1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * lm75.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/jiffies.h> 12 #include <linux/i2c.h> 13 #include <linux/hwmon.h> 14 #include <linux/hwmon-sysfs.h> 15 #include <linux/err.h> 16 #include <linux/of.h> 17 #include <linux/regmap.h> 18 #include <linux/util_macros.h> 19 #include <linux/regulator/consumer.h> 20 #include "lm75.h" 21 22 /* 23 * This driver handles the LM75 and compatible digital temperature sensors. 24 */ 25 26 enum lm75_type { /* keep sorted in alphabetical order */ 27 adt75, 28 at30ts74, 29 ds1775, 30 ds75, 31 ds7505, 32 g751, 33 lm75, 34 lm75a, 35 lm75b, 36 max6625, 37 max6626, 38 max31725, 39 mcp980x, 40 pct2075, 41 stds75, 42 stlm75, 43 tcn75, 44 tmp100, 45 tmp101, 46 tmp105, 47 tmp112, 48 tmp175, 49 tmp275, 50 tmp75, 51 tmp75b, 52 tmp75c, 53 tmp1075, 54 }; 55 56 /** 57 * struct lm75_params - lm75 configuration parameters. 58 * @set_mask: Bits to set in configuration register when configuring 59 * the chip. 60 * @clr_mask: Bits to clear in configuration register when configuring 61 * the chip. 62 * @default_resolution: Default number of bits to represent the temperature 63 * value. 64 * @resolution_limits: Limit register resolution. Optional. Should be set if 65 * the resolution of limit registers does not match the 66 * resolution of the temperature register. 67 * @resolutions: List of resolutions associated with sample times. 68 * Optional. Should be set if num_sample_times is larger 69 * than 1, and if the resolution changes with sample times. 70 * If set, number of entries must match num_sample_times. 71 * @default_sample_time:Sample time to be set by default. 72 * @num_sample_times: Number of possible sample times to be set. Optional. 73 * Should be set if the number of sample times is larger 74 * than one. 75 * @sample_times: All the possible sample times to be set. Mandatory if 76 * num_sample_times is larger than 1. If set, number of 77 * entries must match num_sample_times. 78 */ 79 80 struct lm75_params { 81 u8 set_mask; 82 u8 clr_mask; 83 u8 default_resolution; 84 u8 resolution_limits; 85 const u8 *resolutions; 86 unsigned int default_sample_time; 87 u8 num_sample_times; 88 const unsigned int *sample_times; 89 }; 90 91 /* Addresses scanned */ 92 static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4b, 0x4c, 93 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; 94 95 /* The LM75 registers */ 96 #define LM75_REG_TEMP 0x00 97 #define LM75_REG_CONF 0x01 98 #define LM75_REG_HYST 0x02 99 #define LM75_REG_MAX 0x03 100 #define PCT2075_REG_IDLE 0x04 101 102 /* Each client has this additional data */ 103 struct lm75_data { 104 struct i2c_client *client; 105 struct regmap *regmap; 106 struct regulator *vs; 107 u8 orig_conf; 108 u8 current_conf; 109 u8 resolution; /* In bits, 9 to 16 */ 110 unsigned int sample_time; /* In ms */ 111 enum lm75_type kind; 112 const struct lm75_params *params; 113 }; 114 115 /*-----------------------------------------------------------------------*/ 116 117 static const u8 lm75_sample_set_masks[] = { 0 << 5, 1 << 5, 2 << 5, 3 << 5 }; 118 119 #define LM75_SAMPLE_CLEAR_MASK (3 << 5) 120 121 /* The structure below stores the configuration values of the supported devices. 