1 /* 2 * lm78.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 5 * Copyright (c) 2007, 2011 Jean Delvare <jdelvare@suse.de> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/module.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/jiffies.h> 28 #include <linux/i2c.h> 29 #include <linux/hwmon.h> 30 #include <linux/hwmon-vid.h> 31 #include <linux/hwmon-sysfs.h> 32 #include <linux/err.h> 33 #include <linux/mutex.h> 34 35 #ifdef CONFIG_ISA 36 #include <linux/platform_device.h> 37 #include <linux/ioport.h> 38 #include <linux/io.h> 39 #endif 40 41 /* Addresses to scan */ 42 static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 43 0x2e, 0x2f, I2C_CLIENT_END }; 44 enum chips { lm78, lm79 }; 45 46 /* Many LM78 constants specified below */ 47 48 /* Length of ISA address segment */ 49 #define LM78_EXTENT 8 50 51 /* Where are the ISA address/data registers relative to the base address */ 52 #define LM78_ADDR_REG_OFFSET 5 53 #define LM78_DATA_REG_OFFSET 6 54 55 /* The LM78 registers */ 56 #define LM78_REG_IN_MAX(nr) (0x2b + (nr) * 2) 57 #define LM78_REG_IN_MIN(nr) (0x2c + (nr) * 2) 58 #define LM78_REG_IN(nr) (0x20 + (nr)) 59 60 #define LM78_REG_FAN_MIN(nr) (0x3b + (nr)) 61 #define LM78_REG_FAN(nr) (0x28 + (nr)) 62 63 #define LM78_REG_TEMP 0x27 64 #define LM78_REG_TEMP_OVER 0x39 65 #define LM78_REG_TEMP_HYST 0x3a 66 67 #define LM78_REG_ALARM1 0x41 68 #define LM78_REG_ALARM2 0x42 69 70 #define LM78_REG_VID_FANDIV 0x47 71 72 #define LM78_REG_CONFIG 0x40 73 #define LM78_REG_CHIPID 0x49 74 #define LM78_REG_I2C_ADDR 0x48 75 76 77 /* 78 * Conversions. Rounding and limit checking is only done on the TO_REG 79 * variants. 80 */ 81 82 /* 83 * IN: mV (0V to 4.08V) 84 * REG: 16mV/bit 85 */ 86 static inline u8 IN_TO_REG(unsigned long val) 87 { 88 unsigned long nval = clamp_val(val, 0, 4080); 89 return (nval + 8) / 16; 90 } 91 #define IN_FROM_REG(val) ((val) * 16) 92 93 static inline u8 FAN_TO_REG(long rpm, int div) 94 { 95 if (rpm <= 0) 96 return 255; 97 if (rpm > 1350000) 98 return 1; 99 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 100 } 101 102 static inline int FAN_FROM_REG(u8 val, int div) 103 { 104 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); 105 } 106 107 /* 108 * TEMP: mC (-128C to +127C) 109 * REG: 1C/bit, two's complement 110 */ 111 static inline s8 TEMP_TO_REG(long val) 112 { 113 int nval = clamp_val(val, -128000, 127000) ; 114 return nval < 0 ? (nval - 500) / 1000 : (nval + 500) / 1000; 115 } 116 117 static inline int TEMP_FROM_REG(s8 val) 118 { 119 return val * 1000; 120 } 121 122 #define DIV_FROM_REG(val) (1 << (val)) 123 124 struct lm78_data { 125 struct i2c_client *client; 126 struct mutex lock; 127 enum chips type; 128 129 /* For ISA device only */ 130 const char *name; 131 int isa_addr; 132 133 struct mutex update_lock; 134 char valid; /* !=0 if following fields are valid */ 135 unsigned long last_updated; /* In jiffies */ 136 137 u8 in[7]; /* Register value */ 138 u8 in_max[7]; /* Register value */ 139 u8 in_min[7]; /* Register value */ 140 u8 fan[3]; /* Register value */ 141 u8 fan_min[3]; /* Register value */ 142 s8 temp; /* Register value */ 143 s8 temp_over; /* Register value */ 144 s8 temp_hyst; /* Register value */ 145 u8 fan_div[3]; /* Register encoding, shifted right */ 146 u8 vid; /* Register encoding, combined */ 147 u16 alarms; /* Register encoding, combined */ 148 }; 149 150 151 static int lm78_read_value(struct lm78_data *data, u8 reg); 152 static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value); 153 static struct lm78_data *lm78_update_device(struct device *dev); 154 static void lm78_init_device(struct lm78_data *data); 155 156 157 /* 7 Voltages */ 158 static ssize_t show_in(struct device *dev, struct device_attribute *da, 159 char *buf) 160 { 161 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 162 struct lm78_data *data = lm78_update_device(dev); 163 return sprintf(buf, "%d\n", IN_FROM_REG(data->in[attr->index])); 164 } 165 166 static ssize_t show_in_min(struct device *dev, struct device_attribute *da, 167 char *buf) 168 { 169 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 170 struct lm78_data *data = lm78_update_device(dev); 171 return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[attr->index])); 172 } 173 174 static ssize_t show_in_max(struct device *dev, struct device_attribute *da, 175 char *buf) 176 { 177 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 178 struct lm78_data *data = lm78_update_device(dev); 179 return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[attr->index])); 180 } 181 182 static ssize_t set_in_min(struct device *dev, struct device_attribute *da, 183 const char *buf, size_t count) 184 { 185 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 186 struct lm78_data *data = dev_get_drvdata(dev); 187 int nr = attr->index; 188 unsigned long val; 189 int err; 190 191 err = kstrtoul(buf, 10, &val); 192 if (err) 193 return err; 194 195 mutex_lock(&data->update_lock); 196 data->in_min[nr] = IN_TO_REG(val); 197 lm78_write_value(data, LM78_REG_IN_MIN(nr), data->in_min[nr]); 198 mutex_unlock(&data->update_lock); 199 return count; 200 } 201 202 static ssize_t set_in_max(struct device *dev, struct device_attribute *da, 203 const char *buf, size_t count) 204 { 205 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 206 struct lm78_data *data = dev_get_drvdata(dev); 207 int nr = attr->index; 208 unsigned long val; 209 int err; 210 211 err = kstrtoul(buf, 10, &val); 212 if (err) 213 return err; 214 215 mutex_lock(&data->update_lock); 216 data->in_max[nr] = IN_TO_REG(val); 217 lm78_write_value(data, LM78_REG_IN_MAX(nr), data->in_max[nr]); 218 mutex_unlock(&data->update_lock); 219 return count; 220 } 221 222 #define show_in_offset(offset) \ 223 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 224 show_in, NULL, offset); \ 225 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 226 show_in_min, set_in_min, offset); \ 227 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 228 show_in_max, set_in_max, offset); 229 230 show_in_offset(0); 231 show_in_offset(1); 232 show_in_offset(2); 233 show_in_offset(3); 234 show_in_offset(4); 235 show_in_offset(5); 236 show_in_offset(6); 237 238 /* Temperature */ 239 static ssize_t temp1_input_show(struct device *dev, 240 struct device_attribute *da, char *buf) 241 { 242 struct lm78_data *data = lm78_update_device(dev); 243 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp)); 244 } 245 246 static ssize_t temp1_max_show(struct device *dev, struct device_attribute *da, 247 char *buf) 248 { 249 struct lm78_data *data = lm78_update_device(dev); 250 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_over)); 251 } 252 253 static ssize_t temp1_max_store(struct device *dev, 254 struct device_attribute *da, const char *buf, 255 size_t count) 256 { 257 struct lm78_data *data = dev_get_drvdata(dev); 258 long val; 259 int err; 260 261 err = kstrtol(buf, 10, &val); 262 if (err) 263 return err; 264 265 mutex_lock(&data->update_lock); 266 data->temp_over = TEMP_TO_REG(val); 267 lm78_write_value(data, LM78_REG_TEMP_OVER, data->temp_over); 268 mutex_unlock(&data->update_lock); 269 return count; 270 } 271 272 static ssize_t temp1_max_hyst_show(struct device *dev, 273 struct device_attribute *da, char *buf) 274 { 275 struct lm78_data *data = lm78_update_device(dev); 