1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for Lineage Compact Power Line series of power entry modules. 4 * 5 * Copyright (C) 2010, 2011 Ericsson AB. 6 * 7 * Documentation: 8 * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/jiffies.h> 20 21 /* 22 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC 23 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others. 24 * 25 * The devices are nominally PMBus compliant. However, most standard PMBus 26 * commands are not supported. Specifically, all hardware monitoring and 27 * status reporting commands are non-standard. For this reason, a standard 28 * PMBus driver can not be used. 29 * 30 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541). 31 * To ensure device access, this driver should only be used as client driver 32 * to the pca9541 I2C master selector driver. 33 */ 34 35 /* Command codes */ 36 #define PEM_OPERATION 0x01 37 #define PEM_CLEAR_INFO_FLAGS 0x03 38 #define PEM_VOUT_COMMAND 0x21 39 #define PEM_VOUT_OV_FAULT_LIMIT 0x40 40 #define PEM_READ_DATA_STRING 0xd0 41 #define PEM_READ_INPUT_STRING 0xdc 42 #define PEM_READ_FIRMWARE_REV 0xdd 43 #define PEM_READ_RUN_TIMER 0xde 44 #define PEM_FAN_HI_SPEED 0xdf 45 #define PEM_FAN_NORMAL_SPEED 0xe0 46 #define PEM_READ_FAN_SPEED 0xe1 47 48 /* offsets in data string */ 49 #define PEM_DATA_STATUS_2 0 50 #define PEM_DATA_STATUS_1 1 51 #define PEM_DATA_ALARM_2 2 52 #define PEM_DATA_ALARM_1 3 53 #define PEM_DATA_VOUT_LSB 4 54 #define PEM_DATA_VOUT_MSB 5 55 #define PEM_DATA_CURRENT 6 56 #define PEM_DATA_TEMP 7 57 58 /* Virtual entries, to report constants */ 59 #define PEM_DATA_TEMP_MAX 10 60 #define PEM_DATA_TEMP_CRIT 11 61 62 /* offsets in input string */ 63 #define PEM_INPUT_VOLTAGE 0 64 #define PEM_INPUT_POWER_LSB 1 65 #define PEM_INPUT_POWER_MSB 2 66 67 /* offsets in fan data */ 68 #define PEM_FAN_ADJUSTMENT 0 69 #define PEM_FAN_FAN1 1 70 #define PEM_FAN_FAN2 2 71 #define PEM_FAN_FAN3 3 72 73 /* Status register bits */ 74 #define STS1_OUTPUT_ON (1 << 0) 75 #define STS1_LEDS_FLASHING (1 << 1) 76 #define STS1_EXT_FAULT (1 << 2) 77 #define STS1_SERVICE_LED_ON (1 << 3) 78 #define STS1_SHUTDOWN_OCCURRED (1 << 4) 79 #define STS1_INT_FAULT (1 << 5) 80 #define STS1_ISOLATION_TEST_OK (1 << 6) 81 82 #define STS2_ENABLE_PIN_HI (1 << 0) 83 #define STS2_DATA_OUT_RANGE (1 << 1) 84 #define STS2_RESTARTED_OK (1 << 1) 85 #define STS2_ISOLATION_TEST_FAIL (1 << 3) 86 #define STS2_HIGH_POWER_CAP (1 << 4) 87 #define STS2_INVALID_INSTR (1 << 5) 88 #define STS2_WILL_RESTART (1 << 6) 89 #define STS2_PEC_ERR (1 << 7) 90 91 /* Alarm register bits */ 92 #define ALRM1_VIN_OUT_LIMIT (1 << 0) 93 #define ALRM1_VOUT_OUT_LIMIT (1 << 1) 94 #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2) 95 #define ALRM1_VIN_OVERCURRENT (1 << 3) 96 #define ALRM1_TEMP_WARNING (1 << 4) 97 #define ALRM1_TEMP_SHUTDOWN (1 << 5) 98 #define ALRM1_PRIMARY_FAULT (1 << 6) 99 #define ALRM1_POWER_LIMIT (1 << 7) 100 101 #define ALRM2_5V_OUT_LIMIT (1 << 1) 102 #define ALRM2_TEMP_FAULT (1 << 2) 103 #define ALRM2_OV_LOW (1 << 3) 104 #define ALRM2_DCDC_TEMP_HIGH (1 << 4) 105 #define ALRM2_PRI_TEMP_HIGH (1 << 5) 106 #define ALRM2_NO_PRIMARY (1 << 6) 107 #define ALRM2_FAN_FAULT (1 << 7) 108 109 #define FIRMWARE_REV_LEN 4 110 #define DATA_STRING_LEN 9 111 #define INPUT_STRING_LEN 5 /* 4 for most devices */ 112 #define FAN_SPEED_LEN 5 113 114 struct pem_data { 115 struct i2c_client *client; 116 const struct attribute_group *groups[4]; 117 118 struct mutex update_lock; 119 bool valid; 120 bool fans_supported; 121 int input_length; 122 unsigned long last_updated; /* in jiffies */ 123 124 u8 firmware_rev[FIRMWARE_REV_LEN]; 125 u8 data_string[DATA_STRING_LEN]; 126 u8 input_string[INPUT_STRING_LEN]; 127 u8 