1 /* 2 * lm80.c - From lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 5 * and Philip Edelbrock <phil@netroedge.com> 6 * 7 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/jiffies.h> 28 #include <linux/i2c.h> 29 #include <linux/hwmon.h> 30 #include <linux/hwmon-sysfs.h> 31 #include <linux/err.h> 32 #include <linux/mutex.h> 33 34 /* Addresses to scan */ 35 static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 36 0x2e, 0x2f, I2C_CLIENT_END }; 37 38 /* Many LM80 constants specified below */ 39 40 /* The LM80 registers */ 41 #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2) 42 #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2) 43 #define LM80_REG_IN(nr) (0x20 + (nr)) 44 45 #define LM80_REG_FAN1 0x28 46 #define LM80_REG_FAN2 0x29 47 #define LM80_REG_FAN_MIN(nr) (0x3b + (nr)) 48 49 #define LM80_REG_TEMP 0x27 50 #define LM80_REG_TEMP_HOT_MAX 0x38 51 #define LM80_REG_TEMP_HOT_HYST 0x39 52 #define LM80_REG_TEMP_OS_MAX 0x3a 53 #define LM80_REG_TEMP_OS_HYST 0x3b 54 55 #define LM80_REG_CONFIG 0x00 56 #define LM80_REG_ALARM1 0x01 57 #define LM80_REG_ALARM2 0x02 58 #define LM80_REG_MASK1 0x03 59 #define LM80_REG_MASK2 0x04 60 #define LM80_REG_FANDIV 0x05 61 #define LM80_REG_RES 0x06 62 63 #define LM96080_REG_CONV_RATE 0x07 64 #define LM96080_REG_MAN_ID 0x3e 65 #define LM96080_REG_DEV_ID 0x3f 66 67 68 /* 69 * Conversions. Rounding and limit checking is only done on the TO_REG 70 * variants. Note that you should be a bit careful with which arguments 71 * these macros are called: arguments may be evaluated more than once. 72 * Fixing this is just not worth it. 73 */ 74 75 #define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255)) 76 #define IN_FROM_REG(val) ((val) * 10) 77 78 static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div) 79 { 80 if (rpm == 0) 81 return 255; 82 rpm = clamp_val(rpm, 1, 1000000); 83 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 84 } 85 86 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ 87 (val) == 255 ? 0 : 1350000/((div) * (val))) 88 89 #define TEMP_FROM_REG(reg) ((reg) * 125 / 32) 90 #define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \ 91 -128000, 127000), 1000) << 8) 92 93 #define DIV_FROM_REG(val) (1 << (val)) 94 95 enum temp_index { 96 t_input = 0, 97 t_hot_max, 98 t_hot_hyst, 99 t_os_max, 100 t_os_hyst, 101 t_num_temp 102 }; 103 104 static const u8 temp_regs[t_num_temp] = { 105 [t_input] = LM80_REG_TEMP, 106 [t_hot_max] = LM80_REG_TEMP_HOT_MAX, 107 [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST, 108 [t_os_max] = LM80_REG_TEMP_OS_MAX, 109 [t_os_hyst] = LM80_REG_TEMP_OS_HYST, 110 }; 111 112 enum in_index { 113 i_input = 0, 114 i_max, 115 i_min, 116 i_num_in 117 }; 118 119 enum fan_index { 120 f_input, 121 f_min, 122 f_num_fan 123 }; 124 125 /* 126 * Client data (each client gets its own) 127 */ 128 129 struct lm80_data { 130 struct i2c_client *client; 131 struct mutex update_lock; 132 char error; /* !=0 if error occurred during last update */ 133 char valid; /* !=0 if following fields are valid */ 134 unsigned long last_updated; /* In jiffies */ 135 136 u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */ 137 u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */ 138 u8 fan_div[2]; /* Register encoding, shifted right */ 139 s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */ 140 u16 alarms; /* Register encoding, combined */ 141 }; 142 143 static int lm80_read_value(struct i2c_client *client, u8 reg) 144 { 145 return i2c_smbus_read_byte_data(client, reg); 146 } 147 148 static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value) 149 { 150 return i2c_smbus_write_byte_data(client, reg, value); 151 } 152 153 /* Called when we have found a new LM80 and after read errors */ 154 static void lm80_init_client(struct i2c_client *client) 155 { 156 /* 157 * Reset all except Watchdog values and last conversion values 158 * This sets fan-divs to 2, among others. This makes most other 159 * initializations unnecessary 160 */ 161 lm80_write_value(client, LM80_REG_CONFIG, 0x80); 162 /* Set 11-bit temperature resolution */ 163 lm80_write_value(client, LM80_REG_RES, 0x08); 164 165 /* Start monitoring */ 166 