1 /* 2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> 6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de> 7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com> 8 * Copyright (C) 2007--2009 Jean Delvare <khali@linux-fr.org> 9 * 10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/slab.h> 30 #include <linux/jiffies.h> 31 #include <linux/i2c.h> 32 #include <linux/hwmon.h> 33 #include <linux/hwmon-vid.h> 34 #include <linux/hwmon-sysfs.h> 35 #include <linux/err.h> 36 #include <linux/mutex.h> 37 38 /* Addresses to scan */ 39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; 40 41 enum chips { 42 any_chip, lm85b, lm85c, 43 adm1027, adt7463, adt7468, 44 emc6d100, emc6d102, emc6d103, emc6d103s 45 }; 46 47 /* The LM85 registers */ 48 49 #define LM85_REG_IN(nr) (0x20 + (nr)) 50 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2) 51 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2) 52 53 #define LM85_REG_TEMP(nr) (0x25 + (nr)) 54 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2) 55 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2) 56 57 /* Fan speeds are LSB, MSB (2 bytes) */ 58 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2) 59 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2) 60 61 #define LM85_REG_PWM(nr) (0x30 + (nr)) 62 63 #define LM85_REG_COMPANY 0x3e 64 #define LM85_REG_VERSTEP 0x3f 65 66 #define ADT7468_REG_CFG5 0x7c 67 #define ADT7468_OFF64 (1 << 0) 68 #define ADT7468_HFPWM (1 << 1) 69 #define IS_ADT7468_OFF64(data) \ 70 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64)) 71 #define IS_ADT7468_HFPWM(data) \ 72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM)) 73 74 /* These are the recognized values for the above regs */ 75 #define LM85_COMPANY_NATIONAL 0x01 76 #define LM85_COMPANY_ANALOG_DEV 0x41 77 #define LM85_COMPANY_SMSC 0x5c 78 #define LM85_VERSTEP_VMASK 0xf0 79 #define LM85_VERSTEP_GENERIC 0x60 80 #define LM85_VERSTEP_GENERIC2 0x70 81 #define LM85_VERSTEP_LM85C 0x60 82 #define LM85_VERSTEP_LM85B 0x62 83 #define LM85_VERSTEP_LM96000_1 0x68 84 #define LM85_VERSTEP_LM96000_2 0x69 85 #define LM85_VERSTEP_ADM1027 0x60 86 #define LM85_VERSTEP_ADT7463 0x62 87 #define LM85_VERSTEP_ADT7463C 0x6A 88 #define LM85_VERSTEP_ADT7468_1 0x71 89 #define LM85_VERSTEP_ADT7468_2 0x72 90 #define LM85_VERSTEP_EMC6D100_A0 0x60 91 #define LM85_VERSTEP_EMC6D100_A1 0x61 92 #define LM85_VERSTEP_EMC6D102 0x65 93 #define LM85_VERSTEP_EMC6D103_A0 0x68 94 #define LM85_VERSTEP_EMC6D103_A1 0x69 95 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */ 96 97 #define LM85_REG_CONFIG 0x40 98 99 #define LM85_REG_ALARM1 0x41 100 #define LM85_REG_ALARM2 0x42 101 102 #define LM85_REG_VID 0x43 103 104 /* Automated FAN control */ 105 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr)) 106 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr)) 107 #define LM85_REG_AFAN_SPIKE1 0x62 108 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr)) 109 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr)) 110 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr)) 111 #define LM85_REG_AFAN_HYST1 0x6d 112 #define LM85_REG_AFAN_HYST2 0x6e 113 114 #define ADM1027_REG_EXTEND_ADC1 0x76 115 #define ADM1027_REG_EXTEND_ADC2 0x77 116 117 #define EMC6D100_REG_ALARM3 0x7d 118 /* IN5, IN6 and IN7 */ 119 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5)) 120 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2) 121 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2) 122 #define EMC6D102_REG_EXTEND_ADC1 0x85 123 #define EMC6D102_REG_EXTEND_ADC2 0x86 124 #define EMC6D102_REG_EXTEND_ADC3 0x87 125 #define EMC6D102_REG_EXTEND_ADC4 0x88 126 127 128 /* 129 * Conversions. Rounding and limit checking is only done on the TO_REG 130 * variants. Note that you should be a bit careful with which arguments 131 * these macros are called: arguments may be evaluated more than once. 132 */ 133 134 /* IN are scaled according to built-in resistors */ 135 static const int lm85_scaling[] = { /* .001 Volts */ 136 2500, 2250, 3300, 5000, 12000, 137 3300, 1500, 1800 /*EMC6D100*/ 138 }; 139 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from)) 140 141 #define INS_TO_REG(n, val) \ 142 clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255) 143 144 #define INSEXT_FROM_REG(n, val, ext) \ 145 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n]) 146 147 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n]) 148 149 /* FAN speed is measured using 90kHz clock */ 150 static inline u16 FAN_TO_REG(unsigned long val) 151 { 152 if (!val) 153 return 0xffff; 154 return clamp_val(5400000 / val, 1, 0xfffe); 155 } 156 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \ 157 5400000 / (val)) 158 159 /* Temperature is reported in .001 degC increments */ 160 #define TEMP_TO_REG(val) \ 161 clamp_val(SCALE(val, 1000, 1), -127, 127) 162 #define TEMPEXT_FROM_REG(val, ext) \ 163 SCALE(((val) << 4) + (ext), 16, 1000) 164 #define TEMP_FROM_REG(val) ((val) * 1000) 165 166 #define PWM_TO_REG(val) clamp_val(val, 0, 255) 167 #define PWM_FROM_REG(val) (val) 168 169 170 /* 171 * ZONEs have the following parameters: 172 * Limit (low) temp, 1. degC 173 * Hysteresis (below limit), 1. degC (0-15) 174 * Range of speed control, .1 degC (2-80) 175 * Critical (high) temp, 1. degC 176 * 177 * FAN PWMs have the following parameters: 178 * Reference Zone, 1, 2, 3, etc. 179 * Spinup time, .05 sec 180 * PWM value at limit/low temp, 1 count 181 * PWM Frequency, 1. Hz 182 * PWM is Min or OFF below limit, flag 183 * Invert PWM output, flag 184 * 185 * Some chips filter the temp, others the fan. 186 * Filter constant (or disabled) .1 seconds 187 */ 188 189 /* These are the zone temperature range encodings in .001 degree C */ 190 static const int lm85_range_map[] = { 191 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000, 192 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000 193 }; 194 195 static int RANGE_TO_REG(int range) 196 { 197 int i; 198 199 /* Find the closest match */ 200 for (i = 0; i < 15; ++i) { 201 if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2) 202 break; 203 } 204 205 return i; 206 } 207 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f] 208 209 /* These are the PWM frequency encodings */ 210 static const int lm85_freq_map[8] = { /* 1 Hz */ 211 10, 15, 23, 30, 38, 47, 61, 94 212 }; 213 static const int adm1027_freq_map[8] = { /* 1 Hz */ 214 11, 15, 22, 29, 35, 44, 59, 88 215 }; 216 217 static int FREQ_TO_REG(const int *map, int freq) 218 { 219 int i; 220 221 /* Find the closest match */ 222 for (i = 0; i < 7; ++i) 223 if (freq <= (map[i] + map[i + 1]) / 2) 224 break; 225 return i; 226 } 227 228 static int