122 * In case of being supported multiple configurations, the default one must 123 * always be the first element of the array 124 */ 125 static const struct lm75_params device_params[] = { 126 [adt75] = { 127 .clr_mask = 1 << 5, /* not one-shot mode */ 128 .default_resolution = 12, 129 .default_sample_time = MSEC_PER_SEC / 10, 130 }, 131 [at30ts74] = { 132 .set_mask = 3 << 5, /* 12-bit mode*/ 133 .default_resolution = 12, 134 .default_sample_time = 200, 135 .num_sample_times = 4, 136 .sample_times = (unsigned int []){ 25, 50, 100, 200 }, 137 .resolutions = (u8 []) {9, 10, 11, 12 }, 138 }, 139 [ds1775] = { 140 .clr_mask = 3 << 5, 141 .set_mask = 2 << 5, /* 11-bit mode */ 142 .default_resolution = 11, 143 .default_sample_time = 500, 144 .num_sample_times = 4, 145 .sample_times = (unsigned int []){ 125, 250, 500, 1000 }, 146 .resolutions = (u8 []) {9, 10, 11, 12 }, 147 }, 148 [ds75] = { 149 .clr_mask = 3 << 5, 150 .set_mask = 2 << 5, /* 11-bit mode */ 151 .default_resolution = 11, 152 .default_sample_time = 600, 153 .num_sample_times = 4, 154 .sample_times = (unsigned int []){ 150, 300, 600, 1200 }, 155 .resolutions = (u8 []) {9, 10, 11, 12 }, 156 }, 157 [stds75] = { 158 .clr_mask = 3 << 5, 159 .set_mask = 2 << 5, /* 11-bit mode */ 160 .default_resolution = 11, 161 .default_sample_time = 600, 162 .num_sample_times = 4, 163 .sample_times = (unsigned int []){ 150, 300, 600, 1200 }, 164 .resolutions = (u8 []) {9, 10, 11, 12 }, 165 }, 166 [stlm75] = { 167 .default_resolution = 9, 168 .default_sample_time = MSEC_PER_SEC / 6, 169 }, 170 [ds7505] = { 171 .set_mask = 3 << 5, /* 12-bit mode*/ 172 .default_resolution = 12, 173 .default_sample_time = 200, 174 .num_sample_times = 4, 175 .sample_times = (unsigned int []){ 25, 50, 100, 200 }, 176 .resolutions = (u8 []) {9, 10, 11, 12 }, 177 }, 178 [g751] = { 179 .default_resolution = 9, 180 .default_sample_time = MSEC_PER_SEC / 10, 181 }, 182 [lm75] = { 183 .default_resolution = 9, 184 .default_sample_time = MSEC_PER_SEC / 10, 185 }, 186 [lm75a] = { 187 .default_resolution = 9, 188 .default_sample_time = MSEC_PER_SEC / 10, 189 }, 190 [lm75b] = { 191 .default_resolution = 11, 192 .default_sample_time = MSEC_PER_SEC / 10, 193 }, 194 [max6625] = { 195 .default_resolution = 9, 196 .default_sample_time = MSEC_PER_SEC / 7, 197 }, 198 [max6626] = { 199 .default_resolution = 12, 200 .default_sample_time = MSEC_PER_SEC / 7, 201 .resolution_limits = 9, 202 }, 203 [max31725] = { 204 .default_resolution = 16, 205 .default_sample_time = MSEC_PER_SEC / 20, 206 }, 207 [tcn75] = { 208 .default_resolution = 9, 209 .default_sample_time = MSEC_PER_SEC / 18, 210 }, 211 [pct2075] = { 212 .default_resolution = 11, 213 .default_sample_time = MSEC_PER_SEC / 10, 214 .num_sample_times = 31, 215 .sample_times = (unsigned int []){ 100, 200, 300, 400, 500, 600, 216 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 217 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 218 2800, 2900, 3000, 3100 }, 219 }, 220 [mcp980x] = { 221 .set_mask = 3 << 5, /* 12-bit mode */ 222 .clr_mask = 1 << 7, /* not one-shot mode */ 223 .default_resolution = 12, 224 .resolution_limits = 9, 225 .default_sample_time = 240, 226 .num_sample_times = 4, 227 .sample_times = (unsigned int []){ 30, 60, 120, 240 }, 228 .resolutions = (u8 []) {9, 10, 11, 12 }, 229 }, 230 [tmp100] = { 231 .set_mask = 3 << 5, /* 12-bit mode */ 232 .clr_mask = 1 << 7, /* not one-shot mode */ 233 .default_resolution = 12, 234 .default_sample_time = 320, 235 .num_sample_times = 4, 236 .sample_times = (unsigned int []){ 40, 80, 160, 320 }, 237 .resolutions = (u8 []) {9, 10, 11, 12 }, 238 }, 239 [tmp101] = { 240 .set_mask = 3 << 5, /* 12-bit mode */ 241 .clr_mask = 1 << 7, /* not one-shot mode */ 242 .default_resolution = 12, 243 .default_sample_time = 320, 244 .num_sample_times = 4, 245 .sample_times = (unsigned int []){ 40, 80, 160, 320 }, 246 .resolutions = (u8 []) {9, 10, 11, 12 }, 247 }, 248 [tmp105] = { 249 .set_mask = 3 << 5, /* 12-bit mode */ 250 .clr_mask = 1 << 7, /* not one-shot mode*/ 251 .default_resolution = 12, 252 .default_sample_time = 220, 253 .num_sample_times = 4, 254 .sample_times = (unsigned int []){ 28, 55, 110, 220 }, 255 .resolutions = (u8 []) {9, 10, 11, 12 }, 256 }, 257 [tmp112] = { 258 .set_mask = 3 << 5, /* 8 samples / second */ 259 .clr_mask = 1 << 7, /* no one-shot mode*/ 260 .default_resolution = 12, 261 .default_sample_time = 125, 262 .num_sample_times = 4, 263 .sample_times = (unsigned int []){ 125, 250, 1000, 4000 }, 264 }, 265 [tmp175] = { 266 .set_mask = 3 << 5, /* 12-bit mode */ 267 .clr_mask = 1 << 7, /* not one-shot mode*/ 268 .default_resolution = 12, 269 .default_sample_time = 220, 270 .num_sample_times = 4, 271 .sample_times = (unsigned int []){ 28, 55, 110, 220 }, 272 .resolutions = (u8 []) {9, 10, 11, 12 }, 273 }, 274 [tmp275] = { 275 .set_mask = 3 << 5, /* 12-bit mode */ 276 .clr_mask = 1 << 7, /* not one-shot mode*/ 277 .default_resolution = 12, 278 .default_sample_time = 220, 279 .num_sample_times = 4, 280 .sample_times = (unsigned int []){ 28, 55, 110, 220 }, 281 .resolutions = (u8 []) {9, 10, 11, 12 }, 282 }, 283 [tmp75] = { 284 .set_mask = 3 << 5, /* 12-bit mode */ 285 .clr_mask = 1 << 7, /* not one-shot mode*/ 286 .default_resolution = 12, 287 .default_sample_time = 220, 288 .num_sample_times = 4, 289 .sample_times = (unsigned int []){ 28, 55, 110, 220 }, 290 .resolutions = (u8 []) {9, 10, 11, 12 }, 291 }, 292 [tmp75b] = { /* not one-shot mode, Conversion rate 37Hz */ 293 .clr_mask = 1 << 7 | 3 << 5, 294 .default_resolution = 12, 295 .default_sample_time = MSEC_PER_SEC / 37, 296 .sample_times = (unsigned int []){ MSEC_PER_SEC / 37, 297 MSEC_PER_SEC / 18, 298 MSEC_PER_SEC / 9, MSEC_PER_SEC / 4 }, 299 .num_sample_times = 4, 300 }, 301 [tmp75c] = { 302 .clr_mask = 1 << 5, /*not one-shot mode*/ 303 .default_resolution = 12, 304 .default_sample_time = MSEC_PER_SEC / 12, 305 }, 306 [tmp1075] = { /* not one-shot mode, 27.5 ms sample rate */ 307 .clr_mask = 1 << 5 | 1 << 6 | 1 << 7, 308 .default_resolution = 12, 309 .default_sample_time = 28, 310 .num_sample_times = 4, 311 .sample_times = (unsigned int []){ 28, 55, 110, 220 }, 312 } 313 }; 314 315 static inline long lm75_reg_to_mc(s16 temp, u8 resolution) 316 { 317 return ((temp >> (16 - resolution)) * 1000) >> (resolution - 8); 318 } 319 320 static int lm75_write_config(struct lm75_data *data, u8 set_mask, 321 u8 clr_mask) 322 { 323 u8 value; 324 325 clr_mask |= LM75_SHUTDOWN; 326 value = data->current_conf & ~clr_mask; 327 value |= set_mask; 328 329 if (data->current_conf != value) { 330 s32 err; 331 