1 /* 2 * lm78.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 5 * Copyright (c) 2007, 2011 Jean Delvare <jdelvare@suse.de> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/module.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/jiffies.h> 28 #include <linux/i2c.h> 29 #include <linux/hwmon.h> 30 #include <linux/hwmon-vid.h> 31 #include <linux/hwmon-sysfs.h> 32 #include <linux/err.h> 33 #include <linux/mutex.h> 34 35 #ifdef CONFIG_ISA 36 #include <linux/platform_device.h> 37 #include <linux/ioport.h> 38 #include <linux/io.h> 39 #endif 40 41 /* Addresses to scan */ 42 static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 43 0x2e, 0x2f, I2C_CLIENT_END }; 44 enum chips { lm78, lm79 }; 45 46 /* Many LM78 constants specified below */ 47 48 /* Length of ISA address segment */ 49 #define LM78_EXTENT 8 50 51 /* Where are the ISA address/data registers relative to the base address */ 52 #define LM78_ADDR_REG_OFFSET 5 53 #define LM78_DATA_REG_OFFSET 6 54 55 /* The LM78 registers */ 56 #define LM78_REG_IN_MAX(nr) (0x2b + (nr) * 2) 57 #define LM78_REG_IN_MIN(nr) (0x2c + (nr) * 2) 58 #define LM78_REG_IN(nr) (0x20 + (nr)) 59 60 #define LM78_REG_FAN_MIN(nr) (0x3b + (nr)) 61 #define LM78_REG_FAN(nr) (0x28 + (nr)) 62 63 #define LM78_REG_TEMP 0x27 64 #define LM78_REG_TEMP_OVER 0x39 65 #define LM78_REG_TEMP_HYST 0x3a 66 67 #define LM78_REG_ALARM1 0x41 68 #define LM78_REG_ALARM2 0x42 69 70 #define LM78_REG_VID_FANDIV 0x47 71 72 #define LM78_REG_CONFIG 0x40 73 #define LM78_REG_CHIPID 0x49 74 #define LM78_REG_I2C_ADDR 0x48 75 76 /* 77 * Conversions. Rounding and limit checking is only done on the TO_REG 78 * variants. 79 */ 80 81 /* 82 * IN: mV (0V to 4.08V) 83 * REG: 16mV/bit 84 */ 85 static inline u8 IN_TO_REG(unsigned long val) 86 { 87 unsigned long nval = clamp_val(val, 0, 4080); 88 return (nval + 8) / 16; 89 } 90 #define IN_FROM_REG(val) ((val) * 16) 91 92 static inline u8 FAN_TO_REG(long rpm, int div) 93 { 94 if (rpm <= 0) 95 return 255; 96 if (rpm > 1350000) 97 return 1; 98 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 99 } 100 101 static inline int FAN_FROM_REG(u8 val, int div) 102 { 103 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); 104 } 105 106 /* 107 * TEMP: mC (-128C to +127C) 108 * REG: 1C/bit, two's complement 109 */ 110 static inline s8 TEMP_TO_REG(long val) 111 { 112 int nval = clamp_val(val, -128000, 127000) ; 113 return nval < 0 ? (nval - 500) / 1000 : (nval + 500) / 1000; 114 } 115 116 static inline int TEMP_FROM_REG(s8 val) 117 { 118 return val * 1000; 119 } 120 121 #define DIV_FROM_REG(val) (1 << (val)) 122 123 struct lm78_data { 124 struct i2c_client *client; 125 struct mutex lock; 126 enum chips type; 127 128 /* For ISA device only */ 129 const char *name; 130 int isa_addr; 131 132 struct mutex update_lock; 133 char valid; /* !=0 if following fields are valid */ 134 unsigned long last_updated; /* In jiffies */ 135 136 u8 in[7]; /* Register value */ 137 u8 in_max[7]; /* Register value */ 138 u8 in_min[7]; /* Register value */ 139 u8 fan[3]; /* Register value */ 140 u8 fan_min[3]; /* Register value */ 141 s8 temp; /* Register value */ 142 s8 temp_over; /* Register value */ 143 s8 temp_hyst; /* Register value */ 144 u8 fan_div[3]; /* Register encoding, shifted right */ 145 u8 vid; /* Register encoding, combined */ 146 u16 alarms; /* Register encoding, combined */ 147 }; 148 149 static int lm78_read_value(struct lm78_data *data, u8 reg); 150 static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value); 151 static struct lm78_data *lm78_update_device(struct device *dev); 152 static void lm78_init_device(struct lm78_data *data); 153 154 /* 7 Voltages */ 155 static ssize_t in_show(struct device *dev, struct device_attribute *da, 156 char *buf) 157 { 158 