1 /* 2 * fschmd.c 3 * 4 * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes, 23 * Scylla, Heracles, Heimdall, Hades and Syleus chips 24 * 25 * Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6 26 * (candidate) fschmd drivers: 27 * Copyright (C) 2006 Thilo Cestonaro 28 * <thilo.cestonaro.external@fujitsu-siemens.com> 29 * Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch> 30 * Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de> 31 * Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de> 32 * Copyright (C) 2000 Hermann Jung <hej@odn.de> 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/jiffies.h> 39 #include <linux/i2c.h> 40 #include <linux/hwmon.h> 41 #include <linux/hwmon-sysfs.h> 42 #include <linux/err.h> 43 #include <linux/mutex.h> 44 #include <linux/sysfs.h> 45 #include <linux/dmi.h> 46 #include <linux/fs.h> 47 #include <linux/watchdog.h> 48 #include <linux/miscdevice.h> 49 #include <linux/uaccess.h> 50 #include <linux/kref.h> 51 52 /* Addresses to scan */ 53 static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END }; 54 55 /* Insmod parameters */ 56 static bool nowayout = WATCHDOG_NOWAYOUT; 57 module_param(nowayout, bool, 0); 58 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" 59 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); 60 61 enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl }; 62 63 /* 64 * The FSCHMD registers and other defines 65 */ 66 67 /* chip identification */ 68 #define FSCHMD_REG_IDENT_0 0x00 69 #define FSCHMD_REG_IDENT_1 0x01 70 #define FSCHMD_REG_IDENT_2 0x02 71 #define FSCHMD_REG_REVISION 0x03 72 73 /* global control and status */ 74 #define FSCHMD_REG_EVENT_STATE 0x04 75 #define FSCHMD_REG_CONTROL 0x05 76 77 #define FSCHMD_CONTROL_ALERT_LED 0x01 78 79 /* watchdog */ 80 static const u8 FSCHMD_REG_WDOG_CONTROL[7] = { 81 0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 }; 82 static const u8 FSCHMD_REG_WDOG_STATE[7] = { 83 0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 }; 84 static const u8 FSCHMD_REG_WDOG_PRESET[7] = { 85 0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a }; 86 87 #define FSCHMD_WDOG_CONTROL_TRIGGER 0x10 88 #define FSCHMD_WDOG_CONTROL_STARTED 0x10 /* the same as trigger */ 89 #define FSCHMD_WDOG_CONTROL_STOP 0x20 90 #define FSCHMD_WDOG_CONTROL_RESOLUTION 0x40 91 92 #define FSCHMD_WDOG_STATE_CARDRESET 0x02 93 94 /* voltages, weird order is to keep the same order as the old drivers */ 95 static const u8 FSCHMD_REG_VOLT[7][6] = { 96 { 0x45, 0x42, 0x48 }, /* pos */ 97 { 0x45, 0x42, 0x48 }, /* her */ 98 { 0x45, 0x42, 0x48 }, /* scy */ 99 { 0x45, 0x42, 0x48 }, /* hrc */ 100 { 0x45, 0x42, 0x48 }, /* hmd */ 101 { 0x21, 0x20, 0x22 }, /* hds */ 102 { 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 }, /* syl */ 103 }; 104 105 static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 }; 106 107 /* 108 * minimum pwm at which the fan is driven (pwm can be increased depending on 109 * the temp. Notice that for the scy some fans share there minimum speed. 110 * Also notice that with the scy the sensor order is different than with the 111 * other chips, this order was in the 2.4 driver and kept for consistency. 112 */ 113 static const u8 FSCHMD_REG_FAN_MIN[7][7] = { 114 { 0x55, 0x65 }, /* pos */ 115 { 0x55, 0x65, 0xb5 }, /* her */ 116 { 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 }, /* scy */ 117 { 0x55, 0x65, 0xa5, 0xb5 }, /* hrc */ 118 { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hmd */ 119 { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hds */ 120 { 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 }, /* syl */ 121 }; 122 123 /* actual fan speed */ 124 static const u8 FSCHMD_REG_FAN_ACT[7][7] = { 125 { 0x0e, 0x6b, 0xab }, /* pos */ 126 { 0x0e, 0x6b, 0xbb }, /* her */ 127 { 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb }, /* scy */ 128 { 0x0e, 0x6b, 0xab, 0xbb }, /* hrc */ 129 { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hmd */ 130 { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hds */ 131 { 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 }, /* syl */ 132 }; 133 134 /* fan status registers */ 135 static const u8 FSCHMD_REG_FAN_STATE[7][7] = { 136 { 0x0d, 0x62, 0xa2 }, /* pos */ 137 { 0x0d, 0x62, 0xb2 }, /* her */ 138 { 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 }, /* scy */ 139 { 0x0d, 0x62, 0xa2, 0xb2 }, /* hrc */ 140 { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hmd */ 141 { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hds */ 142 { 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 }, /* syl */ 143 }; 144 145 /* fan ripple / divider registers */ 146 static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = { 147 { 0x0f, 0x6f, 0xaf }, /* pos */ 148 { 0x0f, 0x6f, 0xbf }, /* her */ 149 { 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf }, /* scy */ 150 { 0x0f, 0x6f, 0xaf, 0xbf }, /* hrc */ 151 { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hmd */ 152 { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hds */ 153 { 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 }, /* syl */ 154 }; 155 156 static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 }; 157 158 /* Fan status register bitmasks */ 159 #define FSCHMD_FAN_ALARM 0x04 /* called fault by FSC! */ 160 #define FSCHMD_FAN_NOT_PRESENT 0x08 161 #define FSCHMD_FAN_DISABLED 0x80 162 163 164 /* actual temperature registers */ 165 static const u8 FSCHMD_REG_TEMP_ACT[7][11] = { 