xref: /openbmc/linux/drivers/hwmon/lm85.c (revision 20b497ab)
1 /*
2  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	    monitoring
4  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5  * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
6  * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
7  * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
8  * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
9  *
10  * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/jiffies.h>
32 #include <linux/i2c.h>
33 #include <linux/hwmon.h>
34 #include <linux/hwmon-vid.h>
35 #include <linux/hwmon-sysfs.h>
36 #include <linux/err.h>
37 #include <linux/mutex.h>
38 #include <linux/util_macros.h>
39 
40 /* Addresses to scan */
41 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
42 
43 enum chips {
44 	lm85, lm96000,
45 	adm1027, adt7463, adt7468,
46 	emc6d100, emc6d102, emc6d103, emc6d103s
47 };
48 
49 /* The LM85 registers */
50 
51 #define LM85_REG_IN(nr)			(0x20 + (nr))
52 #define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
53 #define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
54 
55 #define LM85_REG_TEMP(nr)		(0x25 + (nr))
56 #define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
57 #define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
58 
59 /* Fan speeds are LSB, MSB (2 bytes) */
60 #define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
61 #define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
62 
63 #define LM85_REG_PWM(nr)		(0x30 + (nr))
64 
65 #define LM85_REG_COMPANY		0x3e
66 #define LM85_REG_VERSTEP		0x3f
67 
68 #define ADT7468_REG_CFG5		0x7c
69 #define ADT7468_OFF64			(1 << 0)
70 #define ADT7468_HFPWM			(1 << 1)
71 #define IS_ADT7468_OFF64(data)		\
72 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
73 #define IS_ADT7468_HFPWM(data)		\
74 	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
75 
76 /* These are the recognized values for the above regs */
77 #define LM85_COMPANY_NATIONAL		0x01
78 #define LM85_COMPANY_ANALOG_DEV		0x41
79 #define LM85_COMPANY_SMSC		0x5c
80 #define LM85_VERSTEP_LM85C		0x60
81 #define LM85_VERSTEP_LM85B		0x62
82 #define LM85_VERSTEP_LM96000_1		0x68
83 #define LM85_VERSTEP_LM96000_2		0x69
84 #define LM85_VERSTEP_ADM1027		0x60
85 #define LM85_VERSTEP_ADT7463		0x62
86 #define LM85_VERSTEP_ADT7463C		0x6A
87 #define LM85_VERSTEP_ADT7468_1		0x71
88 #define LM85_VERSTEP_ADT7468_2		0x72
89 #define LM85_VERSTEP_EMC6D100_A0        0x60
90 #define LM85_VERSTEP_EMC6D100_A1        0x61
91 #define LM85_VERSTEP_EMC6D102		0x65
92 #define LM85_VERSTEP_EMC6D103_A0	0x68
93 #define LM85_VERSTEP_EMC6D103_A1	0x69
94 #define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
95 
96 #define LM85_REG_CONFIG			0x40
97 
98 #define LM85_REG_ALARM1			0x41
99 #define LM85_REG_ALARM2			0x42
100 
101 #define LM85_REG_VID			0x43
102 
103 /* Automated FAN control */
104 #define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
105 #define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
106 #define LM85_REG_AFAN_SPIKE1		0x62
107 #define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
108 #define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
109 #define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
110 #define LM85_REG_AFAN_HYST1		0x6d
111 #define LM85_REG_AFAN_HYST2		0x6e
112 
113 #define ADM1027_REG_EXTEND_ADC1		0x76
114 #define ADM1027_REG_EXTEND_ADC2		0x77
115 
116 #define EMC6D100_REG_ALARM3             0x7d
117 /* IN5, IN6 and IN7 */
118 #define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
119 #define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
120 #define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
121 #define EMC6D102_REG_EXTEND_ADC1	0x85
122 #define EMC6D102_REG_EXTEND_ADC2	0x86
123 #define EMC6D102_REG_EXTEND_ADC3	0x87
124 #define EMC6D102_REG_EXTEND_ADC4	0x88
125 
126 /*
127  * Conversions. Rounding and limit checking is only done on the TO_REG
128  * variants. Note that you should be a bit careful with which arguments
129  * these macros are called: arguments may be evaluated more than once.
130  */
131 
132 /* IN are scaled according to built-in resistors */
133 static const int lm85_scaling[] = {  /* .001 Volts */
134 	2500, 2250, 3300, 5000, 12000,
135 	3300, 1500, 1800 /*EMC6D100*/
136 };
137 #define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
138 
139 #define INS_TO_REG(n, val)	\
140 		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
141 		      lm85_scaling[n], 192)
142 
143 #define INSEXT_FROM_REG(n, val, ext)	\
144 		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
145 
146 #define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
147 
148 /* FAN speed is measured using 90kHz clock */
149 static inline u16 FAN_TO_REG(unsigned long val)
150 {
151 	if (!val)
152 		return 0xffff;
153 	return clamp_val(5400000 / val, 1, 0xfffe);
154 }
155 #define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
156 				 5400000 / (val))
157 
158 /* Temperature is reported in .001 degC increments */
159 #define TEMP_TO_REG(val)	\
160 		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
161 #define TEMPEXT_FROM_REG(val, ext)	\
162 		SCALE(((val) << 4) + (ext), 16, 1000)
163 #define TEMP_FROM_REG(val)	((val) * 1000)
164 
165 #define PWM_TO_REG(val)			clamp_val(val, 0, 255)
166 #define PWM_FROM_REG(val)		(val)
167 
168 
169 /*
170  * ZONEs have the following parameters:
171  *    Limit (low) temp,           1. degC
172  *    Hysteresis (below limit),   1. degC (0-15)
173  *    Range of speed control,     .1 degC (2-80)
174  *    Critical (high) temp,       1. degC
175  *
176  * FAN PWMs have the following parameters:
177  *    Reference Zone,                 1, 2, 3, etc.
178  *    Spinup time,                    .05 sec
179  *    PWM value at limit/low temp,    1 count
180  *    PWM Frequency,                  1. Hz
181  *    PWM is Min or OFF below limit,  flag
182  *    Invert PWM output,              flag
183  *
184  * Some chips filter the temp, others the fan.