276 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_hyst)); 277 } 278 279 static ssize_t temp1_max_hyst_store(struct device *dev, 280 struct device_attribute *da, 281 const char *buf, size_t count) 282 { 283 struct lm78_data *data = dev_get_drvdata(dev); 284 long val; 285 int err; 286 287 err = kstrtol(buf, 10, &val); 288 if (err) 289 return err; 290 291 mutex_lock(&data->update_lock); 292 data->temp_hyst = TEMP_TO_REG(val); 293 lm78_write_value(data, LM78_REG_TEMP_HYST, data->temp_hyst); 294 mutex_unlock(&data->update_lock); 295 return count; 296 } 297 298 static DEVICE_ATTR_RO(temp1_input); 299 static DEVICE_ATTR_RW(temp1_max); 300 static DEVICE_ATTR_RW(temp1_max_hyst); 301 302 /* 3 Fans */ 303 static ssize_t show_fan(struct device *dev, struct device_attribute *da, 304 char *buf) 305 { 306 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 307 struct lm78_data *data = lm78_update_device(dev); 308 int nr = attr->index; 309 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 310 DIV_FROM_REG(data->fan_div[nr]))); 311 } 312 313 static ssize_t show_fan_min(struct device *dev, struct device_attribute *da, 314 char *buf) 315 { 316 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 317 struct lm78_data *data = lm78_update_device(dev); 318 int nr = attr->index; 319 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 320 DIV_FROM_REG(data->fan_div[nr]))); 321 } 322 323 static ssize_t set_fan_min(struct device *dev, struct device_attribute *da, 324 const char *buf, size_t count) 325 { 326 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 327 struct lm78_data *data = dev_get_drvdata(dev); 328 int nr = attr->index; 329 unsigned long val; 330 int err; 331 332 err = kstrtoul(buf, 10, &val); 333 if (err) 334 return err; 335 336 mutex_lock(&data->update_lock); 337 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 338 lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]); 339 mutex_unlock(&data->update_lock); 340 return count; 341 } 342 343 static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, 344 char *buf) 345 { 346 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 347 struct lm78_data *data = lm78_update_device(dev); 348 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[attr->index])); 349 } 350 351 /* 352 * Note: we save and restore the fan minimum here, because its value is 353 * determined in part by the fan divisor. This follows the principle of 354 * least surprise; the user doesn't expect the fan minimum to change just 355 * because the divisor changed. 356 */ 357 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, 358 const char *buf, size_t count) 359 { 360 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 361 struct lm78_data *data = dev_get_drvdata(dev); 362 int nr = attr->index; 363 unsigned long min; 364 u8 reg; 365 unsigned long val; 366 int err; 367 368 err = kstrtoul(buf, 10, &val); 369 if (err) 370 return err; 371 372 mutex_lock(&data->update_lock); 373 min = FAN_FROM_REG(data->fan_min[nr], 374 DIV_FROM_REG(data->fan_div[nr])); 375 376 switch (val) { 377 case 1: 378 data->fan_div[nr] = 0; 379 break; 380 case 2: 381 data->fan_div[nr] = 1; 382 break; 383 case 4: 384 data->fan_div[nr] = 2; 385 break; 386 case 8: 387 data->fan_div[nr] = 3; 388 break; 389 default: 390 dev_err(dev, 391 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", 392 val); 393 mutex_unlock(&data->update_lock); 394 return -EINVAL; 395 } 396 397 reg = lm78_read_value(data, LM78_REG_VID_FANDIV); 398 switch (nr) { 399 case 0: 400 reg = (reg & 0xcf) | (data->fan_div[nr] << 4); 401 break; 402 case 1: 403 reg = (reg & 0x3f) | (data->fan_div[nr] << 6); 404 break; 405 } 406 