fan_speed[FAN_SPEED_LEN]; 128 }; 129 130 static int pem_read_block(struct i2c_client *client, u8 command, u8 *data, 131 int data_len) 132 { 133 u8 block_buffer[I2C_SMBUS_BLOCK_MAX]; 134 int result; 135 136 result = i2c_smbus_read_block_data(client, command, block_buffer); 137 if (unlikely(result < 0)) 138 goto abort; 139 if (unlikely(result == 0xff || result != data_len)) { 140 result = -EIO; 141 goto abort; 142 } 143 memcpy(data, block_buffer, data_len); 144 result = 0; 145 abort: 146 return result; 147 } 148 149 static struct pem_data *pem_update_device(struct device *dev) 150 { 151 struct pem_data *data = dev_get_drvdata(dev); 152 struct i2c_client *client = data->client; 153 struct pem_data *ret = data; 154 155 mutex_lock(&data->update_lock); 156 157 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { 158 int result; 159 160 /* Read data string */ 161 result = pem_read_block(client, PEM_READ_DATA_STRING, 162 data->data_string, 163 sizeof(data->data_string)); 164 if (unlikely(result < 0)) { 165 ret = ERR_PTR(result); 166 goto abort; 167 } 168 169 /* Read input string */ 170 if (data->input_length) { 171 result = pem_read_block(client, PEM_READ_INPUT_STRING, 172 data->input_string, 173 data->input_length); 174 if (unlikely(result < 0)) { 175 ret = ERR_PTR(result); 176 goto abort; 177 } 178 } 179 180 /* Read fan speeds */ 181 if (data->fans_supported) { 182 result = pem_read_block(client, PEM_READ_FAN_SPEED, 183 data->fan_speed, 184 sizeof(data->fan_speed)); 185 if (unlikely(result < 0)) { 186 ret = ERR_PTR(result); 187 goto abort; 188 } 189 } 190 191 i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS); 192 193 data->last_updated = jiffies; 194 data->valid = 1; 195 } 196 abort: 197 mutex_unlock(&data->update_lock); 198 return ret; 199 } 200 201 static long pem_get_data(u8 *data, int len, int index) 202 { 203 long val; 204 205 switch (index) { 206 case PEM_DATA_VOUT_LSB: 207 val = (data[index] + (data[index+1] << 8)) * 5 / 2; 208 break; 209 case PEM_DATA_CURRENT: 210 val = data[index] * 200; 211 break; 212 case PEM_DATA_TEMP: 213 val = data[index] * 1000; 214 break; 215 case PEM_DATA_TEMP_MAX: 216 val = 97 * 1000; /* 97 degrees C per datasheet */ 217 break; 218 case PEM_DATA_TEMP_CRIT: 219 val = 107 * 1000; /* 107 degrees C per datasheet */ 220 break; 221 default: 222 WARN_ON_ONCE(1); 223 val = 0; 224 } 225 return val; 226 } 227 228 static long pem_get_input(u8 *data, int len, int index) 229 { 230 long val; 231 232 switch (index) { 233 case PEM_INPUT_VOLTAGE: 234 if (len == INPUT_STRING_LEN) 235 val = (data[index] + (data[index+1] << 8) - 75) * 1000; 236 else 237 val = (data[index] - 75) * 1000; 238 break; 239 case PEM_INPUT_POWER_LSB: 240 if (len == INPUT_STRING_LEN) 241 index++; 242 val = (data[index] + (data[index+1] << 8)) * 1000000L; 243 break; 244 default: 245 WARN_ON_ONCE(1); 246 val = 0; 247 } 248 return val; 249 } 250 251 static long pem_get_fan(u8 *data, int len, int index) 252 { 253 long val; 254 255 switch (index) { 256 case PEM_FAN_FAN1: 257 case PEM_FAN_FAN2: 258 case PEM_FAN_FAN3: 259 val = data[index] * 100; 260 break; 261 default: 262 WARN_ON_ONCE(1); 263 val = 0; 264 } 265 return val; 266 } 267 268 /* 269 * Show boolean, either a fault or an alarm. 