xref: /openbmc/linux/drivers/hwmon/fschmd.c (revision cb1aaebe)
1 /*
2  * fschmd.c
3  *
4  * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  *  Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
23  *  Scylla, Heracles, Heimdall, Hades and Syleus chips
24  *
25  *  Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
26  *  (candidate) fschmd drivers:
27  *  Copyright (C) 2006 Thilo Cestonaro
28  *			<thilo.cestonaro.external@fujitsu-siemens.com>
29  *  Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
30  *  Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
31  *  Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
32  *  Copyright (C) 2000 Hermann Jung <hej@odn.de>
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/jiffies.h>
39 #include <linux/i2c.h>
40 #include <linux/hwmon.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/err.h>
43 #include <linux/mutex.h>
44 #include <linux/sysfs.h>
45 #include <linux/dmi.h>
46 #include <linux/fs.h>
47 #include <linux/watchdog.h>
48 #include <linux/miscdevice.h>
49 #include <linux/uaccess.h>
50 #include <linux/kref.h>
51 
52 /* Addresses to scan */
53 static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
54 
55 /* Insmod parameters */
56 static bool nowayout = WATCHDOG_NOWAYOUT;
57 module_param(nowayout, bool, 0);
58 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
59 	__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
60 
61 enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
62 
63 /*
64  * The FSCHMD registers and other defines
65  */
66 
67 /* chip identification */
68 #define FSCHMD_REG_IDENT_0		0x00
69 #define FSCHMD_REG_IDENT_1		0x01
70 #define FSCHMD_REG_IDENT_2		0x02
71 #define FSCHMD_REG_REVISION		0x03
72 
73 /* global control and status */
74 #define FSCHMD_REG_EVENT_STATE		0x04
75 #define FSCHMD_REG_CONTROL		0x05
76 
77 #define FSCHMD_CONTROL_ALERT_LED	0x01
78 
79 /* watchdog */
80 static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
81 	0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
82 static const u8 FSCHMD_REG_WDOG_STATE[7] = {
83 	0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
84 static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
85 	0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
86 
87 #define FSCHMD_WDOG_CONTROL_TRIGGER	0x10
88 #define FSCHMD_WDOG_CONTROL_STARTED	0x10 /* the same as trigger */
89 #define FSCHMD_WDOG_CONTROL_STOP	0x20
90 #define FSCHMD_WDOG_CONTROL_RESOLUTION	0x40
91 
92 #define FSCHMD_WDOG_STATE_CARDRESET	0x02
93 
94 /* voltages, weird order is to keep the same order as the old drivers */
95 static const u8 FSCHMD_REG_VOLT[7][6] = {
96 	{ 0x45, 0x42, 0x48 },				/* pos */
97 	{ 0x45, 0x42, 0x48 },				/* her */
98 	{ 0x45, 0x42, 0x48 },				/* scy */
99 	{ 0x45, 0x42, 0x48 },				/* hrc */
100 	{ 0x45, 0x42, 0x48 },				/* hmd */
101 	{ 0x21, 0x20, 0x22 },				/* hds */
102 	{ 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 },		/* syl */
103 };
104 
105 static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
106 
107 /*
108  * minimum pwm at which the fan is driven (pwm can be increased depending on
109  * the temp. Notice that for the scy some fans share there minimum speed.
110  * Also notice that with the scy the sensor order is different than with the
111  * other chips, this order was in the 2.4 driver and kept for consistency.
112  */
113 static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
114 	{ 0x55, 0x65 },					/* pos */
115 	{ 0x55, 0x65, 0xb5 },				/* her */
116 	{ 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 },		/* scy */
117 	{ 0x55, 0x65, 0xa5, 0xb5 },			/* hrc */
118 	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hmd */
119 	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hds */
120 	{ 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 },	/* syl */
121 };
122 
123 /* actual fan speed */
124 static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
125 	{ 0x0e, 0x6b, 0xab },				/* pos */
126 	{ 0x0e, 0x6b, 0xbb },				/* her */
127 	{ 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb },		/* scy */
128 	{ 0x0e, 0x6b, 0xab, 0xbb },			/* hrc */
129 	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hmd */
130 	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hds */
131 	{ 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 },	/* syl */
132 };
133 
134 /* fan status registers */
135 static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
136 	{ 0x0d, 0x62, 0xa2 },				/* pos */
137 	{ 0x0d, 0x62, 0xb2 },				/* her */
138 	{ 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 },		/* scy */
139 	{ 0x0d, 0x62, 0xa2, 0xb2 },			/* hrc */
140 	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hmd */
141 	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hds */
142 	{ 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 },	/* syl */
143 };
144 
145 /* fan ripple / divider registers */
146 static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
147 	{ 0x0f, 0x6f, 0xaf },				/* pos */
148 	{ 0x0f, 0x6f, 0xbf },				/* her */
149 	{ 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf },		/* scy */
150 	{ 0x0f, 0x6f, 0xaf, 0xbf },			/* hrc */
151 	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hmd */
152 	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hds */
153 	{ 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 },	/* syl */
154 };
155 
156 static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
157 
158 /* Fan status register bitmasks */
159 #define FSCHMD_FAN_ALARM	0x04 /* called fault by FSC! */
160 #define FSCHMD_FAN_NOT_PRESENT	0x08
161 #define FSCHMD_FAN_DISABLED	0x80
162 
163 
164 /* actual temperature registers */
165 static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
166 	{ 0x64, 0x32, 0x35 },				/* pos */
167 	{ 0x64, 0x32, 0x35 },				/* her */
168 	{ 0x64, 0xD0, 0x32, 0x35 },			/* scy */
169 	{ 0x64, 0x32, 0x35 },				/* hrc */
170 	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hmd */
171 	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hds */
172 	{ 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8,		/* syl */
173 	  0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
174 };
175 
176 /* temperature state registers */
177 static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
178 	{ 0x71, 0x81, 0x91 },				/* pos */
179 	{ 0x71, 0x81, 0x91 },				/* her */
180 	{ 0x71, 0xd1, 0x81, 0x91 },			/* scy */
181 	{ 0x71, 0x81, 0x91 },				/* hrc */
182 	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hmd */
183 	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hds */
184 	{ 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9,		/* syl */
185 	  0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
186 };
187 
188 /*
189  * temperature high limit registers, FSC does not document these. Proven to be
190  * there with field testing on the fscher and fschrc, already supported / used
191  * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
192  * at these addresses, but doesn't want to confirm they are the same as with
193  * the fscher??