166 { 0x64, 0x32, 0x35 }, /* pos */ 167 { 0x64, 0x32, 0x35 }, /* her */ 168 { 0x64, 0xD0, 0x32, 0x35 }, /* scy */ 169 { 0x64, 0x32, 0x35 }, /* hrc */ 170 { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hmd */ 171 { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hds */ 172 { 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8, /* syl */ 173 0xb8, 0xc8, 0xd8, 0xe8, 0xf8 }, 174 }; 175 176 /* temperature state registers */ 177 static const u8 FSCHMD_REG_TEMP_STATE[7][11] = { 178 { 0x71, 0x81, 0x91 }, /* pos */ 179 { 0x71, 0x81, 0x91 }, /* her */ 180 { 0x71, 0xd1, 0x81, 0x91 }, /* scy */ 181 { 0x71, 0x81, 0x91 }, /* hrc */ 182 { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hmd */ 183 { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hds */ 184 { 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9, /* syl */ 185 0xb9, 0xc9, 0xd9, 0xe9, 0xf9 }, 186 }; 187 188 /* 189 * temperature high limit registers, FSC does not document these. Proven to be 190 * there with field testing on the fscher and fschrc, already supported / used 191 * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers 192 * at these addresses, but doesn't want to confirm they are the same as with 193 * the fscher?? 194 */ 195 static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = { 196 { 0, 0, 0 }, /* pos */ 197 { 0x76, 0x86, 0x96 }, /* her */ 198 { 0x76, 0xd6, 0x86, 0x96 }, /* scy */ 199 { 0x76, 0x86, 0x96 }, /* hrc */ 200 { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hmd */ 201 { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hds */ 202 { 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa, /* syl */ 203 0xba, 0xca, 0xda, 0xea, 0xfa }, 204 }; 205 206 /* 207 * These were found through experimenting with an fscher, currently they are 208 * not used, but we keep them around for future reference. 209 * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc), 210 * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence 211 * the fan speed. 212 * static const u8 FSCHER_REG_TEMP_AUTOP1[] = { 0x73, 0x83, 0x93 }; 213 * static const u8 FSCHER_REG_TEMP_AUTOP2[] = { 0x75, 0x85, 0x95 }; 214 */ 215 216 static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 }; 217 218 /* temp status register bitmasks */ 219 #define FSCHMD_TEMP_WORKING 0x01 220 #define FSCHMD_TEMP_ALERT 0x02 221 #define FSCHMD_TEMP_DISABLED 0x80 222 /* there only really is an alarm if the sensor is working and alert == 1 */ 223 #define FSCHMD_TEMP_ALARM_MASK \ 224 (FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT) 225 226 /* 227 * Functions declarations 228 */ 229 230 static int fschmd_probe(struct i2c_client *client, 231 const struct i2c_device_id *id); 232 static int fschmd_detect(struct i2c_client *client, 233 struct i2c_board_info *info); 234 static int fschmd_remove(struct i2c_client *client); 235 static struct fschmd_data *fschmd_update_device(struct device *dev); 236 237 /* 238 * Driver data (common to all clients) 239 */ 240 241 static const struct i2c_device_id fschmd_id[] = { 242 { "fscpos", fscpos }, 243 { "fscher", fscher }, 244 { "fscscy", fscscy }, 245 { "fschrc", fschrc }, 246 { "fschmd", fschmd }, 247 { "fschds", fschds }, 248 { "fscsyl", fscsyl }, 249 { } 250 }; 251 MODULE_DEVICE_TABLE(i2c, fschmd_id); 252 253 static struct i2c_driver fschmd_driver = { 254 .class = I2C_CLASS_HWMON, 255 .driver = { 256 .name = "fschmd", 257 }, 258 .probe = fschmd_probe, 259 .remove = fschmd_remove, 260 .id_table = fschmd_id, 261 .detect = fschmd_detect, 262 .address_list = normal_i2c, 263 }; 264 265 /* 266 * Client data (each client gets its own) 267 */ 268 269 struct fschmd_data { 270 struct i2c_client *client; 271 struct device *hwmon_dev; 272 struct mutex update_lock; 273 struct mutex watchdog_lock; 274 struct list_head list; /* member of the watchdog_data_list */ 275 struct kref kref; 276 struct miscdevice watchdog_miscdev; 277 enum chips kind; 278 unsigned long watchdog_is_open; 279 char watchdog_expect_close; 280 char watchdog_name[10]; /* must be unique to avoid sysfs conflict */ 281 char valid; /* zero until following fields are valid */ 282 unsigned long last_updated; /* in jiffies */ 283 284 /* register values */ 285 u8 revision; /* chip revision */ 286 u8 global_control; /* global control register */ 287 u8 watchdog_control; /* watchdog control register */ 288 u8 watchdog_state; /* watchdog status register */ 289 u8 watchdog_preset; /* watchdog counter preset on trigger val */ 290 u8 volt[6]; /* voltage */ 291 u8 temp_act[11]; /* temperature */ 292 u8 temp_status[11]; /* status of sensor */ 293 u8 temp_max[11]; /* high temp limit, notice: undocumented! */ 294 u8 fan_act[7]; /* fans revolutions per second */ 295 u8 fan_status[7]; /* fan status */ 296 u8 fan_min[7]; /* fan min value for rps */ 297 u8 fan_ripple[7]; /* divider for rps */ 298 }; 299 300 /* 301 * Global variables to hold information read from special DMI tables, which are 302 * available on FSC machines with an fscher or later chip. There is no need to 303 * protect these with a lock as they are only modified from our attach function 304 * which always gets called with the i2c-core lock held and never accessed 305 * before the attach function is done with them. 306 */ 307 static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 }; 308 static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 }; 309 static int dmi_vref = -1; 310 311 /* 312 * Somewhat ugly :( global data pointer