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 159 struct lm78_data *data = lm78_update_device(dev); 160 return sprintf(buf, "%d\n", IN_FROM_REG(data->in[attr->index])); 161 } 162 163 static ssize_t in_min_show(struct device *dev, struct device_attribute *da, 164 char *buf) 165 { 166 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 167 struct lm78_data *data = lm78_update_device(dev); 168 return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[attr->index])); 169 } 170 171 static ssize_t in_max_show(struct device *dev, struct device_attribute *da, 172 char *buf) 173 { 174 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 175 struct lm78_data *data = lm78_update_device(dev); 176 return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[attr->index])); 177 } 178 179 static ssize_t in_min_store(struct device *dev, struct device_attribute *da, 180 const char *buf, size_t count) 181 { 182 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 183 struct lm78_data *data = dev_get_drvdata(dev); 184 int nr = attr->index; 185 unsigned long val; 186 int err; 187 188 err = kstrtoul(buf, 10, &val); 189 if (err) 190 return err; 191 192 mutex_lock(&data->update_lock); 193 data->in_min[nr] = IN_TO_REG(val); 194 lm78_write_value(data, LM78_REG_IN_MIN(nr), data->in_min[nr]); 195 mutex_unlock(&data->update_lock); 196 return count; 197 } 198 199 static ssize_t in_max_store(struct device *dev, struct device_attribute *da, 200 const char *buf, size_t count) 201 { 202 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 203 struct lm78_data *data = dev_get_drvdata(dev); 204 int nr = attr->index; 205 unsigned long val; 206 int err; 207 208 err = kstrtoul(buf, 10, &val); 209 if (err) 210 return err; 211 212 mutex_lock(&data->update_lock); 213 data->in_max[nr] = IN_TO_REG(val); 214 lm78_write_value(data, LM78_REG_IN_MAX(nr), data->in_max[nr]); 215 mutex_unlock(&data->update_lock); 216 return count; 217 } 218 219 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0); 220 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0); 221 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0); 222 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1); 223 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1); 224 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1); 225 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2); 226 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2); 227 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2); 228 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3); 229 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3); 230 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3); 231 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4); 232 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4); 233 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4); 234 static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5); 235 static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5); 236 static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5); 237 static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6); 238 static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6); 239 static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6); 240 241 /* Temperature */ 242 static ssize_t temp1_input_show(struct device *dev, 243 struct device_attribute *da, char *buf) 244 { 245 struct lm78_data *data = lm78_update_device(dev); 246 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp)); 247 } 248 249 static ssize_t temp1_max_show(struct device *dev, struct device_attribute *da, 250 char *buf) 251 { 252 struct lm78_data *data = lm78_update_device(dev); 253 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_over)); 254 } 255 256 static ssize_t temp1_max_store(struct