194  */
195 static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
196 	{ 0, 0, 0 },					/* pos */
197 	{ 0x76, 0x86, 0x96 },				/* her */
198 	{ 0x76, 0xd6, 0x86, 0x96 },			/* scy */
199 	{ 0x76, 0x86, 0x96 },				/* hrc */
200 	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hmd */
201 	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hds */
202 	{ 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa,		/* syl */
203 	  0xba, 0xca, 0xda, 0xea, 0xfa },
204 };
205 
206 /*
207  * These were found through experimenting with an fscher, currently they are
208  * not used, but we keep them around for future reference.
209  * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
210  * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
211  * the fan speed.
212  * static const u8 FSCHER_REG_TEMP_AUTOP1[] =	{ 0x73, 0x83, 0x93 };
213  * static const u8 FSCHER_REG_TEMP_AUTOP2[] =	{ 0x75, 0x85, 0x95 };
214  */
215 
216 static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
217 
218 /* temp status register bitmasks */
219 #define FSCHMD_TEMP_WORKING	0x01
220 #define FSCHMD_TEMP_ALERT	0x02
221 #define FSCHMD_TEMP_DISABLED	0x80
222 /* there only really is an alarm if the sensor is working and alert == 1 */
223 #define FSCHMD_TEMP_ALARM_MASK \
224 	(FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
225 
226 /*
227  * Functions declarations
228  */
229 
230 static int fschmd_probe(struct i2c_client *client,
231 			const struct i2c_device_id *id);
232 static int fschmd_detect(struct i2c_client *client,
233 			 struct i2c_board_info *info);
234 static int fschmd_remove(struct i2c_client *client);
235 static struct fschmd_data *fschmd_update_device(struct device *dev);
236 
237 /*
238  * Driver data (common to all clients)
239  */
240 
241 static const struct i2c_device_id fschmd_id[] = {
242 	{ "fscpos", fscpos },
243 	{ "fscher", fscher },
244 	{ "fscscy", fscscy },
245 	{ "fschrc", fschrc },
246 	{ "fschmd", fschmd },
247 	{ "fschds", fschds },
248 	{ "fscsyl", fscsyl },
249 	{ }
250 };
251 MODULE_DEVICE_TABLE(i2c, fschmd_id);
252 
253 static struct i2c_driver fschmd_driver = {
254 	.class		= I2C_CLASS_HWMON,
255 	.driver = {
256 		.name	= "fschmd",
257 	},
258 	.probe		= fschmd_probe,
259 	.remove		= fschmd_remove,
260 	.id_table	= fschmd_id,
261 	.detect		= fschmd_detect,
262 	.address_list	= normal_i2c,
263 };
264 
265 /*
266  * Client data (each client gets its own)
267  */
268 
269 struct fschmd_data {
270 	struct i2c_client *client;
271 	struct device *hwmon_dev;
272 	struct mutex update_lock;
273 	struct mutex watchdog_lock;
274 	struct list_head list; /* member of the watchdog_data_list */
275 	struct kref kref;
276 	struct miscdevice watchdog_miscdev;
277 	enum chips kind;
278 	unsigned long watchdog_is_open;
279 	char watchdog_expect_close;
280 	char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
281 	char valid; /* zero until following fields are valid */
282 	unsigned long last_updated; /* in jiffies */
283 
284 	/* register values */
285 	u8 revision;            /* chip revision */
286 	u8 global_control;	/* global control register */
287 	u8 watchdog_control;    /* watchdog control register */
288 	u8 watchdog_state;      /* watchdog status register */
289 	u8 watchdog_preset;     /* watchdog counter preset on trigger val */
290 	u8 volt[6];		/* voltage */
291 	u8 temp_act[11];	/* temperature */
292 	u8 temp_status[11];	/* status of sensor */
293 	u8 temp_max[11];	/* high temp limit, notice: undocumented! */
294 	u8 fan_act[7];		/* fans revolutions per second */
295 	u8 fan_status[7];	/* fan status */
296 	u8 fan_min[7];		/* fan min value for rps */
297 	u8 fan_ripple[7];	/* divider for rps */
298 };
299 
300 /*
301  * Global variables to hold information read from special DMI tables, which are
302  * available on FSC machines with an fscher or later chip. There is no need to
303  * protect these with a lock as they are only modified from our attach function
304  * which always gets called with the i2c-core lock held and never accessed
305  * before the attach function is done with them.
306  */
307 static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
308 static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
309 static int dmi_vref = -1;
310 
311 /*
312  * Somewhat ugly :( global data pointer list with all fschmd devices, so that
313  * we can find our device data as when using misc_register there is no other
314  * method to get to ones device data from the open fop.
