xref: /openbmc/linux/drivers/hwmon/lm75.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm75.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	 monitoring
5  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/jiffies.h>
12 #include <linux/i2c.h>
13 #include <linux/hwmon.h>
14 #include <linux/hwmon-sysfs.h>
15 #include <linux/err.h>
16 #include <linux/of_device.h>
17 #include <linux/of.h>
18 #include <linux/regmap.h>
19 #include <linux/util_macros.h>
20 #include "lm75.h"
21 
22 /*
23  * This driver handles the LM75 and compatible digital temperature sensors.
24  */
25 
26 enum lm75_type {		/* keep sorted in alphabetical order */
27 	adt75,
28 	ds1775,
29 	ds75,
30 	ds7505,
31 	g751,
32 	lm75,
33 	lm75a,
34 	lm75b,
35 	max6625,
36 	max6626,
37 	max31725,
38 	mcp980x,
39 	pct2075,
40 	stds75,
41 	stlm75,
42 	tcn75,
43 	tmp100,
44 	tmp101,
45 	tmp105,
46 	tmp112,
47 	tmp175,
48 	tmp275,
49 	tmp75,
50 	tmp75b,
51 	tmp75c,
52 };
53 
54 /**
55  * struct lm75_params - lm75 configuration parameters.
56  * @set_mask:		Bits to set in configuration register when configuring
57  *			the chip.
58  * @clr_mask:		Bits to clear in configuration register when configuring
59  *			the chip.
60  * @default_resolution:	Default number of bits to represent the temperature
61  *			value.
62  * @resolution_limits:	Limit register resolution. Optional. Should be set if
63  *			the resolution of limit registers does not match the
64  *			resolution of the temperature register.
65  * @resolutions:	List of resolutions associated with sample times.
66  *			Optional. Should be set if num_sample_times is larger
67  *			than 1, and if the resolution changes with sample times.
68  *			If set, number of entries must match num_sample_times.
69  * @default_sample_time:Sample time to be set by default.
70  * @num_sample_times:	Number of possible sample times to be set. Optional.
71  *			Should be set if the number of sample times is larger
72  *			than one.
73  * @sample_times:	All the possible sample times to be set. Mandatory if
74  *			num_sample_times is larger than 1. If set, number of
75  *			entries must match num_sample_times.
76  */
77 
78 struct lm75_params {
79 	u8			set_mask;
80 	u8			clr_mask;
81 	u8			default_resolution;
82 	u8			resolution_limits;
83 	const u8		*resolutions;
84 	unsigned int		default_sample_time;
85 	u8			num_sample_times;
86 	const unsigned int	*sample_times;
87 };
88 
89 /* Addresses scanned */
90 static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4b, 0x4c,
91 					0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
92 
93 /* The LM75 registers */
94 #define LM75_REG_TEMP		0x00
95 #define LM75_REG_CONF		0x01
96 #define LM75_REG_HYST		0x02
97 #define LM75_REG_MAX		0x03
98 #define PCT2075_REG_IDLE	0x04
99 
100 /* Each client has this additional data */
101 struct lm75_data {
102 	struct i2c_client		*client;
103 	struct regmap			*regmap;
104 	u8				orig_conf;
105 	u8				current_conf;
106 	u8				resolution;	/* In bits, 9 to 16 */
107 	unsigned int			sample_time;	/* In ms */
108 	enum lm75_type			kind;
109 	const struct lm75_params	*params;
110 };
111 
112 /*-----------------------------------------------------------------------*/
113 
114 static const u8 lm75_sample_set_masks[] = { 0 << 5, 1 << 5, 2 << 5, 3 << 5 };
115 
116 #define LM75_SAMPLE_CLEAR_MASK	(3 << 5)
117 
118 /* The structure below stores the configuration values of the supported devices.