device *dev, 257 struct device_attribute *da, const char *buf, 258 size_t count) 259 { 260 struct lm78_data *data = dev_get_drvdata(dev); 261 long val; 262 int err; 263 264 err = kstrtol(buf, 10, &val); 265 if (err) 266 return err; 267 268 mutex_lock(&data->update_lock); 269 data->temp_over = TEMP_TO_REG(val); 270 lm78_write_value(data, LM78_REG_TEMP_OVER, data->temp_over); 271 mutex_unlock(&data->update_lock); 272 return count; 273 } 274 275 static ssize_t temp1_max_hyst_show(struct device *dev, 276 struct device_attribute *da, char *buf) 277 { 278 struct lm78_data *data = lm78_update_device(dev); 279 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_hyst)); 280 } 281 282 static ssize_t temp1_max_hyst_store(struct device *dev, 283 struct device_attribute *da, 284 const char *buf, size_t count) 285 { 286 struct lm78_data *data = dev_get_drvdata(dev); 287 long val; 288 int err; 289 290 err = kstrtol(buf, 10, &val); 291 if (err) 292 return err; 293 294 mutex_lock(&data->update_lock); 295 data->temp_hyst = TEMP_TO_REG(val); 296 lm78_write_value(data, LM78_REG_TEMP_HYST, data->temp_hyst); 297 mutex_unlock(&data->update_lock); 298 return count; 299 } 300 301 static DEVICE_ATTR_RO(temp1_input); 302 static DEVICE_ATTR_RW(temp1_max); 303 static DEVICE_ATTR_RW(temp1_max_hyst); 304 305 /* 3 Fans */ 306 static ssize_t fan_show(struct device *dev, struct device_attribute *da, 307 char *buf) 308 { 309 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 310 struct lm78_data *data = lm78_update_device(dev); 311 int nr = attr->index; 312 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 313 DIV_FROM_REG(data->fan_div[nr]))); 314 } 315 316 static ssize_t fan_min_show(struct device *dev, struct device_attribute *da, 317 char *buf) 318 { 319 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 320 struct lm78_data *data = lm78_update_device(dev); 321 int nr = attr->index; 322 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 323 DIV_FROM_REG(data->fan_div[nr]))); 324 } 325 326 static ssize_t fan_min_store(struct device *dev, struct device_attribute *da, 327 const char *buf, size_t count) 328 { 329 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 330 struct lm78_data *data = dev_get_drvdata(dev); 331 int nr = attr->index; 332 unsigned long val; 333 int err; 334 335 err = kstrtoul(buf, 10, &val); 336 if (err) 337 return err; 338 339 mutex_lock(&data->update_lock); 340 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 341 lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]); 342 mutex_unlock(&data->update_lock); 343 return count; 344 } 345 346 static ssize_t fan_div_show(struct device *dev, struct device_attribute *da, 347 char *buf) 348 { 349 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 350 struct lm78_data *data = lm78_update_device(dev); 351 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[attr->index])); 352 } 353 354 /* 355 * Note: we save and restore the fan minimum here, because its value is 356 * determined in part by the fan divisor. This follows the principle of 357 * least surprise; the user doesn't expect the fan minimum to change just 358 * because the divisor changed. 359 */ 360 static ssize_t fan_div_store(struct device *dev, struct device_attribute *da, 361 const char *buf, size_t count) 362 { 363 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 364 struct lm78_data *data = dev_get_drvdata(dev); 365 int nr = attr->index; 366 unsigned long min; 367 u8 reg; 368 unsigned long val; 369 int err; 370 371 err = kstrtoul(buf, 10, &val); 372 if (err) 373 return err; 374 375 mutex_lock(&data->update_lock); 376 min = FAN_FROM_REG(data->fan_min[nr], 377 DIV_FROM_REG(data->fan_div[nr])); 378 379 switch (val) { 380 case 1: 381 data->fan_div[nr] = 0; 382 break; 383 case 2: 384 