315  */
316 static LIST_HEAD(watchdog_data_list);
317 /* Note this lock not only protect list access, but also data.kref access */
318 static DEFINE_MUTEX(watchdog_data_mutex);
319 
320 /*
321  * Release our data struct when we're detached from the i2c client *and* all
322  * references to our watchdog device are released
323  */
324 static void fschmd_release_resources(struct kref *ref)
325 {
326 	struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
327 	kfree(data);
328 }
329 
330 /*
331  * Sysfs attr show / store functions
332  */
333 
334 static ssize_t in_value_show(struct device *dev,
335 			     struct device_attribute *devattr, char *buf)
336 {
337 	const int max_reading[3] = { 14200, 6600, 3300 };
338 	int index = to_sensor_dev_attr(devattr)->index;
339 	struct fschmd_data *data = fschmd_update_device(dev);
340 
341 	if (data->kind == fscher || data->kind >= fschrc)
342 		return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
343 			dmi_mult[index]) / 255 + dmi_offset[index]);
344 	else
345 		return sprintf(buf, "%d\n", (data->volt[index] *
346 			max_reading[index] + 128) / 255);
347 }
348 
349 
350 #define TEMP_FROM_REG(val)	(((val) - 128) * 1000)
351 
352 static ssize_t temp_value_show(struct device *dev,
353 			       struct device_attribute *devattr, char *buf)
354 {
355 	int index = to_sensor_dev_attr(devattr)->index;
356 	struct fschmd_data *data = fschmd_update_device(dev);
357 
358 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
359 }
360 
361 static ssize_t temp_max_show(struct device *dev,
362 			     struct device_attribute *devattr, char *buf)
363 {
364 	int index = to_sensor_dev_attr(devattr)->index;
365 	struct fschmd_data *data = fschmd_update_device(dev);
366 
367 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
368 }
369 
370 static ssize_t temp_max_store(struct device *dev,
371 			      struct device_attribute *devattr,
372 			      const char *buf, size_t count)
373 {
374 	int index = to_sensor_dev_attr(devattr)->index;
375 	struct fschmd_data *data = dev_get_drvdata(dev);
376 	long v;
377 	int err;
378 
379 	err = kstrtol(buf, 10, &v);
380 	if (err)
381 		return err;
382 
383 	v = clamp_val(v / 1000, -128, 127) + 128;
384 
385 	mutex_lock(&data->update_lock);
386 	i2c_smbus_write_byte_data(to_i2c_client(dev),
387 		FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
388 	data->temp_max[index] = v;
389 	mutex_unlock(&data->update_lock);
390 
391 	return count;
392 }
393 
394 static ssize_t temp_fault_show(struct device *dev,
395 			       struct device_attribute *devattr, char *buf)
396 {
397 	int index = to_sensor_dev_attr(devattr)->index;
398 	struct fschmd_data *data = fschmd_update_device(dev);
399 
400 	/* bit 0 set means sensor working ok, so no fault! */
401 	if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
402 		return sprintf(buf, "0\n");
403 	else
404 		return sprintf(buf, "1\n");
405 }
406 
407 static ssize_t temp_alarm_show(struct device *dev,
408 			       struct device_attribute *devattr, char *buf)
409 {
410 	int index = to_sensor_dev_attr(devattr)->index;
411 	struct fschmd_data *data = fschmd_update_device(dev);
412 
413 	if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
414 			FSCHMD_TEMP_ALARM_MASK)
415 		return sprintf(buf, "1\n");
416 	else
417 		return sprintf(buf, "0\n");
418 }
419 
420 
421 #define RPM_FROM_REG(val)	((val) * 60)
422 
423 static ssize_t fan_value_show(struct device *dev,
424 			      struct device_attribute *devattr, char *buf)
425 {
426 	int index = to_sensor_dev_attr(devattr)->index;
427 	struct fschmd_data *data = fschmd_update_device(dev);
428 
429 	return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
430 }
431 
432 static ssize_t fan_div_show(struct device *dev,
433 			    struct device_attribute *devattr, char *buf)
434 {
435 	int index = to_sensor_dev_attr(devattr)->index;
436 	struct fschmd_data *data = fschmd_update_device(dev);
437 
438 	/* bits 2..7 reserved => mask with 3 */
439 	return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
440 }
441 
442 static ssize_t fan_div_store(struct device *dev,
443 			     struct device_attribute *devattr,
444 			     const char *buf, size_t count)
445 {
446 	u8 reg;
447 	int index = to_sensor_dev_attr(devattr)->index;
448 	struct fschmd_data *data = dev_get_drvdata(dev);
449 	/* supported values: 2, 4, 8 */
450 	unsigned long v;
451 	int err;
452 
453 	err = kstrtoul(buf, 10, &v);
454 	if (err)
455 		return err;
456 
457 	switch (v) {
458 	case 2:
459 		v = 1;
460 		break;
461 	case 4:
462 		v = 2;
463 		break;
464 	case 8:
465 		v = 3;
466 		break;