119  * In case of being supported multiple configurations, the default one must
120  * always be the first element of the array
121  */
122 static const struct lm75_params device_params[] = {
123 	[adt75] = {
124 		.clr_mask = 1 << 5,	/* not one-shot mode */
125 		.default_resolution = 12,
126 		.default_sample_time = MSEC_PER_SEC / 10,
127 	},
128 	[ds1775] = {
129 		.clr_mask = 3 << 5,
130 		.set_mask = 2 << 5,	/* 11-bit mode */
131 		.default_resolution = 11,
132 		.default_sample_time = 500,
133 		.num_sample_times = 4,
134 		.sample_times = (unsigned int []){ 125, 250, 500, 1000 },
135 		.resolutions = (u8 []) {9, 10, 11, 12 },
136 	},
137 	[ds75] = {
138 		.clr_mask = 3 << 5,
139 		.set_mask = 2 << 5,	/* 11-bit mode */
140 		.default_resolution = 11,
141 		.default_sample_time = 600,
142 		.num_sample_times = 4,
143 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
144 		.resolutions = (u8 []) {9, 10, 11, 12 },
145 	},
146 	[stds75] = {
147 		.clr_mask = 3 << 5,
148 		.set_mask = 2 << 5,	/* 11-bit mode */
149 		.default_resolution = 11,
150 		.default_sample_time = 600,
151 		.num_sample_times = 4,
152 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
153 		.resolutions = (u8 []) {9, 10, 11, 12 },
154 	},
155 	[stlm75] = {
156 		.default_resolution = 9,
157 		.default_sample_time = MSEC_PER_SEC / 6,
158 	},
159 	[ds7505] = {
160 		.set_mask = 3 << 5,	/* 12-bit mode*/
161 		.default_resolution = 12,
162 		.default_sample_time = 200,
163 		.num_sample_times = 4,
164 		.sample_times = (unsigned int []){ 25, 50, 100, 200 },
165 		.resolutions = (u8 []) {9, 10, 11, 12 },
166 	},
167 	[g751] = {
168 		.default_resolution = 9,
169 		.default_sample_time = MSEC_PER_SEC / 10,
170 	},
171 	[lm75] = {
172 		.default_resolution = 9,
173 		.default_sample_time = MSEC_PER_SEC / 10,
174 	},
175 	[lm75a] = {
176 		.default_resolution = 9,
177 		.default_sample_time = MSEC_PER_SEC / 10,
178 	},
179 	[lm75b] = {
180 		.default_resolution = 11,
181 		.default_sample_time = MSEC_PER_SEC / 10,
182 	},
183 	[max6625] = {
184 		.default_resolution = 9,
185 		.default_sample_time = MSEC_PER_SEC / 7,
186 	},
187 	[max6626] = {
188 		.default_resolution = 12,
189 		.default_sample_time = MSEC_PER_SEC / 7,
190 		.resolution_limits = 9,
191 	},
192 	[max31725] = {
193 		.default_resolution = 16,
194 		.default_sample_time = MSEC_PER_SEC / 20,
195 	},
196 	[tcn75] = {
197 		.default_resolution = 9,
198 		.default_sample_time = MSEC_PER_SEC / 18,
199 	},
200 	[pct2075] = {
201 		.default_resolution = 11,
202 		.default_sample_time = MSEC_PER_SEC / 10,
203 		.num_sample_times = 31,
204 		.sample_times = (unsigned int []){ 100, 200, 300, 400, 500, 600,
205 		700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
206 		1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700,
207 		2800, 2900, 3000, 3100 },
208 	},
209 	[mcp980x] = {
210 		.set_mask = 3 << 5,	/* 12-bit mode */
211 		.clr_mask = 1 << 7,	/* not one-shot mode */
212 		.default_resolution = 12,
213 		.resolution_limits = 9,
214 		.default_sample_time = 240,
215 		.num_sample_times = 4,
216 		.sample_times = (unsigned int []){ 30, 60, 120, 240 },
217 		.resolutions = (u8 []) {9, 10, 11, 12 },
218 	},
219 	[tmp100] = {
220 		.set_mask = 3 << 5,	/* 12-bit mode */
221 		.clr_mask = 1 << 7,	/* not one-shot mode */
