last_config */
1508 
1509 	data->valid = 1;
1510 
1511 	mutex_unlock(&data->update_lock);
1512 
1513 	return data;
1514 }
1515 
1516 
1517 static int __init sm_lm85_init(void)
1518 {
1519 	return i2c_add_driver(&lm85_driver);
1520 }
1521 
1522 static void __exit sm_lm85_exit(void)
1523 {
1524 	i2c_del_driver(&lm85_driver);
1525 }
1526 
1527 MODULE_LICENSE("GPL");
1528 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1529 	"Margit Schubert-While <margitsw@t-online.de>, "
1530 	"Justin Thiessen <jthiessen@penguincomputing.com>");
1531 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1532 
1533 module_init(sm_lm85_init);
1534 module_exit(sm_lm85_exit);
1535