185  *    Filter constant (or disabled)   .1 seconds
186  */
187 
188 /* These are the zone temperature range encodings in .001 degree C */
189 static const int lm85_range_map[] = {
190 	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
191 	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
192 };
193 
194 static int RANGE_TO_REG(long range)
195 {
196 	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
197 }
198 #define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
199 
200 /* These are the PWM frequency encodings */
201 static const int lm85_freq_map[] = { /* 1 Hz */
202 	10, 15, 23, 30, 38, 47, 61, 94
203 };
204 
205 static const int lm96000_freq_map[] = { /* 1 Hz */
206 	10, 15, 23, 30, 38, 47, 61, 94,
207 	22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
208 };
209 
210 static const int adm1027_freq_map[] = { /* 1 Hz */
211 	11, 15, 22, 29, 35, 44, 59, 88
212 };
213 
214 static int FREQ_TO_REG(const int *map,
215 		       unsigned int map_size, unsigned long freq)
216 {
217 	return find_closest(freq, map, map_size);
218 }
219 
220 static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
221 {
222 	return map[reg % map_size];
223 }
224 
225 /*
226  * Since we can't use strings, I'm abusing these numbers
227  *   to stand in for the following meanings:
228  *      1 -- PWM responds to Zone 1
229  *      2 -- PWM responds to Zone 2
230  *      3 -- PWM responds to Zone 3
231  *     23 -- PWM responds to the higher temp of Zone 2 or 3
232  *    123 -- PWM responds to highest of Zone 1, 2, or 3
233  *      0 -- PWM is always at 0% (ie, off)
234  *     -1 -- PWM is always at 100%
235  *     -2 -- PWM responds to manual control
236  */
237 
238 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
239 #define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
240 
241 static int ZONE_TO_REG(int zone)
242 {
243 	int i;
244 
245 	for (i = 0; i <= 7; ++i)
246 		if (zone == lm85_zone_map[i])
247 			break;
248 	if (i > 7)   /* Not found. */
249 		i = 3;  /* Always 100% */
250 	return i << 5;
251 }
252 
253 #define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
254 #define HYST_FROM_REG(val)	((val) * 1000)
255 
256 /*
257  * Chip sampling rates
258  *
259  * Some sensors are not updated more frequently than once per second
260  *    so it doesn't make sense to read them more often than that.
261  *    We cache the results and return the saved data if the driver
262  *    is called again before a second has elapsed.
263  *
264  * Also, there is significant configuration data for this chip
265  *    given the automatic PWM fan control that is possible.  There
266  *    are about 47 bytes of config data to only 22 bytes of actual
267  *    readings.  So, we keep the config data up to date in the cache
268  *    when it is written and only sample it once every 1 *minute*
269  */
270 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
271 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
272 
273 /*
274  * LM85 can automatically adjust fan speeds based on temperature
275  * This structure encapsulates an entire Zone config.  There are
276  * three zones (one for each temperature input) on the lm85
277  */
278 struct lm85_zone {
279 	s8 limit;	/* Low temp limit */
280 	u8 hyst;	/* Low limit hysteresis. (0-15) */
281 	u8 range;	/* Temp range, encoded */
282 	s8 critical;	/* "All fans ON" temp limit */
283 	u8 max_desired; /*
284 			 * Actual "max" temperature specified.  Preserved
285 			 * to prevent "drift" as other autofan control
286 			 * values change.
287 			 */
288 };
289 
290 struct lm85_autofan {
291 	u8 config;	/* Register value */
292 	u8 min_pwm;	/* Minimum PWM value, encoded */
293 	u8 min_off;	/* Min PWM or OFF below "limit", flag */
294 };
295 
296 /*
297  * For each registered chip, we need to keep some data in memory.
298  * The structure is dynamically allocated.
299  */
300 struct lm85_data {
301 	struct i2c_client *client;
302 	const struct attribute_group *groups[6];
303 	const int *freq_map;
304 	unsigned int freq_map_size;
305 
306 	enum chips type;
307 
308 	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
309 
310 	struct mutex update_lock;
311 	int valid;		/* !=0 if following fields are valid */
312 	unsigned long last_reading;	/* In jiffies */
313 	unsigned long last_config;	/* In jiffies */
314 
315 	u8 in[8];		/* Register value */
316 	u8 in_max[8];		/* Register value */
317 	u8 in_min[8];		/* Register value */
318 	s8 temp[3];		/* Register value */
319 	s8 temp_min[3];		/* Register value */
320 	s8 temp_max[3];		/* Register value */
321 	u16 fan[4];		/* Register value */
322 	u16 fan_min[4];		/* Register value */
323 	u8 pwm[3];		/* Register value */
324 	u8 pwm_freq[3];		/* Register encoding */
325 	u8 temp_ext[3];		/* Decoded values */
326 	u8 in_ext[8];		/* Decoded values */
327 	u8 vid;			/* Register value */
328 	u8 vrm;			/* VRM version */
329 	u32 alarms;		/* Register encoding, combined */
330 	u8 cfg5;		/* Config Register 5 on ADT7468 */
331 	struct lm85_autofan autofan[3];
332 	struct lm85_zone zone[3];
333 };
334 
335 static int lm85_read_value(struct i2c_client *client, u8 reg)
336 {
337 	int res;
338 
339 	/* What size location is it? */
340 	switch (reg) {
341 	case LM85_REG_FAN(0):  /* Read WORD data */
342 	case LM85_REG_FAN(1):
343 	case LM85_REG_FAN(2):
344 	case LM85_REG_FAN(3):
345 	case LM85_REG_FAN_MIN(0):
346 	case LM85_REG_FAN_MIN(1):
347 	case LM85_REG_FAN_MIN(2):
348 	case LM85_REG_FAN_MIN(3):
349 	case LM85_REG_ALARM1:	/* Read both bytes at once */
350 		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
351 		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
352 		break;
353 	default:	/* Read BYTE data */
354 		res = i2c_smbus_read_byte_data(client, reg);
355 		break;
356 	}
357 
358 	return res;
359 }
360 
361 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
362 {
363 	switch (reg) {
364 	case LM85_REG_FAN(0):  /* Write WORD data */
365 	case LM85_REG_FAN(1):
366 	case LM85_REG_FAN(2):
367 	case LM85_REG_FAN(3):
368 	case LM85_REG_FAN_MIN(0):
369 	case LM85_REG_FAN_MIN(1):
370 	case LM85_REG_FAN_MIN(2):
371 	case LM85_REG_FAN_MIN(3):
372 	/* NOTE: ALARM is read only, so not included here */
373 		i2c_smbus_write_byte_data(client, reg, value & 0xff);
374 		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
375 		break;
376 	default:	/* Write BYTE data */
377 		i2c_smbus_write_byte_data(client, reg, value);
378 		break;
379 	}
380 }
381 
382 static struct lm85_data *lm85_update_device(struct device *dev)
383 {
384 	struct lm85_data *data = dev_get_drvdata(dev);
385 	struct i2c_client *client = data->client;
386 	int i;
387 
388 	mutex_lock(&data->update_lock);
389 
390 	if (!data->valid ||
391 	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
392 		/* Things that change quickly */
393 		dev_dbg(&client->dev, "Reading sensor values\n");
394 
395 		/*
396 		 * Have to read extended bits first to "freeze" the
397 		 * more significant bits that are read later.
398 		 * There are 2 additional resolution bits per channel and we
399 		 * have room for 4, so we shift them to the left.