332 err = i2c_smbus_write_byte_data(data->client, LM75_REG_CONF, 333 value); 334 if (err) 335 return err; 336 data->current_conf = value; 337 } 338 return 0; 339 } 340 341 static int lm75_read(struct device *dev, enum hwmon_sensor_types type, 342 u32 attr, int channel, long *val) 343 { 344 struct lm75_data *data = dev_get_drvdata(dev); 345 unsigned int regval; 346 int err, reg; 347 348 switch (type) { 349 case hwmon_chip: 350 switch (attr) { 351 case hwmon_chip_update_interval: 352 *val = data->sample_time; 353 break; 354 default: 355 return -EINVAL; 356 } 357 break; 358 case hwmon_temp: 359 switch (attr) { 360 case hwmon_temp_input: 361 reg = LM75_REG_TEMP; 362 break; 363 case hwmon_temp_max: 364 reg = LM75_REG_MAX; 365 break; 366 case hwmon_temp_max_hyst: 367 reg = LM75_REG_HYST; 368 break; 369 default: 370 return -EINVAL; 371 } 372 err = regmap_read(data->regmap, reg, ®val); 373 if (err < 0) 374 return err; 375 376 *val = lm75_reg_to_mc(regval, data->resolution); 377 break; 378 default: 379 return -EINVAL; 380 } 381 return 0; 382 } 383 384 static int lm75_write_temp(struct device *dev, u32 attr, long temp) 385 { 386 struct lm75_data *data = dev_get_drvdata(dev); 387 u8 resolution; 388 int reg; 389 390 switch (attr) { 391 case hwmon_temp_max: 392 reg = LM75_REG_MAX; 393 break; 394 case hwmon_temp_max_hyst: 395 reg = LM75_REG_HYST; 396 break; 397 default: 398 return -EINVAL; 399 } 400 401 /* 402 * Resolution of limit registers is assumed to be the same as the 403 * temperature input register resolution unless given explicitly. 404 */ 405 if (data->params->resolution_limits) 406 resolution = data->params->resolution_limits; 407 else 408 resolution = data->resolution; 409 410 temp = clamp_val(temp, LM75_TEMP_MIN, LM75_TEMP_MAX); 411 temp = DIV_ROUND_CLOSEST(temp << (resolution - 8), 412 1000) << (16 - resolution); 413 414 return regmap_write(data->regmap, reg, (u16)temp); 415 } 416 417 static int lm75_update_interval(struct device *dev, long val) 418 { 419 struct lm75_data *data = dev_get_drvdata(dev); 420 unsigned int reg; 421 u8 index; 422 s32 err; 423 424 index = find_closest(val, data->params->sample_times, 425 (int)data->params->num_sample_times); 426 427 switch (data->kind) { 428 default: 429 err = lm75_write_config(data, lm75_sample_set_masks[index], 430 LM75_SAMPLE_CLEAR_MASK); 431 if (err) 432 return err; 433 434 data->sample_time = data->params->sample_times[index]; 435 if (data->params->resolutions) 436 data->resolution = data->params->resolutions[index]; 437 break; 438 case tmp112: 439 err = regmap_read(data->regmap, LM75_REG_CONF, ®); 440 if (err < 0) 441 return err; 442 reg &= ~0x00c0; 443 reg |= (3 - index) << 6; 444 err = regmap_write(data->regmap, LM75_REG_CONF, reg); 445 if (err < 0) 446 return err; 447 data->sample_time = data->params->sample_times[index]; 448 break; 449 case pct2075: 450 err = i2c_smbus_write_byte_data(data->client, PCT2075_REG_IDLE, 451 index + 1); 452 if (err) 453 return err; 454 data->sample_time = data->params->sample_times[index]; 455 break; 456 } 457 return 0; 458 } 459 460 static int lm75_write_chip(struct device *dev, u32 attr, long val) 461 { 462 switch (attr) { 463 case hwmon_chip_update_interval: 464 return lm75_update_interval(dev, val); 465 default: 466 return -EINVAL; 