list with all fschmd devices, so that 313 * we can find our device data as when using misc_register there is no other 314 * method to get to ones device data from the open fop. 315 */ 316 static LIST_HEAD(watchdog_data_list); 317 /* Note this lock not only protect list access, but also data.kref access */ 318 static DEFINE_MUTEX(watchdog_data_mutex); 319 320 /* 321 * Release our data struct when we're detached from the i2c client *and* all 322 * references to our watchdog device are released 323 */ 324 static void fschmd_release_resources(struct kref *ref) 325 { 326 struct fschmd_data *data = container_of(ref, struct fschmd_data, kref); 327 kfree(data); 328 } 329 330 /* 331 * Sysfs attr show / store functions 332 */ 333 334 static ssize_t in_value_show(struct device *dev, 335 struct device_attribute *devattr, char *buf) 336 { 337 const int max_reading[3] = { 14200, 6600, 3300 }; 338 int index = to_sensor_dev_attr(devattr)->index; 339 struct fschmd_data *data = fschmd_update_device(dev); 340 341 if (data->kind == fscher || data->kind >= fschrc) 342 return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref * 343 dmi_mult[index]) / 255 + dmi_offset[index]); 344 else 345 return sprintf(buf, "%d\n", (data->volt[index] * 346 max_reading[index] + 128) / 255); 347 } 348 349 350 #define TEMP_FROM_REG(val) (((val) - 128) * 1000) 351 352 static ssize_t temp_value_show(struct device *dev, 353 struct device_attribute *devattr, char *buf) 354 { 355 int index = to_sensor_dev_attr(devattr)->index; 356 struct fschmd_data *data = fschmd_update_device(dev); 357 358 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index])); 359 } 360 361 static ssize_t temp_max_show(struct device *dev, 362 struct device_attribute *devattr, char *buf) 363 { 364 int index = to_sensor_dev_attr(devattr)->index; 365 struct fschmd_data *data = fschmd_update_device(dev); 366 367 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index])); 368 } 369 370 static ssize_t temp_max_store(struct device *dev, 371 struct device_attribute *devattr, 372 const char *buf, size_t count) 373 { 374 int index = to_sensor_dev_attr(devattr)->index; 375 struct fschmd_data *data = dev_get_drvdata(dev); 376 long v; 377 int err; 378 379 err = kstrtol(buf, 10, &v); 380 if (err) 381 return err; 382 383 v = clamp_val(v / 1000, -128, 127) + 128; 384 385 mutex_lock(&data->update_lock); 386 i2c_smbus_write_byte_data(to_i2c_client(dev), 387 FSCHMD_REG_TEMP_LIMIT[data->kind][index], v); 388 data->temp_max[index] = v; 389 mutex_unlock(&data->update_lock); 390 391 return count; 392 } 393 394 static ssize_t temp_fault_show(struct device *dev, 395 struct device_attribute *devattr, char *buf) 396 { 397 int index = to_sensor_dev_attr(devattr)->index; 398 struct fschmd_data *data = fschmd_update_device(dev); 399 400 /* bit 0 set means sensor working ok, so no fault! */ 401 if (data->temp_status[index] & FSCHMD_TEMP_WORKING) 402 return sprintf(buf, "0\n"); 403 else 404 return sprintf(buf, "1\n"); 405 } 406 407 static ssize_t temp_alarm_show(struct device *dev, 408 struct device_attribute *devattr, char *buf) 409 { 410 int index = to_sensor_dev_attr(devattr)->index; 411 struct fschmd_data *data = fschmd_update_device(dev); 412 413 if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) == 414 FSCHMD_TEMP_ALARM_MASK) 415 return sprintf(buf, "1\n"); 416 else 417 return sprintf(buf, "0\n"); 418 } 419 420 421 #define RPM_FROM_REG(val) ((val) * 60) 422 423 static ssize_t fan_value_show(struct device *dev, 424 struct device_attribute *devattr, char *buf) 425 { 426 int index = to_sensor_dev_attr(devattr)->index; 427 struct fschmd_data *data = fschmd_update_device(dev); 428 429 return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index])); 430 } 431 432 static ssize_t fan_div_show(struct device *dev, 433 struct device_attribute *devattr, char *buf) 434 { 435 int index = to_sensor_dev_attr(devattr)->index; 436 struct fschmd_data *data = fschmd_update_device(dev); 437 438 /* bits 2..7 reserved => mask with 3 */ 439 return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3)); 440 } 441 442 static ssize_t fan_div_store(struct device *dev, 443 struct device_attribute *devattr, 444 const char *buf, size_t count) 445 { 446 u8 reg; 447 int index = to_sensor_dev_attr(devattr)->index; 448 struct fschmd_data *data = dev_get_drvdata(dev); 449 /* supported values: 2, 4, 8 */ 450 unsigned long v; 451 int err; 452 453 err = kstrtoul(buf, 10, &v); 454 if (err) 455 return err; 456 457 switch (v) { 458 case 2: 459 v = 1; 460 break; 461 case 4: 462 v = 2; 463 break; 464 case 8: 465 v = 3; 466 break; 467 default: 468 dev_err(dev, 469 "fan_div value %lu not supported. Choose one of 2, 4 or 8!