400 		 */
401 		if (data->type == adm1027 || data->type == adt7463 ||
402 		    data->type == adt7468) {
403 			int ext1 = lm85_read_value(client,
404 						   ADM1027_REG_EXTEND_ADC1);
405 			int ext2 =  lm85_read_value(client,
406 						    ADM1027_REG_EXTEND_ADC2);
407 			int val = (ext1 << 8) + ext2;
408 
409 			for (i = 0; i <= 4; i++)
410 				data->in_ext[i] =
411 					((val >> (i * 2)) & 0x03) << 2;
412 
413 			for (i = 0; i <= 2; i++)
414 				data->temp_ext[i] =
415 					(val >> ((i + 4) * 2)) & 0x0c;
416 		}
417 
418 		data->vid = lm85_read_value(client, LM85_REG_VID);
419 
420 		for (i = 0; i <= 3; ++i) {
421 			data->in[i] =
422 			    lm85_read_value(client, LM85_REG_IN(i));
423 			data->fan[i] =
424 			    lm85_read_value(client, LM85_REG_FAN(i));
425 		}
426 
427 		if (!data->has_vid5)
428 			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
429 
430 		if (data->type == adt7468)
431 			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
432 
433 		for (i = 0; i <= 2; ++i) {
434 			data->temp[i] =
435 			    lm85_read_value(client, LM85_REG_TEMP(i));
436 			data->pwm[i] =
437 			    lm85_read_value(client, LM85_REG_PWM(i));
438 
439 			if (IS_ADT7468_OFF64(data))
440 				data->temp[i] -= 64;
441 		}
442 
443 		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
444 
445 		if (data->type == emc6d100) {
446 			/* Three more voltage sensors */
447 			for (i = 5; i <= 7; ++i) {
448 				data->in[i] = lm85_read_value(client,
449 							EMC6D100_REG_IN(i));
450 			}
451 			/* More alarm bits */
452 			data->alarms |= lm85_read_value(client,
453 						EMC6D100_REG_ALARM3) << 16;
454 		} else if (data->type == emc6d102 || data->type == emc6d103 ||
455 			   data->type == emc6d103s) {
456 			/*
457 			 * Have to read LSB bits after the MSB ones because
458 			 * the reading of the MSB bits has frozen the
459 			 * LSBs (backward from the ADM1027).
460 			 */
461 			int ext1 = lm85_read_value(client,
462 						   EMC6D102_REG_EXTEND_ADC1);
463 			int ext2 = lm85_read_value(client,
464 						   EMC6D102_REG_EXTEND_ADC2);
465 			int ext3 = lm85_read_value(client,
466 						   EMC6D102_REG_EXTEND_ADC3);
467 			int ext4 = lm85_read_value(client,
468 						   EMC6D102_REG_EXTEND_ADC4);
469 			data->in_ext[0] = ext3 & 0x0f;
470 			data->in_ext[1] = ext4 & 0x0f;
471 			data->in_ext[2] = ext4 >> 4;
472 			data->in_ext[3] = ext3 >> 4;
473 			data->in_ext[4] = ext2 >> 4;
474 
475 			data->temp_ext[0] = ext1 & 0x0f;
476 			data->temp_ext[1] = ext2 & 0x0f;
477 			data->temp_ext[2] = ext1 >> 4;
478 		}
479 
480 		data->last_reading = jiffies;
481 	}  /* last_reading */
482 
483 	if (!data->valid ||
484 	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
485 		/* Things that don't change often */
486 		dev_dbg(&client->dev, "Reading config values\n");
487 
488 		for (i = 0; i <= 3; ++i) {
489 			data->in_min[i] =
490 			    lm85_read_value(client, LM85_REG_IN_MIN(i));
491 			data->in_max[i] =
492 			    lm85_read_value(client, LM85_REG_IN_MAX(i));
493 			data->fan_min[i] =
494 			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
495 		}
496 
497 		if (!data->has_vid5)  {
498 			data->in_min[4] = lm85_read_value(client,
499 					  LM85_REG_IN_MIN(4));
500 			data->in_max[4] = lm85_read_value(client,
501 					  LM85_REG_IN_MAX(4));
502 		}
503 
504 		if (data->type == emc6d100) {
505 			for (i = 5; i <= 7; ++i) {
506 				data->in_min[i] = lm85_read_value(client,
507 						EMC6D100_REG_IN_MIN(i));
508 				data->in_max[i] = lm85_read_value(client,
509 						EMC6D100_REG_IN_MAX(i));
510 			}
511 		}
512 
513 		for (i = 0; i <= 2; ++i) {
514 			int val;
515 
516 			data->temp_min[i] =
517 			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
518 			data->temp_max[i] =
519 			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
520 
521 			data->autofan[i].config =
522 			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
523 			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
524 			data->pwm_freq[i] = val % data->freq_map_size;
525 			data->zone[i].range = val >> 4;
526 			data->autofan[i].min_pwm =
527 			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
528 			data->zone[i].limit =
529 			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
530 			data->zone[i].critical =
531 			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
532 
533 			if (IS_ADT7468_OFF64(data)) {
534 				data->temp_min[i] -= 64;
535 				data->temp_max[i] -= 64;
536 				data->zone[i].limit -= 64;
537 				data->zone[i].critical -= 64;
538 			}
539 		}
540 
541 		if (data->type != emc6d103s) {
542 			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
543 			data->autofan[0].min_off = (i & 0x20) != 0;
544 			data->autofan[1].min_off = (i & 0x40) != 0;
545 			data->autofan[2].min_off = (i & 0x80) != 0;
546 
547 			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
548 			data->zone[0].hyst = i >> 4;
549 			data->zone[1].hyst = i & 0x0f;
550 
551 			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
552 			data->zone[2].hyst = i >> 4;
553 		}
554 
555 		data->last_config = jiffies;
556 	}  /* last_config */
557 
558 	data->valid = 1;
559 
560 	mutex_unlock(&data->update_lock);
561 
562 	return data;
563 }
564 
565 /* 4 Fans */
566 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
567 		char *buf)
568 {
569 	int nr = to_sensor_dev_attr(attr)->index;
570 	struct lm85_data *data = lm85_update_device(dev);
571 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
572 }
573 
574 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
575 		char *buf)
576 {
577 	int nr = to_sensor_dev_attr(attr)->index;
578 	struct lm85_data *data = lm85_update_device(dev);
579 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
580 }
581 
582 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
583 		const char *buf, size_t count)
584 {
585 	int nr = to_sensor_dev_attr(attr)->index;
586 	struct lm85_data *data = dev_get_drvdata(dev);
587 	struct i2c_client *client = data->client;
588 	unsigned long val;
589 	int err;
590 
591 	err = kstrtoul(buf, 10, &val);
592 	if (err)
593 		return err;
594 
595 	mutex_lock(&data->update_lock);
596 	data->fan_min[nr] = FAN_TO_REG(val);
597 	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
598 	mutex_unlock(&data->update_lock);
599 	return count;
600 }
601 
602 #define show_fan_offset(offset)						\
603 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
604 		show_fan, NULL, offset - 1);				\