222 		.default_resolution = 12,
223 		.default_sample_time = 320,
224 		.num_sample_times = 4,
225 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
226 		.resolutions = (u8 []) {9, 10, 11, 12 },
227 	},
228 	[tmp101] = {
229 		.set_mask = 3 << 5,	/* 12-bit mode */
230 		.clr_mask = 1 << 7,	/* not one-shot mode */
231 		.default_resolution = 12,
232 		.default_sample_time = 320,
233 		.num_sample_times = 4,
234 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
235 		.resolutions = (u8 []) {9, 10, 11, 12 },
236 	},
237 	[tmp105] = {
238 		.set_mask = 3 << 5,	/* 12-bit mode */
239 		.clr_mask = 1 << 7,	/* not one-shot mode*/
240 		.default_resolution = 12,
241 		.default_sample_time = 220,
242 		.num_sample_times = 4,
243 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
244 		.resolutions = (u8 []) {9, 10, 11, 12 },
245 	},
246 	[tmp112] = {
247 		.set_mask = 3 << 5,	/* 8 samples / second */
248 		.clr_mask = 1 << 7,	/* no one-shot mode*/
249 		.default_resolution = 12,
250 		.default_sample_time = 125,
251 		.num_sample_times = 4,
252 		.sample_times = (unsigned int []){ 125, 250, 1000, 4000 },
253 	},
254 	[tmp175] = {
255 		.set_mask = 3 << 5,	/* 12-bit mode */
256 		.clr_mask = 1 << 7,	/* not one-shot mode*/
257 		.default_resolution = 12,
258 		.default_sample_time = 220,
259 		.num_sample_times = 4,
260 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
261 		.resolutions = (u8 []) {9, 10, 11, 12 },
262 	},
263 	[tmp275] = {
264 		.set_mask = 3 << 5,	/* 12-bit mode */
265 		.clr_mask = 1 << 7,	/* not one-shot mode*/
266 		.default_resolution = 12,
267 		.default_sample_time = 220,
268 		.num_sample_times = 4,
269 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
270 		.resolutions = (u8 []) {9, 10, 11, 12 },
271 	},
272 	[tmp75] = {
273 		.set_mask = 3 << 5,	/* 12-bit mode */
274 		.clr_mask = 1 << 7,	/* not one-shot mode*/
275 		.default_resolution = 12,
276 		.default_sample_time = 220,
277 		.num_sample_times = 4,
278 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
279 		.resolutions = (u8 []) {9, 10, 11, 12 },
280 	},
281 	[tmp75b] = { /* not one-shot mode, Conversion rate 37Hz */
282 		.clr_mask = 1 << 7 | 3 << 5,
283 		.default_resolution = 12,
284 		.default_sample_time = MSEC_PER_SEC / 37,
285 		.sample_times = (unsigned int []){ MSEC_PER_SEC / 37,
286 			MSEC_PER_SEC / 18,
287 			MSEC_PER_SEC / 9, MSEC_PER_SEC / 4 },
288 		.num_sample_times = 4,
289 	},
290 	[tmp75c] = {
291 		.clr_mask = 1 << 5,	/*not one-shot mode*/
292 		.default_resolution = 12,
293 		.default_sample_time = MSEC_PER_SEC / 12,
294 	}
295 };
296 
297 static inline long lm75_reg_to_mc(s16 temp, u8 resolution)
298 {
299 	return ((temp >> (16 - resolution)) * 1000) >> (resolution - 8);
300 }
301 
302 static int lm75_write_config(struct lm75_data *data, u8 set_mask,
303 			     u8 clr_mask)
304 {
305 	u8 value;
306 
307 	clr_mask |= LM75_SHUTDOWN;
308 	value = data->current_conf & ~clr_mask;
309 	value |= set_mask;
310 
311 	if (data->current_conf != value) {
312 		s32 err;
313 
314 		err = i2c_smbus_write_byte_data(data->client, LM75_REG_CONF,
315 						value);
316 		if (err)
317 			return err;
318 		data->current_conf = value;
319 	}
320 	return 0;
321 }
322 
323 static int lm75_read(struct device *dev, enum hwmon_sensor_types type,