data->fan_div[nr] = 1; 385 break; 386 case 4: 387 data->fan_div[nr] = 2; 388 break; 389 case 8: 390 data->fan_div[nr] = 3; 391 break; 392 default: 393 dev_err(dev, 394 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", 395 val); 396 mutex_unlock(&data->update_lock); 397 return -EINVAL; 398 } 399 400 reg = lm78_read_value(data, LM78_REG_VID_FANDIV); 401 switch (nr) { 402 case 0: 403 reg = (reg & 0xcf) | (data->fan_div[nr] << 4); 404 break; 405 case 1: 406 reg = (reg & 0x3f) | (data->fan_div[nr] << 6); 407 break; 408 } 409 lm78_write_value(data, LM78_REG_VID_FANDIV, reg); 410 411 data->fan_min[nr] = 412 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 413 lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]); 414 mutex_unlock(&data->update_lock); 415 416 return count; 417 } 418 419 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); 420 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); 421 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); 422 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); 423 static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2); 424 static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2); 425 426 /* Fan 3 divisor is locked in H/W */ 427 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); 428 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); 429 static SENSOR_DEVICE_ATTR_RO(fan3_div, fan_div, 2); 430 431 /* VID */ 432 static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *da, 433 char *buf) 434 { 435 struct lm78_data *data = lm78_update_device(dev); 436 return sprintf(buf, "%d\n", vid_from_reg(data->vid, 82)); 437 } 438 static DEVICE_ATTR_RO(cpu0_vid); 439 440 /* Alarms */ 441 static ssize_t alarms_show(struct device *dev, struct device_attribute *da, 442 char *buf) 443 { 444 struct lm78_data *data = lm78_update_device(dev); 445 return sprintf(buf, "%u\n", data->alarms); 446 } 447 static DEVICE_ATTR_RO(alarms); 448 449 static ssize_t alarm_show(struct device *dev, struct device_attribute *da, 450 char *buf) 451 { 452 struct lm78_data *data = lm78_update_device(dev); 453 int nr = to_sensor_dev_attr(da)->index; 454 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); 455 } 456 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0); 457 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1); 458 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2); 459 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3); 460 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8); 461 static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9); 462 static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 10); 463 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6); 464 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7); 465 static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 11); 466 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4); 467 468 static struct attribute *lm78_attrs[] = { 469 &sensor_dev_attr_in0_input.dev_attr.attr, 470 &sensor_dev_attr_in0_min.dev_attr.attr, 471 &sensor_dev_attr_in0_max.dev_attr.attr, 472 &sensor_dev_attr_in0_alarm.dev_attr.attr, 473 &sensor_dev_attr_in1_input.dev_attr.attr, 474 &sensor_dev_attr_in1_min.dev_attr.attr, 475 &sensor_dev_attr_in1_max.dev_attr.attr, 476 &sensor_dev_attr_in1_alarm.dev_attr.attr, 477 &sensor_dev_attr_in2_input.dev_attr.attr, 478 &sensor_dev_attr_in2_min.dev_attr.attr, 479 &sensor_dev_attr_in2_max.dev_attr.attr, 480 &sensor_dev_attr_in2_alarm.dev_attr.attr, 481 &sensor_dev_attr_in3_input.dev_attr.attr, 482 &sensor_dev_attr_in3_min.dev_attr.attr, 483 &sensor_dev_attr_in3_max.dev_attr.attr, 484 &sensor_dev_attr_in3_alarm.dev_attr.attr, 485 &sensor_dev_attr_in4_input.dev_attr.attr, 486 &sensor_dev_attr_in4_min.dev_attr.attr, 487 &sensor_dev_attr_in4_max.dev_attr.attr, 