FREQ_FROM_REG(const int *map, u8 reg) 229 { 230 return map[reg & 0x07]; 231 } 232 233 /* 234 * Since we can't use strings, I'm abusing these numbers 235 * to stand in for the following meanings: 236 * 1 -- PWM responds to Zone 1 237 * 2 -- PWM responds to Zone 2 238 * 3 -- PWM responds to Zone 3 239 * 23 -- PWM responds to the higher temp of Zone 2 or 3 240 * 123 -- PWM responds to highest of Zone 1, 2, or 3 241 * 0 -- PWM is always at 0% (ie, off) 242 * -1 -- PWM is always at 100% 243 * -2 -- PWM responds to manual control 244 */ 245 246 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 }; 247 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5] 248 249 static int ZONE_TO_REG(int zone) 250 { 251 int i; 252 253 for (i = 0; i <= 7; ++i) 254 if (zone == lm85_zone_map[i]) 255 break; 256 if (i > 7) /* Not found. */ 257 i = 3; /* Always 100% */ 258 return i << 5; 259 } 260 261 #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15) 262 #define HYST_FROM_REG(val) ((val) * 1000) 263 264 /* 265 * Chip sampling rates 266 * 267 * Some sensors are not updated more frequently than once per second 268 * so it doesn't make sense to read them more often than that. 269 * We cache the results and return the saved data if the driver 270 * is called again before a second has elapsed. 271 * 272 * Also, there is significant configuration data for this chip 273 * given the automatic PWM fan control that is possible. There 274 * are about 47 bytes of config data to only 22 bytes of actual 275 * readings. So, we keep the config data up to date in the cache 276 * when it is written and only sample it once every 1 *minute* 277 */ 278 #define LM85_DATA_INTERVAL (HZ + HZ / 2) 279 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ) 280 281 /* 282 * LM85 can automatically adjust fan speeds based on temperature 283 * This structure encapsulates an entire Zone config. There are 284 * three zones (one for each temperature input) on the lm85 285 */ 286 struct lm85_zone { 287 s8 limit; /* Low temp limit */ 288 u8 hyst; /* Low limit hysteresis. (0-15) */ 289 u8 range; /* Temp range, encoded */ 290 s8 critical; /* "All fans ON" temp limit */ 291 u8 max_desired; /* 292 * Actual "max" temperature specified. Preserved 293 * to prevent "drift" as other autofan control 294 * values change. 295 */ 296 }; 297 298 struct lm85_autofan { 299 u8 config; /* Register value */ 300 u8 min_pwm; /* Minimum PWM value, encoded */ 301 u8 min_off; /* Min PWM or OFF below "limit", flag */ 302 }; 303 304 /* 305 * For each registered chip, we need to keep some data in memory. 306 * The structure is dynamically allocated. 307 */ 308 struct lm85_data { 309 struct device *hwmon_dev; 310 const int *freq_map; 311 enum chips type; 312 313 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */ 314 315 struct mutex update_lock; 316 int valid; /* !=0 if following fields are valid */ 317 unsigned long last_reading; /* In jiffies */ 318 unsigned long last_config; /* In jiffies */ 319 320 u8 in[8]; /* Register value */ 321 u8 in_max[8]; /* Register value */ 322 u8 in_min[8]; /* Register value */ 323 s8 temp[3]; /* Register value */ 324 s8 temp_min[3]; /* Register value */ 325 s8 temp_max[3]; /* Register value */ 326 u16 fan[4]; /* Register value */ 327 u16 fan_min[4]; /* Register value */ 328 u8 pwm[3]; /* Register value */ 329 u8 pwm_freq[3]; /* Register encoding */ 330 u8 temp_ext[3]; /* Decoded values */ 331 u8 in_ext[8]; /* Decoded values */ 332 u8 vid; /* Register value */ 333 u8 vrm; /* VRM version */ 334 u32 alarms; /* Register encoding, combined */ 335 u8 cfg5; /* Config Register 5 on ADT7468 */ 336 struct lm85_autofan autofan[3]; 337 struct lm85_zone zone[3]; 338 }; 339 340 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info); 341 static int lm85_probe(struct i2c_client *client, 342 const struct i2c_device_id *id); 343 static int lm85_remove(struct i2c_client *client); 344 345 static int lm85_read_value(struct i2c_client *client, u8 reg); 346 static void lm85_write_value(struct i2c_client *client, u8 reg, int value); 347 static struct lm85_data *lm85_update_device(struct device *dev); 348 349 350 static const struct i2c_device_id lm85_id[] = { 351 { "adm1027", adm1027 }, 352 { "adt7463", adt7463 }, 353 { "adt7468", adt7468 }, 354 { "lm85", any_chip }, 355 { "lm85b", lm85b }, 356 { "lm85c", lm85c }, 357 { "emc6d100", emc6d100 }, 358 { "emc6d101", emc6d100 }, 359 { "emc6d102", emc6d102 }, 360 { "emc6d103", emc6d103 }, 361 { "emc6d103s", emc6d103s }, 362 { } 363 }; 364 MODULE_DEVICE_TABLE(i2c, lm85_id); 365 366 static struct i2c_driver lm85_driver = { 367 .class = I2C_CLASS_HWMON, 368 .driver = { 369 .name = "lm85", 370 }, 371 .probe = lm85_probe, 372 .remove = lm85_remove, 373 .id_table = lm85_id, 374 .detect = lm85_detect, 375 .address_list = normal_i2c, 376 }; 377 378 379 /* 4 Fans */ 380 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 int nr = to_sensor_dev_attr(attr)->index; 384 struct lm85_data *data = lm85_update_device(dev); 385 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr])); 386 } 387 388 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 389 char *buf) 390 { 391 int nr = to_sensor_dev_attr(attr)->index; 392 struct lm85_data *data = lm85_update_device(dev); 393 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr])); 394 } 395 396 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 397 const char *buf, size_t count) 398 { 399 int nr = to_sensor_dev_attr(attr)->index; 400 struct i2c_client *client = to_i2c_client(dev); 401 struct lm85_data *data = i2c_get_clientdata(client); 402 unsigned long val; 403 int err; 404 405 err = kstrtoul(buf, 10, &val); 406 if (err) 407 return err; 408 409 mutex_lock(&data->update_lock); 410 data->fan_min[nr] = FAN_TO_REG(val); 411 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]); 412 mutex_unlock(&data->update_lock); 413 return count; 414 } 415 416 #define show_fan_offset(offset) \ 417 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 418 show_fan, NULL, offset - 1); \ 419 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 420 show_fan_min, set_fan_min, offset - 1) 421 422 show_fan_offset(1); 423 show_fan_offset(2); 424 show_fan_offset(3); 425 show_fan_offset(4); 426 427 /* vid, vrm, alarms */ 428 429 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, 430 char *buf) 431 { 432 struct lm85_data *data = lm85_update_device(dev); 433 int vid; 434 435 if (data->has_vid5) { 436 /* 6-pin VID (VRM 10) */ 437 vid = vid_from_reg(data->vid & 0x3f, data->vrm); 438 } else { 439 /* 5-pin VID (VRM 9) */ 440 vid = vid_from_reg(data->vid & 0x1f, data->vrm); 441 } 442 443 return sprintf(buf, "%d\n", vid); 444 } 445 446 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); 447 448 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, 449 char *buf) 450 { 451 struct lm85_data *data = dev_get_drvdata(dev); 452 return sprintf(buf, "%ld\n", (long) data->vrm); 453 } 454 455 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, 456 const char *buf, size_t count) 457 { 458 struct lm85_data *data = dev_get_drvdata(dev); 459 unsigned long val; 460 int err; 461 462 err = kstrtoul(buf, 10, &val); 463 if (err) 464 return err; 465 466 data->vrm = val; 467 return count; 468 } 469 470 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); 471 472 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute 473 *attr, char *buf) 474 { 475 struct lm85_data *data = lm85_update_device(dev); 476 return sprintf(buf, "%u\n", data->alarms); 477 } 478 479 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); 480 481 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 int nr = to_sensor_dev_attr(attr)->index; 485 struct lm85_data *data = lm85_update_device(dev); 486 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); 487 } 488 489 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 490 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 491 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 492 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 493 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 494 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18); 495 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16); 496 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17); 497 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 498 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14); 499 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 500 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6); 501 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15); 502 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); 503 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); 504 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12); 505 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13); 506 507 /* pwm */ 508 509 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, 510 char *buf) 511 { 512 int nr = to_sensor_dev_attr(attr)->index; 513 struct lm85_data *data = lm85_update_device(dev); 514 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); 515 } 516 517 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr, 518 const char *buf, size_t count) 519 { 520 int nr = to_sensor_dev_attr(attr)->index; 521 struct i2c_client *client = to_i2c_client(dev); 522 struct lm85_data *data = i2c_get_clientdata(client); 523 unsigned long val; 524 int err; 525 526 err = kstrtoul(buf, 10, &val); 527 if (err) 528 return err; 529 530 mutex_lock(&data->update_lock); 531 data->pwm[nr] = PWM_TO_REG(val); 532 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]); 533 mutex_unlock(&data->update_lock); 534 return count; 535 } 536 537 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute 538 *attr, char *buf) 539 { 540 int nr = to_sensor_dev_attr(attr)->index; 541 struct lm85_data *data = lm85_update_device(dev); 542 int pwm_zone, enable; 543 544 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config); 545 switch (pwm_zone) { 546 case -1: /* PWM is always at 100% */ 547 enable = 0; 548 break; 549 case 0: /* PWM is always at 0% */ 550 case -2: /* PWM responds to manual control */ 551 enable = 1; 552 break; 553 default: /* PWM in automatic mode */ 554 enable = 2; 555 } 556 return sprintf(buf, "%d\n", enable); 557 } 558 559 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute 560 *attr, const char *buf, size_t count) 561 { 562 int nr = to_sensor_dev_attr(attr)->index; 563 struct i2c_client *client = to_i2c_client(dev); 564 struct lm85_data *data = i2c_get_clientdata(client); 565 u8 config; 566 unsigned long val; 567 int err; 568 569 err = kstrtoul(buf, 10, &val); 570 if (err) 571 return err; 572 573 switch (val) { 574 case 0: 575 config = 3; 576 break; 577 case 1: 578 config = 7; 579 break; 580 case 2: 581 /* 582 * Here we have to choose arbitrarily one of the 5 possible 583 * configurations; I go for the safest 584 */ 585 config = 6; 586 break; 587 default: 588 return -EINVAL; 589 } 590 591 mutex_lock(&data->update_lock); 592 data->autofan[nr].config = lm85_read_value(client, 593 LM85_REG_AFAN_CONFIG(nr)); 594 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0) 595 | (config << 5); 596 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 597 data->autofan[nr].config); 598 mutex_unlock(&data->update_lock); 599 return count; 600 } 601 602 static ssize_t show_pwm_freq(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 int nr = to_sensor_dev_attr(attr)->index; 606 struct lm85_data *data = lm85_update_device(dev); 607 int freq; 608 609 if (IS_ADT7468_HFPWM(data)) 610 freq = 22500; 611 else 612 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]); 613 614 return sprintf(buf, "%d\n", freq); 615 } 616 617 static ssize_t set_pwm_freq(struct device *dev, 618 struct device_attribute *attr, const char *buf, size_t count) 619 { 620 int nr = to_sensor_dev_attr(attr)->index; 621 struct i2c_client *client = to_i2c_client(dev); 622 struct lm85_data *data = i2c_get_clientdata(client); 623 unsigned long val; 624 int err; 625 626 err = kstrtoul(buf, 10, &val); 627 if (err) 628 return err; 629 630 mutex_lock(&data->update_lock); 631 /* 632 * The ADT7468 has a special high-frequency PWM output mode, 633 * where all PWM outputs are driven by a 22.5 kHz clock. 634 * This might confuse the user, but there's not much we can do. 635 */ 636 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */ 637 data->cfg5 &= ~ADT7468_HFPWM; 638 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 639 } else { /* Low freq. mode */ 640 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val); 641 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 642 (data->zone[nr].range << 4) 643 | data->pwm_freq[nr]); 644 if (data->type == adt7468) { 645 data->cfg5 |= ADT7468_HFPWM; 646 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); 647 } 648 } 649 mutex_unlock(&data->update_lock); 650 return count; 651 } 652 653 #define show_pwm_reg(offset) \ 654 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \ 655 show_pwm, set_pwm, offset - 1); \ 656 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \ 657 show_pwm_enable, set_pwm_enable, offset - 1); \ 658 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \ 659 show_pwm_freq, set_pwm_freq, offset - 1) 660 661 show_pwm_reg(1); 662 show_pwm_reg(2); 663 show_pwm_reg(3); 664 665 /* Voltages */ 666 667 