\n", 470 v); 471 return -EINVAL; 472 } 473 474 mutex_lock(&data->update_lock); 475 476 reg = i2c_smbus_read_byte_data(to_i2c_client(dev), 477 FSCHMD_REG_FAN_RIPPLE[data->kind][index]); 478 479 /* bits 2..7 reserved => mask with 0x03 */ 480 reg &= ~0x03; 481 reg |= v; 482 483 i2c_smbus_write_byte_data(to_i2c_client(dev), 484 FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg); 485 486 data->fan_ripple[index] = reg; 487 488 mutex_unlock(&data->update_lock); 489 490 return count; 491 } 492 493 static ssize_t fan_alarm_show(struct device *dev, 494 struct device_attribute *devattr, char *buf) 495 { 496 int index = to_sensor_dev_attr(devattr)->index; 497 struct fschmd_data *data = fschmd_update_device(dev); 498 499 if (data->fan_status[index] & FSCHMD_FAN_ALARM) 500 return sprintf(buf, "1\n"); 501 else 502 return sprintf(buf, "0\n"); 503 } 504 505 static ssize_t fan_fault_show(struct device *dev, 506 struct device_attribute *devattr, char *buf) 507 { 508 int index = to_sensor_dev_attr(devattr)->index; 509 struct fschmd_data *data = fschmd_update_device(dev); 510 511 if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT) 512 return sprintf(buf, "1\n"); 513 else 514 return sprintf(buf, "0\n"); 515 } 516 517 518 static ssize_t pwm_auto_point1_pwm_show(struct device *dev, 519 struct device_attribute *devattr, 520 char *buf) 521 { 522 int index = to_sensor_dev_attr(devattr)->index; 523 struct fschmd_data *data = fschmd_update_device(dev); 524 int val = data->fan_min[index]; 525 526 /* 0 = allow turning off (except on the syl), 1-255 = 50-100% */ 527 if (val || data->kind == fscsyl) 528 val = val / 2 + 128; 529 530 return sprintf(buf, "%d\n", val); 531 } 532 533 static ssize_t pwm_auto_point1_pwm_store(struct device *dev, 534 struct device_attribute *devattr, 535 const char *buf, size_t count) 536 { 537 int index = to_sensor_dev_attr(devattr)->index; 538 struct fschmd_data *data = dev_get_drvdata(dev); 539 unsigned long v; 540 int err; 541 542 err = kstrtoul(buf, 10, &v); 543 if (err) 544 return err; 545 546 /* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */ 547 if (v || data->kind == fscsyl) { 548 v = clamp_val(v, 128, 255); 549 v = (v - 128) * 2 + 1; 550 } 551 552 mutex_lock(&data->update_lock); 553 554 i2c_smbus_write_byte_data(to_i2c_client(dev), 555 FSCHMD_REG_FAN_MIN[data->kind][index], v); 556 data->fan_min[index] = v; 557 558 mutex_unlock(&data->update_lock); 559 560 return count; 561 } 562 563 564 /* 565 * The FSC hwmon family has the ability to force an attached alert led to flash 566 * from software, we export this as an alert_led sysfs attr 567 */ 568 static ssize_t alert_led_show(struct device *dev, 569 struct device_attribute *devattr, char *buf) 570 { 571 struct fschmd_data *data = fschmd_update_device(dev); 572 573 if (data->global_control & FSCHMD_CONTROL_ALERT_LED) 574 return sprintf(buf, "1\n"); 575 else 576 return sprintf(buf, "0\n"); 577 } 578 579 static ssize_t alert_led_store(struct device *dev, 580 struct device_attribute *devattr, const char *buf, size_t count) 581 { 582 u8 reg; 583 struct fschmd_data *data = dev_get_drvdata(dev); 584 unsigned long v; 585 int err; 586 587 err = kstrtoul(buf, 10, &v); 588 if (err) 589 return err; 590 591 mutex_lock(&data->update_lock); 592 593 reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL); 594 595 if (v) 596 reg |= FSCHMD_CONTROL_ALERT_LED; 597 else 598 reg &= ~FSCHMD_CONTROL_ALERT_LED; 599 600 i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg); 601 602 data->global_control = reg; 603 604 mutex_unlock(&data->update_lock); 605 606 return count; 607 } 608 609 static DEVICE_ATTR_RW(alert_led); 610 611 static struct sensor_device_attribute fschmd_attr[] = { 612 SENSOR_ATTR_RO(in0_input, in_value, 0), 613 SENSOR_ATTR_RO(in1_input, in_value, 1), 614 SENSOR_ATTR_RO(in2_input, in_value, 2), 615 SENSOR_ATTR_RO(in3_input, in_value, 3), 616 SENSOR_ATTR_RO(in4_input, in_value, 4), 617 SENSOR_ATTR_RO(in5_input, in_value, 5), 618 }; 619 620 static struct sensor_device_attribute fschmd_temp_attr[] = { 621 SENSOR_ATTR_RO(temp1_input, temp_value, 0), 622 SENSOR_ATTR_RW(temp1_max, temp_max, 0), 623 SENSOR_ATTR_RO(temp1_fault, temp_fault, 0), 624 SENSOR_ATTR_RO(temp1_alarm, temp_alarm, 0), 625 SENSOR_ATTR_RO(temp2_input, temp_value, 1), 626 SENSOR_ATTR_RW(temp2_max, temp_max, 1), 627 SENSOR_ATTR_RO(temp2_fault, temp_fault, 1), 628 SENSOR_ATTR_RO(temp2_alarm, temp_alarm, 1), 629 SENSOR_ATTR_RO(temp3_input, temp_value, 2), 630 SENSOR_ATTR_RW(temp3_max, temp_max, 2), 631 SENSOR_ATTR_RO(temp3_fault, temp_fault, 2), 632 SENSOR_ATTR_RO(temp3_alarm, temp_alarm, 2), 633 SENSOR_ATTR_RO(temp4_input, temp_value, 3), 634 SENSOR_ATTR_RW(temp4_max, temp_max, 3), 635 SENSOR_ATTR_RO(temp4_fault, temp_fault, 3), 636 SENSOR_ATTR_RO(temp4_alarm, temp_alarm, 3), 637 SENSOR_ATTR_RO(temp5_input, temp_value, 4), 638 SENSOR_ATTR_RW(temp5_max, temp_max, 4), 639 SENSOR_ATTR_RO(temp5_fault, temp_fault, 4), 640 SENSOR_ATTR_RO(temp5_alarm, temp_alarm, 4), 641 SENSOR_ATTR_RO(temp6_input, temp_value, 5), 642 SENSOR_ATTR_RW(temp6_max, temp_max, 5), 643 SENSOR_ATTR_RO(temp6_fault, temp_fault, 5), 644 SENSOR_ATTR_RO(temp6_alarm, temp_alarm, 5), 645 SENSOR_ATTR_RO(temp7_input, temp_value, 6), 646 SENSOR_ATTR_RW(temp7_max, temp_max, 6), 647 SENSOR_ATTR_RO(temp7_fault, temp_fault, 6), 648 SENSOR_ATTR_RO(temp7_alarm, temp_alarm, 6), 649 SENSOR_ATTR_RO(temp8_input, temp_value, 7), 650 SENSOR_ATTR_RW(temp8_max, temp_max, 7), 651 SENSOR_ATTR_RO(temp8_fault, temp_fault, 7), 652 SENSOR_ATTR_RO(temp8_alarm, temp_alarm, 7), 653 SENSOR_ATTR_RO(temp9_input, temp_value, 8), 654 SENSOR_ATTR_RW(temp9_max, temp_max, 8), 655 SENSOR_ATTR_RO(temp9_fault, temp_fault, 8), 656 SENSOR_ATTR_RO(temp9_alarm, temp_alarm, 8), 657 SENSOR_ATTR_RO(temp10_input, temp_value, 9), 658 SENSOR_ATTR_RW(temp10_max, temp_max, 9), 659 SENSOR_ATTR_RO(temp10_fault, temp_fault, 9), 660 SENSOR_ATTR_RO(temp10_alarm, temp_alarm, 9), 661 SENSOR_ATTR_RO(temp11_input, temp_value, 10), 662 SENSOR_ATTR_RW(temp11_max, temp_max, 10), 663 SENSOR_ATTR_RO(temp11_fault, temp_fault, 10), 664 SENSOR_ATTR_RO(temp11_alarm, temp_alarm, 10), 665 }; 666 667 static struct sensor_device_attribute