605 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
606 		show_fan_min, set_fan_min, offset - 1)
607 
608 show_fan_offset(1);
609 show_fan_offset(2);
610 show_fan_offset(3);
611 show_fan_offset(4);
612 
613 /* vid, vrm, alarms */
614 
615 static ssize_t cpu0_vid_show(struct device *dev,
616 			     struct device_attribute *attr, char *buf)
617 {
618 	struct lm85_data *data = lm85_update_device(dev);
619 	int vid;
620 
621 	if (data->has_vid5) {
622 		/* 6-pin VID (VRM 10) */
623 		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
624 	} else {
625 		/* 5-pin VID (VRM 9) */
626 		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
627 	}
628 
629 	return sprintf(buf, "%d\n", vid);
630 }
631 
632 static DEVICE_ATTR_RO(cpu0_vid);
633 
634 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
635 			char *buf)
636 {
637 	struct lm85_data *data = dev_get_drvdata(dev);
638 	return sprintf(buf, "%ld\n", (long) data->vrm);
639 }
640 
641 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
642 			 const char *buf, size_t count)
643 {
644 	struct lm85_data *data = dev_get_drvdata(dev);
645 	unsigned long val;
646 	int err;
647 
648 	err = kstrtoul(buf, 10, &val);
649 	if (err)
650 		return err;
651 
652 	if (val > 255)
653 		return -EINVAL;
654 
655 	data->vrm = val;
656 	return count;
657 }
658 
659 static DEVICE_ATTR_RW(vrm);
660 
661 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
662 			   char *buf)
663 {
664 	struct lm85_data *data = lm85_update_device(dev);
665 	return sprintf(buf, "%u\n", data->alarms);
666 }
667 
668 static DEVICE_ATTR_RO(alarms);
669 
670 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
671 		char *buf)
672 {
673 	int nr = to_sensor_dev_attr(attr)->index;
674 	struct lm85_data *data = lm85_update_device(dev);
675 	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
676 }
677 
678 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
679 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
680 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
681 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
682 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
683 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
684 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
685 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
686 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
687 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
688 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
689 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
690 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
691 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
692 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
693 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
694 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
695 
696 /* pwm */
697 
698 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
699 		char *buf)
700 {
701 	int nr = to_sensor_dev_attr(attr)->index;
702 	struct lm85_data *data = lm85_update_device(dev);
703 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
704 }
705 
706 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
707 		const char *buf, size_t count)
708 {
709 	int nr = to_sensor_dev_attr(attr)->index;
710 	struct lm85_data *data = dev_get_drvdata(dev);
711 	struct i2c_client *client = data->client;
712 	unsigned long val;
713 	int err;
714 
715 	err = kstrtoul(buf, 10, &val);
716 	if (err)
717 		return err;
718 
719 	mutex_lock(&data->update_lock);
720 	data->pwm[nr] = PWM_TO_REG(val);
721 	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
722 	mutex_unlock(&data->update_lock);
723 	return count;
724 }
725 
726 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
727 		*attr, char *buf)
728 {
729 	int nr = to_sensor_dev_attr(attr)->index;
730 	struct lm85_data *data = lm85_update_device(dev);
731 	int pwm_zone, enable;
732 
733 	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
734 	switch (pwm_zone) {
735 	case -1:	/* PWM is always at 100% */
736 		enable = 0;
737 		break;
738 	case 0:		/* PWM is always at 0% */
739 	case -2:	/* PWM responds to manual control */
740 		enable = 1;
741 		break;
742 	default:	/* PWM in automatic mode */
743 		enable = 2;
744 	}
745 	return sprintf(buf, "%d\n", enable);
746 }
747 
748 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
749 		*attr, const char *buf, size_t count)
750 {
751 	int nr = to_sensor_dev_attr(attr)->index;
752 	struct lm85_data *data = dev_get_drvdata(dev);
753 	struct i2c_client *client = data->client;
754 	u8 config;
755 	unsigned long val;
756 	int err;
757 
758 	err = kstrtoul(buf, 10, &val);
759 	if (err)
760 		return err;
761 
762 	switch (val) {
763 	case 0:
764 		config = 3;
765 		break;
766 	case 1:
767 		config = 7;
768 		break;
769 	case 2:
770 		/*
771 		 * Here we have to choose arbitrarily one of the 5 possible
772 		 * configurations; I go for the safest
773 		 */
774 		config = 6;
775 		break;
776 	default:
777 		return -EINVAL;
778 	}
779 
780 	mutex_lock(&data->update_lock);
781 	data->autofan[nr].config = lm85_read_value(client,
782 		LM85_REG_AFAN_CONFIG(nr));
783 	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
784 		| (config << 5);
785 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
786 		data->autofan[nr].config);
787 	mutex_unlock(&data->update_lock);
788 	return count;
789 }
790 
791 static ssize_t show_pwm_freq(struct device *dev,
792 		struct device_attribute *attr, char *buf)
793 {
794 	int nr = to_sensor_dev_attr(attr)->index;
795 	struct lm85_data *data = lm85_update_device(dev);
796 	int freq;
797 
798 	if (IS_ADT7468_HFPWM(data))
799 		freq = 22500;
800 	else
801 		freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
802 				     data->pwm_freq[nr]);
803 
804 	return sprintf(buf, "%d\n", freq);
805 }
806 
807 static ssize_t set_pwm_freq(struct device *dev,
808 		struct device_attribute *attr, const char *buf, size_t count)
809 {
810 	int nr = to_sensor_dev_attr(attr)->index;
811 	struct lm85_data *data = dev_get_drvdata(dev);
812 	struct i2c_client *client = data->client;
813 	unsigned long val;
814 	int err;
815 
816 	err = kstrtoul(buf, 10, &val);
817 	if (err)
818 		return err;
819 
820 	mutex_lock(&data->update_lock);
821 	/*
822 	 * The ADT7468 has a special high-frequency PWM output mode,
823 	 * where all PWM outputs are driven by a 22.5 kHz clock.
824 	 * This might confuse the user, but there's not much we can do.