467 } 468 return 0; 469 } 470 471 static int lm75_write(struct device *dev, enum hwmon_sensor_types type, 472 u32 attr, int channel, long val) 473 { 474 switch (type) { 475 case hwmon_chip: 476 return lm75_write_chip(dev, attr, val); 477 case hwmon_temp: 478 return lm75_write_temp(dev, attr, val); 479 default: 480 return -EINVAL; 481 } 482 return 0; 483 } 484 485 static umode_t lm75_is_visible(const void *data, enum hwmon_sensor_types type, 486 u32 attr, int channel) 487 { 488 const struct lm75_data *config_data = data; 489 490 switch (type) { 491 case hwmon_chip: 492 switch (attr) { 493 case hwmon_chip_update_interval: 494 if (config_data->params->num_sample_times > 1) 495 return 0644; 496 return 0444; 497 } 498 break; 499 case hwmon_temp: 500 switch (attr) { 501 case hwmon_temp_input: 502 return 0444; 503 case hwmon_temp_max: 504 case hwmon_temp_max_hyst: 505 return 0644; 506 } 507 break; 508 default: 509 break; 510 } 511 return 0; 512 } 513 514 static const struct hwmon_channel_info * const lm75_info[] = { 515 HWMON_CHANNEL_INFO(chip, 516 HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), 517 HWMON_CHANNEL_INFO(temp, 518 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST), 519 NULL 520 }; 521 522 static const struct hwmon_ops lm75_hwmon_ops = { 523 .is_visible = lm75_is_visible, 524 .read = lm75_read, 525 .write = lm75_write, 526 }; 527 528 static const struct hwmon_chip_info lm75_chip_info = { 529 .ops = &lm75_hwmon_ops, 530 .info = lm75_info, 531 }; 532 533 static bool lm75_is_writeable_reg(struct device *dev, unsigned int reg) 534 { 535 return reg != LM75_REG_TEMP; 536 } 537 538 static bool lm75_is_volatile_reg(struct device *dev, unsigned int reg) 539 { 540 return reg == LM75_REG_TEMP || reg == LM75_REG_CONF; 541 } 542 543 static const struct regmap_config lm75_regmap_config = { 544 .reg_bits = 8, 545 .val_bits = 16, 546 .max_register = PCT2075_REG_IDLE, 547 .writeable_reg = lm75_is_writeable_reg, 548 .volatile_reg = lm75_is_volatile_reg, 549 .val_format_endian = REGMAP_ENDIAN_BIG, 550 .cache_type = REGCACHE_MAPLE, 551 .use_single_read = true, 552 .use_single_write = true, 553 }; 554 555 static void lm75_disable_regulator(void *data) 556 { 557 struct lm75_data *lm75 = data; 558 559 regulator_disable(lm75->vs); 560 } 561 562 static void lm75_remove(void *data) 563 { 564 struct lm75_data *lm75 = data; 565 struct i2c_client *client = lm75->client; 566 567 i2c_smbus_write_byte_data(client, LM75_REG_CONF, lm75->orig_conf); 568 } 569 570 static const struct i2c_device_id lm75_ids[]; 571 572 static int lm75_probe(struct i2c_client *client) 573 { 574 struct device *dev = &client->dev; 575 struct device *hwmon_dev; 576 struct lm75_data *data; 577 int status, err; 578 enum lm75_type kind; 579 580 if (client->dev.of_node) 581 kind = (uintptr_t)of_device_get_match_data(&client->dev); 582 else 583 kind = i2c_match_id(lm75_ids, client)->driver_data; 584 585 if (!i2c_check_functionality(client->adapter, 586 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA)) 587 return -EIO; 588 589 data = devm_kzalloc(dev, sizeof(struct lm75_data), GFP_KERNEL); 590 if (!data) 591 return -ENOMEM; 592 593 data->client = client; 594 data->kind = kind; 595 596 data->vs = devm_regulator_get(dev, "vs"); 597 if (IS_ERR(data->vs)) 598 return PTR_ERR(data->vs); 599 600 data->regmap = devm_regmap_init_i2c(client, &lm75_regmap_config); 601 if (IS_ERR(data->regmap)) 602 return PTR_ERR(data->regmap); 603 604 /* Set to LM75 resolution (9 bits, 1/2 degree C) and range. 