lm78_write_value(data, LM78_REG_VID_FANDIV, reg); 407 408 data->fan_min[nr] = 409 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 410 lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]); 411 mutex_unlock(&data->update_lock); 412 413 return count; 414 } 415 416 #define show_fan_offset(offset) \ 417 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 418 show_fan, NULL, offset - 1); \ 419 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 420 show_fan_min, set_fan_min, offset - 1); 421 422 show_fan_offset(1); 423 show_fan_offset(2); 424 show_fan_offset(3); 425 426 /* Fan 3 divisor is locked in H/W */ 427 static SENSOR_DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR, 428 show_fan_div, set_fan_div, 0); 429 static SENSOR_DEVICE_ATTR(fan2_div, S_IRUGO | S_IWUSR, 430 show_fan_div, set_fan_div, 1); 431 static SENSOR_DEVICE_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2); 432 433 /* VID */ 434 static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *da, 435 char *buf) 436 { 437 struct lm78_data *data = lm78_update_device(dev); 438 return sprintf(buf, "%d\n", vid_from_reg(data->vid, 82)); 439 } 440 static DEVICE_ATTR_RO(cpu0_vid); 441 442 /* Alarms */ 443 static ssize_t alarms_show(struct device *dev, struct device_attribute *da, 444 char *buf) 445 { 446 struct lm78_data *data = lm78_update_device(dev); 447 return sprintf(buf, "%u\n", data->alarms); 448 } 449 static DEVICE_ATTR_RO(alarms); 450 451 static ssize_t show_alarm(struct device *dev, struct device_attribute *da, 452 char *buf) 453 { 454 struct lm78_data *data = lm78_update_device(dev); 455 int nr = to_sensor_dev_attr(da)->index; 456 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); 457 } 458 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 459 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 460 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 461 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 462 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 463 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9); 464 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10); 465 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); 466 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); 467 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); 468 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 469 470 static struct attribute *lm78_attrs[] = { 471 &sensor_dev_attr_in0_input.dev_attr.attr, 472 &sensor_dev_attr_in0_min.dev_attr.attr, 473 &sensor_dev_attr_in0_max.dev_attr.attr, 474 &sensor_dev_attr_in0_alarm.dev_attr.attr, 475 &sensor_dev_attr_in1_input.dev_attr.attr, 476 &sensor_dev_attr_in1_min.dev_attr.attr, 477 &sensor_dev_attr_in1_max.dev_attr.attr, 478 &sensor_dev_attr_in1_alarm.dev_attr.attr, 479 &sensor_dev_attr_in2_input.dev_attr.attr, 480 &sensor_dev_attr_in2_min.dev_attr.attr, 481 &sensor_dev_attr_in2_max.dev_attr.attr, 482 &sensor_dev_attr_in2_alarm.dev_attr.attr, 483 &sensor_dev_attr_in3_input.dev_attr.attr, 484 &sensor_dev_attr_in3_min.dev_attr.attr, 485 &sensor_dev_attr_in3_max.dev_attr.attr, 486 &sensor_dev_attr_in3_alarm.dev_attr.attr, 487 &sensor_dev_attr_in4_input.dev_attr.attr, 488 &sensor_dev_attr_in4_min.dev_attr.attr, 489 &sensor_dev_attr_in4_max.dev_attr.attr, 490 &sensor_dev_attr_in4_alarm.dev_attr.attr, 491 &sensor_dev_attr_in5_input.dev_attr.attr, 492 &sensor_dev_attr_in5_min.dev_attr.attr, 493 &sensor_dev_attr_in5_max.dev_attr.attr, 494 &sensor_dev_attr_in5_alarm.dev_attr.attr, 495 &sensor_dev_attr_in6_input.dev_attr.attr, 496 &sensor_dev_attr_in6_min.dev_attr.attr, 497 &sensor_dev_attr_in6_max.dev_attr.attr, 498 &sensor_dev_attr_in6_alarm.dev_attr.attr, 499 &dev_attr_temp1_input.attr, 500 &dev_attr_temp1_max.attr, 501 &dev_attr_temp1_max_hyst.attr, 502 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 503 &sensor_dev_attr_fan1_input.dev_attr.attr, 504 &sensor_dev_attr_fan1_min.dev_attr.attr, 505 &sensor_dev_attr_fan1_div.dev_attr.attr, 506 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 507 &sensor_dev_attr_fan2_input.dev_attr.attr, 508 &sensor_dev_attr_fan2_min.dev_attr.attr, 509 &sensor_dev_attr_fan2_div.dev_attr.attr, 510 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 511 &sensor_dev_attr_fan3_input.dev_attr.attr, 512 &sensor_dev_attr_fan3_min.dev_attr.attr, 513 &sensor_dev_attr_fan3_div.dev_attr.attr, 514 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 515 &dev_attr_alarms.attr, 516 &dev_attr_cpu0_vid.attr, 517 518 NULL 519 }; 520 521 ATTRIBUTE_GROUPS(lm78); 522 523 /* 524 * ISA related code 525 */ 526 #ifdef CONFIG_ISA 527 528 /* ISA device, if found */ 529 static struct platform_device *pdev; 530 531 static unsigned short isa_address = 0x290; 532 533 static struct lm78_data *lm78_data_if_isa(void) 534 { 535 return pdev ? platform_get_drvdata(pdev) : NULL; 536 } 537 538 /* Returns 1 if the I2C chip appears to be an alias of the ISA chip */ 539 static int lm78_alias_detect(struct i2c_client *client, u8 chipid) 540 { 541 struct lm78_data *isa; 542 int i; 543 544 if (!pdev) /* No ISA chip */ 545 return 0; 546 isa = platform_get_drvdata(pdev); 547 548 if (lm78_read_value(isa, LM78_REG_I2C_ADDR) != client->addr) 549 return 0; /* Address doesn't match */ 550 if ((lm78_read_value(isa, LM78_REG_CHIPID) & 0xfe) != (chipid & 0xfe)) 551 return 0; /* Chip type doesn't match */ 552 553 /* 554 * We compare all the limit registers, the config register and the 555 * interrupt mask registers 556 */ 557 for (i = 0x2b; i <= 0x3d; i++) { 558 if (lm78_read_value(isa, i) != 559 i2c_smbus_read_byte_data(client, i)) 560 return 0; 561 } 562 if (lm78_read_value(isa, LM78_REG_CONFIG) != 563 i2c_smbus_read_byte_data(client, LM78_REG_CONFIG)) 564 return 0; 565 for (i = 0x43; i <= 0x46; i++) { 566 if (lm78_read_value(isa, i) != 567 i2c_smbus_read_byte_data(client, i)) 568 return 0; 569 } 570 571 return 1; 572 } 573 #else /* !CONFIG_ISA */ 574 575 static int lm78_alias_detect(struct i2c_client *client, u8 chipid) 576 { 577 return 0; 578 } 579 580 static struct lm78_data *lm78_data_if_isa(void) 581 { 582 return NULL; 583 } 584 #endif /* CONFIG_ISA */ 585 586 static int lm78_i2c_detect(struct i2c_client *client, 587 struct i2c_board_info *info) 588 { 589 int i; 590 struct lm78_data *isa = lm78_data_if_isa(); 591 const char *client_name; 592 struct i2c_adapter *adapter = client->adapter; 593 int address = client->addr; 594 595 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 596 return -ENODEV; 597 598 /* 599 * We block updates of the ISA device to minimize the risk of 600 * concurrent access to the same LM78 chip through different 601 * interfaces. 602 */ 603 if (isa) 604 mutex_lock(&isa->update_lock); 605 606 if ((i2c_smbus_read_byte_data(client, LM78_REG_CONFIG) & 0x80) 607 || i2c_smbus_read_byte_data(client, LM78_REG_I2C_ADDR) != address) 608 goto err_nodev; 609 610 /* Explicitly prevent the misdetection of Winbond chips */ 611 i = i2c_smbus_read_byte_data(client, 0x4f); 612 if (i == 0xa3 || i == 0x5c) 613 goto err_nodev; 614 615 /* Determine the chip type. */ 616 i = i2c_smbus_read_byte_data(client, LM78_REG_CHIPID); 617 if (i == 0x00 || i == 0x20 /* LM78 */ 618 || i == 0x40) /* LM78-J */ 619 client_name = "lm78"; 620 else if ((i & 0xfe) == 0xc0) 621 client_name = "lm79"; 622 else 623 goto err_nodev; 624 625 if (lm78_alias_detect(client, i)) { 626 