324 		     u32 attr, int channel, long *val)
325 {
326 	struct lm75_data *data = dev_get_drvdata(dev);
327 	unsigned int regval;
328 	int err, reg;
329 
330 	switch (type) {
331 	case hwmon_chip:
332 		switch (attr) {
333 		case hwmon_chip_update_interval:
334 			*val = data->sample_time;
335 			break;
336 		default:
337 			return -EINVAL;
338 		}
339 		break;
340 	case hwmon_temp:
341 		switch (attr) {
342 		case hwmon_temp_input:
343 			reg = LM75_REG_TEMP;
344 			break;
345 		case hwmon_temp_max:
346 			reg = LM75_REG_MAX;
347 			break;
348 		case hwmon_temp_max_hyst:
349 			reg = LM75_REG_HYST;
350 			break;
351 		default:
352 			return -EINVAL;
353 		}
354 		err = regmap_read(data->regmap, reg, &regval);
355 		if (err < 0)
356 			return err;
357 
358 		*val = lm75_reg_to_mc(regval, data->resolution);
359 		break;
360 	default:
361 		return -EINVAL;
362 	}
363 	return 0;
364 }
365 
366 static int lm75_write_temp(struct device *dev, u32 attr, long temp)
367 {
368 	struct lm75_data *data = dev_get_drvdata(dev);
369 	u8 resolution;
370 	int reg;
371 
372 	switch (attr) {
373 	case hwmon_temp_max:
374 		reg = LM75_REG_MAX;
375 		break;
376 	case hwmon_temp_max_hyst:
377 		reg = LM75_REG_HYST;
378 		break;
379 	default:
380 		return -EINVAL;
381 	}
382 
383 	/*
384 	 * Resolution of limit registers is assumed to be the same as the
385 	 * temperature input register resolution unless given explicitly.
386 	 */
387 	if (data->params->resolution_limits)
388 		resolution = data->params->resolution_limits;
389 	else
390 		resolution = data->resolution;
391 
392 	temp = clamp_val(temp, LM75_TEMP_MIN, LM75_TEMP_MAX);
393 	temp = DIV_ROUND_CLOSEST(temp  << (resolution - 8),
394 				 1000) << (16 - resolution);
395 
396 	return regmap_write(data->regmap, reg, (u16)temp);
397 }
398 
399 static int lm75_update_interval(struct device *dev, long val)
400 {
401 	struct lm75_data *data = dev_get_drvdata(dev);
402 	unsigned int reg;
403 	u8 index;
404 	s32 err;
405 
406 	index = find_closest(val, data->params->sample_times,
407 			     (int)data->params->num_sample_times);
408 
409 	switch (data->kind) {
410 	default:
411 		err = lm75_write_config(data, lm75_sample_set_masks[index],
412 					LM75_SAMPLE_CLEAR_MASK);
413 		if (err)
414 			return err;
415 
416 		data->sample_time = data->params->sample_times[index];
417 		if (data->params->resolutions)
418 			data->resolution = data->params->resolutions[index];
419 		break;
420 	case tmp112:
421 		err = regmap_read(data->regmap, LM75_REG_CONF, &reg);
422 		if (err < 0)
423 			return err;
424 		reg &= ~0x00c0;
425 		reg |= (3 - index) << 6;
426 		err = regmap_write(data->regmap, LM75_REG_CONF, reg);
427 		if (err < 0)
428 			return err;
429 		data->sample_time = data->params->sample_times[index];
430 		break;
431 	case pct2075:
432 		err = i2c_smbus_write_byte_data(data->client, PCT2075_REG_IDLE,
433 						index + 1);
434 		if (err)
435 			return err;
436 		data->sample_time = data->params->sample_times[index];
437 		break;
438 	}
439 	return 0;
440 }
441 
442 static int lm75_write_chip(struct device *dev, u32 attr, long val)
443 {
444 	switch (attr) {
445 	case hwmon_chip_update_interval:
446 		return lm75_update_interval(dev, val);
447 	default:
448 		return -EINVAL;
449 	}
450 	return 0;
451 }
452 