605 * Then tweak to be more precise when appropriate. 606 */ 607 608 data->params = &device_params[data->kind]; 609 610 /* Save default sample time and resolution*/ 611 data->sample_time = data->params->default_sample_time; 612 data->resolution = data->params->default_resolution; 613 614 /* Enable the power */ 615 err = regulator_enable(data->vs); 616 if (err) { 617 dev_err(dev, "failed to enable regulator: %d\n", err); 618 return err; 619 } 620 621 err = devm_add_action_or_reset(dev, lm75_disable_regulator, data); 622 if (err) 623 return err; 624 625 /* Cache original configuration */ 626 status = i2c_smbus_read_byte_data(client, LM75_REG_CONF); 627 if (status < 0) { 628 dev_dbg(dev, "Can't read config? %d\n", status); 629 return status; 630 } 631 data->orig_conf = status; 632 data->current_conf = status; 633 634 err = lm75_write_config(data, data->params->set_mask, 635 data->params->clr_mask); 636 if (err) 637 return err; 638 639 err = devm_add_action_or_reset(dev, lm75_remove, data); 640 if (err) 641 return err; 642 643 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, 644 data, &lm75_chip_info, 645 NULL); 646 if (IS_ERR(hwmon_dev)) 647 return PTR_ERR(hwmon_dev); 648 649 dev_info(dev, "%s: sensor '%s'\n", dev_name(hwmon_dev), client->name); 650 651 return 0; 652 } 653 654 static const struct i2c_device_id lm75_ids[] = { 655 { "adt75", adt75, }, 656 { "at30ts74", at30ts74, }, 657 { "ds1775", ds1775, }, 658 { "ds75", ds75, }, 659 { "ds7505", ds7505, }, 660 { "g751", g751, }, 661 { "lm75", lm75, }, 662 { "lm75a", lm75a, }, 663 { "lm75b", lm75b, }, 664 { "max6625", max6625, }, 665 { "max6626", max6626, }, 666 { "max31725", max31725, }, 667 { "max31726", max31725, }, 668 { "mcp980x", mcp980x, }, 669 { "pct2075", pct2075, }, 670 { "stds75", stds75, }, 671 { "stlm75", stlm75, }, 672 { "tcn75", tcn75, }, 673 { "tmp100", tmp100, }, 674 { "tmp101", tmp101, }, 675 { "tmp105", tmp105, }, 676 { "tmp112", tmp112, }, 677 { "tmp175", tmp175, }, 678 { "tmp275", tmp275, }, 679 { "tmp75", tmp75, }, 680 { "tmp75b", tmp75b, }, 681 { "tmp75c", tmp75c, }, 682 { "tmp1075", tmp1075, }, 683 { /* LIST END */ } 684 }; 685 MODULE_DEVICE_TABLE(i2c, lm75_ids); 686 687 static const struct of_device_id __maybe_unused lm75_of_match[] = { 688 { 689 .compatible = "adi,adt75", 690 .data = (void *)adt75 691 }, 692 { 693 .compatible = "atmel,at30ts74", 694 .data = (void *)at30ts74 695 }, 696 { 697 .compatible = "dallas,ds1775", 698 .data = (void *)ds1775 699 }, 700 { 701 .compatible = "dallas,ds75", 702 .data = (void *)ds75 703 }, 704 { 705 .compatible = "dallas,ds7505", 706 .data = (void *)ds7505 707 }, 708 { 709 .compatible = "gmt,g751", 710 .data = (void *)g751 711 }, 712 { 713 .compatible = "national,lm75", 714 .data = (void *)lm75 715 }, 716 { 717 .compatible = "national,lm75a", 718 .data = (void *)lm75a 719 }, 720 { 721 .compatible = "national,lm75b", 722 .data = (void *)lm75b 723 }, 724 { 725 .compatible = "maxim,max6625", 726 .data = (void *)max6625 727 }, 728 { 729 .compatible = "maxim,max6626", 730 .data = (void *)max6626 731 }, 732 { 733 .compatible = "maxim,max31725", 734 .data = (void *)max31725 735 }, 736 { 737 .compatible = "maxim,max31726", 738 .data = (void *)max31725 739 }, 740 { 741 .compatible = "maxim,mcp980x", 742 .data = (void *)mcp980x 743 }, 744 { 745 .compatible = "nxp,pct2075", 746 .data = (void *)pct2075 747 }, 748 { 749 .compatible = "st,stds75", 750 .data = (void *)stds75 751 }, 752 { 753 .compatible = "st,stlm75", 754 .data = (void *)stlm75 755 }, 756 { 757 .compatible = "microchip,tcn75", 758 .data = (void *)tcn75 759 }, 760 { 761 .compatible = "ti,tmp100", 762 .data = (void *)tmp100 763 }, 764 { 765 .compatible = "ti,tmp101", 766 .data = (void *)tmp101 767 }, 768 { 769 .compatible = "ti,tmp105", 770 .data = (void *)tmp105 771 }, 772 { 773 .compatible = "ti,tmp112", 774 .data = (void *)tmp112 775 }, 776 { 777 .compatible = "ti,tmp175", 778 .data = (void *)tmp175 779 }, 780 { 781 .compatible = "ti,tmp275", 782 .data = (void *)tmp275 783 }, 784 { 785 .compatible = "ti,tmp75", 786 .data = (void *)tmp75 787 }, 788 { 789 .compatible = "ti,tmp75b", 790 .data = (void *)tmp75b 791 }, 792 { 793 .compatible = "ti,tmp75c", 794 .data = (void *)tmp75c 795 }, 796 { 797 .compatible = "ti,tmp1075", 798 .data = (void *)tmp1075 799 }, 800 { }, 801 }; 802 MODULE_DEVICE_TABLE(of, lm75_of_match); 803 804 #define LM75A_ID 0xA1 805 806 /* Return 0 if detection is successful, -ENODEV otherwise */ 807 static int lm75_detect(struct i2c_client *new_client, 808 struct i2c_board_info *info) 809 { 810 struct i2c_adapter *adapter = new_client->adapter; 811 int i; 812 int conf, hyst, os; 813 bool is_lm75a = 0; 814 815 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA | 816 I2C_FUNC_SMBUS_WORD_DATA)) 817 return -ENODEV; 818 819 /* 820 * Now, we do the remaining detection. There is no identification- 821 * dedicated register so we have to rely on several tricks: 822 * unused bits, registers cycling over 8-address boundaries, 823 * addresses 0x04-0x07 returning the last read value. 824 * The cycling+unused addresses combination is not tested, 825 * since it would significantly slow the detection down and would 826 * hardly add any value. 827 * 828 * The National Semiconductor LM75A is different than earlier 829 * LM75s. It has an ID byte of 0xaX (where X is the chip 830 * revision, with 1 being the only revision in existence) in 831 * register 7, and unused registers return 0xff rather than the 832 * last read value. 833 * 834 * Note that this function only detects the original National 835 * Semiconductor LM75 and the LM75A. Clones from other vendors 836 * aren't detected, on purpose, because they are typically never 837 * found on PC hardware. They are found on embedded designs where 838 * they can be instantiated explicitly so detection is not needed. 839 * The absence of identification registers on all these clones 840 * would make their exhaustive detection very difficult and weak, 841 * and odds are that the driver would bind to unsupported devices. 