dev_dbg(&adapter->dev, 627 "Device at 0x%02x appears to be the same as ISA device\n", 628 address); 629 goto err_nodev; 630 } 631 632 if (isa) 633 mutex_unlock(&isa->update_lock); 634 635 strlcpy(info->type, client_name, I2C_NAME_SIZE); 636 637 return 0; 638 639 err_nodev: 640 if (isa) 641 mutex_unlock(&isa->update_lock); 642 return -ENODEV; 643 } 644 645 static int lm78_i2c_probe(struct i2c_client *client, 646 const struct i2c_device_id *id) 647 { 648 struct device *dev = &client->dev; 649 struct device *hwmon_dev; 650 struct lm78_data *data; 651 652 data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL); 653 if (!data) 654 return -ENOMEM; 655 656 data->client = client; 657 data->type = id->driver_data; 658 659 /* Initialize the LM78 chip */ 660 lm78_init_device(data); 661 662 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 663 data, lm78_groups); 664 return PTR_ERR_OR_ZERO(hwmon_dev); 665 } 666 667 static const struct i2c_device_id lm78_i2c_id[] = { 668 { "lm78", lm78 }, 669 { "lm79", lm79 }, 670 { } 671 }; 672 MODULE_DEVICE_TABLE(i2c, lm78_i2c_id); 673 674 static struct i2c_driver lm78_driver = { 675 .class = I2C_CLASS_HWMON, 676 .driver = { 677 .name = "lm78", 678 }, 679 .probe = lm78_i2c_probe, 680 .id_table = lm78_i2c_id, 681 .detect = lm78_i2c_detect, 682 .address_list = normal_i2c, 683 }; 684 685 /* 686 * The SMBus locks itself, but ISA access must be locked explicitly! 687 * We don't want to lock the whole ISA bus, so we lock each client 688 * separately. 689 * We ignore the LM78 BUSY flag at this moment - it could lead to deadlocks, 690 * would slow down the LM78 access and should not be necessary. 691 */ 692 static int lm78_read_value(struct lm78_data *data, u8 reg) 693 { 694 struct i2c_client *client = data->client; 695 696 #ifdef CONFIG_ISA 697 if (!client) { /* ISA device */ 698 int res; 699 mutex_lock(&data->lock); 700 outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET); 701 res = inb_p(data->isa_addr + LM78_DATA_REG_OFFSET); 702 mutex_unlock(&data->lock); 703 return res; 704 } else 705 #endif 706 return i2c_smbus_read_byte_data(client, reg); 707 } 708 709 static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value) 710 { 711 struct i2c_client *client = data->client; 712 713 #ifdef CONFIG_ISA 714 if (!client) { /* ISA device */ 715 mutex_lock(&data->lock); 716 outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET); 717 outb_p(value, data->isa_addr + LM78_DATA_REG_OFFSET); 718 mutex_unlock(&data->lock); 719 return 0; 720 } else 721 #endif 722 return i2c_smbus_write_byte_data(client, reg, value); 723 } 724 725 static void lm78_init_device(struct lm78_data *data) 726 { 727 u8 config; 728 int i; 729 730 /* Start monitoring */ 731 config = lm78_read_value(data, LM78_REG_CONFIG); 732 if ((config & 0x09) != 0x01) 733 lm78_write_value(data, LM78_REG_CONFIG, 734 (config & 0xf7) | 0x01); 735 736 /* A few vars need to be filled upon startup */ 737 for (i = 0; i < 3; i++) { 738 data->fan_min[i] = lm78_read_value(data, 739 LM78_REG_FAN_MIN(i)); 740 } 741 742 mutex_init(&data->update_lock); 743 } 744 745 static struct lm78_data *lm78_update_device(struct device *dev) 746 { 747 struct lm78_data *data = dev_get_drvdata(dev); 748 int i; 749 750 mutex_lock(&data->update_lock); 751 752 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 753 || !data->valid) { 754 755 dev_dbg(dev, "Starting lm78 update\n"); 756 757 for (i = 0; i <= 6; i++) { 758 data->in[i] = 759 lm78_read_value(data, LM78_REG_IN(i)); 760 data->in_min[i] = 761 lm78_read_value(data, LM78_REG_IN_MIN(i)); 762 data->in_max[i] = 763 lm78_read_value(data, LM78_REG_IN_MAX(i)); 764 } 765 for (i = 0; i < 3; i++) { 766 