467 	default:
468 		dev_err(dev,
469 			"fan_div value %lu not supported. Choose one of 2, 4 or 8!\n",
470 			v);
471 		return -EINVAL;
472 	}
473 
474 	mutex_lock(&data->update_lock);
475 
476 	reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
477 		FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
478 
479 	/* bits 2..7 reserved => mask with 0x03 */
480 	reg &= ~0x03;
481 	reg |= v;
482 
483 	i2c_smbus_write_byte_data(to_i2c_client(dev),
484 		FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
485 
486 	data->fan_ripple[index] = reg;
487 
488 	mutex_unlock(&data->update_lock);
489 
490 	return count;
491 }
492 
493 static ssize_t fan_alarm_show(struct device *dev,
494 			      struct device_attribute *devattr, char *buf)
495 {
496 	int index = to_sensor_dev_attr(devattr)->index;
497 	struct fschmd_data *data = fschmd_update_device(dev);
498 
499 	if (data->fan_status[index] & FSCHMD_FAN_ALARM)
500 		return sprintf(buf, "1\n");
501 	else
502 		return sprintf(buf, "0\n");
503 }
504 
505 static ssize_t fan_fault_show(struct device *dev,
506 			      struct device_attribute *devattr, char *buf)
507 {
508 	int index = to_sensor_dev_attr(devattr)->index;
509 	struct fschmd_data *data = fschmd_update_device(dev);
510 
511 	if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
512 		return sprintf(buf, "1\n");
513 	else
514 		return sprintf(buf, "0\n");
515 }
516 
517 
518 static ssize_t pwm_auto_point1_pwm_show(struct device *dev,
519 					struct device_attribute *devattr,
520 					char *buf)
521 {
522 	int index = to_sensor_dev_attr(devattr)->index;
523 	struct fschmd_data *data = fschmd_update_device(dev);
524 	int val = data->fan_min[index];
525 
526 	/* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
527 	if (val || data->kind == fscsyl)
528 		val = val / 2 + 128;
529 
530 	return sprintf(buf, "%d\n", val);
531 }
532 
533 static ssize_t pwm_auto_point1_pwm_store(struct device *dev,
534 					 struct device_attribute *devattr,
535 					 const char *buf, size_t count)
536 {
537 	int index = to_sensor_dev_attr(devattr)->index;
538 	struct fschmd_data *data = dev_get_drvdata(dev);
539 	unsigned long v;
540 	int err;
541 
542 	err = kstrtoul(buf, 10, &v);
543 	if (err)
544 		return err;
545 
546 	/* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
547 	if (v || data->kind == fscsyl) {
548 		v = clamp_val(v, 128, 255);
549 		v = (v - 128) * 2 + 1;
550 	}
551 
552 	mutex_lock(&data->update_lock);
553 
554 	i2c_smbus_write_byte_data(to_i2c_client(dev),
555 		FSCHMD_REG_FAN_MIN[data->kind][index], v);
556 	data->fan_min[index] = v;
557 
558 	mutex_unlock(&data->update_lock);
559 
560 	return count;
561 }
562 
563 
564 /*
565  * The FSC hwmon family has the ability to force an attached alert led to flash
566  * from software, we export this as an alert_led sysfs attr
567  */
568 static ssize_t alert_led_show(struct device *dev,
569 	struct device_attribute *devattr, char *buf)
570 {
571 	struct fschmd_data *data = fschmd_update_device(dev);
572 
573 	if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
574 		return sprintf(buf, "1\n");
575 	else
576 		return sprintf(buf, "0\n");
577 }
578 
579 static ssize_t alert_led_store(struct device *dev,
580 	struct device_attribute *devattr, const char *buf, size_t count)
581 {
582 	u8 reg;
583 	struct fschmd_data *data = dev_get_drvdata(dev);
584 	unsigned long v;
585 	int err;
586 
587 	err = kstrtoul(buf, 10, &v);
588 	if (err)
589 		return err;
590 
591 	mutex_lock(&data->update_lock);
592 
593 	reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
594 
595 	if (v)
596 		reg |= FSCHMD_CONTROL_ALERT_LED;
597 	else
598 		reg &= ~FSCHMD_CONTROL_ALERT_LED;
599 
600 	i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
601 
602 	data->global_control = reg;
603 
604 	mutex_unlock(&data->update_lock);
605 
606 	return count;
607 }
608 
609 static DEVICE_ATTR_RW(alert_led);
610 
611 static struct sensor_device_attribute fschmd_attr[] = {
612 	SENSOR_ATTR_RO(in0_input, in_value, 0),
613 	SENSOR_ATTR_RO(in1_input, in_value, 1),
614 	SENSOR_ATTR_RO(in2_input, in_value, 2),
615 	SENSOR_ATTR_RO(in3_input, in_value, 3),
616 	SENSOR_ATTR_RO(in4_input, in_value, 4),
617 	SENSOR_ATTR_RO(in5_input, in_value, 5),
618 };
619 
620 static struct sensor_device_attribute fschmd_temp_attr[] = {
621 	SENSOR_ATTR_RO(temp1_input, temp_value, 0),
622 	SENSOR_ATTR_RW(temp1_max, temp_max, 0),
623 	SENSOR_ATTR_RO(temp1_fault, temp_fault, 0),
624 	SENSOR_ATTR_RO(temp1_alarm, temp_alarm, 0),
625 	SENSOR_ATTR_RO(temp2_input, temp_value, 1),
626 	SENSOR_ATTR_RW(temp2_max, temp_max, 1),