lm80_write_value(client, LM80_REG_CONFIG, 0x01); 167 } 168 169 static struct lm80_data *lm80_update_device(struct device *dev) 170 { 171 struct lm80_data *data = dev_get_drvdata(dev); 172 struct i2c_client *client = data->client; 173 int i; 174 int rv; 175 int prev_rv; 176 struct lm80_data *ret = data; 177 178 mutex_lock(&data->update_lock); 179 180 if (data->error) 181 lm80_init_client(client); 182 183 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { 184 dev_dbg(dev, "Starting lm80 update\n"); 185 for (i = 0; i <= 6; i++) { 186 rv = lm80_read_value(client, LM80_REG_IN(i)); 187 if (rv < 0) 188 goto abort; 189 data->in[i_input][i] = rv; 190 191 rv = lm80_read_value(client, LM80_REG_IN_MIN(i)); 192 if (rv < 0) 193 goto abort; 194 data->in[i_min][i] = rv; 195 196 rv = lm80_read_value(client, LM80_REG_IN_MAX(i)); 197 if (rv < 0) 198 goto abort; 199 data->in[i_max][i] = rv; 200 } 201 202 rv = lm80_read_value(client, LM80_REG_FAN1); 203 if (rv < 0) 204 goto abort; 205 data->fan[f_input][0] = rv; 206 207 rv = lm80_read_value(client, LM80_REG_FAN_MIN(1)); 208 if (rv < 0) 209 goto abort; 210 data->fan[f_min][0] = rv; 211 212 rv = lm80_read_value(client, LM80_REG_FAN2); 213 if (rv < 0) 214 goto abort; 215 data->fan[f_input][1] = rv; 216 217 rv = lm80_read_value(client, LM80_REG_FAN_MIN(2)); 218 if (rv < 0) 219 goto abort; 220 data->fan[f_min][1] = rv; 221 222 prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP); 223 if (rv < 0) 224 goto abort; 225 rv = lm80_read_value(client, LM80_REG_RES); 226 if (rv < 0) 227 goto abort; 228 data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0); 229 230 for (i = t_input + 1; i < t_num_temp; i++) { 231 rv = lm80_read_value(client, temp_regs[i]); 232 if (rv < 0) 233 goto abort; 234 data->temp[i] = rv << 8; 235 } 236 237 rv = lm80_read_value(client, LM80_REG_FANDIV); 238 if (rv < 0) 239 goto abort; 240 data->fan_div[0] = (rv >> 2) & 0x03; 241 data->fan_div[1] = (rv >> 4) & 0x03; 242 243 prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1); 244 if (rv < 0) 245 goto abort; 246 rv = lm80_read_value(client, LM80_REG_ALARM2); 247 if (rv < 0) 248 goto abort; 249 data->alarms = prev_rv + (rv << 8); 250 251 data->last_updated = jiffies; 252 data->valid = 1; 253 data->error = 0; 254 } 255 goto done; 256 257 abort: 258 ret = ERR_PTR(rv); 259 data->valid = 0; 260 data->error = 1; 261 262 done: 263 mutex_unlock(&data->update_lock); 264 265 return ret; 266 } 267 268 /* 269 * Sysfs stuff 270 */ 271 272 static ssize_t show_in(struct device *dev, struct device_attribute *attr, 273 char *buf) 274 { 275 struct lm80_data *data = lm80_update_device(dev); 276 int index = to_sensor_dev_attr_2(attr)->index; 277 int nr = to_sensor_dev_attr_2(attr)->nr; 278 279 if (IS_ERR(data)) 280 return PTR_ERR(data); 281 return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index])); 282 } 283 284 static ssize_t set_in(struct device *dev, struct device_attribute *attr, 285 const char *buf, size_t count) 286 { 287 struct lm80_data *data = dev_get_drvdata(dev); 288 struct i2c_client *client = data->client; 289 int index = to_sensor_dev_attr_2(attr)->index; 290 int nr = to_sensor_dev_attr_2(attr)->nr; 291 long val; 292 u8 reg; 293 int err = kstrtol(buf, 10, &val); 294 if (err < 0) 295 return err; 296 297 reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index); 298 299 mutex_lock(&data->update_lock); 300 data->in[nr][index] = IN_TO_REG(val); 301 lm80_write_value(client, reg, data->in[nr][index]); 302 mutex_unlock(&data->update_lock); 303 return count; 304 } 305 306 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 307 char *buf) 308 { 309 int index = to_sensor_dev_attr_2(attr)->index; 310 int nr = to_sensor_dev_attr_2(attr)->nr; 311 struct lm80_data *data = lm80_update_device(dev); 312 if (IS_ERR(data)) 313 return PTR_ERR(data); 314 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index], 315 DIV_FROM_REG(data->fan_div[index]))); 316 } 317 318 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 319 char *buf) 320 { 321 int nr = to_sensor_dev_attr(attr)->index; 322 struct lm80_data *data = lm80_update_device(dev); 323 if (IS_ERR(data)) 324 return PTR_ERR(data); 325 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 