fschmd_fan_attr[] = { 668 SENSOR_ATTR_RO(fan1_input, fan_value, 0), 669 SENSOR_ATTR_RW(fan1_div, fan_div, 0), 670 SENSOR_ATTR_RO(fan1_alarm, fan_alarm, 0), 671 SENSOR_ATTR_RO(fan1_fault, fan_fault, 0), 672 SENSOR_ATTR_RW(pwm1_auto_point1_pwm, pwm_auto_point1_pwm, 0), 673 SENSOR_ATTR_RO(fan2_input, fan_value, 1), 674 SENSOR_ATTR_RW(fan2_div, fan_div, 1), 675 SENSOR_ATTR_RO(fan2_alarm, fan_alarm, 1), 676 SENSOR_ATTR_RO(fan2_fault, fan_fault, 1), 677 SENSOR_ATTR_RW(pwm2_auto_point1_pwm, pwm_auto_point1_pwm, 1), 678 SENSOR_ATTR_RO(fan3_input, fan_value, 2), 679 SENSOR_ATTR_RW(fan3_div, fan_div, 2), 680 SENSOR_ATTR_RO(fan3_alarm, fan_alarm, 2), 681 SENSOR_ATTR_RO(fan3_fault, fan_fault, 2), 682 SENSOR_ATTR_RW(pwm3_auto_point1_pwm, pwm_auto_point1_pwm, 2), 683 SENSOR_ATTR_RO(fan4_input, fan_value, 3), 684 SENSOR_ATTR_RW(fan4_div, fan_div, 3), 685 SENSOR_ATTR_RO(fan4_alarm, fan_alarm, 3), 686 SENSOR_ATTR_RO(fan4_fault, fan_fault, 3), 687 SENSOR_ATTR_RW(pwm4_auto_point1_pwm, pwm_auto_point1_pwm, 3), 688 SENSOR_ATTR_RO(fan5_input, fan_value, 4), 689 SENSOR_ATTR_RW(fan5_div, fan_div, 4), 690 SENSOR_ATTR_RO(fan5_alarm, fan_alarm, 4), 691 SENSOR_ATTR_RO(fan5_fault, fan_fault, 4), 692 SENSOR_ATTR_RW(pwm5_auto_point1_pwm, pwm_auto_point1_pwm, 4), 693 SENSOR_ATTR_RO(fan6_input, fan_value, 5), 694 SENSOR_ATTR_RW(fan6_div, fan_div, 5), 695 SENSOR_ATTR_RO(fan6_alarm, fan_alarm, 5), 696 SENSOR_ATTR_RO(fan6_fault, fan_fault, 5), 697 SENSOR_ATTR_RW(pwm6_auto_point1_pwm, pwm_auto_point1_pwm, 5), 698 SENSOR_ATTR_RO(fan7_input, fan_value, 6), 699 SENSOR_ATTR_RW(fan7_div, fan_div, 6), 700 SENSOR_ATTR_RO(fan7_alarm, fan_alarm, 6), 701 SENSOR_ATTR_RO(fan7_fault, fan_fault, 6), 702 SENSOR_ATTR_RW(pwm7_auto_point1_pwm, pwm_auto_point1_pwm, 6), 703 }; 704 705 706 /* 707 * Watchdog routines 708 */ 709 710 static int watchdog_set_timeout(struct fschmd_data *data, int timeout) 711 { 712 int ret, resolution; 713 int kind = data->kind + 1; /* 0-x array index -> 1-x module param */ 714 715 /* 2 second or 60 second resolution? */ 716 if (timeout <= 510 || kind == fscpos || kind == fscscy) 717 resolution = 2; 718 else 719 resolution = 60; 720 721 if (timeout < resolution || timeout > (resolution * 255)) 722 return -EINVAL; 723 724 mutex_lock(&data->watchdog_lock); 725 if (!data->client) { 726 ret = -ENODEV; 727 goto leave; 728 } 729 730 if (resolution == 2) 731 data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION; 732 else 733 data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION; 734 735 data->watchdog_preset = DIV_ROUND_UP(timeout, resolution); 736 737 /* Write new timeout value */ 738 i2c_smbus_write_byte_data(data->client, 739 FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset); 740 /* Write new control register, do not trigger! */ 741 i2c_smbus_write_byte_data(data->client, 742 FSCHMD_REG_WDOG_CONTROL[data->kind], 743 data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER); 744 745 ret = data->watchdog_preset * resolution; 746 747 leave: 748 mutex_unlock(&data->watchdog_lock); 749 return ret; 750 } 751 752 static int watchdog_get_timeout(struct fschmd_data *data) 753 { 754 int timeout; 755 756 mutex_lock(&data->watchdog_lock); 757 if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION) 758 timeout = data->watchdog_preset * 60; 759 else 760 timeout = data->watchdog_preset * 2; 761 mutex_unlock(&data->watchdog_lock); 762 763 return timeout; 764 } 765 766 static int watchdog_trigger(struct fschmd_data *data) 767 { 768 int ret = 0; 769 770 mutex_lock(&data->watchdog_lock); 771 if (!data->client) { 772 ret = -ENODEV; 773 goto leave; 774 } 775 776 data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER; 777 i2c_smbus_write_byte_data(data->client, 778 FSCHMD_REG_WDOG_CONTROL[data->kind], 779 data->watchdog_control); 780 leave: 781 mutex_unlock(&data->watchdog_lock); 782 return ret; 783 } 784 785 static int watchdog_stop(struct fschmd_data *data) 786 { 787 int ret = 0; 788 789 mutex_lock(&data->watchdog_lock); 790 if (!data->client) { 791 ret = -ENODEV; 792 goto leave; 793 } 794 795 data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED; 796 /* 797 * Don't store the stop flag in our watchdog control register copy, as 798 * its a write only bit (read always returns 0) 799 */ 800 i2c_smbus_write_byte_data(data->client, 801 FSCHMD_REG_WDOG_CONTROL[data->kind], 802 data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP); 803 leave: 804 mutex_unlock(&data->watchdog_lock); 805 return ret; 806 } 807 808 static int watchdog_open(struct inode *inode, struct file *filp) 809 { 810 struct fschmd_data *pos, *data = NULL; 811 int watchdog_is_open; 812 813 /* 814 * We get called from drivers/char/misc.c with misc_mtx hold, and we 815 * call misc_register() from fschmd_probe() with watchdog_data_mutex 816 * hold, as misc_register() takes the misc_mtx lock, this is a possible 817 * deadlock, so we use mutex_trylock here. 818 */ 819 if (!mutex_trylock(&watchdog_data_mutex)) 820 return -ERESTARTSYS; 821 list_for_each_entry(pos, &watchdog_data_list, list) { 822 if (pos->watchdog_miscdev.minor == iminor(inode)) { 823 data = pos; 824 break; 825 } 826 } 827 /* Note we can never not have found data, so we don't check for this */ 828 watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open); 829 if (!watchdog_is_open) 830 kref_get(&data->kref); 831 mutex_unlock(&watchdog_data_mutex); 832 833 if (watchdog_is_open) 834 return -EBUSY; 835 836 /* Start the watchdog */ 837 watchdog_trigger(data); 838 filp->private_data = data; 839 840 return stream_open(inode, filp); 841 } 842 843 static int watchdog_release(struct inode *inode, struct file *filp) 844 { 845 struct fschmd_data *data = filp->private_data; 846 847 if (data->watchdog_expect_close) { 848 watchdog_stop(data); 849 data->watchdog_expect_close = 0; 850 } else { 851 watchdog_trigger(data); 852 dev_crit(&data->client->dev, 853 "unexpected close, not stopping watchdog!