627 	SENSOR_ATTR_RO(temp2_fault, temp_fault, 1),
628 	SENSOR_ATTR_RO(temp2_alarm, temp_alarm, 1),
629 	SENSOR_ATTR_RO(temp3_input, temp_value, 2),
630 	SENSOR_ATTR_RW(temp3_max, temp_max, 2),
631 	SENSOR_ATTR_RO(temp3_fault, temp_fault, 2),
632 	SENSOR_ATTR_RO(temp3_alarm, temp_alarm, 2),
633 	SENSOR_ATTR_RO(temp4_input, temp_value, 3),
634 	SENSOR_ATTR_RW(temp4_max, temp_max, 3),
635 	SENSOR_ATTR_RO(temp4_fault, temp_fault, 3),
636 	SENSOR_ATTR_RO(temp4_alarm, temp_alarm, 3),
637 	SENSOR_ATTR_RO(temp5_input, temp_value, 4),
638 	SENSOR_ATTR_RW(temp5_max, temp_max, 4),
639 	SENSOR_ATTR_RO(temp5_fault, temp_fault, 4),
640 	SENSOR_ATTR_RO(temp5_alarm, temp_alarm, 4),
641 	SENSOR_ATTR_RO(temp6_input, temp_value, 5),
642 	SENSOR_ATTR_RW(temp6_max, temp_max, 5),
643 	SENSOR_ATTR_RO(temp6_fault, temp_fault, 5),
644 	SENSOR_ATTR_RO(temp6_alarm, temp_alarm, 5),
645 	SENSOR_ATTR_RO(temp7_input, temp_value, 6),
646 	SENSOR_ATTR_RW(temp7_max, temp_max, 6),
647 	SENSOR_ATTR_RO(temp7_fault, temp_fault, 6),
648 	SENSOR_ATTR_RO(temp7_alarm, temp_alarm, 6),
649 	SENSOR_ATTR_RO(temp8_input, temp_value, 7),
650 	SENSOR_ATTR_RW(temp8_max, temp_max, 7),
651 	SENSOR_ATTR_RO(temp8_fault, temp_fault, 7),
652 	SENSOR_ATTR_RO(temp8_alarm, temp_alarm, 7),
653 	SENSOR_ATTR_RO(temp9_input, temp_value, 8),
654 	SENSOR_ATTR_RW(temp9_max, temp_max, 8),
655 	SENSOR_ATTR_RO(temp9_fault, temp_fault, 8),
656 	SENSOR_ATTR_RO(temp9_alarm, temp_alarm, 8),
657 	SENSOR_ATTR_RO(temp10_input, temp_value, 9),
658 	SENSOR_ATTR_RW(temp10_max, temp_max, 9),
659 	SENSOR_ATTR_RO(temp10_fault, temp_fault, 9),
660 	SENSOR_ATTR_RO(temp10_alarm, temp_alarm, 9),
661 	SENSOR_ATTR_RO(temp11_input, temp_value, 10),
662 	SENSOR_ATTR_RW(temp11_max, temp_max, 10),
663 	SENSOR_ATTR_RO(temp11_fault, temp_fault, 10),
664 	SENSOR_ATTR_RO(temp11_alarm, temp_alarm, 10),
665 };
666 
667 static struct sensor_device_attribute fschmd_fan_attr[] = {
668 	SENSOR_ATTR_RO(fan1_input, fan_value, 0),
669 	SENSOR_ATTR_RW(fan1_div, fan_div, 0),
670 	SENSOR_ATTR_RO(fan1_alarm, fan_alarm, 0),
671 	SENSOR_ATTR_RO(fan1_fault, fan_fault, 0),
672 	SENSOR_ATTR_RW(pwm1_auto_point1_pwm, pwm_auto_point1_pwm, 0),
673 	SENSOR_ATTR_RO(fan2_input, fan_value, 1),
674 	SENSOR_ATTR_RW(fan2_div, fan_div, 1),
675 	SENSOR_ATTR_RO(fan2_alarm, fan_alarm, 1),
676 	SENSOR_ATTR_RO(fan2_fault, fan_fault, 1),
677 	SENSOR_ATTR_RW(pwm2_auto_point1_pwm, pwm_auto_point1_pwm, 1),
678 	SENSOR_ATTR_RO(fan3_input, fan_value, 2),
679 	SENSOR_ATTR_RW(fan3_div, fan_div, 2),
680 	SENSOR_ATTR_RO(fan3_alarm, fan_alarm, 2),
681 	SENSOR_ATTR_RO(fan3_fault, fan_fault, 2),
682 	SENSOR_ATTR_RW(pwm3_auto_point1_pwm, pwm_auto_point1_pwm, 2),
683 	SENSOR_ATTR_RO(fan4_input, fan_value, 3),
684 	SENSOR_ATTR_RW(fan4_div, fan_div, 3),
685 	SENSOR_ATTR_RO(fan4_alarm, fan_alarm, 3),
686 	SENSOR_ATTR_RO(fan4_fault, fan_fault, 3),
687 	SENSOR_ATTR_RW(pwm4_auto_point1_pwm, pwm_auto_point1_pwm, 3),
688 	SENSOR_ATTR_RO(fan5_input, fan_value, 4),
689 	SENSOR_ATTR_RW(fan5_div, fan_div, 4),
690 	SENSOR_ATTR_RO(fan5_alarm, fan_alarm, 4),
691 	SENSOR_ATTR_RO(fan5_fault, fan_fault, 4),
692 	SENSOR_ATTR_RW(pwm5_auto_point1_pwm, pwm_auto_point1_pwm, 4),
693 	SENSOR_ATTR_RO(fan6_input, fan_value, 5),
694 	SENSOR_ATTR_RW(fan6_div, fan_div, 5),
695 	SENSOR_ATTR_RO(fan6_alarm, fan_alarm, 5),
696 	SENSOR_ATTR_RO(fan6_fault, fan_fault, 5),
697 	SENSOR_ATTR_RW(pwm6_auto_point1_pwm, pwm_auto_point1_pwm, 5),
698 	SENSOR_ATTR_RO(fan7_input, fan_value, 6),
699 	SENSOR_ATTR_RW(fan7_div, fan_div, 6),
700 	SENSOR_ATTR_RO(fan7_alarm, fan_alarm, 6),
701 	SENSOR_ATTR_RO(fan7_fault, fan_fault, 6),
702 	SENSOR_ATTR_RW(pwm7_auto_point1_pwm, pwm_auto_point1_pwm, 6),
703 };
704 
705 
706 /*
707  * Watchdog routines
708  */
709 
710 static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
711 {
712 	int ret, resolution;
713 	int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
714 
715 	/* 2 second or 60 second resolution? */
716 	if (timeout <= 510 || kind == fscpos || kind == fscscy)
717 		resolution = 2;
718 	else
719 		resolution = 60;
720 
721 	if (timeout < resolution || timeout > (resolution * 255))
722 		return -EINVAL;
723 
724 	mutex_lock(&data->watchdog_lock);
725 	if (!data->client) {
726 		ret = -ENODEV;
727 		goto leave;
728 	}
729 
730 	if (resolution == 2)
731 		data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
732 	else
733 		data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
734 
735 	data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
736 
737 	/* Write new timeout value */
738 	i2c_smbus_write_byte_data(data->client,