825 	 */
826 	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
827 		data->cfg5 &= ~ADT7468_HFPWM;
828 		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
829 	} else {					/* Low freq. mode */
830 		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
831 						 data->freq_map_size, val);
832 		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
833 				 (data->zone[nr].range << 4)
834 				 | data->pwm_freq[nr]);
835 		if (data->type == adt7468) {
836 			data->cfg5 |= ADT7468_HFPWM;
837 			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
838 		}
839 	}
840 	mutex_unlock(&data->update_lock);
841 	return count;
842 }
843 
844 #define show_pwm_reg(offset)						\
845 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
846 		show_pwm, set_pwm, offset - 1);				\
847 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
848 		show_pwm_enable, set_pwm_enable, offset - 1);		\
849 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
850 		show_pwm_freq, set_pwm_freq, offset - 1)
851 
852 show_pwm_reg(1);
853 show_pwm_reg(2);
854 show_pwm_reg(3);
855 
856 /* Voltages */
857 
858 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
859 		char *buf)
860 {
861 	int nr = to_sensor_dev_attr(attr)->index;
862 	struct lm85_data *data = lm85_update_device(dev);
863 	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
864 						    data->in_ext[nr]));
865 }
866 
867 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
868 		char *buf)
869 {
870 	int nr = to_sensor_dev_attr(attr)->index;
871 	struct lm85_data *data = lm85_update_device(dev);
872 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
873 }
874 
875 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
876 		const char *buf, size_t count)
877 {
878 	int nr = to_sensor_dev_attr(attr)->index;
879 	struct lm85_data *data = dev_get_drvdata(dev);
880 	struct i2c_client *client = data->client;
881 	long val;
882 	int err;
883 
884 	err = kstrtol(buf, 10, &val);
885 	if (err)
886 		return err;
887 
888 	mutex_lock(&data->update_lock);
889 	data->in_min[nr] = INS_TO_REG(nr, val);
890 	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
891 	mutex_unlock(&data->update_lock);
892 	return count;
893 }
894 
895 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
896 		char *buf)
897 {
898 	int nr = to_sensor_dev_attr(attr)->index;
899 	struct lm85_data *data = lm85_update_device(dev);
900 	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
901 }
902 
903 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
904 		const char *buf, size_t count)
905 {
906 	int nr = to_sensor_dev_attr(attr)->index;
907 	struct lm85_data *data = dev_get_drvdata(dev);
908 	struct i2c_client *client = data->client;
909 	long val;
910 	int err;
911 
912 	err = kstrtol(buf, 10, &val);
913 	if (err)
914 		return err;
915 
916 	mutex_lock(&data->update_lock);
917 	data->in_max[nr] = INS_TO_REG(nr, val);
918 	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
919 	mutex_unlock(&data->update_lock);
920 	return count;
921 }
922 
923 #define show_in_reg(offset)						\
924 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
925 		show_in, NULL, offset);					\
926 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
927 		show_in_min, set_in_min, offset);			\
928 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
929 		show_in_max, set_in_max, offset)
930 
931 show_in_reg(0);
932 show_in_reg(1);
933 show_in_reg(2);
934 show_in_reg(3);
935 show_in_reg(4);
936 show_in_reg(5);
937 show_in_reg(6);
938 show_in_reg(7);
939 
940 /* Temps */
941 
942 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
943 		char *buf)
944 {
945 	int nr = to_sensor_dev_attr(attr)->index;
946 	struct lm85_data *data = lm85_update_device(dev);
947 	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
948 						     data->temp_ext[nr]));
949 }
950 
951 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
952 		char *buf)
953 {
954 	int nr = to_sensor_dev_attr(attr)->index;
955 	struct lm85_data *data = lm85_update_device(dev);
956 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
957 }
958 
959 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
960 		const char *buf, size_t count)
961 {
962 	int nr = to_sensor_dev_attr(attr)->index;
963 	struct lm85_data *data = dev_get_drvdata(dev);
964 	struct i2c_client *client = data->client;
965 	long val;
966 	int err;
967 
968 	err = kstrtol(buf, 10, &val);
969 	if (err)
970 		return err;
971 
972 	if (IS_ADT7468_OFF64(data))
973 		val += 64;
974 
975 	mutex_lock(&data->update_lock);
976 	data->temp_min[nr] = TEMP_TO_REG(val);
977 	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
978 	mutex_unlock(&data->update_lock);
979 	return count;
980 }
981 
982 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
983 		char *buf)
984 {
985 	int nr = to_sensor_dev_attr(attr)->index;
986 	struct lm85_data *data = lm85_update_device(dev);
987 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
988 }
989 
990 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
991 		const char *buf, size_t count)
992 {
993 	int nr = to_sensor_dev_attr(attr)->index;
994 	struct lm85_data *data = dev_get_drvdata(dev);
995 	struct i2c_client *client = data->client;
996 	long val;
997 	int err;
998 
999 	err = kstrtol(buf, 10, &val);
1000 	if (err)
1001 		return err;
1002 
1003 	if (IS_ADT7468_OFF64(data))
1004 		val += 64;
1005 
1006 	mutex_lock(&data->update_lock);
1007 	data->temp_max[nr] = TEMP_TO_REG(val);
1008 	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1009 	mutex_unlock(&data->update_lock);
1010 	return count;
1011 }
1012 
1013 #define show_temp_reg(offset)						\
1014 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1015 		show_temp, NULL, offset - 1);				\
1016 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1017 		show_temp_min, set_temp_min, offset - 1);		\
1018 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1019 		show_temp_max, set_temp_max, offset - 1);
1020 
1021 show_temp_reg(1);
1022 show_temp_reg(2);
1023 show_temp_reg(3);
1024 
1025 
1026 /* Automatic PWM control */
1027 
1028 static ssize_t show_pwm_auto_channels(struct device *dev,
1029 		struct device_attribute *attr, char *buf)
1030 {
1031 	int nr = to_sensor_dev_attr(attr)->index;
1032 	struct lm85_data *data = lm85_update_device(dev);
1033 	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1034 }
1035 
1036 static ssize_t set_pwm_auto_channels(struct device *dev,
1037 		struct device_attribute *attr, const char *buf, size_t count)
1038 {
1039 	int nr = to_sensor_dev_attr(attr)->index;
1040 	struct lm85_data *data = dev_get_drvdata(dev);
1041 	struct i2c_client *client = data->client;
1042 	long val;
1043 	int err;
1044 
1045 	err = kstrtol(buf, 10, &val);
1046 	if (err)
1047 		return err;
1048 
1049 	mutex_lock(&data->update_lock);
1050 	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1051 		| ZONE_TO_REG(val);
1052 	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1053 		data->autofan[nr].config);
1054 	mutex_unlock(&data->update_lock);
1055 	return count;
1056 }
1057 
1058 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1059 		struct device_attribute *attr, char *buf)
1060 {
1061 	int nr = to_sensor_dev_attr(attr)->index;
1062 	struct lm85_data *data = lm85_update_device(dev);