326 } 327 328 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 329 const char *buf, size_t count) 330 { 331 int index = to_sensor_dev_attr_2(attr)->index; 332 int nr = to_sensor_dev_attr_2(attr)->nr; 333 struct lm80_data *data = dev_get_drvdata(dev); 334 struct i2c_client *client = data->client; 335 unsigned long val; 336 int err = kstrtoul(buf, 10, &val); 337 if (err < 0) 338 return err; 339 340 mutex_lock(&data->update_lock); 341 data->fan[nr][index] = FAN_TO_REG(val, 342 DIV_FROM_REG(data->fan_div[index])); 343 lm80_write_value(client, LM80_REG_FAN_MIN(index + 1), 344 data->fan[nr][index]); 345 mutex_unlock(&data->update_lock); 346 return count; 347 } 348 349 /* 350 * Note: we save and restore the fan minimum here, because its value is 351 * determined in part by the fan divisor. This follows the principle of 352 * least surprise; the user doesn't expect the fan minimum to change just 353 * because the divisor changed. 354 */ 355 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, 356 const char *buf, size_t count) 357 { 358 int nr = to_sensor_dev_attr(attr)->index; 359 struct lm80_data *data = dev_get_drvdata(dev); 360 struct i2c_client *client = data->client; 361 unsigned long min, val; 362 u8 reg; 363 int rv; 364 365 rv = kstrtoul(buf, 10, &val); 366 if (rv < 0) 367 return rv; 368 369 /* Save fan_min */ 370 mutex_lock(&data->update_lock); 371 min = FAN_FROM_REG(data->fan[f_min][nr], 372 DIV_FROM_REG(data->fan_div[nr])); 373 374 switch (val) { 375 case 1: 376 data->fan_div[nr] = 0; 377 break; 378 case 2: 379 data->fan_div[nr] = 1; 380 break; 381 case 4: 382 data->fan_div[nr] = 2; 383 break; 384 case 8: 385 data->fan_div[nr] = 3; 386 break; 387 default: 388 dev_err(dev, 389 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", 390 val); 391 mutex_unlock(&data->update_lock); 392 return -EINVAL; 393 } 394 395 rv = lm80_read_value(client, LM80_REG_FANDIV); 396 if (rv < 0) { 397 mutex_unlock(&data->update_lock); 398 return rv; 399 } 400 reg = (rv & ~(3 << (2 * (nr + 1)))) 401 | (data->fan_div[nr] << (2 * (nr + 1))); 402 lm80_write_value(client, LM80_REG_FANDIV, reg); 403 404 /* Restore fan_min */ 405 data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 406 lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), 407 data->fan[f_min][nr]); 408 mutex_unlock(&data->update_lock); 409 410 return count; 411 } 412 413 static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, 414 char *buf) 415 { 416 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 417 struct lm80_data *data = lm80_update_device(dev); 418 if (IS_ERR(data)) 419 return PTR_ERR(data); 420 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index])); 421 } 422 423 static ssize_t set_temp(struct device *dev, struct device_attribute *devattr, 424 const char *buf, size_t count) 425 { 426 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 427 struct lm80_data *data = dev_get_drvdata(dev); 428 struct i2c_client *client = data->client; 429 int nr = attr->index; 430 long val; 431 int err = kstrtol(buf, 10, &val); 432 if (err < 0) 433 return err; 434 435 mutex_lock(&data->update_lock); 436 data->temp[nr] = TEMP_TO_REG(val); 437 lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8); 438 mutex_unlock(&data->update_lock); 439 return count; 440 } 441 442 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 443 char *buf) 444 { 445 struct lm80_data *data = lm80_update_device(dev); 446 if (IS_ERR(data)) 447 return PTR_ERR(data); 448 return sprintf(buf, "%u\n", data->alarms); 449 } 450 451 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 452 char *buf) 453 { 454 int bitnr = to_sensor_dev_attr(attr)->index; 455 struct lm80_data *data = lm80_update_device(dev); 456 if (IS_ERR(data)) 457 return PTR_ERR(data); 458 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 459 } 460 461 static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO, 462 show_in, set_in, i_min, 0); 463 static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO, 464 show_in, set_in, i_min, 1); 465 static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO, 466 show_in, set_in, i_min, 2); 467 static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO, 