453 static int lm75_write(struct device *dev, enum hwmon_sensor_types type,
454 		      u32 attr, int channel, long val)
455 {
456 	switch (type) {
457 	case hwmon_chip:
458 		return lm75_write_chip(dev, attr, val);
459 	case hwmon_temp:
460 		return lm75_write_temp(dev, attr, val);
461 	default:
462 		return -EINVAL;
463 	}
464 	return 0;
465 }
466 
467 static umode_t lm75_is_visible(const void *data, enum hwmon_sensor_types type,
468 			       u32 attr, int channel)
469 {
470 	const struct lm75_data *config_data = data;
471 
472 	switch (type) {
473 	case hwmon_chip:
474 		switch (attr) {
475 		case hwmon_chip_update_interval:
476 			if (config_data->params->num_sample_times > 1)
477 				return 0644;
478 			return 0444;
479 		}
480 		break;
481 	case hwmon_temp:
482 		switch (attr) {
483 		case hwmon_temp_input:
484 			return 0444;
485 		case hwmon_temp_max:
486 		case hwmon_temp_max_hyst:
487 			return 0644;
488 		}
489 		break;
490 	default:
491 		break;
492 	}
493 	return 0;
494 }
495 
496 static const struct hwmon_channel_info *lm75_info[] = {
497 	HWMON_CHANNEL_INFO(chip,
498 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
499 	HWMON_CHANNEL_INFO(temp,
500 			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST),
501 	NULL
502 };
503 
504 static const struct hwmon_ops lm75_hwmon_ops = {
505 	.is_visible = lm75_is_visible,
506 	.read = lm75_read,
507 	.write = lm75_write,
508 };
509 
510 static const struct hwmon_chip_info lm75_chip_info = {
511 	.ops = &lm75_hwmon_ops,
512 	.info = lm75_info,
513 };
514 
515 static bool lm75_is_writeable_reg(struct device *dev, unsigned int reg)
516 {
517 	return reg != LM75_REG_TEMP;
518 }
519 
520 static bool lm75_is_volatile_reg(struct device *dev, unsigned int reg)
521 {
522 	return reg == LM75_REG_TEMP || reg == LM75_REG_CONF;
523 }
524 
525 static const struct regmap_config lm75_regmap_config = {
526 	.reg_bits = 8,
527 	.val_bits = 16,
528 	.max_register = PCT2075_REG_IDLE,
529 	.writeable_reg = lm75_is_writeable_reg,
530 	.volatile_reg = lm75_is_volatile_reg,
531 	.val_format_endian = REGMAP_ENDIAN_BIG,
532 	.cache_type = REGCACHE_RBTREE,
533 	.use_single_read = true,
534 	.use_single_write = true,
535 };
536 
537 static void lm75_remove(void *data)
538 {
539 	struct lm75_data *lm75 = data;
540 	struct i2c_client *client = lm75->client;
541 
542 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, lm75->orig_conf);
543 }
544 
545 static int
546 lm75_probe(struct i2c_client *client, const struct i2c_device_id *id)
547 {
548 	struct device *dev = &client->dev;
549 	struct device *hwmon_dev;
550 	struct lm75_data *data;
551 	int status, err;
552 	enum lm75_type kind;
553 
554 	if (client->dev.of_node)
555 		kind = (enum lm75_type)of_device_get_match_data(&client->dev);
556 	else
557 		kind = id->driver_data;
558 
559 	if (!i2c_check_functionality(client->adapter,
560 			I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA))
561 		return -EIO;
562 
563 	data = devm_kzalloc(dev, sizeof(struct lm75_data), GFP_KERNEL);
564 	if (!data)
565 		return -ENOMEM;
566 
567 	data->client = client;
568 	data->kind = kind;
569 
570 	data->regmap = devm_regmap_init_i2c(client, &lm75_regmap_config);
571 	if (IS_ERR(data->regmap))
572 		return PTR_ERR(data->regmap);
573 
574 	/* Set to LM75 resolution (9 bits, 1/2 degree C) and range.