data->fan[i] = 767 lm78_read_value(data, LM78_REG_FAN(i)); 768 data->fan_min[i] = 769 lm78_read_value(data, LM78_REG_FAN_MIN(i)); 770 } 771 data->temp = lm78_read_value(data, LM78_REG_TEMP); 772 data->temp_over = 773 lm78_read_value(data, LM78_REG_TEMP_OVER); 774 data->temp_hyst = 775 lm78_read_value(data, LM78_REG_TEMP_HYST); 776 i = lm78_read_value(data, LM78_REG_VID_FANDIV); 777 data->vid = i & 0x0f; 778 if (data->type == lm79) 779 data->vid |= 780 (lm78_read_value(data, LM78_REG_CHIPID) & 781 0x01) << 4; 782 else 783 data->vid |= 0x10; 784 data->fan_div[0] = (i >> 4) & 0x03; 785 data->fan_div[1] = i >> 6; 786 data->alarms = lm78_read_value(data, LM78_REG_ALARM1) + 787 (lm78_read_value(data, LM78_REG_ALARM2) << 8); 788 data->last_updated = jiffies; 789 data->valid = 1; 790 791 data->fan_div[2] = 1; 792 } 793 794 mutex_unlock(&data->update_lock); 795 796 return data; 797 } 798 799 #ifdef CONFIG_ISA 800 static int lm78_isa_probe(struct platform_device *pdev) 801 { 802 struct device *dev = &pdev->dev; 803 struct device *hwmon_dev; 804 struct lm78_data *data; 805 struct resource *res; 806 807 /* Reserve the ISA region */ 808 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 809 if (!devm_request_region(dev, res->start + LM78_ADDR_REG_OFFSET, 810 2, "lm78")) 811 return -EBUSY; 812 813 data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL); 814 if (!data) 815 return -ENOMEM; 816 817 mutex_init(&data->lock); 818 data->isa_addr = res->start; 819 platform_set_drvdata(pdev, data); 820 821 if (lm78_read_value(data, LM78_REG_CHIPID) & 0x80) { 822 data->type = lm79; 823 data->name = "lm79"; 824 } else { 825 data->type = lm78; 826 data->name = "lm78"; 827 } 828 829 /* Initialize the LM78 chip */ 830 lm78_init_device(data); 831 832 hwmon_dev = devm_hwmon_device_register_with_groups(dev, data->name, 833 data, lm78_groups); 834 return PTR_ERR_OR_ZERO(hwmon_dev); 835 } 836 837 static struct platform_driver lm78_isa_driver = { 838 .driver = { 839 .name = "lm78", 840 }, 841 .probe = lm78_isa_probe, 842 }; 843 844 /* return 1 if a supported chip is found, 0 otherwise */ 845 static int __init lm78_isa_found(unsigned short address) 846 { 847 int val, save, found = 0; 848 int port; 849 850 /* 851 * Some boards declare base+0 to base+7 as a PNP device, some base+4 852 * to base+7 and some base+5 to base+6. So we better request each port 853 * individually for the probing phase. 854 */ 855 for (port = address; port < address + LM78_EXTENT; port++) { 856 if (!request_region(port, 1, "lm78")) { 857 pr_debug("Failed to request port 0x%x\n", port); 858 goto release; 859 } 860 } 861 862 #define REALLY_SLOW_IO 863 /* 864 * We need the timeouts for at least some LM78-like 865 * chips. But only if we read 'undefined' registers. 866 */ 867 val = inb_p(address + 1); 868 if (inb_p(address + 2) != val 869 || inb_p(address + 3) != val 870 || inb_p(address + 7) != val) 871 goto release; 872 #undef REALLY_SLOW_IO 873 874 /* 875 * We should be able to change the 7 LSB of the address port. The 876 * MSB (busy flag) should be clear initially, set after the write. 877 */ 878 save = inb_p(address + LM78_ADDR_REG_OFFSET); 879 if (save & 0x80) 880 goto release; 881 val = ~save & 0x7f; 882 outb_p(val, address + LM78_ADDR_REG_OFFSET); 883 if (inb_p(address + LM78_ADDR_REG_OFFSET) != (val | 0x80)) { 884 outb_p(save, address + LM78_ADDR_REG_OFFSET); 885 goto release; 886 } 887 888 /* We found a device, now see if it could be an LM78 */ 889 outb_p(LM78_REG_CONFIG, address + LM78_ADDR_REG_OFFSET); 890 val = inb_p(address + LM78_DATA_REG_OFFSET); 891 if (val & 0x80) 892 goto release; 893 outb_p(LM78_REG_I2C_ADDR, address + LM78_ADDR_REG_OFFSET); 