1063 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1064 }
1065 
1066 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1067 		struct device_attribute *attr, const char *buf, size_t count)
1068 {
1069 	int nr = to_sensor_dev_attr(attr)->index;
1070 	struct lm85_data *data = dev_get_drvdata(dev);
1071 	struct i2c_client *client = data->client;
1072 	unsigned long val;
1073 	int err;
1074 
1075 	err = kstrtoul(buf, 10, &val);
1076 	if (err)
1077 		return err;
1078 
1079 	mutex_lock(&data->update_lock);
1080 	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1081 	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1082 		data->autofan[nr].min_pwm);
1083 	mutex_unlock(&data->update_lock);
1084 	return count;
1085 }
1086 
1087 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1088 		struct device_attribute *attr, char *buf)
1089 {
1090 	int nr = to_sensor_dev_attr(attr)->index;
1091 	struct lm85_data *data = lm85_update_device(dev);
1092 	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1093 }
1094 
1095 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1096 		struct device_attribute *attr, const char *buf, size_t count)
1097 {
1098 	int nr = to_sensor_dev_attr(attr)->index;
1099 	struct lm85_data *data = dev_get_drvdata(dev);
1100 	struct i2c_client *client = data->client;
1101 	u8 tmp;
1102 	long val;
1103 	int err;
1104 
1105 	err = kstrtol(buf, 10, &val);
1106 	if (err)
1107 		return err;
1108 
1109 	mutex_lock(&data->update_lock);
1110 	data->autofan[nr].min_off = val;
1111 	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1112 	tmp &= ~(0x20 << nr);
1113 	if (data->autofan[nr].min_off)
1114 		tmp |= 0x20 << nr;
1115 	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1116 	mutex_unlock(&data->update_lock);
1117 	return count;
1118 }
1119 
1120 #define pwm_auto(offset)						\
1121 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1122 		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1123 		set_pwm_auto_channels, offset - 1);			\
1124 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1125 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1126 		set_pwm_auto_pwm_min, offset - 1);			\
1127 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1128 		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1129 		set_pwm_auto_pwm_minctl, offset - 1)
1130 
1131 pwm_auto(1);
1132 pwm_auto(2);
1133 pwm_auto(3);
1134 
1135 /* Temperature settings for automatic PWM control */
1136 
1137 static ssize_t show_temp_auto_temp_off(struct device *dev,
1138 		struct device_attribute *attr, char *buf)
1139 {
1140 	int nr = to_sensor_dev_attr(attr)->index;
1141 	struct lm85_data *data = lm85_update_device(dev);
1142 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1143 		HYST_FROM_REG(data->zone[nr].hyst));
1144 }
1145 
1146 static ssize_t set_temp_auto_temp_off(struct device *dev,
1147 		struct device_attribute *attr, const char *buf, size_t count)
1148 {
1149 	int nr = to_sensor_dev_attr(attr)->index;
1150 	struct lm85_data *data = dev_get_drvdata(dev);
1151 	struct i2c_client *client = data->client;
1152 	int min;
1153 	long val;
1154 	int err;
1155 
1156 	err = kstrtol(buf, 10, &val);
1157 	if (err)
1158 		return err;
1159 
1160 	mutex_lock(&data->update_lock);
1161 	min = TEMP_FROM_REG(data->zone[nr].limit);
1162 	data->zone[nr].hyst = HYST_TO_REG(min - val);
1163 	if (nr == 0 || nr == 1) {
1164 		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1165 			(data->zone[0].hyst << 4)
1166 			| data->zone[1].hyst);
1167 	} else {
1168 		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1169 			(data->zone[2].hyst << 4));
1170 	}
1171 	mutex_unlock(&data->update_lock);
1172 	return count;
1173 }
1174 
1175 static ssize_t show_temp_auto_temp_min(struct device *dev,
1176 		struct device_attribute *attr, char *buf)
1177 {
1178 	int nr = to_sensor_dev_attr(attr)->index;
1179 	struct lm85_data *data = lm85_update_device(dev);
1180 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1181 }
1182 
1183 static ssize_t set_temp_auto_temp_min(struct device *dev,
1184 		struct device_attribute *attr, const char *buf, size_t count)
1185 {
1186 	int nr = to_sensor_dev_attr(attr)->index;
1187 	struct lm85_data *data = dev_get_drvdata(dev);
1188 	struct i2c_client *client = data->client;
1189 	long val;
1190 	int err;
1191 
1192 	err = kstrtol(buf, 10, &val);
1193 	if (err)
1194 		return err;
1195 
1196 	mutex_lock(&data->update_lock);
1197 	data->zone[nr].limit = TEMP_TO_REG(val);
1198 	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1199 		data->zone[nr].limit);
1200 
1201 /* Update temp_auto_max and temp_auto_range */
1202 	data->zone[nr].range = RANGE_TO_REG(
1203 		TEMP_FROM_REG(data->zone[nr].max_desired) -
1204 		TEMP_FROM_REG(data->zone[nr].limit));
1205 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1206 		((data->zone[nr].range & 0x0f) << 4)
1207 		| data->pwm_freq[nr]);
1208 
1209 	mutex_unlock(&data->update_lock);
1210 	return count;
1211 }
1212 
1213 static ssize_t show_temp_auto_temp_max(struct device *dev,
1214 		struct device_attribute *attr, char *buf)
1215 {
1216 	int nr = to_sensor_dev_attr(attr)->index;
1217 	struct lm85_data *data = lm85_update_device(dev);
1218 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1219 		RANGE_FROM_REG(data->zone[nr].range));
1220 }
1221 
1222 static ssize_t set_temp_auto_temp_max(struct device *dev,
1223 		struct device_attribute *attr, const char *buf, size_t count)
1224 {
1225 	int nr = to_sensor_dev_attr(attr)->index;
1226 	struct lm85_data *data = dev_get_drvdata(dev);
1227 	struct i2c_client *client = data->client;
1228 	int min;
1229 	long val;
1230 	int err;
1231 
1232 	err = kstrtol(buf, 10, &val);
1233 	if (err)
1234 		return err;
1235 
1236 	mutex_lock(&data->update_lock);
1237 	min = TEMP_FROM_REG(data->zone[nr].limit);
1238 	data->zone[nr].max_desired = TEMP_TO_REG(val);
1239 	data->zone[nr].range = RANGE_TO_REG(
1240 		val - min);
1241 	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1242 		((data->zone[nr].range & 0x0f) << 4)
1243 		| data->pwm_freq[nr]);
1244 	mutex_unlock(&data->update_lock);
1245 	return count;
1246 }
1247 
1248 static ssize_t show_temp_auto_temp_crit(struct device *dev,
1249 		struct device_attribute *attr, char *buf)
1250 {
1251 	int nr = to_sensor_dev_attr(attr)->index;
1252 	struct lm85_data *data = lm85_update_device(dev);
1253 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1254 }
1255 
1256 static ssize_t set_temp_auto_temp_crit(struct device *dev,
1257 		struct device_attribute *attr, const char *buf, size_t count)
1258 {
1259 	int nr = to_sensor_dev_attr(attr)->index;
1260 	struct lm85_data *data = dev_get_drvdata(dev);
1261 	struct i2c_client *client = data->client;
1262 	long val;
1263 	int err;
1264 
1265 	err = kstrtol(buf, 10, &val);
1266 	if (err)
1267 		return err;
1268 
1269 	mutex_lock(&data->update_lock);
1270 	data->zone[nr].critical = TEMP_TO_REG(val);
1271 	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272 		data->zone[nr].critical);
1273 	mutex_unlock(&data->update_lock);
1274 	return count;
1275 }
1276 
1277 #define temp_auto(offset)						\
1278 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1279 		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1280 		set_temp_auto_temp_off, offset - 1);			\