575 	 * Then tweak to be more precise when appropriate.
576 	 */
577 
578 	data->params = &device_params[data->kind];
579 
580 	/* Save default sample time and resolution*/
581 	data->sample_time = data->params->default_sample_time;
582 	data->resolution = data->params->default_resolution;
583 
584 	/* Cache original configuration */
585 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
586 	if (status < 0) {
587 		dev_dbg(dev, "Can't read config? %d\n", status);
588 		return status;
589 	}
590 	data->orig_conf = status;
591 	data->current_conf = status;
592 
593 	err = lm75_write_config(data, data->params->set_mask,
594 				data->params->clr_mask);
595 	if (err)
596 		return err;
597 
598 	err = devm_add_action_or_reset(dev, lm75_remove, data);
599 	if (err)
600 		return err;
601 
602 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
603 							 data, &lm75_chip_info,
604 							 NULL);
605 	if (IS_ERR(hwmon_dev))
606 		return PTR_ERR(hwmon_dev);
607 
608 	dev_info(dev, "%s: sensor '%s'\n", dev_name(hwmon_dev), client->name);
609 
610 	return 0;
611 }
612 
613 static const struct i2c_device_id lm75_ids[] = {
614 	{ "adt75", adt75, },
615 	{ "ds1775", ds1775, },
616 	{ "ds75", ds75, },
617 	{ "ds7505", ds7505, },
618 	{ "g751", g751, },
619 	{ "lm75", lm75, },
620 	{ "lm75a", lm75a, },
621 	{ "lm75b", lm75b, },
622 	{ "max6625", max6625, },
623 	{ "max6626", max6626, },
624 	{ "max31725", max31725, },
625 	{ "max31726", max31725, },
626 	{ "mcp980x", mcp980x, },
627 	{ "pct2075", pct2075, },
628 	{ "stds75", stds75, },
629 	{ "stlm75", stlm75, },
630 	{ "tcn75", tcn75, },
631 	{ "tmp100", tmp100, },
632 	{ "tmp101", tmp101, },
633 	{ "tmp105", tmp105, },
634 	{ "tmp112", tmp112, },
635 	{ "tmp175", tmp175, },
636 	{ "tmp275", tmp275, },
637 	{ "tmp75", tmp75, },
638 	{ "tmp75b", tmp75b, },
639 	{ "tmp75c", tmp75c, },
640 	{ /* LIST END */ }
641 };
642 MODULE_DEVICE_TABLE(i2c, lm75_ids);
643 
644 static const struct of_device_id __maybe_unused lm75_of_match[] = {
645 	{
646 		.compatible = "adi,adt75",
647 		.data = (void *)adt75
648 	},
649 	{
650 		.compatible = "dallas,ds1775",
651 		.data = (void *)ds1775
652 	},
653 	{
654 		.compatible = "dallas,ds75",
655 		.data = (void *)ds75
656 	},
657 	{
658 		.compatible = "dallas,ds7505",
659 		.data = (void *)ds7505
660 	},
661 	{
662 		.compatible = "gmt,g751",
663 		.data = (void *)g751
664 	},
665 	{
666 		.compatible = "national,lm75",
667 		.data = (void *)lm75
668 	},
669 	{
670 		.compatible = "national,lm75a",
671 		.data = (void *)lm75a
672 	},
673 	{
674 		.compatible = "national,lm75b",
675 		.data = (void *)lm75b
676 	},
677 	{
678 		.compatible = "maxim,max6625",
679 		.data = (void *)max6625
680 	},
681 	{
682 		.compatible = "maxim,max6626",
683 		.data = (void *)max6626
684 	},
685 	{
686 		.compatible = "maxim,max31725",
687 		.data = (void *)max31725
688 	},
689 	{
690 		.compatible = "maxim,max31726",