static ssize_t show_in(struct device *dev, struct device_attribute *attr, 668 char *buf) 669 { 670 int nr = to_sensor_dev_attr(attr)->index; 671 struct lm85_data *data = lm85_update_device(dev); 672 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr], 673 data->in_ext[nr])); 674 } 675 676 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, 677 char *buf) 678 { 679 int nr = to_sensor_dev_attr(attr)->index; 680 struct lm85_data *data = lm85_update_device(dev); 681 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr])); 682 } 683 684 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, 685 const char *buf, size_t count) 686 { 687 int nr = to_sensor_dev_attr(attr)->index; 688 struct i2c_client *client = to_i2c_client(dev); 689 struct lm85_data *data = i2c_get_clientdata(client); 690 long val; 691 int err; 692 693 err = kstrtol(buf, 10, &val); 694 if (err) 695 return err; 696 697 mutex_lock(&data->update_lock); 698 data->in_min[nr] = INS_TO_REG(nr, val); 699 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]); 700 mutex_unlock(&data->update_lock); 701 return count; 702 } 703 704 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, 705 char *buf) 706 { 707 int nr = to_sensor_dev_attr(attr)->index; 708 struct lm85_data *data = lm85_update_device(dev); 709 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr])); 710 } 711 712 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, 713 const char *buf, size_t count) 714 { 715 int nr = to_sensor_dev_attr(attr)->index; 716 struct i2c_client *client = to_i2c_client(dev); 717 struct lm85_data *data = i2c_get_clientdata(client); 718 long val; 719 int err; 720 721 err = kstrtol(buf, 10, &val); 722 if (err) 723 return err; 724 725 mutex_lock(&data->update_lock); 726 data->in_max[nr] = INS_TO_REG(nr, val); 727 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]); 728 mutex_unlock(&data->update_lock); 729 return count; 730 } 731 732 #define show_in_reg(offset) \ 733 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 734 show_in, NULL, offset); \ 735 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 736 show_in_min, set_in_min, offset); \ 737 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 738 show_in_max, set_in_max, offset) 739 740 show_in_reg(0); 741 show_in_reg(1); 742 show_in_reg(2); 743 show_in_reg(3); 744 show_in_reg(4); 745 show_in_reg(5); 746 show_in_reg(6); 747 show_in_reg(7); 748 749 /* Temps */ 750 751 static ssize_t show_temp(struct device *dev, struct device_attribute *attr, 752 char *buf) 753 { 754 int nr = to_sensor_dev_attr(attr)->index; 755 struct lm85_data *data = lm85_update_device(dev); 756 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr], 757 data->temp_ext[nr])); 758 } 759 760 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, 761 char *buf) 762 { 763 int nr = to_sensor_dev_attr(attr)->index; 764 struct lm85_data *data = lm85_update_device(dev); 765 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); 766 } 767 768 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, 769 const char *buf, size_t count) 770 { 771 int nr = to_sensor_dev_attr(attr)->index; 772 struct i2c_client *client = to_i2c_client(dev); 773 struct lm85_data *data = i2c_get_clientdata(client); 774 long val; 775 int err; 776 777 err = kstrtol(buf, 10, &val); 778 if (err) 779 return err; 780 781 if (IS_ADT7468_OFF64(data)) 782 val += 64; 783 784 mutex_lock(&data->update_lock); 785 data->temp_min[nr] = TEMP_TO_REG(val); 786 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]); 787 mutex_unlock(&data->update_lock); 788 return count; 789 } 790 791 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, 792 char *buf) 793 { 794 int nr = to_sensor_dev_attr(attr)->index; 795 struct lm85_data *data = lm85_update_device(dev); 796 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); 797 } 798 799 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, 800 const char *buf, size_t count) 801 { 802 int nr = to_sensor_dev_attr(attr)->index; 803 struct i2c_client *client = to_i2c_client(dev); 804 struct lm85_data *data = i2c_get_clientdata(client); 805 long val; 806 int err; 807 808 err = kstrtol(buf, 10, &val); 809 if (err) 810 return err; 811 812 if (IS_ADT7468_OFF64(data)) 813 val += 64; 814 815 mutex_lock(&data->update_lock); 816 data->temp_max[nr] = TEMP_TO_REG(val); 817 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]); 818 mutex_unlock(&data->update_lock); 819 return count; 820 } 821 822 #define show_temp_reg(offset) \ 823 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ 824 show_temp, NULL, offset - 1); \ 825 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \ 826 show_temp_min, set_temp_min, offset - 1); \ 827 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ 828 show_temp_max, set_temp_max, offset - 1); 829 830 show_temp_reg(1); 831 show_temp_reg(2); 832 show_temp_reg(3); 833 834 835 /* Automatic PWM control */ 836 837 static ssize_t show_pwm_auto_channels(struct device *dev, 838 struct device_attribute *attr, char *buf) 839 { 840 int nr = to_sensor_dev_attr(attr)->index; 841 struct lm85_data *data = lm85_update_device(dev); 842 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config)); 843 } 844 845 static ssize_t set_pwm_auto_channels(struct device *dev, 846 struct device_attribute *attr, const char *buf, size_t count) 847 { 848 int nr = to_sensor_dev_attr(attr)->index; 849 struct i2c_client *client = to_i2c_client(dev); 850 struct lm85_data *data = i2c_get_clientdata(client); 851 long val; 852 int err; 853 854 err = kstrtol(buf, 10, &val); 855 if (err) 856 return err; 857 858 mutex_lock(&data->update_lock); 859 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0)) 860 | ZONE_TO_REG(val); 861 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), 862 data->autofan[nr].config); 863 mutex_unlock(&data->update_lock); 864 return count; 865 } 866 867 static ssize_t show_pwm_auto_pwm_min(struct device *dev, 868 struct device_attribute *attr, char *buf) 869 { 870 int nr = to_sensor_dev_attr(attr)->index; 871 struct lm85_data *data = lm85_update_device(dev); 872 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm)); 873 } 874 875 static ssize_t set_pwm_auto_pwm_min(struct device *dev, 876 struct device_attribute *attr, const char *buf, size_t count) 877 { 878 int nr = to_sensor_dev_attr(attr)->index; 879 struct i2c_client *client = to_i2c_client(dev); 880 struct lm85_data *data = i2c_get_clientdata(client); 881 unsigned long val; 882 int err; 883 884 err = kstrtoul(buf, 10, &val); 885 if (err) 886 return err; 887 888 mutex_lock(&data->update_lock); 889 data->autofan[nr].min_pwm = PWM_TO_REG(val); 890 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr), 