739 		FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
740 	/* Write new control register, do not trigger! */
741 	i2c_smbus_write_byte_data(data->client,
742 		FSCHMD_REG_WDOG_CONTROL[data->kind],
743 		data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
744 
745 	ret = data->watchdog_preset * resolution;
746 
747 leave:
748 	mutex_unlock(&data->watchdog_lock);
749 	return ret;
750 }
751 
752 static int watchdog_get_timeout(struct fschmd_data *data)
753 {
754 	int timeout;
755 
756 	mutex_lock(&data->watchdog_lock);
757 	if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
758 		timeout = data->watchdog_preset * 60;
759 	else
760 		timeout = data->watchdog_preset * 2;
761 	mutex_unlock(&data->watchdog_lock);
762 
763 	return timeout;
764 }
765 
766 static int watchdog_trigger(struct fschmd_data *data)
767 {
768 	int ret = 0;
769 
770 	mutex_lock(&data->watchdog_lock);
771 	if (!data->client) {
772 		ret = -ENODEV;
773 		goto leave;
774 	}
775 
776 	data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
777 	i2c_smbus_write_byte_data(data->client,
778 				  FSCHMD_REG_WDOG_CONTROL[data->kind],
779 				  data->watchdog_control);
780 leave:
781 	mutex_unlock(&data->watchdog_lock);
782 	return ret;
783 }
784 
785 static int watchdog_stop(struct fschmd_data *data)
786 {
787 	int ret = 0;
788 
789 	mutex_lock(&data->watchdog_lock);
790 	if (!data->client) {
791 		ret = -ENODEV;
792 		goto leave;
793 	}
794 
795 	data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
796 	/*
797 	 * Don't store the stop flag in our watchdog control register copy, as
798 	 * its a write only bit (read always returns 0)
799 	 */
800 	i2c_smbus_write_byte_data(data->client,
801 		FSCHMD_REG_WDOG_CONTROL[data->kind],
802 		data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
803 leave:
804 	mutex_unlock(&data->watchdog_lock);
805 	return ret;
806 }
807 
808 static int watchdog_open(struct inode *inode, struct file *filp)
809 {
810 	struct fschmd_data *pos, *data = NULL;
811 	int watchdog_is_open;
812 
813 	/*
814 	 * We get called from drivers/char/misc.c with misc_mtx hold, and we
815 	 * call misc_register() from fschmd_probe() with watchdog_data_mutex
816 	 * hold, as misc_register() takes the misc_mtx lock, this is a possible
817 	 * deadlock, so we use mutex_trylock here.
818 	 */
819 	if (!mutex_trylock(&watchdog_data_mutex))
820 		return -ERESTARTSYS;
821 	list_for_each_entry(pos, &watchdog_data_list, list) {
822 		if (pos->watchdog_miscdev.minor == iminor(inode)) {
823 			data = pos;
824 			break;
825 		}
826 	}
827 	/* Note we can never not have found data, so we don't check for this */
828 	watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
829 	if (!watchdog_is_open)
830 		kref_get(&data->kref);
831 	mutex_unlock(&watchdog_data_mutex);
832 
833 	if (watchdog_is_open)
834 		return -EBUSY;
835 
836 	/* Start the watchdog */
837 	watchdog_trigger(data);
838 	filp->private_data = data;
839 
840 	return stream_open(inode, filp);
841 }
842 
843 static int watchdog_release(struct inode *inode, struct file *filp)
844 {
845 	struct fschmd_data *data = filp->private_data;
846 
847 	if (data->watchdog_expect_close) {
848 		watchdog_stop(data);
849 		data->watchdog_expect_close = 0;
850 	} else {
851 		watchdog_trigger(data);
852 		dev_crit(&data->client->dev,
853 			"unexpected close, not stopping watchdog!\n");
854 	}
855 
856 	clear_bit(0, &data->watchdog_is_open);
857 
858 	mutex_lock(&watchdog_data_mutex);
859 	kref_put(&data->kref, fschmd_release_resources);
860 	mutex_unlock(&watchdog_data_mutex);
861 
862 	return 0;
863 }
864 
865 static ssize_t watchdog_write(struct file *filp, const char __user *buf,
866 	size_t count, loff_t *offset)
867 {
868 	int ret;
869 	struct fschmd_data *data = filp->private_data;
870 
871 	if (count) {
872 		if (!nowayout) {
873 			size_t i;
874 
875 			/* Clear it in case it was set with a previous write */
876 			data->watchdog_expect_close = 0;
877 
878 			for (i = 0; i != count; i++) {
879 				char c;
880 				if (get_user(c, buf + i))
881 					return -EFAULT;
882 				if (c == 'V')
883 					data->watchdog_expect_close = 1;
884 			}
885 		}
886 		ret = watchdog_trigger(data);
887 		if (ret < 0)
888 			return ret;
889 	}
890 	return count;
891 }
892 
893 static long watchdog_ioctl(struct file *filp, unsigned int cmd,
894 			   unsigned long arg)
895 {
896 	struct watchdog_info ident = {
897 		.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
898 				WDIOF_CARDRESET,
899 		.identity = "FSC watchdog"
900 	};
901 	int i, ret = 0;
902 	struct fschmd_data *data = filp->private_data;
903 