1281 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1282 		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1283 		set_temp_auto_temp_min, offset - 1);			\
1284 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1285 		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1286 		set_temp_auto_temp_max, offset - 1);			\
1287 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1288 		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1289 		set_temp_auto_temp_crit, offset - 1);
1290 
1291 temp_auto(1);
1292 temp_auto(2);
1293 temp_auto(3);
1294 
1295 static struct attribute *lm85_attributes[] = {
1296 	&sensor_dev_attr_fan1_input.dev_attr.attr,
1297 	&sensor_dev_attr_fan2_input.dev_attr.attr,
1298 	&sensor_dev_attr_fan3_input.dev_attr.attr,
1299 	&sensor_dev_attr_fan4_input.dev_attr.attr,
1300 	&sensor_dev_attr_fan1_min.dev_attr.attr,
1301 	&sensor_dev_attr_fan2_min.dev_attr.attr,
1302 	&sensor_dev_attr_fan3_min.dev_attr.attr,
1303 	&sensor_dev_attr_fan4_min.dev_attr.attr,
1304 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1305 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1306 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1307 	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1308 
1309 	&sensor_dev_attr_pwm1.dev_attr.attr,
1310 	&sensor_dev_attr_pwm2.dev_attr.attr,
1311 	&sensor_dev_attr_pwm3.dev_attr.attr,
1312 	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1313 	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1314 	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1315 	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1316 	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1317 	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1318 
1319 	&sensor_dev_attr_in0_input.dev_attr.attr,
1320 	&sensor_dev_attr_in1_input.dev_attr.attr,
1321 	&sensor_dev_attr_in2_input.dev_attr.attr,
1322 	&sensor_dev_attr_in3_input.dev_attr.attr,
1323 	&sensor_dev_attr_in0_min.dev_attr.attr,
1324 	&sensor_dev_attr_in1_min.dev_attr.attr,
1325 	&sensor_dev_attr_in2_min.dev_attr.attr,
1326 	&sensor_dev_attr_in3_min.dev_attr.attr,
1327 	&sensor_dev_attr_in0_max.dev_attr.attr,
1328 	&sensor_dev_attr_in1_max.dev_attr.attr,
1329 	&sensor_dev_attr_in2_max.dev_attr.attr,
1330 	&sensor_dev_attr_in3_max.dev_attr.attr,
1331 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1332 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1333 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1334 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1335 
1336 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1337 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1338 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1339 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1340 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1341 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1342 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1343 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1344 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1345 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1346 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1347 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1348 	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1349 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1350 
1351 	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1352 	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1353 	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1354 	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1355 	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1356 	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1357 
1358 	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1359 	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1360 	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1361 	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1362 	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1363 	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1364 	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1365 	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1366 	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1367 
1368 	&dev_attr_vrm.attr,
1369 	&dev_attr_cpu0_vid.attr,
1370 	&dev_attr_alarms.attr,
1371 	NULL
1372 };
1373 
1374 static const struct attribute_group lm85_group = {
1375 	.attrs = lm85_attributes,
1376 };
1377 
1378 static struct attribute *lm85_attributes_minctl[] = {
1379 	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1380 	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1381 	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1382 	NULL
1383 };
1384 
1385 static const struct attribute_group lm85_group_minctl = {
1386 	.attrs = lm85_attributes_minctl,
1387 };
1388 
1389 static struct attribute *lm85_attributes_temp_off[] = {
1390 	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1391 	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1392 	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1393 	NULL
1394 };
1395 
1396 static const struct attribute_group lm85_group_temp_off = {
1397 	.attrs = lm85_attributes_temp_off,
1398 };
1399 
1400 static struct attribute *lm85_attributes_in4[] = {
1401 	&sensor_dev_attr_in4_input.dev_attr.attr,
1402 	&sensor_dev_attr_in4_min.dev_attr.attr,
1403 	&sensor_dev_attr_in4_max.dev_attr.attr,
1404 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1405 	NULL
1406 };
1407 
1408 static const struct attribute_group lm85_group_in4 = {
1409 	.attrs = lm85_attributes_in4,
1410 };
1411 
1412 static struct attribute *lm85_attributes_in567[] = {
1413 	&sensor_dev_attr_in5_input.dev_attr.attr,
1414 	&sensor_dev_attr_in6_input.dev_attr.attr,
1415 	&sensor_dev_attr_in7_input.dev_attr.attr,
1416 	&sensor_dev_attr_in5_min.dev_attr.attr,
1417 	&sensor_dev_attr_in6_min.dev_attr.attr,
1418 	&sensor_dev_attr_in7_min.dev_attr.attr,
1419 	&sensor_dev_attr_in5_max.dev_attr.attr,
1420 	&sensor_dev_attr_in6_max.dev_attr.attr,
1421 	&sensor_dev_attr_in7_max.dev_attr.attr,
1422 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1423 	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1424 	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1425 	NULL
1426 };
1427 
1428 static const struct attribute_group lm85_group_in567 = {
1429 	.attrs = lm85_attributes_in567,
1430 };
1431 
1432 static void lm85_init_client(struct i2c_client *client)
1433 {
1434 	int value;
1435 
1436 	/* Start monitoring if needed */
1437 	value = lm85_read_value(client, LM85_REG_CONFIG);
1438 	if (!(value & 0x01)) {
1439 		dev_info(&client->dev, "Starting monitoring\n");
1440 		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1441 	}
1442 
1443 	/* Warn about unusual configuration bits */
1444 	if (value & 0x02)
1445 		dev_warn(&client->dev, "Device configuration is locked\n");
1446 	if (!(value & 0x04))
1447 		dev_warn(&client->dev, "Device is not ready\n");
1448 }
1449 
1450 static int lm85_is_fake(struct i2c_client *client)
1451 {
1452 	/*
1453 	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1454 	 * emulate the former except that it has no hardware monitoring function
1455 	 * so the readings are always 0.