891 data->autofan[nr].min_pwm); 892 mutex_unlock(&data->update_lock); 893 return count; 894 } 895 896 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev, 897 struct device_attribute *attr, char *buf) 898 { 899 int nr = to_sensor_dev_attr(attr)->index; 900 struct lm85_data *data = lm85_update_device(dev); 901 return sprintf(buf, "%d\n", data->autofan[nr].min_off); 902 } 903 904 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev, 905 struct device_attribute *attr, const char *buf, size_t count) 906 { 907 int nr = to_sensor_dev_attr(attr)->index; 908 struct i2c_client *client = to_i2c_client(dev); 909 struct lm85_data *data = i2c_get_clientdata(client); 910 u8 tmp; 911 long val; 912 int err; 913 914 err = kstrtol(buf, 10, &val); 915 if (err) 916 return err; 917 918 mutex_lock(&data->update_lock); 919 data->autofan[nr].min_off = val; 920 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 921 tmp &= ~(0x20 << nr); 922 if (data->autofan[nr].min_off) 923 tmp |= 0x20 << nr; 924 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp); 925 mutex_unlock(&data->update_lock); 926 return count; 927 } 928 929 #define pwm_auto(offset) \ 930 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \ 931 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \ 932 set_pwm_auto_channels, offset - 1); \ 933 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \ 934 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \ 935 set_pwm_auto_pwm_min, offset - 1); \ 936 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \ 937 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \ 938 set_pwm_auto_pwm_minctl, offset - 1) 939 940 pwm_auto(1); 941 pwm_auto(2); 942 pwm_auto(3); 943 944 /* Temperature settings for automatic PWM control */ 945 946 static ssize_t show_temp_auto_temp_off(struct device *dev, 947 struct device_attribute *attr, char *buf) 948 { 949 int nr = to_sensor_dev_attr(attr)->index; 950 struct lm85_data *data = lm85_update_device(dev); 951 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) - 952 HYST_FROM_REG(data->zone[nr].hyst)); 953 } 954 955 static ssize_t set_temp_auto_temp_off(struct device *dev, 956 struct device_attribute *attr, const char *buf, size_t count) 957 { 958 int nr = to_sensor_dev_attr(attr)->index; 959 struct i2c_client *client = to_i2c_client(dev); 960 struct lm85_data *data = i2c_get_clientdata(client); 961 int min; 962 long val; 963 int err; 964 965 err = kstrtol(buf, 10, &val); 966 if (err) 967 return err; 968 969 mutex_lock(&data->update_lock); 970 min = TEMP_FROM_REG(data->zone[nr].limit); 971 data->zone[nr].hyst = HYST_TO_REG(min - val); 972 if (nr == 0 || nr == 1) { 973 lm85_write_value(client, LM85_REG_AFAN_HYST1, 974 (data->zone[0].hyst << 4) 975 | data->zone[1].hyst); 976 } else { 977 lm85_write_value(client, LM85_REG_AFAN_HYST2, 978 (data->zone[2].hyst << 4)); 979 } 980 mutex_unlock(&data->update_lock); 981 return count; 982 } 983 984 static ssize_t show_temp_auto_temp_min(struct device *dev, 985 struct device_attribute *attr, char *buf) 986 { 987 int nr = to_sensor_dev_attr(attr)->index; 988 struct lm85_data *data = lm85_update_device(dev); 989 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit)); 990 } 991 992 static ssize_t set_temp_auto_temp_min(struct device *dev, 993 struct device_attribute *attr, const char *buf, size_t count) 994 { 995 int nr = to_sensor_dev_attr(attr)->index; 996 struct i2c_client *client = to_i2c_client(dev); 997 struct lm85_data *data = i2c_get_clientdata(client); 998 long val; 999 int err; 1000 1001 err = kstrtol(buf, 10, &val); 1002 if (err) 1003 return err; 1004 1005 mutex_lock(&data->update_lock); 1006 data->zone[nr].limit = TEMP_TO_REG(val); 1007 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr), 1008 data->zone[nr].limit); 1009 1010 /* Update temp_auto_max and temp_auto_range */ 1011 data->zone[nr].range = RANGE_TO_REG( 1012 TEMP_FROM_REG(data->zone[nr].max_desired) - 1013 TEMP_FROM_REG(data->zone[nr].limit)); 1014 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 1015 ((data->zone[nr].range & 0x0f) << 4) 1016 | (data->pwm_freq[nr] & 0x07)); 1017 1018 mutex_unlock(&data->update_lock); 1019 return count; 1020 } 1021 1022 static ssize_t show_temp_auto_temp_max(struct device *dev, 1023 struct device_attribute *attr, char *buf) 1024 { 1025 int nr = to_sensor_dev_attr(attr)->index; 1026 struct lm85_data *data = lm85_update_device(dev); 1027 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) + 1028 RANGE_FROM_REG(data->zone[nr].range)); 1029 } 1030 1031 static ssize_t set_temp_auto_temp_max(struct device *dev, 1032 struct device_attribute *attr, const char *buf, size_t count) 1033 { 1034 int nr = to_sensor_dev_attr(attr)->index; 1035 struct i2c_client *client = to_i2c_client(dev); 1036 struct lm85_data *data = i2c_get_clientdata(client); 1037 int min; 1038 long val; 1039 int err; 1040 1041 err = kstrtol(buf, 10, &val); 1042 if (err) 1043 return err; 1044 1045 mutex_lock(&data->update_lock); 1046 min = TEMP_FROM_REG(data->zone[nr].limit); 1047 data->zone[nr].max_desired = TEMP_TO_REG(val); 1048 data->zone[nr].range = RANGE_TO_REG( 1049 val - min); 1050 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), 1051 ((data->zone[nr].range & 0x0f) << 4) 1052 | (data->pwm_freq[nr] & 0x07)); 1053 mutex_unlock(&data->update_lock); 1054 return count; 1055 } 1056 1057 static ssize_t show_temp_auto_temp_crit(struct device *dev, 1058 struct device_attribute *attr, char *buf) 1059 { 1060 int nr = to_sensor_dev_attr(attr)->index; 1061 struct lm85_data *data = lm85_update_device(dev); 1062 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical)); 1063 } 1064 1065 static ssize_t set_temp_auto_temp_crit(struct device *dev, 1066 struct device_attribute *attr, const char *buf, size_t count) 1067 { 1068 int nr = to_sensor_dev_attr(attr)->index; 1069 struct i2c_client *client = to_i2c_client(dev); 1070 struct lm85_data *data = i2c_get_clientdata(client); 1071 long val; 1072 int err; 1073 1074 err = kstrtol(buf, 10, &val); 1075 if (err) 1076 return err; 1077 1078 mutex_lock(&data->update_lock); 1079 data->zone[nr].critical = TEMP_TO_REG(val); 1080 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr), 1081 data->zone[nr].critical); 1082 mutex_unlock(&data->update_lock); 1083 return count; 1084 } 1085 1086 #define temp_auto(offset) \ 1087 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \ 1088 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \ 1089 set_temp_auto_temp_off, offset - 1); \ 1090 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \ 1091 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \ 1092 set_temp_auto_temp_min, offset - 1); \ 1093 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \ 1094 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \ 1095 set_temp_auto_temp_max, offset - 1); \ 1096 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \ 1097 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \ 1098 set_temp_auto_temp_crit, offset - 1); 1099 1100 temp_auto(1); 1101 temp_auto(2); 1102 temp_auto(3); 1103 1104 static struct attribute *lm85_attributes[] = { 1105 &sensor_dev_attr_fan1_input.dev_attr.attr, 1106 &sensor_dev_attr_fan2_input.dev_attr.attr, 1107 &sensor_dev_attr_fan3_input.dev_attr.attr, 1108 &sensor_dev_attr_fan4_input.dev_attr.attr, 1109 &sensor_dev_attr_fan1_min.dev_attr.attr, 1110 &sensor_dev_attr_fan2_min.dev_attr.attr, 1111 &sensor_dev_attr_fan3_min.dev_attr.attr, 1112 &sensor_dev_attr_fan4_min.dev_attr.attr, 1113 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 1114 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 1115 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 1116 &sensor_dev_attr_fan4_alarm.dev_attr.attr, 1117 1118 &sensor_dev_attr_pwm1.dev_attr.attr, 1119 &sensor_dev_attr_pwm2.dev_attr.attr, 1120 &sensor_dev_attr_pwm3.dev_attr.attr, 1121 &sensor_dev_attr_pwm1_enable.dev_attr.attr, 1122 &sensor_dev_attr_pwm2_enable.dev_attr.attr, 1123 &sensor_dev_attr_pwm3_enable.dev_attr.attr, 1124 &sensor_dev_attr_pwm1_freq.dev_attr.attr, 1125 &sensor_dev_attr_pwm2_freq.dev_attr.attr, 1126 &sensor_dev_attr_pwm3_freq.dev_attr.attr, 1127 1128 &sensor_dev_attr_in0_input.dev_attr.attr, 1129 &sensor_dev_attr_in1_input.dev_attr.attr, 1130 &sensor_dev_attr_in2_input.dev_attr.attr, 1131 &sensor_dev_attr_in3_input.dev_attr.attr, 1132 &sensor_dev_attr_in0_min.dev_attr.attr, 1133 &sensor_dev_attr_in1_min.dev_attr.attr, 1134 &sensor_dev_attr_in2_min.dev_attr.attr, 1135 &sensor_dev_attr_in3_min.dev_attr.attr, 1136 &sensor_dev_attr_in0_max.dev_attr.attr, 1137 &sensor_dev_attr_in1_max.dev_attr.attr, 1138 &sensor_dev_attr_in2_max.dev_attr.attr, 1139 &sensor_dev_attr_in3_max.dev_attr.attr, 1140 &sensor_dev_attr_in0_alarm.dev_attr.attr, 1141 &sensor_dev_attr_in1_alarm.dev_attr.attr, 1142 &sensor_dev_attr_in2_alarm.dev_attr.attr, 1143 &sensor_dev_attr_in3_alarm.dev_attr.attr, 1144 1145 &sensor_dev_attr_temp1_input.dev_attr.attr, 1146 &sensor_dev_attr_temp2_input.dev_attr.attr, 1147 &sensor_dev_attr_temp3_input.dev_attr.attr, 1148 &sensor_dev_attr_temp1_min.dev_attr.attr, 1149 &sensor_dev_attr_temp2_min.dev_attr.attr, 1150 &sensor_dev_attr_temp3_min.dev_attr.attr, 1151 &sensor_dev_attr_temp1_max.dev_attr.attr, 1152 &sensor_dev_attr_temp2_max.dev_attr.attr, 1153 &sensor_dev_attr_temp3_max.dev_attr.attr, 1154 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 1155 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 1156 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 1157 &sensor_dev_attr_temp1_fault.dev_attr.attr, 1158 &sensor_dev_attr_temp3_fault.dev_attr.attr, 1159 1160 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr, 1161 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr, 1162 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr, 1163 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr, 1164 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr, 1165 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr, 1166 1167 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr, 1168 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr, 1169 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr, 1170 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr, 1171 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr, 1172 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr, 1173 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr, 1174 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr, 1175 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr, 1176 1177 &dev_attr_vrm.attr, 1178 &dev_attr_cpu0_vid.attr, 1179 &dev_attr_alarms.attr, 1180 NULL 1181 }; 1182 1183 static const struct attribute_group lm85_group = { 1184 .attrs = lm85_attributes, 1185 }; 1186 1187 static struct attribute *lm85_attributes_minctl[] = { 1188 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr, 1189 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr, 1190 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr, 1191 NULL 1192 }; 1193 1194 static const struct attribute_group lm85_group_minctl = { 1195 .attrs = lm85_attributes_minctl, 1196 }; 1197 1198 static struct attribute *lm85_attributes_temp_off[] = { 1199 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr, 1200 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr, 1201 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr, 1202 NULL 1203 }; 1204 1205 static const struct attribute_group lm85_group_temp_off = { 1206 .attrs = lm85_attributes_temp_off, 1207 }; 1208 1209 static struct attribute *lm85_attributes_in4[] = { 1210 &sensor_dev_attr_in4_input.dev_attr.attr, 1211 &sensor_dev_attr_in4_min.dev_attr.attr, 1212 &sensor_dev_attr_in4_max.dev_attr.attr, 1213 &sensor_dev_attr_in4_alarm.dev_attr.attr, 1214 NULL 1215 }; 1216 1217 static const struct attribute_group lm85_group_in4 = { 1218 .attrs = lm85_attributes_in4, 1219 }; 1220 1221 static struct attribute *lm85_attributes_in567[] = { 1222 &sensor_dev_attr_in5_input.dev_attr.attr, 1223 &sensor_dev_attr_in6_input.dev_attr.attr, 1224 &sensor_dev_attr_in7_input.dev_attr.attr, 1225 &sensor_dev_attr_in5_min.dev_attr.attr, 1226 &sensor_dev_attr_in6_min.dev_attr.attr, 1227 &sensor_dev_attr_in7_min.dev_attr.attr, 1228 &sensor_dev_attr_in5_max.dev_attr.attr, 1229 &sensor_dev_attr_in6_max.dev_attr.attr, 1230 &sensor_dev_attr_in7_max.dev_attr.attr, 1231 &sensor_dev_attr_in5_alarm.dev_attr.attr, 1232 &sensor_dev_attr_in6_alarm.dev_attr.attr, 1233 &sensor_dev_attr_in7_alarm.dev_attr.attr, 1234 NULL 1235 }; 1236 1237 static const struct attribute_group lm85_group_in567 = { 1238 .attrs = lm85_attributes_in567, 1239 }; 1240 1241 static void lm85_init_client(struct i2c_client *client) 1242 { 1243 int value; 1244 1245 /* Start monitoring if needed */ 1246 value = lm85_read_value(client, LM85_REG_CONFIG); 1247 if (!(value & 0x01)) { 1248 dev_info(&client->dev, "Starting monitoring\n"); 1249 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01); 1250 } 1251 1252 /* Warn about unusual configuration bits */ 1253 if (value & 0x02) 1254 dev_warn(&client->dev, "Device configuration is locked\n"); 1255 if (!(value & 0x04)) 1256 dev_warn(&client->dev, "Device is not ready\n"); 1257 } 1258 1259 static int lm85_is_fake(struct i2c_client *client) 1260 { 1261 /* 1262 * Differenciate between real LM96000 and Winbond WPCD377I. The latter 1263 * emulate the former except that it has no hardware monitoring function 1264 * so the readings are always 0. 