904 	switch (cmd) {
905 	case WDIOC_GETSUPPORT:
906 		ident.firmware_version = data->revision;
907 		if (!nowayout)
908 			ident.options |= WDIOF_MAGICCLOSE;
909 		if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
910 			ret = -EFAULT;
911 		break;
912 
913 	case WDIOC_GETSTATUS:
914 		ret = put_user(0, (int __user *)arg);
915 		break;
916 
917 	case WDIOC_GETBOOTSTATUS:
918 		if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
919 			ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
920 		else
921 			ret = put_user(0, (int __user *)arg);
922 		break;
923 
924 	case WDIOC_KEEPALIVE:
925 		ret = watchdog_trigger(data);
926 		break;
927 
928 	case WDIOC_GETTIMEOUT:
929 		i = watchdog_get_timeout(data);
930 		ret = put_user(i, (int __user *)arg);
931 		break;
932 
933 	case WDIOC_SETTIMEOUT:
934 		if (get_user(i, (int __user *)arg)) {
935 			ret = -EFAULT;
936 			break;
937 		}
938 		ret = watchdog_set_timeout(data, i);
939 		if (ret > 0)
940 			ret = put_user(ret, (int __user *)arg);
941 		break;
942 
943 	case WDIOC_SETOPTIONS:
944 		if (get_user(i, (int __user *)arg)) {
945 			ret = -EFAULT;
946 			break;
947 		}
948 
949 		if (i & WDIOS_DISABLECARD)
950 			ret = watchdog_stop(data);
951 		else if (i & WDIOS_ENABLECARD)
952 			ret = watchdog_trigger(data);
953 		else
954 			ret = -EINVAL;
955 
956 		break;
957 	default:
958 		ret = -ENOTTY;
959 	}
960 	return ret;
961 }
962 
963 static const struct file_operations watchdog_fops = {
964 	.owner = THIS_MODULE,
965 	.llseek = no_llseek,
966 	.open = watchdog_open,
967 	.release = watchdog_release,
968 	.write = watchdog_write,
969 	.unlocked_ioctl = watchdog_ioctl,
970 };
971 
972 
973 /*
974  * Detect, register, unregister and update device functions
975  */
976 
977 /*
978  * DMI decode routine to read voltage scaling factors from special DMI tables,
979  * which are available on FSC machines with an fscher or later chip.
980  */
981 static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
982 {
983 	int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
984 
985 	/*
986 	 * dmi code ugliness, we get passed the address of the contents of
987 	 * a complete DMI record, but in the form of a dmi_header pointer, in
988 	 * reality this address holds header->length bytes of which the header
989 	 * are the first 4 bytes
990 	 */
991 	u8 *dmi_data = (u8 *)header;
992 
993 	/* We are looking for OEM-specific type 185 */
994 	if (header->type != 185)
995 		return;
996 
997 	/*
998 	 * we are looking for what Siemens calls "subtype" 19, the subtype
999 	 * is stored in byte 5 of the dmi block
1000 	 */
1001 	if (header->length < 5 || dmi_data[4] != 19)
1002 		return;
1003 
1004 	/*
1005 	 * After the subtype comes 1 unknown byte and then blocks of 5 bytes,
1006 	 * consisting of what Siemens calls an "Entity" number, followed by
1007 	 * 2 16-bit words in LSB first order
1008 	 */
1009 	for (i = 6; (i + 4) < header->length; i += 5) {
1010 		/* entity 1 - 3: voltage multiplier and offset */
1011 		if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
1012 			/* Our in sensors order and the DMI order differ */
1013 			const int shuffle[3] = { 1, 0, 2 };
1014 			int in = shuffle[dmi_data[i] - 1];
1015 
1016 			/* Check for twice the same entity */
1017 			if (found & (1 << in))
1018 				return;
1019 
1020 			mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1021 			offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
1022 
1023 			found |= 1 << in;
1024 		}
1025 
1026 		/* entity 7: reference voltage */
1027 		if (dmi_data[i] == 7) {
1028 			/* Check for twice the same entity */
1029 			if (found & 0x08)
1030 				return;
1031 
1032 			vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1033 
1034 			found |= 0x08;
1035 		}
1036 	}
1037 
1038 	if (found == 0x0F) {
1039 		for (i = 0; i < 3; i++) {
1040 			dmi_mult[i] = mult[i] * 10;
1041 			dmi_offset[i] = offset[i] * 10;
1042 		}
1043 		/*
1044 		 * According to the docs there should be separate dmi entries
1045 		 * for the mult's and offsets of in3-5 of the syl, but on
1046 		 * my test machine these are not present
1047 		 */
1048 		dmi_mult[3] = dmi_mult[2];
1049 		dmi_mult[4] = dmi_mult[1];
1050 		dmi_mult[5] = dmi_mult[2];
1051 		dmi_offset[3] = dmi_offset[2];
1052 		dmi_offset[4] = dmi_offset[1];
1053 		dmi_offset[5] = dmi_offset[2];
1054 		dmi_vref = vref;
1055 	}
1056 }
1057 
1058 static int fschmd_detect(struct i2c_client *client,
1059 			 struct i2c_board_info *info)
1060 {
1061 	enum chips kind;
1062 	struct i2c_adapter *adapter = client->adapter;
1063 	char id[4];
1064 