1456 	 */
1457 	int i;
1458 	u8 in_temp, fan;
1459 
1460 	for (i = 0; i < 8; i++) {
1461 		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1462 		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1463 		if (in_temp != 0x00 || fan != 0xff)
1464 			return 0;
1465 	}
1466 
1467 	return 1;
1468 }
1469 
1470 /* Return 0 if detection is successful, -ENODEV otherwise */
1471 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1472 {
1473 	struct i2c_adapter *adapter = client->adapter;
1474 	int address = client->addr;
1475 	const char *type_name = NULL;
1476 	int company, verstep;
1477 
1478 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1479 		/* We need to be able to do byte I/O */
1480 		return -ENODEV;
1481 	}
1482 
1483 	/* Determine the chip type */
1484 	company = lm85_read_value(client, LM85_REG_COMPANY);
1485 	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1486 
1487 	dev_dbg(&adapter->dev,
1488 		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1489 		address, company, verstep);
1490 
1491 	if (company == LM85_COMPANY_NATIONAL) {
1492 		switch (verstep) {
1493 		case LM85_VERSTEP_LM85C:
1494 			type_name = "lm85c";
1495 			break;
1496 		case LM85_VERSTEP_LM85B:
1497 			type_name = "lm85b";
1498 			break;
1499 		case LM85_VERSTEP_LM96000_1:
1500 		case LM85_VERSTEP_LM96000_2:
1501 			/* Check for Winbond WPCD377I */
1502 			if (lm85_is_fake(client)) {
1503 				dev_dbg(&adapter->dev,
1504 					"Found Winbond WPCD377I, ignoring\n");
1505 				return -ENODEV;
1506 			}
1507 			type_name = "lm96000";
1508 			break;
1509 		}
1510 	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1511 		switch (verstep) {
1512 		case LM85_VERSTEP_ADM1027:
1513 			type_name = "adm1027";
1514 			break;
1515 		case LM85_VERSTEP_ADT7463:
1516 		case LM85_VERSTEP_ADT7463C:
1517 			type_name = "adt7463";
1518 			break;
1519 		case LM85_VERSTEP_ADT7468_1:
1520 		case LM85_VERSTEP_ADT7468_2:
1521 			type_name = "adt7468";
1522 			break;
1523 		}
1524 	} else if (company == LM85_COMPANY_SMSC) {
1525 		switch (verstep) {
1526 		case LM85_VERSTEP_EMC6D100_A0:
1527 		case LM85_VERSTEP_EMC6D100_A1:
1528 			/* Note: we can't tell a '100 from a '101 */
1529 			type_name = "emc6d100";
1530 			break;
1531 		case LM85_VERSTEP_EMC6D102:
1532 			type_name = "emc6d102";
1533 			break;
1534 		case LM85_VERSTEP_EMC6D103_A0:
1535 		case LM85_VERSTEP_EMC6D103_A1:
1536 			type_name = "emc6d103";
1537 			break;
1538 		case LM85_VERSTEP_EMC6D103S:
1539 			type_name = "emc6d103s";
1540 			break;
1541 		}
1542 	}
1543 
1544 	if (!type_name)
1545 		return -ENODEV;
1546 
1547 	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1548 
1549 	return 0;
1550 }
1551 
1552 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1553 {
1554 	struct device *dev = &client->dev;
1555 	struct device *hwmon_dev;
1556 	struct lm85_data *data;
1557 	int idx = 0;
1558 
1559 	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1560 	if (!data)
1561 		return -ENOMEM;
1562 
1563 	data->client = client;
1564 	if (client->dev.of_node)
1565 		data->type = (enum chips)of_device_get_match_data(&client->dev);
1566 	else
1567 		data->type = id->driver_data;
1568 	mutex_init(&data->update_lock);
1569 
1570 	/* Fill in the chip specific driver values */
1571 	switch (data->type) {
1572 	case adm1027:
1573 	case adt7463:
1574 	case adt7468:
1575 	case emc6d100:
1576 	case emc6d102:
1577 	case emc6d103:
1578 	case emc6d103s:
1579 		data->freq_map = adm1027_freq_map;
1580 		data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1581 		break;
1582 	case lm96000:
1583 		data->freq_map = lm96000_freq_map;
1584 		data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1585 		break;
1586 	default:
1587 		data->freq_map = lm85_freq_map;
1588 		data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1589 	}
1590 
1591 	/* Set the VRM version */
1592 	data->vrm = vid_which_vrm();
1593 
1594 	/* Initialize the LM85 chip */
1595 	lm85_init_client(client);
1596 
1597 	/* sysfs hooks */
1598 	data->groups[idx++] = &lm85_group;
1599 
1600 	/* minctl and temp_off exist on all chips except emc6d103s */
1601 	if (data->type != emc6d103s) {
1602 		data->groups[idx++] = &lm85_group_minctl;
1603 		data->groups[idx++] = &lm85_group_temp_off;
1604 	}
1605 
1606 	/*
1607 	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1608 	 * as a sixth digital VID input rather than an analog input.
1609 	 */
1610 	if (data->type == adt7463 || data->type == adt7468) {
1611 		u8 vid = lm85_read_value(client, LM85_REG_VID);
1612 		if (vid & 0x80)
1613 			data->has_vid5 = true;
1614 	}
1615 
1616 	if (!data->has_vid5)
1617 		data->groups[idx++] = &lm85_group_in4;
1618 
1619 	/* The EMC6D100 has 3 additional voltage inputs */
1620 	if (data->type == emc6d100)
1621 		data->groups[idx++] = &lm85_group_in567;
1622 
1623 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1624 							   data, data->groups);
1625 	return PTR_ERR_OR_ZERO(hwmon_dev);
1626 }
1627 
1628 static const struct i2c_device_id lm85_id[] = {
1629 	{ "adm1027", adm1027 },
1630 	{ "adt7463", adt7463 },
1631 	{ "adt7468", adt7468 },
1632 	{ "lm85", lm85 },
1633 	{ "lm85b", lm85 },
1634 	{ "lm85c", lm85 },
1635 	{ "lm96000", lm96000 },
1636 	{ "emc6d100", emc6d100 },
1637 	{ "emc6d101", emc6d100 },
1638 	{ "emc6d102", emc6d102 },
1639 	{ "emc6d103", emc6d103 },
1640 	{ "emc6d103s", emc6d103s },
1641 	{ }
1642 };
1643 MODULE_DEVICE_TABLE(i2c, lm85_id);
1644 
1645 static const struct of_device_id __maybe_unused lm85_of_match[] = {
1646 	{
1647 		.compatible = "adi,adm1027",
1648 		.data = (void *)adm1027
1649 	},
1650 	{
1651 		.compatible = "adi,adt7463",
1652 		.data = (void *)adt7463
1653 	},
1654 	{
1655 		.compatible = "adi,adt7468",
1656 		.data = (void *)adt7468
1657 	},
1658 	{
1659 		.compatible = "national,lm85",
1660 		.data = (void *)lm85
1661 	},
1662 	{
1663 		.compatible = "national,lm85b",
1664 		.data = (void *)lm85
1665 	},
1666 	{
1667 		.compatible = "national,lm85c",
1668 		.data = (void *)lm85
1669 	},
1670 	{
1671 		.compatible = "ti,lm96000",
1672 		.data = (void *)lm96000
1673 	},
1674 	{
1675 		.compatible = "smsc,emc6d100",
1676 		.data = (void *)emc6d100
1677 	},
1678 	{
1679 		.compatible = "smsc,emc6d101",
1680 		.data = (void *)emc6d100
1681 	},
1682 	{
1683 		.compatible = "smsc,emc6d102",
1684 		.data = (void *)emc6d102
1685 	},
1686 	{
1687 		.compatible = "smsc,emc6d103",
1688 		.data = (void *)emc6d103
1689 	},
1690 	{
1691 		.compatible = "smsc,emc6d103s",
1692 		.data = (void *)emc6d103s
1693 	},
1694 	{ },
1695 };
1696 MODULE_DEVICE_TABLE(of, lm85_of_match);
1697 
1698 static struct i2c_driver lm85_driver = {
1699 	.class		= I2C_CLASS_HWMON,
1700 	.driver = {
1701 		.name   = "lm85",
1702 		.of_match_table = of_match_ptr(lm85_of_match),
1703 	},
1704 	.probe		= lm85_probe,
1705 	.id_table	= lm85_id,
1706 	.detect		= lm85_detect,
1707 	.address_list	= normal_i2c,
1708 };
1709 
1710 module_i2c_driver(lm85_driver);
1711 
1712 MODULE_LICENSE("GPL");
1713 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1714 	"Margit Schubert-While <margitsw@t-online.de>, "
1715 	"Justin Thiessen <jthiessen@penguincomputing.com>");
1716 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1717