488 &sensor_dev_attr_in4_alarm.dev_attr.attr, 489 &sensor_dev_attr_in5_input.dev_attr.attr, 490 &sensor_dev_attr_in5_min.dev_attr.attr, 491 &sensor_dev_attr_in5_max.dev_attr.attr, 492 &sensor_dev_attr_in5_alarm.dev_attr.attr, 493 &sensor_dev_attr_in6_input.dev_attr.attr, 494 &sensor_dev_attr_in6_min.dev_attr.attr, 495 &sensor_dev_attr_in6_max.dev_attr.attr, 496 &sensor_dev_attr_in6_alarm.dev_attr.attr, 497 &dev_attr_temp1_input.attr, 498 &dev_attr_temp1_max.attr, 499 &dev_attr_temp1_max_hyst.attr, 500 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 501 &sensor_dev_attr_fan1_input.dev_attr.attr, 502 &sensor_dev_attr_fan1_min.dev_attr.attr, 503 &sensor_dev_attr_fan1_div.dev_attr.attr, 504 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 505 &sensor_dev_attr_fan2_input.dev_attr.attr, 506 &sensor_dev_attr_fan2_min.dev_attr.attr, 507 &sensor_dev_attr_fan2_div.dev_attr.attr, 508 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 509 &sensor_dev_attr_fan3_input.dev_attr.attr, 510 &sensor_dev_attr_fan3_min.dev_attr.attr, 511 &sensor_dev_attr_fan3_div.dev_attr.attr, 512 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 513 &dev_attr_alarms.attr, 514 &dev_attr_cpu0_vid.attr, 515 516 NULL 517 }; 518 519 ATTRIBUTE_GROUPS(lm78); 520 521 /* 522 * ISA related code 523 */ 524 #ifdef CONFIG_ISA 525 526 /* ISA device, if found */ 527 static struct platform_device *pdev; 528 529 static unsigned short isa_address = 0x290; 530 531 static struct lm78_data *lm78_data_if_isa(void) 532 { 533 return pdev ? platform_get_drvdata(pdev) : NULL; 534 } 535 536 /* Returns 1 if the I2C chip appears to be an alias of the ISA chip */ 537 static int lm78_alias_detect(struct i2c_client *client, u8 chipid) 538 { 539 struct lm78_data *isa; 540 int i; 541 542 if (!pdev) /* No ISA chip */ 543 return 0; 544 isa = platform_get_drvdata(pdev); 545 546 if (lm78_read_value(isa, LM78_REG_I2C_ADDR) != client->addr) 547 return 0; /* Address doesn't match */ 548 if ((lm78_read_value(isa, LM78_REG_CHIPID) & 0xfe) != (chipid & 0xfe)) 549 return 0; /* Chip type doesn't match */ 550 551 /* 552 * We compare all the limit registers, the config register and the 553 * interrupt mask registers 554 */ 555 for (i = 0x2b; i <= 0x3d; i++) { 556 if (lm78_read_value(isa, i) != 557 i2c_smbus_read_byte_data(client, i)) 558 return 0; 559 } 560 if (lm78_read_value(isa, LM78_REG_CONFIG) != 561 i2c_smbus_read_byte_data(client, LM78_REG_CONFIG)) 562 return 0; 563 for (i = 0x43; i <= 0x46; i++) { 564 if (lm78_read_value(isa, i) != 565 i2c_smbus_read_byte_data(client, i)) 566 return 0; 567 } 568 569 return 1; 570 } 571 #else /* !CONFIG_ISA */ 572 573 static int lm78_alias_detect(struct i2c_client *client, u8 chipid) 574 { 575 return 0; 576 } 577 578 static struct lm78_data *lm78_data_if_isa(void) 579 { 580 return NULL; 581 } 582 #endif /* CONFIG_ISA */ 583 584 static int lm78_i2c_detect(struct i2c_client *client, 585 struct i2c_board_info *info) 586 { 587 int i; 588 struct lm78_data *isa = lm78_data_if_isa(); 589 const char *client_name; 590 struct i2c_adapter *adapter = client->adapter; 591 int address = client->addr; 592 593 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 594 return -ENODEV; 595 596 /* 597 * We block updates of the ISA device to minimize the risk of 598 * concurrent access to the same LM78 chip through different 599 * interfaces. 