894 val = inb_p(address + LM78_DATA_REG_OFFSET); 895 if (val < 0x03 || val > 0x77) /* Not a valid I2C address */ 896 goto release; 897 898 /* The busy flag should be clear again */ 899 if (inb_p(address + LM78_ADDR_REG_OFFSET) & 0x80) 900 goto release; 901 902 /* Explicitly prevent the misdetection of Winbond chips */ 903 outb_p(0x4f, address + LM78_ADDR_REG_OFFSET); 904 val = inb_p(address + LM78_DATA_REG_OFFSET); 905 if (val == 0xa3 || val == 0x5c) 906 goto release; 907 908 /* Explicitly prevent the misdetection of ITE chips */ 909 outb_p(0x58, address + LM78_ADDR_REG_OFFSET); 910 val = inb_p(address + LM78_DATA_REG_OFFSET); 911 if (val == 0x90) 912 goto release; 913 914 /* Determine the chip type */ 915 outb_p(LM78_REG_CHIPID, address + LM78_ADDR_REG_OFFSET); 916 val = inb_p(address + LM78_DATA_REG_OFFSET); 917 if (val == 0x00 || val == 0x20 /* LM78 */ 918 || val == 0x40 /* LM78-J */ 919 || (val & 0xfe) == 0xc0) /* LM79 */ 920 found = 1; 921 922 if (found) 923 pr_info("Found an %s chip at %#x\n", 924 val & 0x80 ? "LM79" : "LM78", (int)address); 925 926 release: 927 for (port--; port >= address; port--) 928 release_region(port, 1); 929 return found; 930 } 931 932 static int __init lm78_isa_device_add(unsigned short address) 933 { 934 struct resource res = { 935 .start = address, 936 .end = address + LM78_EXTENT - 1, 937 .name = "lm78", 938 .flags = IORESOURCE_IO, 939 }; 940 int err; 941 942 pdev = platform_device_alloc("lm78", address); 943 if (!pdev) { 944 err = -ENOMEM; 945 pr_err("Device allocation failed\n"); 946 goto exit; 947 } 948 949 err = platform_device_add_resources(pdev, &res, 1); 950 if (err) { 951 pr_err("Device resource addition failed (%d)\n", err); 952 goto exit_device_put; 953 } 954 955 err = platform_device_add(pdev); 956 if (err) { 957 pr_err("Device addition failed (%d)\n", err); 958 goto exit_device_put; 959 } 960 961 return 0; 962 963 exit_device_put: 964 platform_device_put(pdev); 965 exit: 966 pdev = NULL; 967 return err; 968 } 969 970 static int __init lm78_isa_register(void) 971 { 972 int res; 973 974 if (lm78_isa_found(isa_address)) { 975 res = platform_driver_register(&lm78_isa_driver); 976 if (res) 977 goto exit; 978 979 /* Sets global pdev as a side effect */ 980 res = lm78_isa_device_add(isa_address); 981 if (res) 982 goto exit_unreg_isa_driver; 983 } 984 985 return 0; 986 987 exit_unreg_isa_driver: 988 platform_driver_unregister(&lm78_isa_driver); 989 exit: 990 return res; 991 } 992 993 static void lm78_isa_unregister(void) 994 { 995 if (pdev) { 996 platform_device_unregister(pdev); 997 platform_driver_unregister(&lm78_isa_driver); 998 } 999 } 1000 #else /* !CONFIG_ISA */ 1001 1002 static int __init lm78_isa_register(void) 1003 { 1004 return 0; 1005 } 1006 1007 static void lm78_isa_unregister(void) 1008 { 1009 } 1010 #endif /* CONFIG_ISA */ 1011 1012 static int __init sm_lm78_init(void) 1013 { 1014 int res; 1015 1016 /* 1017 * We register the ISA device first, so that we can skip the 1018 * registration of an I2C interface to the same device. 1019 */ 1020 res = lm78_isa_register(); 1021 if (res) 1022 goto exit; 1023 1024 res = i2c_add_driver(&lm78_driver); 1025 if (res) 1026 goto exit_unreg_isa_device; 1027 1028 return 0; 1029 1030 exit_unreg_isa_device: 1031 lm78_isa_unregister(); 1032 exit: 1033 return res; 1034 } 1035 1036 static void __exit sm_lm78_exit(void) 1037 { 1038 lm78_isa_unregister(); 1039 i2c_del_driver(&lm78_driver); 1040 } 1041 1042 MODULE_AUTHOR("Frodo Looijaard, Jean Delvare <jdelvare@suse.de>"); 1043 MODULE_DESCRIPTION("LM78/LM79 driver"); 1044 MODULE_LICENSE("GPL"); 1045 1046 module_init(sm_lm78_init); 1047 module_exit(sm_lm78_exit); 1048