842 */ 843 844 /* Unused bits */ 845 conf = i2c_smbus_read_byte_data(new_client, 1); 846 if (conf & 0xe0) 847 return -ENODEV; 848 849 /* First check for LM75A */ 850 if (i2c_smbus_read_byte_data(new_client, 7) == LM75A_ID) { 851 /* 852 * LM75A returns 0xff on unused registers so 853 * just to be sure we check for that too. 854 */ 855 if (i2c_smbus_read_byte_data(new_client, 4) != 0xff 856 || i2c_smbus_read_byte_data(new_client, 5) != 0xff 857 || i2c_smbus_read_byte_data(new_client, 6) != 0xff) 858 return -ENODEV; 859 is_lm75a = 1; 860 hyst = i2c_smbus_read_byte_data(new_client, 2); 861 os = i2c_smbus_read_byte_data(new_client, 3); 862 } else { /* Traditional style LM75 detection */ 863 /* Unused addresses */ 864 hyst = i2c_smbus_read_byte_data(new_client, 2); 865 if (i2c_smbus_read_byte_data(new_client, 4) != hyst 866 || i2c_smbus_read_byte_data(new_client, 5) != hyst 867 || i2c_smbus_read_byte_data(new_client, 6) != hyst 868 || i2c_smbus_read_byte_data(new_client, 7) != hyst) 869 return -ENODEV; 870 os = i2c_smbus_read_byte_data(new_client, 3); 871 if (i2c_smbus_read_byte_data(new_client, 4) != os 872 || i2c_smbus_read_byte_data(new_client, 5) != os 873 || i2c_smbus_read_byte_data(new_client, 6) != os 874 || i2c_smbus_read_byte_data(new_client, 7) != os) 875 return -ENODEV; 876 } 877 /* 878 * It is very unlikely that this is a LM75 if both 879 * hysteresis and temperature limit registers are 0. 880 */ 881 if (hyst == 0 && os == 0) 882 return -ENODEV; 883 884 /* Addresses cycling */ 885 for (i = 8; i <= 248; i += 40) { 886 if (i2c_smbus_read_byte_data(new_client, i + 1) != conf 887 || i2c_smbus_read_byte_data(new_client, i + 2) != hyst 888 || i2c_smbus_read_byte_data(new_client, i + 3) != os) 889 return -ENODEV; 890 if (is_lm75a && i2c_smbus_read_byte_data(new_client, i + 7) 891 != LM75A_ID) 892 return -ENODEV; 893 } 894 895 strscpy(info->type, is_lm75a ? "lm75a" : "lm75", I2C_NAME_SIZE); 896 897 return 0; 898 } 899 900 #ifdef CONFIG_PM 901 static int lm75_suspend(struct device *dev) 902 { 903 int status; 904 struct i2c_client *client = to_i2c_client(dev); 905 906 status = i2c_smbus_read_byte_data(client, LM75_REG_CONF); 907 if (status < 0) { 908 dev_dbg(&client->dev, "Can't read config? %d\n", status); 909 return status; 910 } 911 status = status | LM75_SHUTDOWN; 912 i2c_smbus_write_byte_data(client, LM75_REG_CONF, status); 913 return 0; 914 } 915 916 static int lm75_resume(struct device *dev) 917 { 918 int status; 919 struct i2c_client *client = to_i2c_client(dev); 920 921 status = i2c_smbus_read_byte_data(client, LM75_REG_CONF); 922 if (status < 0) { 923 dev_dbg(&client->dev, "Can't read config? %d\n", status); 924 return status; 925 } 926 status = status & ~LM75_SHUTDOWN; 927 i2c_smbus_write_byte_data(client, LM75_REG_CONF, status); 928 return 0; 929 } 930 931 static const struct dev_pm_ops lm75_dev_pm_ops = { 932 .suspend = lm75_suspend, 933 .resume = lm75_resume, 934 }; 935 #define LM75_DEV_PM_OPS (&lm75_dev_pm_ops) 936 #else 937 #define LM75_DEV_PM_OPS NULL 938 #endif /* CONFIG_PM */ 939 940 static struct i2c_driver lm75_driver = { 941 .class = I2C_CLASS_HWMON, 942 .driver = { 943 .name = "lm75", 944 .of_match_table = of_match_ptr(lm75_of_match), 945 .pm = LM75_DEV_PM_OPS, 946 }, 947 .probe = lm75_probe, 948 .id_table = lm75_ids, 949 .detect = lm75_detect, 950 .address_list = normal_i2c, 951 }; 952 953 module_i2c_driver(lm75_driver); 954 955 MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>"); 956 MODULE_DESCRIPTION("LM75 driver"); 957 MODULE_LICENSE("GPL"); 958