\n"); 854 } 855 856 clear_bit(0, &data->watchdog_is_open); 857 858 mutex_lock(&watchdog_data_mutex); 859 kref_put(&data->kref, fschmd_release_resources); 860 mutex_unlock(&watchdog_data_mutex); 861 862 return 0; 863 } 864 865 static ssize_t watchdog_write(struct file *filp, const char __user *buf, 866 size_t count, loff_t *offset) 867 { 868 int ret; 869 struct fschmd_data *data = filp->private_data; 870 871 if (count) { 872 if (!nowayout) { 873 size_t i; 874 875 /* Clear it in case it was set with a previous write */ 876 data->watchdog_expect_close = 0; 877 878 for (i = 0; i != count; i++) { 879 char c; 880 if (get_user(c, buf + i)) 881 return -EFAULT; 882 if (c == 'V') 883 data->watchdog_expect_close = 1; 884 } 885 } 886 ret = watchdog_trigger(data); 887 if (ret < 0) 888 return ret; 889 } 890 return count; 891 } 892 893 static long watchdog_ioctl(struct file *filp, unsigned int cmd, 894 unsigned long arg) 895 { 896 struct watchdog_info ident = { 897 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | 898 WDIOF_CARDRESET, 899 .identity = "FSC watchdog" 900 }; 901 int i, ret = 0; 902 struct fschmd_data *data = filp->private_data; 903 904 switch (cmd) { 905 case WDIOC_GETSUPPORT: 906 ident.firmware_version = data->revision; 907 if (!nowayout) 908 ident.options |= WDIOF_MAGICCLOSE; 909 if (copy_to_user((void __user *)arg, &ident, sizeof(ident))) 910 ret = -EFAULT; 911 break; 912 913 case WDIOC_GETSTATUS: 914 ret = put_user(0, (int __user *)arg); 915 break; 916 917 case WDIOC_GETBOOTSTATUS: 918 if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET) 919 ret = put_user(WDIOF_CARDRESET, (int __user *)arg); 920 else 921 ret = put_user(0, (int __user *)arg); 922 break; 923 924 case WDIOC_KEEPALIVE: 925 ret = watchdog_trigger(data); 926 break; 927 928 case WDIOC_GETTIMEOUT: 929 i = watchdog_get_timeout(data); 930 ret = put_user(i, (int __user *)arg); 931 break; 932 933 case WDIOC_SETTIMEOUT: 934 if (get_user(i, (int __user *)arg)) { 935 ret = -EFAULT; 936 break; 937 } 938 ret = watchdog_set_timeout(data, i); 939 if (ret > 0) 940 ret = put_user(ret, (int __user *)arg); 941 break; 942 943 case WDIOC_SETOPTIONS: 944 if (get_user(i, (int __user *)arg)) { 945 ret = -EFAULT; 946 break; 947 } 948 949 if (i & WDIOS_DISABLECARD) 950 ret = watchdog_stop(data); 951 else if (i & WDIOS_ENABLECARD) 952 ret = watchdog_trigger(data); 953 else 954 ret = -EINVAL; 955 956 break; 957 default: 958 ret = -ENOTTY; 959 } 960 return ret; 961 } 962 963 static const struct file_operations watchdog_fops = { 964 .owner = THIS_MODULE, 965 .llseek = no_llseek, 966 .open = watchdog_open, 967 .release = watchdog_release, 968 .write = watchdog_write, 969 .unlocked_ioctl = watchdog_ioctl, 970 }; 971 972 973 /* 974 * Detect, register, unregister and update device functions 975 */ 976 977 /* 978 * DMI decode routine to read voltage scaling factors from special DMI tables, 979 * which are available on FSC machines with an fscher or later chip. 980 */ 981 static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy) 982 { 983 int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0; 984 985 /* 986 * dmi code ugliness, we get passed the address of the contents of 987 * a complete DMI record, but in the form of a dmi_header pointer, in 988 * reality this address holds header->length bytes of which the header 989 * are the first 4 bytes 990 */ 991 u8 *dmi_data = (u8 *)header; 992 993 /* We are looking for OEM-specific type 185 */ 994 if (header->type != 185) 995 return; 996 997 /* 998 * we are looking for what Siemens calls "subtype" 19, the subtype 999 * is stored in byte 5 of the dmi block 1000 */ 1001 if (header->length < 5 || dmi_data[4] != 19) 1002 return; 1003 1004 /* 1005 * After the subtype comes 1 unknown byte and then blocks of 5 bytes, 1006 * consisting of what Siemens calls an "Entity" number, followed by 1007 * 2 16-bit words in LSB first order 1008 */ 1009 for (i = 6; (i + 4) < header->length; i += 5) { 1010 /* entity 1 - 3: voltage multiplier and offset */ 1011 if (dmi_data[i] >= 1 && dmi_data[i] <= 3) { 1012 /* Our in sensors order and the DMI order differ */ 1013 const int shuffle[3] = { 1, 0, 2 }; 1014 int in = shuffle[dmi_data[i] - 1]; 1015 1016 /* Check for twice the same entity */ 1017 if (found & (1 << in)) 1018 return; 1019 1020 mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8); 1021 offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8); 1022 1023 found |= 1 << in; 1024 } 1025 1026 /* entity 7: reference voltage */ 1027 if (dmi_data[i] == 7) { 1028 /* Check for twice the same entity */ 1029 if (found & 0x08) 1030 return; 1031 1032 vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8); 1033 1034 found |= 0x08; 1035 } 1036 } 1037 1038 if (found == 0x0F) { 1039 for (i = 0; i < 3; i++) { 1040 dmi_mult[i] = mult[i] * 10; 1041 dmi_offset[i] = offset[i] * 10; 1042 } 1043 /* 1044 * According to the docs there should be separate dmi entries 1045 * for the mult's and offsets