691 		.data = (void *)max31725
692 	},
693 	{
694 		.compatible = "maxim,mcp980x",
695 		.data = (void *)mcp980x
696 	},
697 	{
698 		.compatible = "nxp,pct2075",
699 		.data = (void *)pct2075
700 	},
701 	{
702 		.compatible = "st,stds75",
703 		.data = (void *)stds75
704 	},
705 	{
706 		.compatible = "st,stlm75",
707 		.data = (void *)stlm75
708 	},
709 	{
710 		.compatible = "microchip,tcn75",
711 		.data = (void *)tcn75
712 	},
713 	{
714 		.compatible = "ti,tmp100",
715 		.data = (void *)tmp100
716 	},
717 	{
718 		.compatible = "ti,tmp101",
719 		.data = (void *)tmp101
720 	},
721 	{
722 		.compatible = "ti,tmp105",
723 		.data = (void *)tmp105
724 	},
725 	{
726 		.compatible = "ti,tmp112",
727 		.data = (void *)tmp112
728 	},
729 	{
730 		.compatible = "ti,tmp175",
731 		.data = (void *)tmp175
732 	},
733 	{
734 		.compatible = "ti,tmp275",
735 		.data = (void *)tmp275
736 	},
737 	{
738 		.compatible = "ti,tmp75",
739 		.data = (void *)tmp75
740 	},
741 	{
742 		.compatible = "ti,tmp75b",
743 		.data = (void *)tmp75b
744 	},
745 	{
746 		.compatible = "ti,tmp75c",
747 		.data = (void *)tmp75c
748 	},
749 	{ },
750 };
751 MODULE_DEVICE_TABLE(of, lm75_of_match);
752 
753 #define LM75A_ID 0xA1
754 
755 /* Return 0 if detection is successful, -ENODEV otherwise */
756 static int lm75_detect(struct i2c_client *new_client,
757 		       struct i2c_board_info *info)
758 {
759 	struct i2c_adapter *adapter = new_client->adapter;
760 	int i;
761 	int conf, hyst, os;
762 	bool is_lm75a = 0;
763 
764 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
765 				     I2C_FUNC_SMBUS_WORD_DATA))
766 		return -ENODEV;
767 
768 	/*
769 	 * Now, we do the remaining detection. There is no identification-
770 	 * dedicated register so we have to rely on several tricks:
771 	 * unused bits, registers cycling over 8-address boundaries,
772 	 * addresses 0x04-0x07 returning the last read value.
773 	 * The cycling+unused addresses combination is not tested,
774 	 * since it would significantly slow the detection down and would
775 	 * hardly add any value.
776 	 *
777 	 * The National Semiconductor LM75A is different than earlier
778 	 * LM75s.  It has an ID byte of 0xaX (where X is the chip
779 	 * revision, with 1 being the only revision in existence) in
780 	 * register 7, and unused registers return 0xff rather than the
781 	 * last read value.
782 	 *
783 	 * Note that this function only detects the original National
784 	 * Semiconductor LM75 and the LM75A. Clones from other vendors
785 	 * aren't detected, on purpose, because they are typically never
786 	 * found on PC hardware. They are found on embedded designs where
787 	 * they can be instantiated explicitly so detection is not needed.
788 	 * The absence of identification registers on all these clones
789 	 * would make their exhaustive detection very difficult and weak,
790 	 * and odds are that the driver would bind to unsupported devices.