468 show_in, set_in, i_min, 3); 469 static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO, 470 show_in, set_in, i_min, 4); 471 static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO, 472 show_in, set_in, i_min, 5); 473 static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO, 474 show_in, set_in, i_min, 6); 475 static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO, 476 show_in, set_in, i_max, 0); 477 static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO, 478 show_in, set_in, i_max, 1); 479 static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO, 480 show_in, set_in, i_max, 2); 481 static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO, 482 show_in, set_in, i_max, 3); 483 static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO, 484 show_in, set_in, i_max, 4); 485 static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO, 486 show_in, set_in, i_max, 5); 487 static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO, 488 show_in, set_in, i_max, 6); 489 static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0); 490 static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1); 491 static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2); 492 static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3); 493 static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4); 494 static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5); 495 static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6); 496 static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO, 497 show_fan, set_fan_min, f_min, 0); 498 static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO, 499 show_fan, set_fan_min, f_min, 1); 500 static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0); 501 static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1); 502 static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, 503 show_fan_div, set_fan_div, 0); 504 static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, 505 show_fan_div, set_fan_div, 1); 506 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input); 507 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp, 508 set_temp, t_hot_max); 509 static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp, 510 set_temp, t_hot_hyst); 511 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp, 512 set_temp, t_os_max); 513 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp, 514 set_temp, t_os_hyst); 515 static DEVICE_ATTR_RO(alarms); 516 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 517 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 518 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 519 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 520 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4); 521 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5); 522 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6); 523 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); 524 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); 525 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8); 526 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13); 527 528 /* 529 * Real code 530 */ 531 532 static struct attribute *lm80_attrs[] = { 533 &sensor_dev_attr_in0_min.dev_attr.attr, 534 &sensor_dev_attr_in1_min.dev_attr.attr, 535 &sensor_dev_attr_in2_min.dev_attr.attr, 536 &sensor_dev_attr_in3_min.dev_attr.attr, 537 &sensor_dev_attr_in4_min.dev_attr.attr, 538 &sensor_dev_attr_in5_min.dev_attr.attr, 539 &sensor_dev_attr_in6_min.dev_attr.attr, 540 &sensor_dev_attr_in0_max.dev_attr.attr, 541 &sensor_dev_attr_in1_max.dev_attr.attr, 542 &sensor_dev_attr_in2_max.dev_attr.attr, 543 &sensor_dev_attr_in3_max.dev_attr.attr, 544 &sensor_dev_attr_in4_max.dev_attr.attr, 545 &sensor_dev_attr_in5_max.dev_attr.attr, 546 &sensor_dev_attr_in6_max.dev_attr.attr, 547 &sensor_dev_attr_in0_input.dev_attr.attr, 548 &sensor_dev_attr_in1_input.dev_attr.attr, 549 &sensor_dev_attr_in2_input.dev_attr.attr, 550 &sensor_dev_attr_in3_input.dev_attr.attr, 551 &sensor_dev_attr_in4_input.dev_attr.attr, 552 &sensor_dev_attr_in5_input.dev_attr.attr, 553 &sensor_dev_attr_in6_input.dev_attr.attr, 554 &sensor_dev_attr_fan1_min.dev_attr.attr, 