600 */ 601 if (isa) 602 mutex_lock(&isa->update_lock); 603 604 if ((i2c_smbus_read_byte_data(client, LM78_REG_CONFIG) & 0x80) 605 || i2c_smbus_read_byte_data(client, LM78_REG_I2C_ADDR) != address) 606 goto err_nodev; 607 608 /* Explicitly prevent the misdetection of Winbond chips */ 609 i = i2c_smbus_read_byte_data(client, 0x4f); 610 if (i == 0xa3 || i == 0x5c) 611 goto err_nodev; 612 613 /* Determine the chip type. */ 614 i = i2c_smbus_read_byte_data(client, LM78_REG_CHIPID); 615 if (i == 0x00 || i == 0x20 /* LM78 */ 616 || i == 0x40) /* LM78-J */ 617 client_name = "lm78"; 618 else if ((i & 0xfe) == 0xc0) 619 client_name = "lm79"; 620 else 621 goto err_nodev; 622 623 if (lm78_alias_detect(client, i)) { 624 dev_dbg(&adapter->dev, 625 "Device at 0x%02x appears to be the same as ISA device\n", 626 address); 627 goto err_nodev; 628 } 629 630 if (isa) 631 mutex_unlock(&isa->update_lock); 632 633 strlcpy(info->type, client_name, I2C_NAME_SIZE); 634 635 return 0; 636 637 err_nodev: 638 if (isa) 639 mutex_unlock(&isa->update_lock); 640 return -ENODEV; 641 } 642 643 static int lm78_i2c_probe(struct i2c_client *client, 644 const struct i2c_device_id *id) 645 { 646 struct device *dev = &client->dev; 647 struct device *hwmon_dev; 648 struct lm78_data *data; 649 650 data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL); 651 if (!data) 652 return -ENOMEM; 653 654 data->client = client; 655 data->type = id->driver_data; 656 657 /* Initialize the LM78 chip */ 658 lm78_init_device(data); 659 660 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 661 data, lm78_groups); 662 return PTR_ERR_OR_ZERO(hwmon_dev); 663 } 664 665 static const struct i2c_device_id lm78_i2c_id[] = { 666 { "lm78", lm78 }, 667 { "lm79", lm79 }, 668 { } 669 }; 670 MODULE_DEVICE_TABLE(i2c, lm78_i2c_id); 671 672 static struct i2c_driver lm78_driver = { 673 .class = I2C_CLASS_HWMON, 674 .driver = { 675 .name = "lm78", 676 }, 677 .probe = lm78_i2c_probe, 678 .id_table = lm78_i2c_id, 679 .detect = lm78_i2c_detect, 680 .address_list = normal_i2c, 681 }; 682 683 /* 684 * The SMBus locks itself, but ISA access must be locked explicitly! 685 * We don't want to lock the whole ISA bus, so we lock each client 686 * separately. 687 * We ignore the LM78 BUSY flag at this moment - it could lead to deadlocks, 688 * would slow down the LM78 access and should not be necessary. 689 */ 690 static int lm78_read_value(struct lm78_data *data, u8 reg) 691 { 692 struct i2c_client *client = data->client; 693 694 #ifdef CONFIG_ISA 695 if (!client) { /* ISA device */ 696 int res; 697 mutex_lock(&data->lock); 698 outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET); 699 res = inb_p(data->isa_addr + LM78_DATA_REG_OFFSET); 700 mutex_unlock(&data->lock); 701 return res; 702 } else 703 #endif 704 return i2c_smbus_read_byte_data(client, reg); 705 } 706 707 static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value) 708 { 709 struct i2c_client *client = data->client; 710 711 #ifdef CONFIG_ISA 712 if (!client) { /* ISA device */ 713 mutex_lock(&data->lock); 714 outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET); 715 outb_p(value, data->isa_addr + LM78_DATA_REG_OFFSET); 716 mutex_unlock(&data->lock); 717 return 0; 718 } else 719 #endif 720 return i2c_smbus_write_byte_data(client, reg, value); 721 } 722 723 static void lm78_init_device(struct lm78_data *data) 724 { 725 u8 config; 726 int i; 727 728 /* Start monitoring */ 729 config = lm78_read_value(data, LM78_REG_CONFIG); 730 if ((config & 0x09) != 0x01) 731 lm78_write_value(data, LM78_REG_CONFIG, 732 (config & 0xf7) | 0x01); 733 734 /* A few vars need to be filled upon startup */ 735 for (i = 0; i < 3; i++) { 736 data->fan_min[i] = lm78_read_value(data, 737 LM78_REG_FAN_MIN(i)); 738 } 739 740 mutex_init(&data->update_lock); 741 } 742 743 static struct lm78_data *lm78_update_device(struct device *dev) 744 { 745 struct lm78_data *data = dev_get_drvdata(dev); 746 int i; 747 748 mutex_lock(&data->update_lock); 749 750 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 751 || !data->valid) { 752 753 dev_dbg(dev, "Starting lm78 update\n"); 754 755 for (i = 0; i <= 6; i++) { 756 data->in[i] = 757 