of in3-5 of the syl, but on 1046 * my test machine these are not present 1047 */ 1048 dmi_mult[3] = dmi_mult[2]; 1049 dmi_mult[4] = dmi_mult[1]; 1050 dmi_mult[5] = dmi_mult[2]; 1051 dmi_offset[3] = dmi_offset[2]; 1052 dmi_offset[4] = dmi_offset[1]; 1053 dmi_offset[5] = dmi_offset[2]; 1054 dmi_vref = vref; 1055 } 1056 } 1057 1058 static int fschmd_detect(struct i2c_client *client, 1059 struct i2c_board_info *info) 1060 { 1061 enum chips kind; 1062 struct i2c_adapter *adapter = client->adapter; 1063 char id[4]; 1064 1065 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1066 return -ENODEV; 1067 1068 /* Detect & Identify the chip */ 1069 id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0); 1070 id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1); 1071 id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2); 1072 id[3] = '\0'; 1073 1074 if (!strcmp(id, "PEG")) 1075 kind = fscpos; 1076 else if (!strcmp(id, "HER")) 1077 kind = fscher; 1078 else if (!strcmp(id, "SCY")) 1079 kind = fscscy; 1080 else if (!strcmp(id, "HRC")) 1081 kind = fschrc; 1082 else if (!strcmp(id, "HMD")) 1083 kind = fschmd; 1084 else if (!strcmp(id, "HDS")) 1085 kind = fschds; 1086 else if (!strcmp(id, "SYL")) 1087 kind = fscsyl; 1088 else 1089 return -ENODEV; 1090 1091 strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE); 1092 1093 return 0; 1094 } 1095 1096 static int fschmd_probe(struct i2c_client *client, 1097 const struct i2c_device_id *id) 1098 { 1099 struct fschmd_data *data; 1100 const char * const names[7] = { "Poseidon", "Hermes", "Scylla", 1101 "Heracles", "Heimdall", "Hades", "Syleus" }; 1102 const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 }; 1103 int i, err; 1104 enum chips kind = id->driver_data; 1105 1106 data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL); 1107 if (!data) 1108 return -ENOMEM; 1109 1110 i2c_set_clientdata(client, data); 1111 mutex_init(&data->update_lock); 1112 mutex_init(&data->watchdog_lock); 1113 INIT_LIST_HEAD(&data->list); 1114 kref_init(&data->kref); 1115 /* 1116 * Store client pointer in our data struct for watchdog usage 1117 * (where the client is found through a data ptr instead of the 1118 * otherway around) 1119 */ 1120 data->client = client; 1121 data->kind = kind; 1122 1123 if (kind == fscpos) { 1124 /* 1125 * The Poseidon has hardwired temp limits, fill these 1126 * in for the alarm resetting code 1127 */ 1128 data->temp_max[0] = 70 + 128; 1129 data->temp_max[1] = 50 + 128; 1130 data->temp_max[2] = 50 + 128; 1131 } 1132 1133 /* Read the special DMI table for fscher and newer chips */ 1134 if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) { 1135 dmi_walk(fschmd_dmi_decode, NULL); 1136 if (dmi_vref == -1) { 1137 dev_warn(&client->dev, 1138 "Couldn't get voltage scaling factors from " 1139 "BIOS DMI table, using builtin defaults\n"); 1140 dmi_vref = 33; 1141 } 1142 } 1143 1144 /* Read in some never changing registers */ 1145 data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION); 1146 data->global_control = i2c_smbus_read_byte_data(client, 1147 FSCHMD_REG_CONTROL); 1148 data->watchdog_control = i2c_smbus_read_byte_data(client, 1149 FSCHMD_REG_WDOG_CONTROL[data->kind]); 1150 data->watchdog_state = i2c_smbus_read_byte_data(client, 1151 FSCHMD_REG_WDOG_STATE[data->kind]); 1152 data->watchdog_preset = i2c_smbus_read_byte_data(client, 1153 FSCHMD_REG_WDOG_PRESET[data->kind]); 1154 1155 err = device_create_file(&client->dev, &dev_attr_alert_led); 1156 if (err) 1157 goto exit_detach; 1158 1159 for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) { 1160 err = device_create_file(&client->dev, 1161 &fschmd_attr[i].dev_attr); 1162 if (err) 1163 goto exit_detach; 1164 } 1165 1166 for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) { 1167 /* Poseidon doesn't have TEMP_LIMIT registers */ 1168 if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show == 1169 temp_max_show) 1170 continue; 1171 1172 if (kind == fscsyl) { 1173 if (i % 4 == 0) 1174 data->temp_status[i / 4] = 1175 i2c_smbus_read_byte_data(client, 1176 FSCHMD_REG_TEMP_STATE 1177 [data->kind][i / 4]); 1178 if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED) 1179 continue; 1180 } 1181 1182 err = device_create_file(&client->dev, 1183 &fschmd_temp_attr[i].dev_attr); 1184 if (err) 1185 goto exit_detach; 1186 } 1187 1188 for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) { 1189 /* Poseidon doesn't have a FAN_MIN register for its 3rd fan */ 1190 if (kind == fscpos && 1191 !strcmp(fschmd_fan_attr[i].dev_attr.attr.name, 1192 "pwm3_auto_point1_pwm")) 1193 continue; 1194 1195 if (kind == fscsyl) { 1196 if (i % 5 == 0) 1197 data->fan_status[i / 5] = 1198 i2c_smbus_read_byte_data(client, 1199 FSCHMD_REG_FAN_STATE 1200 [data->kind][i / 5]); 1201 if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED) 1202 continue; 1203 } 1204 1205 err = device_create_file(&client->dev, 1206 &fschmd_fan_attr[i].dev_attr); 1207 if (err) 1208 goto exit_detach; 1209 } 1210 1211 data->hwmon_dev = hwmon_device_register(&client->dev); 1212 if (IS_ERR(data->hwmon_dev)) { 1213 err = PTR_ERR(data->hwmon_dev); 1214 data->hwmon_dev = NULL; 1215 goto exit_detach; 1216 } 1217 1218 /* 1219 * We take the data_mutex lock early so that watchdog_open() cannot 1220 * run when misc_register() has completed, but we've not yet added 1221 * our data to the watchdog_data_list (and set the default timeout) 1222 */ 1223 mutex_lock(&watchdog_data_mutex); 