555 &sensor_dev_attr_fan2_min.dev_attr.attr, 556 &sensor_dev_attr_fan1_input.dev_attr.attr, 557 &sensor_dev_attr_fan2_input.dev_attr.attr, 558 &sensor_dev_attr_fan1_div.dev_attr.attr, 559 &sensor_dev_attr_fan2_div.dev_attr.attr, 560 &sensor_dev_attr_temp1_input.dev_attr.attr, 561 &sensor_dev_attr_temp1_max.dev_attr.attr, 562 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 563 &sensor_dev_attr_temp1_crit.dev_attr.attr, 564 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, 565 &dev_attr_alarms.attr, 566 &sensor_dev_attr_in0_alarm.dev_attr.attr, 567 &sensor_dev_attr_in1_alarm.dev_attr.attr, 568 &sensor_dev_attr_in2_alarm.dev_attr.attr, 569 &sensor_dev_attr_in3_alarm.dev_attr.attr, 570 &sensor_dev_attr_in4_alarm.dev_attr.attr, 571 &sensor_dev_attr_in5_alarm.dev_attr.attr, 572 &sensor_dev_attr_in6_alarm.dev_attr.attr, 573 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 574 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 575 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, 576 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, 577 NULL 578 }; 579 ATTRIBUTE_GROUPS(lm80); 580 581 /* Return 0 if detection is successful, -ENODEV otherwise */ 582 static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info) 583 { 584 struct i2c_adapter *adapter = client->adapter; 585 int i, cur, man_id, dev_id; 586 const char *name = NULL; 587 588 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 589 return -ENODEV; 590 591 /* First check for unused bits, common to both chip types */ 592 if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0) 593 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80)) 594 return -ENODEV; 595 596 /* 597 * The LM96080 has manufacturer and stepping/die rev registers so we 598 * can just check that. The LM80 does not have such registers so we 599 * have to use a more expensive trick. 600 */ 601 man_id = lm80_read_value(client, LM96080_REG_MAN_ID); 602 dev_id = lm80_read_value(client, LM96080_REG_DEV_ID); 603 if (man_id == 0x01 && dev_id == 0x08) { 604 /* Check more unused bits for confirmation */ 605 if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe) 606 return -ENODEV; 607 608 name = "lm96080"; 609 } else { 610 /* Check 6-bit addressing */ 611 for (i = 0x2a; i <= 0x3d; i++) { 612 cur = i2c_smbus_read_byte_data(client, i); 613 if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur) 614 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur) 615 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur)) 616 return -ENODEV; 617 } 618 619 name = "lm80"; 620 } 621 622 strlcpy(info->type, name, I2C_NAME_SIZE); 623 624 return 0; 625 } 626 627 static int lm80_probe(struct i2c_client *client, 628 const struct i2c_device_id *id) 629 { 630 struct device *dev = &client->dev; 631 struct device *hwmon_dev; 632 struct lm80_data *data; 633 int rv; 634 635 data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL); 636 if (!data) 637 return -ENOMEM; 638 639 data->client = client; 640 mutex_init(&data->update_lock); 641 642 /* Initialize the LM80 chip */ 643 lm80_init_client(client); 644 645 /* A few vars need to be filled upon startup */ 646 rv = lm80_read_value(client, LM80_REG_FAN_MIN(1)); 647 if (rv < 0) 648 return rv; 649 data->fan[f_min][0] = rv; 650 rv = lm80_read_value(client, LM80_REG_FAN_MIN(2)); 651 if (rv < 0) 652 return rv; 653 data->fan[f_min][1] = rv; 654 655 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 656 data, lm80_groups); 657 658 return PTR_ERR_OR_ZERO(hwmon_dev); 659 } 660 661 /* 662 * Driver data (common to all clients) 663 */ 664 665 static const struct i2c_device_id lm80_id[] = { 666 { "lm80", 0 }, 667 { "lm96080", 1 }, 668 { } 669 }; 670 MODULE_DEVICE_TABLE(i2c, lm80_id); 671 672 static struct i2c_driver lm80_driver = { 673 .class = I2C_CLASS_HWMON, 674 .driver = { 675 .name = "lm80", 676 }, 677 .probe = lm80_probe, 678 .id_table = lm80_id, 679 .detect = lm80_detect, 680 .address_list = normal_i2c, 681 }; 682 683 module_i2c_driver(lm80_driver); 684 685 MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and " 686 "Philip Edelbrock <phil@netroedge.com>"); 687 MODULE_DESCRIPTION("LM80 driver"); 688 MODULE_LICENSE("GPL"); 689