lm78_read_value(data, LM78_REG_IN(i)); 758 data->in_min[i] = 759 lm78_read_value(data, LM78_REG_IN_MIN(i)); 760 data->in_max[i] = 761 lm78_read_value(data, LM78_REG_IN_MAX(i)); 762 } 763 for (i = 0; i < 3; i++) { 764 data->fan[i] = 765 lm78_read_value(data, LM78_REG_FAN(i)); 766 data->fan_min[i] = 767 lm78_read_value(data, LM78_REG_FAN_MIN(i)); 768 } 769 data->temp = lm78_read_value(data, LM78_REG_TEMP); 770 data->temp_over = 771 lm78_read_value(data, LM78_REG_TEMP_OVER); 772 data->temp_hyst = 773 lm78_read_value(data, LM78_REG_TEMP_HYST); 774 i = lm78_read_value(data, LM78_REG_VID_FANDIV); 775 data->vid = i & 0x0f; 776 if (data->type == lm79) 777 data->vid |= 778 (lm78_read_value(data, LM78_REG_CHIPID) & 779 0x01) << 4; 780 else 781 data->vid |= 0x10; 782 data->fan_div[0] = (i >> 4) & 0x03; 783 data->fan_div[1] = i >> 6; 784 data->alarms = lm78_read_value(data, LM78_REG_ALARM1) + 785 (lm78_read_value(data, LM78_REG_ALARM2) << 8); 786 data->last_updated = jiffies; 787 data->valid = 1; 788 789 data->fan_div[2] = 1; 790 } 791 792 mutex_unlock(&data->update_lock); 793 794 return data; 795 } 796 797 #ifdef CONFIG_ISA 798 static int lm78_isa_probe(struct platform_device *pdev) 799 { 800 struct device *dev = &pdev->dev; 801 struct device *hwmon_dev; 802 struct lm78_data *data; 803 struct resource *res; 804 805 /* Reserve the ISA region */ 806 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 807 if (!devm_request_region(dev, res->start + LM78_ADDR_REG_OFFSET, 808 2, "lm78")) 809 return -EBUSY; 810 811 data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL); 812 if (!data) 813 return -ENOMEM; 814 815 mutex_init(&data->lock); 816 data->isa_addr = res->start; 817 platform_set_drvdata(pdev, data); 818 819 if (lm78_read_value(data, LM78_REG_CHIPID) & 0x80) { 820 data->type = lm79; 821 data->name = "lm79"; 822 } else { 823 data->type = lm78; 824 data->name = "lm78"; 825 } 826 827 /* Initialize the LM78 chip */ 828 lm78_init_device(data); 829 830 hwmon_dev = devm_hwmon_device_register_with_groups(dev, data->name, 831 data, lm78_groups); 832 return PTR_ERR_OR_ZERO(hwmon_dev); 833 } 834 835 static struct platform_driver lm78_isa_driver = { 836 .driver = { 837 .name = "lm78", 838 }, 839 .probe = lm78_isa_probe, 840 }; 841 842 /* return 1 if a supported chip is found, 0 otherwise */ 843 static int __init lm78_isa_found(unsigned short address) 844 { 845 int val, save, found = 0; 846 int port; 847 848 /* 849 * Some boards declare base+0 to base+7 as a PNP device, some base+4 850 * to base+7 and some base+5 to base+6. So we better request each port 851 * individually for the probing phase. 852 */ 853 for (port = address; port < address + LM78_EXTENT; port++) { 854 if (!request_region(port, 1, "lm78")) { 855 pr_debug("Failed to request port 0x%x\n", port); 856 goto release; 857 } 858 } 859 860 #define REALLY_SLOW_IO 861 /* 862 * We need the timeouts for at least some LM78-like 863 * chips. But only if we read 'undefined' registers. 864 */ 865 val = inb_p(address + 1); 866 if (inb_p(address + 2) != val 867 || inb_p(address + 3) != val 868 || inb_p(address + 7) != val) 869 goto release; 870 #undef REALLY_SLOW_IO 871 872 /* 873 * We should be able to change the 7 LSB of the address port. The 874 * MSB (busy flag) should be clear initially, set after the write. 