1265 */ 1266 int i; 1267 u8 in_temp, fan; 1268 1269 for (i = 0; i < 8; i++) { 1270 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i); 1271 fan = i2c_smbus_read_byte_data(client, 0x28 + i); 1272 if (in_temp != 0x00 || fan != 0xff) 1273 return 0; 1274 } 1275 1276 return 1; 1277 } 1278 1279 /* Return 0 if detection is successful, -ENODEV otherwise */ 1280 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info) 1281 { 1282 struct i2c_adapter *adapter = client->adapter; 1283 int address = client->addr; 1284 const char *type_name; 1285 int company, verstep; 1286 1287 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 1288 /* We need to be able to do byte I/O */ 1289 return -ENODEV; 1290 } 1291 1292 /* Determine the chip type */ 1293 company = lm85_read_value(client, LM85_REG_COMPANY); 1294 verstep = lm85_read_value(client, LM85_REG_VERSTEP); 1295 1296 dev_dbg(&adapter->dev, 1297 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n", 1298 address, company, verstep); 1299 1300 /* All supported chips have the version in common */ 1301 if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC && 1302 (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) { 1303 dev_dbg(&adapter->dev, 1304 "Autodetection failed: unsupported version\n"); 1305 return -ENODEV; 1306 } 1307 type_name = "lm85"; 1308 1309 /* Now, refine the detection */ 1310 if (company == LM85_COMPANY_NATIONAL) { 1311 switch (verstep) { 1312 case LM85_VERSTEP_LM85C: 1313 type_name = "lm85c"; 1314 break; 1315 case LM85_VERSTEP_LM85B: 1316 type_name = "lm85b"; 1317 break; 1318 case LM85_VERSTEP_LM96000_1: 1319 case LM85_VERSTEP_LM96000_2: 1320 /* Check for Winbond WPCD377I */ 1321 if (lm85_is_fake(client)) { 1322 dev_dbg(&adapter->dev, 1323 "Found Winbond WPCD377I, ignoring\n"); 1324 return -ENODEV; 1325 } 1326 break; 1327 } 1328 } else if (company == LM85_COMPANY_ANALOG_DEV) { 1329 switch (verstep) { 1330 case LM85_VERSTEP_ADM1027: 1331 type_name = "adm1027"; 1332 break; 1333 case LM85_VERSTEP_ADT7463: 1334 case LM85_VERSTEP_ADT7463C: 1335 type_name = "adt7463"; 1336 break; 1337 case LM85_VERSTEP_ADT7468_1: 1338 case LM85_VERSTEP_ADT7468_2: 1339 type_name = "adt7468"; 1340 break; 1341 } 1342 } else if (company == LM85_COMPANY_SMSC) { 1343 switch (verstep) { 1344 case LM85_VERSTEP_EMC6D100_A0: 1345 case LM85_VERSTEP_EMC6D100_A1: 1346 /* Note: we can't tell a '100 from a '101 */ 1347 type_name = "emc6d100"; 1348 break; 1349 case LM85_VERSTEP_EMC6D102: 1350 type_name = "emc6d102"; 1351 break; 1352 case LM85_VERSTEP_EMC6D103_A0: 1353 case LM85_VERSTEP_EMC6D103_A1: 1354 type_name = "emc6d103"; 1355 break; 1356 case LM85_VERSTEP_EMC6D103S: 1357 type_name = "emc6d103s"; 1358 break; 1359 } 1360 } else { 1361 dev_dbg(&adapter->dev, 1362 "Autodetection failed: unknown vendor\n"); 1363 return -ENODEV; 1364 } 1365 1366 strlcpy(info->type, type_name, I2C_NAME_SIZE); 1367 1368 return 0; 1369 } 1370 1371 static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data) 1372 { 1373 sysfs_remove_group(&client->dev.kobj, &lm85_group); 1374 if (data->type != emc6d103s) { 1375 sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl); 1376 sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off); 1377 } 1378 if (!data->has_vid5) 1379 sysfs_remove_group(&client->dev.kobj, &lm85_group_in4); 1380 if (data->type == emc6d100) 1381 sysfs_remove_group(&client->dev.kobj, &lm85_group_in567); 1382 } 1383 1384 static int lm85_probe(struct i2c_client *client, 1385 const struct i2c_device_id *id) 1386 { 1387 struct lm85_data *data; 1388 int err; 1389 1390 data = devm_kzalloc(&client->dev, sizeof(struct lm85_data), GFP_KERNEL); 1391 if (!data) 1392 return -ENOMEM; 1393 1394 i2c_set_clientdata(client, data); 1395 data->type = id->driver_data; 1396 mutex_init(&data->update_lock); 1397 1398 /* Fill in the chip specific driver values */ 1399 switch (data->type) { 1400 case adm1027: 1401 case adt7463: 1402 case adt7468: 1403 case emc6d100: 1404 case emc6d102: 1405 case emc6d103: 1406 case emc6d103s: 1407 data->freq_map = adm1027_freq_map; 1408 break; 1409 default: 1410 data->freq_map = lm85_freq_map; 1411 } 1412 1413 /* Set the VRM version */ 1414 data->vrm = vid_which_vrm(); 1415 1416 /* Initialize the LM85 chip */ 1417 lm85_init_client(client); 1418 1419 /* Register sysfs hooks */ 1420 err = sysfs_create_group(&client->dev.kobj, &lm85_group); 1421 if (err) 1422 return err; 1423 1424 /* minctl and temp_off exist on all chips except emc6d103s */ 1425 if (data->type != emc6d103s) { 1426 err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl); 1427 if (err) 1428 goto err_remove_files; 1429 err = sysfs_create_group(&client->dev.kobj, 1430 &lm85_group_temp_off); 1431 if (err) 1432 goto err_remove_files; 1433 } 1434 1435 /* 1436 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used 1437 * as a sixth digital VID input rather than an analog input. 1438 */ 1439 if (data->type == adt7463 || data->type == adt7468) { 1440 u8 vid = lm85_read_value(client, LM85_REG_VID); 1441 if (vid & 0x80) 1442 data->has_vid5 = true; 1443 } 1444 1445 if (!data->has_vid5) { 1446 err = sysfs_create_group(&client->dev.kobj, &lm85_group_in4); 1447 if (err) 1448 goto err_remove_files; 1449 } 1450 1451 /* The EMC6D100 has 3 additional voltage inputs */ 1452 if (data->type == emc6d100) { 1453 err = sysfs_create_group(&client->dev.kobj, &lm85_group_in567); 1454 if (err) 1455 goto err_remove_files; 1456 } 1457 1458 data->hwmon_dev = hwmon_device_register(&client->dev); 1459 if (IS_ERR(data->hwmon_dev)) { 1460 err = PTR_ERR(data->hwmon_dev); 1461 goto err_remove_files; 1462 } 1463 1464 return 0; 1465 1466 /* Error out and cleanup code */ 1467 err_remove_files: 1468 lm85_remove_files(client, data); 1469 return err; 1470 } 1471 1472 static int lm85_remove(struct i2c_client *client) 1473 { 1474 struct lm85_data *data = i2c_get_clientdata(client); 1475 hwmon_device_unregister(data->hwmon_dev); 1476 lm85_remove_files(client, data); 1477 return 0; 1478 } 1479 1480 1481 static int lm85_read_value(struct i2c_client *client, u8 reg) 1482 { 1483 int res; 1484 1485 /* What size location is it? */ 1486 switch (reg) { 1487 case LM85_REG_FAN(0): /* Read WORD data */ 1488 case LM85_REG_FAN(1): 1489 case LM85_REG_FAN(2): 1490 case LM85_REG_FAN(3): 1491 case LM85_REG_FAN_MIN(0): 1492 case LM85_REG_FAN_MIN(1): 1493 case LM85_REG_FAN_MIN(2): 1494 case LM85_REG_FAN_MIN(3): 1495 case LM85_REG_ALARM1: /* Read both bytes at once */ 1496 res = i2c_smbus_read_byte_data(client, reg) & 0xff; 1497 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8; 