270 * .nr points to the register, .index is the bit mask to check 271 */ 272 static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da, 273 char *buf) 274 { 275 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da); 276 struct pem_data *data = pem_update_device(dev); 277 u8 status; 278 279 if (IS_ERR(data)) 280 return PTR_ERR(data); 281 282 status = data->data_string[attr->nr] & attr->index; 283 return sysfs_emit(buf, "%d\n", !!status); 284 } 285 286 static ssize_t pem_data_show(struct device *dev, struct device_attribute *da, 287 char *buf) 288 { 289 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 290 struct pem_data *data = pem_update_device(dev); 291 long value; 292 293 if (IS_ERR(data)) 294 return PTR_ERR(data); 295 296 value = pem_get_data(data->data_string, sizeof(data->data_string), 297 attr->index); 298 299 return sysfs_emit(buf, "%ld\n", value); 300 } 301 302 static ssize_t pem_input_show(struct device *dev, struct device_attribute *da, 303 char *buf) 304 { 305 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 306 struct pem_data *data = pem_update_device(dev); 307 long value; 308 309 if (IS_ERR(data)) 310 return PTR_ERR(data); 311 312 value = pem_get_input(data->input_string, sizeof(data->input_string), 313 attr->index); 314 315 return sysfs_emit(buf, "%ld\n", value); 316 } 317 318 static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da, 319 char *buf) 320 { 321 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 322 struct pem_data *data = pem_update_device(dev); 323 long value; 324 325 if (IS_ERR(data)) 326 return PTR_ERR(data); 327 328 value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed), 329 attr->index); 330 331 return sysfs_emit(buf, "%ld\n", value); 332 } 333 334 /* Voltages */ 335 static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB); 336 static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1, 337 ALRM1_VOUT_OUT_LIMIT); 338 static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1, 339 ALRM1_OV_VOLT_SHUTDOWN); 340 static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE); 341 static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1, 342 ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT); 343 344 /* Currents */ 345 static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT); 346 static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1, 347 ALRM1_VIN_OVERCURRENT); 348 349 /* Power */ 350 static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB); 351 static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1, 352 ALRM1_POWER_LIMIT); 353 354 /* Fans */ 355 static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1); 356 static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2); 357 static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3); 358 static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2, 359 ALRM2_FAN_FAULT); 360 361 /* Temperatures */ 362 static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP); 363 static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX); 364 static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT); 365 static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1, 366 ALRM1_TEMP_WARNING); 367 static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1, 368 ALRM1_TEMP_SHUTDOWN); 369 static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2, 370 ALRM2_TEMP_FAULT); 371 372 static struct attribute *pem_attributes[] = { 373 &sensor_dev_attr_in1_input.dev_attr.attr, 374 &sensor_dev_attr_in1_alarm.dev_attr.attr, 375 &sensor_dev_attr_in1_crit_alarm.dev_attr.attr, 376 &sensor_dev_attr_in2_alarm.dev_attr.attr, 377 378 &sensor_dev_attr_curr1_alarm.dev_attr.attr, 379 380 &sensor_dev_attr_power1_alarm.dev_attr.attr, 381 382 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 383 384 &sensor_dev_attr_temp1_input.dev_attr.attr, 385 &sensor_dev_attr_temp1_max.dev_attr.attr, 386 &sensor_dev_attr_temp1_crit.dev_attr.attr, 387 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 388 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, 389 &sensor_dev_attr_temp1_fault.dev_attr.attr, 390 391 NULL, 392 }; 393 394 static const struct attribute_group pem_group = { 395 .attrs = pem_attributes, 396 }; 397 398 static struct attribute *pem_input_attributes[] = { 399 &sensor_dev_attr_in2_input.dev_attr.attr, 400 &sensor_dev_attr_curr1_input.dev_attr.attr, 401 &sensor_dev_attr_power1_input.dev_attr.attr, 402 NULL 403 }; 404 405 static const struct attribute_group pem_input_group = { 406 .attrs = pem_input_attributes, 407 }; 408 409 static struct attribute *pem_fan_attributes[] = { 410 &sensor_dev_attr_fan1_input.dev_attr.attr, 411 &sensor_dev_attr_fan2_input.dev_attr.attr, 412 &sensor_dev_attr_fan3_input.dev_attr.attr, 413 NULL 414 }; 415 416 static const struct attribute_group pem_fan_group = { 417 .attrs = pem_fan_attributes, 418 }; 419 420 static int pem_probe(struct i2c_client *client) 421 { 422 struct i2c_adapter *adapter = client->adapter; 423 struct device *dev = &client->dev; 424 struct device *hwmon_dev; 425 struct pem_data *data; 426 int ret, idx = 0; 427 428 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA 429 | I2C_FUNC_SMBUS_WRITE_BYTE)) 430 return -ENODEV; 431 432 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 433 if (!data) 434 return -ENOMEM; 435 436 data->client = client; 437 mutex_init(&data->update_lock); 438 439 /* 440 * We use the next two commands to determine if the device is really 441 * there. 442 */ 443 ret = pem_read_block(client, PEM_READ_FIRMWARE_REV, 444 data->firmware_rev, sizeof(data->firmware_rev)); 445 if (ret < 0) 446 return ret; 447 448 ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS); 449 if (ret < 0) 450 return ret; 451 452 dev_info(dev, "Firmware revision %d.%d.%d\n", 453 data->firmware_rev[0], data->firmware_rev[1], 454 data->firmware_rev[2]); 455 456 /* sysfs hooks */ 457 data->groups[idx++] = &pem_group; 458 459 /* 460 * Check if input readings are supported. 461 * This is the case if we can read input data, 462 * and if the returned data is not all zeros. 463 * Note that input alarms are always supported. 464 */ 465 ret = pem_read_block(client, PEM_READ_INPUT_STRING, 466 data->input_string, 467 sizeof(data->input_string) - 1); 468 if (!ret && (data->input_string[0] || data->input_string[1] || 469 data->input_string[2])) 470 data->input_length = sizeof(data->input_string) - 1; 471 else if (ret < 0) { 472 /* Input string is one byte longer for some devices */ 473 ret = pem_read_block(client, PEM_READ_INPUT_STRING, 474 data->input_string, 475 sizeof(data->input_string)); 476 if (!ret && (data->input_string[0] || data->input_string[1] || 477 data->input_string[2] || data->input_string[3])) 478 data->input_length = sizeof(data->input_string); 479 } 480 481 if (data->input_length) 482 data->groups[idx++] = &pem_input_group; 483 484 /* 485 * Check if fan speed readings are supported. 486 * This is the case if we can read fan speed data, 487 * and if the returned data is not all zeros. 488 * Note that the fan alarm is always supported. 489 */ 490 ret = pem_read_block(client, PEM_READ_FAN_SPEED, 491 data->fan_speed, 492 sizeof(data->fan_speed)); 493 if (!ret && (data->fan_speed[0] || data->fan_speed[1] || 494 data->fan_speed[2] || data->fan_speed[3])) { 495 data->fans_supported = true; 496 data->groups[idx++] = &pem_fan_group; 497 } 498 499 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, 500 data, data->groups); 501 return PTR_ERR_OR_ZERO(hwmon_dev); 502 } 503 504 static const struct i2c_device_id pem_id[] = { 505 {"lineage_pem", 0}, 506 {} 507 }; 508 MODULE_DEVICE_TABLE(i2c, pem_id); 509 510 static struct i2c_driver pem_driver = { 511 .driver = { 512 .name = "lineage_pem", 513 }, 514 .probe_new = pem_probe, 515 .id_table = pem_id, 516 }; 517 518 module_i2c_driver(pem_driver); 519 520 MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>"); 521 MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver"); 522 MODULE_LICENSE("GPL"); 523