875 */ 876 save = inb_p(address + LM78_ADDR_REG_OFFSET); 877 if (save & 0x80) 878 goto release; 879 val = ~save & 0x7f; 880 outb_p(val, address + LM78_ADDR_REG_OFFSET); 881 if (inb_p(address + LM78_ADDR_REG_OFFSET) != (val | 0x80)) { 882 outb_p(save, address + LM78_ADDR_REG_OFFSET); 883 goto release; 884 } 885 886 /* We found a device, now see if it could be an LM78 */ 887 outb_p(LM78_REG_CONFIG, address + LM78_ADDR_REG_OFFSET); 888 val = inb_p(address + LM78_DATA_REG_OFFSET); 889 if (val & 0x80) 890 goto release; 891 outb_p(LM78_REG_I2C_ADDR, address + LM78_ADDR_REG_OFFSET); 892 val = inb_p(address + LM78_DATA_REG_OFFSET); 893 if (val < 0x03 || val > 0x77) /* Not a valid I2C address */ 894 goto release; 895 896 /* The busy flag should be clear again */ 897 if (inb_p(address + LM78_ADDR_REG_OFFSET) & 0x80) 898 goto release; 899 900 /* Explicitly prevent the misdetection of Winbond chips */ 901 outb_p(0x4f, address + LM78_ADDR_REG_OFFSET); 902 val = inb_p(address + LM78_DATA_REG_OFFSET); 903 if (val == 0xa3 || val == 0x5c) 904 goto release; 905 906 /* Explicitly prevent the misdetection of ITE chips */ 907 outb_p(0x58, address + LM78_ADDR_REG_OFFSET); 908 val = inb_p(address + LM78_DATA_REG_OFFSET); 909 if (val == 0x90) 910 goto release; 911 912 /* Determine the chip type */ 913 outb_p(LM78_REG_CHIPID, address + LM78_ADDR_REG_OFFSET); 914 val = inb_p(address + LM78_DATA_REG_OFFSET); 915 if (val == 0x00 || val == 0x20 /* LM78 */ 916 || val == 0x40 /* LM78-J */ 917 || (val & 0xfe) == 0xc0) /* LM79 */ 918 found = 1; 919 920 if (found) 921 pr_info("Found an %s chip at %#x\n", 922 val & 0x80 ? "LM79" : "LM78", (int)address); 923 924 release: 925 for (port--; port >= address; port--) 926 release_region(port, 1); 927 return found; 928 } 929 930 static int __init lm78_isa_device_add(unsigned short address) 931 { 932 struct resource res = { 933 .start = address, 934 .end = address + LM78_EXTENT - 1, 935 .name = "lm78", 936 .flags = IORESOURCE_IO, 937 }; 938 int err; 939 940 pdev = platform_device_alloc("lm78", address); 941 if (!pdev) { 942 err = -ENOMEM; 943 pr_err("Device allocation failed\n"); 944 goto exit; 945 } 946 947 err = platform_device_add_resources(pdev, &res, 1); 948 if (err) { 949 pr_err("Device resource addition failed (%d)\n", err); 950 goto exit_device_put; 951 } 952 953 err = platform_device_add(pdev); 954 if (err) { 955 pr_err("Device addition failed (%d)\n", err); 956 goto exit_device_put; 957 } 958 959 return 0; 960 961 exit_device_put: 962 platform_device_put(pdev); 963 exit: 964 pdev = NULL; 965 return err; 966 } 967 968 static int __init lm78_isa_register(void) 969 { 970 int res; 971 972 if (lm78_isa_found(isa_address)) { 973 res = platform_driver_register(&lm78_isa_driver); 974 if (res) 975 goto exit; 976 977 /* Sets global pdev as a side effect */ 978 res = lm78_isa_device_add(isa_address); 979 if (res) 980 goto exit_unreg_isa_driver; 981 } 982 983 return 0; 984 985 exit_unreg_isa_driver: 986 platform_driver_unregister(&lm78_isa_driver); 987 exit: 988 return res; 989 } 990 991 static void lm78_isa_unregister(void) 992 { 993 if (pdev) { 994 platform_device_unregister(pdev); 995 platform_driver_unregister(&lm78_isa_driver); 996 } 997 } 998 #else /* !CONFIG_ISA */ 999 1000 static int __init lm78_isa_register(void) 1001 { 1002 return 0; 1003 } 1004 1005 static void lm78_isa_unregister(void) 1006 { 1007 } 1008 #endif /* CONFIG_ISA */ 1009 1010 static int __init sm_lm78_init(void) 1011 { 1012 int res; 1013 1014 /* 1015 * We register the ISA device first, so that we can skip the 1016 * registration of an I2C interface to the same device. 1017 */ 1018 res = lm78_isa_register(); 1019 if (res) 1020 goto exit; 1021 1022 res = i2c_add_driver(&lm78_driver); 1023 if (res) 1024 goto exit_unreg_isa_device; 1025 1026 return 0; 1027 1028 exit_unreg_isa_device: 1029 lm78_isa_unregister(); 1030 exit: 1031 return res; 1032 } 1033 1034 static void __exit sm_lm78_exit(void) 1035 { 1036 lm78_isa_unregister(); 1037 i2c_del_driver(&lm78_driver); 1038 } 1039 1040 MODULE_AUTHOR("Frodo Looijaard, Jean Delvare <jdelvare@suse.de>"); 1041 MODULE_DESCRIPTION("LM78/LM79 driver"); 1042 MODULE_LICENSE("GPL"); 1043 1044 module_init(sm_lm78_init); 1045 module_exit(sm_lm78_exit); 1046