1224 for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) { 1225 /* Register our watchdog part */ 1226 snprintf(data->watchdog_name, sizeof(data->watchdog_name), 1227 "watchdog%c", (i == 0) ? '\0' : ('0' + i)); 1228 data->watchdog_miscdev.name = data->watchdog_name; 1229 data->watchdog_miscdev.fops = &watchdog_fops; 1230 data->watchdog_miscdev.minor = watchdog_minors[i]; 1231 err = misc_register(&data->watchdog_miscdev); 1232 if (err == -EBUSY) 1233 continue; 1234 if (err) { 1235 data->watchdog_miscdev.minor = 0; 1236 dev_err(&client->dev, 1237 "Registering watchdog chardev: %d\n", err); 1238 break; 1239 } 1240 1241 list_add(&data->list, &watchdog_data_list); 1242 watchdog_set_timeout(data, 60); 1243 dev_info(&client->dev, 1244 "Registered watchdog chardev major 10, minor: %d\n", 1245 watchdog_minors[i]); 1246 break; 1247 } 1248 if (i == ARRAY_SIZE(watchdog_minors)) { 1249 data->watchdog_miscdev.minor = 0; 1250 dev_warn(&client->dev, 1251 "Couldn't register watchdog chardev (due to no free minor)\n"); 1252 } 1253 mutex_unlock(&watchdog_data_mutex); 1254 1255 dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n", 1256 names[data->kind], (int) data->revision); 1257 1258 return 0; 1259 1260 exit_detach: 1261 fschmd_remove(client); /* will also free data for us */ 1262 return err; 1263 } 1264 1265 static int fschmd_remove(struct i2c_client *client) 1266 { 1267 struct fschmd_data *data = i2c_get_clientdata(client); 1268 int i; 1269 1270 /* Unregister the watchdog (if registered) */ 1271 if (data->watchdog_miscdev.minor) { 1272 misc_deregister(&data->watchdog_miscdev); 1273 if (data->watchdog_is_open) { 1274 dev_warn(&client->dev, 1275 "i2c client detached with watchdog open! " 1276 "Stopping watchdog.\n"); 1277 watchdog_stop(data); 1278 } 1279 mutex_lock(&watchdog_data_mutex); 1280 list_del(&data->list); 1281 mutex_unlock(&watchdog_data_mutex); 1282 /* Tell the watchdog code the client is gone */ 1283 mutex_lock(&data->watchdog_lock); 1284 data->client = NULL; 1285 mutex_unlock(&data->watchdog_lock); 1286 } 1287 1288 /* 1289 * Check if registered in case we're called from fschmd_detect 1290 * to cleanup after an error 1291 */ 1292 if (data->hwmon_dev) 1293 hwmon_device_unregister(data->hwmon_dev); 1294 1295 device_remove_file(&client->dev, &dev_attr_alert_led); 1296 for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++) 1297 device_remove_file(&client->dev, &fschmd_attr[i].dev_attr); 1298 for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) 1299 device_remove_file(&client->dev, 1300 &fschmd_temp_attr[i].dev_attr); 1301 for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) 1302 device_remove_file(&client->dev, 1303 &fschmd_fan_attr[i].dev_attr); 1304 1305 mutex_lock(&watchdog_data_mutex); 1306 kref_put(&data->kref, fschmd_release_resources); 1307 mutex_unlock(&watchdog_data_mutex); 1308 1309 return 0; 1310 } 1311 1312 static struct fschmd_data *fschmd_update_device(struct device *dev) 1313 { 1314 struct i2c_client *client = to_i2c_client(dev); 1315 struct fschmd_data *data = i2c_get_clientdata(client); 1316 int i; 1317 1318 mutex_lock(&data->update_lock); 1319 1320 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { 1321 1322 for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) { 1323 data->temp_act[i] = i2c_smbus_read_byte_data(client, 1324 FSCHMD_REG_TEMP_ACT[data->kind][i]); 1325 data->temp_status[i] = i2c_smbus_read_byte_data(client, 1326 FSCHMD_REG_TEMP_STATE[data->kind][i]); 1327 1328 /* The fscpos doesn't have TEMP_LIMIT registers */ 1329 if (FSCHMD_REG_TEMP_LIMIT[data->kind][i]) 1330 data->temp_max[i] = i2c_smbus_read_byte_data( 1331 client, 1332 FSCHMD_REG_TEMP_LIMIT[data->kind][i]); 1333 1334 /* 1335 * reset alarm if the alarm condition is gone, 1336 * the chip doesn't do this itself 1337 */ 1338 if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) == 1339 FSCHMD_TEMP_ALARM_MASK && 1340 data->temp_act[i] < data->temp_max[i]) 1341 i2c_smbus_write_byte_data(client, 1342 FSCHMD_REG_TEMP_STATE[data->kind][i], 1343 data->temp_status[i]); 1344 } 1345 1346 for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) { 1347 data->fan_act[i] = i2c_smbus_read_byte_data(client, 1348 FSCHMD_REG_FAN_ACT[data->kind][i]); 1349 data->fan_status[i] = i2c_smbus_read_byte_data(client, 1350 FSCHMD_REG_FAN_STATE[data->kind][i]); 1351 data->fan_ripple[i] = i2c_smbus_read_byte_data(client, 1352 FSCHMD_REG_FAN_RIPPLE[data->kind][i]); 1353 1354 /* The fscpos third fan doesn't have a fan_min */ 1355 if (FSCHMD_REG_FAN_MIN[data->kind][i]) 1356 data->fan_min[i] = i2c_smbus_read_byte_data( 1357 client, 1358 FSCHMD_REG_FAN_MIN[data->kind][i]); 1359 1360 /* reset fan status if speed is back to > 0 */ 1361 if ((data->fan_status[i] & FSCHMD_FAN_ALARM) && 1362 data->fan_act[i]) 1363 i2c_smbus_write_byte_data(client, 1364 FSCHMD_REG_FAN_STATE[data->kind][i], 1365 data->fan_status[i]); 1366 } 1367 1368 for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) 1369 data->volt[i] = i2c_smbus_read_byte_data(client, 1370 FSCHMD_REG_VOLT[data->kind][i]); 1371 1372 data->last_updated = jiffies; 1373 data->valid = 1; 1374 } 1375 1376 mutex_unlock(&data->update_lock); 1377 1378 return data; 1379 } 1380 1381 module_i2c_driver(fschmd_driver); 1382 1383 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); 1384 MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades " 1385 "and Syleus driver"); 1386 MODULE_LICENSE("GPL"); 1387