791 	 */
792 
793 	/* Unused bits */
794 	conf = i2c_smbus_read_byte_data(new_client, 1);
795 	if (conf & 0xe0)
796 		return -ENODEV;
797 
798 	/* First check for LM75A */
799 	if (i2c_smbus_read_byte_data(new_client, 7) == LM75A_ID) {
800 		/* LM75A returns 0xff on unused registers so
801 		   just to be sure we check for that too. */
802 		if (i2c_smbus_read_byte_data(new_client, 4) != 0xff
803 		 || i2c_smbus_read_byte_data(new_client, 5) != 0xff
804 		 || i2c_smbus_read_byte_data(new_client, 6) != 0xff)
805 			return -ENODEV;
806 		is_lm75a = 1;
807 		hyst = i2c_smbus_read_byte_data(new_client, 2);
808 		os = i2c_smbus_read_byte_data(new_client, 3);
809 	} else { /* Traditional style LM75 detection */
810 		/* Unused addresses */
811 		hyst = i2c_smbus_read_byte_data(new_client, 2);
812 		if (i2c_smbus_read_byte_data(new_client, 4) != hyst
813 		 || i2c_smbus_read_byte_data(new_client, 5) != hyst
814 		 || i2c_smbus_read_byte_data(new_client, 6) != hyst
815 		 || i2c_smbus_read_byte_data(new_client, 7) != hyst)
816 			return -ENODEV;
817 		os = i2c_smbus_read_byte_data(new_client, 3);
818 		if (i2c_smbus_read_byte_data(new_client, 4) != os
819 		 || i2c_smbus_read_byte_data(new_client, 5) != os
820 		 || i2c_smbus_read_byte_data(new_client, 6) != os
821 		 || i2c_smbus_read_byte_data(new_client, 7) != os)
822 			return -ENODEV;
823 	}
824 	/*
825 	 * It is very unlikely that this is a LM75 if both
826 	 * hysteresis and temperature limit registers are 0.
827 	 */
828 	if (hyst == 0 && os == 0)
829 		return -ENODEV;
830 
831 	/* Addresses cycling */
832 	for (i = 8; i <= 248; i += 40) {
833 		if (i2c_smbus_read_byte_data(new_client, i + 1) != conf
834 		 || i2c_smbus_read_byte_data(new_client, i + 2) != hyst
835 		 || i2c_smbus_read_byte_data(new_client, i + 3) != os)
836 			return -ENODEV;
837 		if (is_lm75a && i2c_smbus_read_byte_data(new_client, i + 7)
838 				!= LM75A_ID)
839 			return -ENODEV;
840 	}
841 
842 	strlcpy(info->type, is_lm75a ? "lm75a" : "lm75", I2C_NAME_SIZE);
843 
844 	return 0;
845 }
846 
847 #ifdef CONFIG_PM
848 static int lm75_suspend(struct device *dev)
849 {
850 	int status;
851 	struct i2c_client *client = to_i2c_client(dev);
852 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
853 	if (status < 0) {
854 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
855 		return status;
856 	}
857 	status = status | LM75_SHUTDOWN;
858 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
859 	return 0;
860 }
861 
862 static int lm75_resume(struct device *dev)
863 {
864 	int status;
865 	struct i2c_client *client = to_i2c_client(dev);
866 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
867 	if (status < 0) {
868 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
869 		return status;
870 	}
871 	status = status & ~LM75_SHUTDOWN;
872 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
873 	return 0;
874 }
875 
876 static const struct dev_pm_ops lm75_dev_pm_ops = {
877 	.suspend	= lm75_suspend,
878 	.resume		= lm75_resume,
879 };
880 #define LM75_DEV_PM_OPS (&lm75_dev_pm_ops)
881 #else
882 #define LM75_DEV_PM_OPS NULL
883 #endif /* CONFIG_PM */
884 
885 static struct i2c_driver lm75_driver = {
886 	.class		= I2C_CLASS_HWMON,
887 	.driver = {
888 		.name	= "lm75",
889 		.of_match_table = of_match_ptr(lm75_of_match),
890 		.pm	= LM75_DEV_PM_OPS,
891 	},
892 	.probe		= lm75_probe,
893 	.id_table	= lm75_ids,
894 	.detect		= lm75_detect,
895 	.address_list	= normal_i2c,
896 };
897 
898 module_i2c_driver(lm75_driver);
899 
900 MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
901 MODULE_DESCRIPTION("LM75 driver");
902 MODULE_LICENSE("GPL");
903