1498 break; 1499 default: /* Read BYTE data */ 1500 res = i2c_smbus_read_byte_data(client, reg); 1501 break; 1502 } 1503 1504 return res; 1505 } 1506 1507 static void lm85_write_value(struct i2c_client *client, u8 reg, int value) 1508 { 1509 switch (reg) { 1510 case LM85_REG_FAN(0): /* Write WORD data */ 1511 case LM85_REG_FAN(1): 1512 case LM85_REG_FAN(2): 1513 case LM85_REG_FAN(3): 1514 case LM85_REG_FAN_MIN(0): 1515 case LM85_REG_FAN_MIN(1): 1516 case LM85_REG_FAN_MIN(2): 1517 case LM85_REG_FAN_MIN(3): 1518 /* NOTE: ALARM is read only, so not included here */ 1519 i2c_smbus_write_byte_data(client, reg, value & 0xff); 1520 i2c_smbus_write_byte_data(client, reg + 1, value >> 8); 1521 break; 1522 default: /* Write BYTE data */ 1523 i2c_smbus_write_byte_data(client, reg, value); 1524 break; 1525 } 1526 } 1527 1528 static struct lm85_data *lm85_update_device(struct device *dev) 1529 { 1530 struct i2c_client *client = to_i2c_client(dev); 1531 struct lm85_data *data = i2c_get_clientdata(client); 1532 int i; 1533 1534 mutex_lock(&data->update_lock); 1535 1536 if (!data->valid || 1537 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) { 1538 /* Things that change quickly */ 1539 dev_dbg(&client->dev, "Reading sensor values\n"); 1540 1541 /* 1542 * Have to read extended bits first to "freeze" the 1543 * more significant bits that are read later. 1544 * There are 2 additional resolution bits per channel and we 1545 * have room for 4, so we shift them to the left. 1546 */ 1547 if (data->type == adm1027 || data->type == adt7463 || 1548 data->type == adt7468) { 1549 int ext1 = lm85_read_value(client, 1550 ADM1027_REG_EXTEND_ADC1); 1551 int ext2 = lm85_read_value(client, 1552 ADM1027_REG_EXTEND_ADC2); 1553 int val = (ext1 << 8) + ext2; 1554 1555 for (i = 0; i <= 4; i++) 1556 data->in_ext[i] = 1557 ((val >> (i * 2)) & 0x03) << 2; 1558 1559 for (i = 0; i <= 2; i++) 1560 data->temp_ext[i] = 1561 (val >> ((i + 4) * 2)) & 0x0c; 1562 } 1563 1564 data->vid = lm85_read_value(client, LM85_REG_VID); 1565 1566 for (i = 0; i <= 3; ++i) { 1567 data->in[i] = 1568 lm85_read_value(client, LM85_REG_IN(i)); 1569 data->fan[i] = 1570 lm85_read_value(client, LM85_REG_FAN(i)); 1571 } 1572 1573 if (!data->has_vid5) 1574 data->in[4] = lm85_read_value(client, LM85_REG_IN(4)); 1575 1576 if (data->type == adt7468) 1577 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5); 1578 1579 for (i = 0; i <= 2; ++i) { 1580 data->temp[i] = 1581 lm85_read_value(client, LM85_REG_TEMP(i)); 1582 data->pwm[i] = 1583 lm85_read_value(client, LM85_REG_PWM(i)); 1584 1585 if (IS_ADT7468_OFF64(data)) 1586 data->temp[i] -= 64; 1587 } 1588 1589 data->alarms = lm85_read_value(client, LM85_REG_ALARM1); 1590 1591 if (data->type == emc6d100) { 1592 /* Three more voltage sensors */ 1593 for (i = 5; i <= 7; ++i) { 1594 data->in[i] = lm85_read_value(client, 1595 EMC6D100_REG_IN(i)); 1596 } 1597 /* More alarm bits */ 1598 data->alarms |= lm85_read_value(client, 1599 EMC6D100_REG_ALARM3) << 16; 1600 } else if (data->type == emc6d102 || data->type == emc6d103 || 1601 data->type == emc6d103s) { 1602 /* 1603 * Have to read LSB bits after the MSB ones because 1604 * the reading of the MSB bits has frozen the 1605 * LSBs (backward from the ADM1027). 1606 */ 1607 int ext1 = lm85_read_value(client, 1608 EMC6D102_REG_EXTEND_ADC1); 1609 int ext2 = lm85_read_value(client, 1610 EMC6D102_REG_EXTEND_ADC2); 1611 int ext3 = lm85_read_value(client, 1612 EMC6D102_REG_EXTEND_ADC3); 1613 int ext4 = lm85_read_value(client, 1614 EMC6D102_REG_EXTEND_ADC4); 1615 data->in_ext[0] = ext3 & 0x0f; 1616 data->in_ext[1] = ext4 & 0x0f; 1617 data->in_ext[2] = ext4 >> 4; 1618 data->in_ext[3] = ext3 >> 4; 1619 data->in_ext[4] = ext2 >> 4; 1620 1621 data->temp_ext[0] = ext1 & 0x0f; 1622 data->temp_ext[1] = ext2 & 0x0f; 1623 data->temp_ext[2] = ext1 >> 4; 1624 } 1625 1626 data->last_reading = jiffies; 1627 } /* last_reading */ 1628 1629 if (!data->valid || 1630 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) { 1631 /* Things that don't change often */ 1632 dev_dbg(&client->dev, "Reading config values\n"); 1633 1634 for (i = 0; i <= 3; ++i) { 1635 data->in_min[i] = 1636 lm85_read_value(client, LM85_REG_IN_MIN(i)); 1637 data->in_max[i] = 1638 lm85_read_value(client, LM85_REG_IN_MAX(i)); 1639 data->fan_min[i] = 1640 lm85_read_value(client, LM85_REG_FAN_MIN(i)); 1641 } 1642 1643 if (!data->has_vid5) { 1644 data->in_min[4] = lm85_read_value(client, 1645 LM85_REG_IN_MIN(4)); 1646 data->in_max[4] = lm85_read_value(client, 1647 LM85_REG_IN_MAX(4)); 1648 } 1649 1650 if (data->type == emc6d100) { 1651 for (i = 5; i <= 7; ++i) { 1652 data->in_min[i] = lm85_read_value(client, 1653 EMC6D100_REG_IN_MIN(i)); 1654 data->in_max[i] = lm85_read_value(client, 1655 EMC6D100_REG_IN_MAX(i)); 1656 } 1657 } 1658 1659 for (i = 0; i <= 2; ++i) { 1660 int val; 1661 1662 data->temp_min[i] = 1663 lm85_read_value(client, LM85_REG_TEMP_MIN(i)); 1664 data->temp_max[i] = 1665 lm85_read_value(client, LM85_REG_TEMP_MAX(i)); 1666 1667 data->autofan[i].config = 1668 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i)); 1669 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i)); 1670 data->pwm_freq[i] = val & 0x07; 1671 data->zone[i].range = val >> 4; 1672 data->autofan[i].min_pwm = 1673 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i)); 1674 data->zone[i].limit = 1675 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i)); 1676 data->zone[i].critical = 1677 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i)); 1678 1679 if (IS_ADT7468_OFF64(data)) { 1680 data->temp_min[i] -= 64; 1681 data->temp_max[i] -= 64; 1682 data->zone[i].limit -= 64; 1683 data->zone[i].critical -= 64; 1684 } 1685 } 1686 1687 if (data->type != emc6d103s) { 1688 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); 1689 data->autofan[0].min_off = (i & 0x20) != 0; 1690 data->autofan[1].min_off = (i & 0x40) != 0; 1691 data->autofan[2].min_off = (i & 0x80) != 0; 1692 1693 i = lm85_read_value(client, LM85_REG_AFAN_HYST1); 1694 data->zone[0].hyst = i >> 4; 1695 data->zone[1].hyst = i & 0x0f; 1696 1697 i = lm85_read_value(client, LM85_REG_AFAN_HYST2); 1698 data->zone[2].hyst = i >> 4; 1699 } 1700 1701 data->last_config = jiffies; 1702 } /* last_config */ 1703 1704 data->valid = 1; 1705 1706 mutex_unlock(&data->update_lock); 1707 1708 return data; 1709 } 1710 1711 module_i2c_driver(lm85_driver); 1712 1713 MODULE_LICENSE("GPL"); 1714 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, " 1715 "Margit Schubert-While <margitsw@t-online.de>, " 1716 "Justin Thiessen <jthiessen@penguincomputing.com>"); 1717 MODULE_DESCRIPTION("LM85-B, LM85-C driver"); 1718