1065 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1066 		return -ENODEV;
1067 
1068 	/* Detect & Identify the chip */
1069 	id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
1070 	id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
1071 	id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
1072 	id[3] = '\0';
1073 
1074 	if (!strcmp(id, "PEG"))
1075 		kind = fscpos;
1076 	else if (!strcmp(id, "HER"))
1077 		kind = fscher;
1078 	else if (!strcmp(id, "SCY"))
1079 		kind = fscscy;
1080 	else if (!strcmp(id, "HRC"))
1081 		kind = fschrc;
1082 	else if (!strcmp(id, "HMD"))
1083 		kind = fschmd;
1084 	else if (!strcmp(id, "HDS"))
1085 		kind = fschds;
1086 	else if (!strcmp(id, "SYL"))
1087 		kind = fscsyl;
1088 	else
1089 		return -ENODEV;
1090 
1091 	strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
1092 
1093 	return 0;
1094 }
1095 
1096 static int fschmd_probe(struct i2c_client *client,
1097 			const struct i2c_device_id *id)
1098 {
1099 	struct fschmd_data *data;
1100 	const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
1101 				"Heracles", "Heimdall", "Hades", "Syleus" };
1102 	const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
1103 	int i, err;
1104 	enum chips kind = id->driver_data;
1105 
1106 	data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
1107 	if (!data)
1108 		return -ENOMEM;
1109 
1110 	i2c_set_clientdata(client, data);
1111 	mutex_init(&data->update_lock);
1112 	mutex_init(&data->watchdog_lock);
1113 	INIT_LIST_HEAD(&data->list);
1114 	kref_init(&data->kref);
1115 	/*
1116 	 * Store client pointer in our data struct for watchdog usage
1117 	 * (where the client is found through a data ptr instead of the
1118 	 * otherway around)
1119 	 */
1120 	data->client = client;
1121 	data->kind = kind;
1122 
1123 	if (kind == fscpos) {
1124 		/*
1125 		 * The Poseidon has hardwired temp limits, fill these
1126 		 * in for the alarm resetting code
1127 		 */
1128 		data->temp_max[0] = 70 + 128;
1129 		data->temp_max[1] = 50 + 128;
1130 		data->temp_max[2] = 50 + 128;
1131 	}
1132 
1133 	/* Read the special DMI table for fscher and newer chips */
1134 	if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
1135 		dmi_walk(fschmd_dmi_decode, NULL);
1136 		if (dmi_vref == -1) {
1137 			dev_warn(&client->dev,
1138 				"Couldn't get voltage scaling factors from "
1139 				"BIOS DMI table, using builtin defaults\n");
1140 			dmi_vref = 33;
1141 		}
1142 	}
1143 
1144 	/* Read in some never changing registers */
1145 	data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
1146 	data->global_control = i2c_smbus_read_byte_data(client,
1147 					FSCHMD_REG_CONTROL);
1148 	data->watchdog_control = i2c_smbus_read_byte_data(client,
1149 					FSCHMD_REG_WDOG_CONTROL[data->kind]);
1150 	data->watchdog_state = i2c_smbus_read_byte_data(client,
1151 					FSCHMD_REG_WDOG_STATE[data->kind]);
1152 	data->watchdog_preset = i2c_smbus_read_byte_data(client,
1153 					FSCHMD_REG_WDOG_PRESET[data->kind]);
1154 
1155 	err = device_create_file(&client->dev, &dev_attr_alert_led);
1156 	if (err)
1157 		goto exit_detach;
1158 
1159 	for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
1160 		err = device_create_file(&client->dev,
1161 					&fschmd_attr[i].dev_attr);
1162 		if (err)
1163 			goto exit_detach;
1164 	}
1165 
1166 	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
1167 		/* Poseidon doesn't have TEMP_LIMIT registers */
1168 		if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
1169 				temp_max_show)
1170 			continue;
1171 
1172 		if (kind == fscsyl) {
1173 			if (i % 4 == 0)
1174 				data->temp_status[i / 4] =
1175 					i2c_smbus_read_byte_data(client,
1176 						FSCHMD_REG_TEMP_STATE
1177 						[data->kind][i / 4]);
1178 			if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
1179 				continue;
1180 		}
1181 
1182 		err = device_create_file(&client->dev,
1183 					&fschmd_temp_attr[i].dev_attr);
1184 		if (err)
1185 			goto exit_detach;
1186 	}
1187 
1188 	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
1189 		/* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
1190 		if (kind == fscpos &&
1191 				!strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
1192 					"pwm3_auto_point1_pwm"))
1193 			continue;
1194 
1195 		if (kind == fscsyl) {
1196 			if (i % 5 == 0)
1197 				data->fan_status[i / 5] =
1198 					i2c_smbus_read_byte_data(client,
1199 						FSCHMD_REG_FAN_STATE
1200 						[data->kind][i / 5]);
1201 			if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
1202 				continue;
1203 		}
1204 
1205 		err = device_create_file(&client->dev,
1206 					&fschmd_fan_attr[i].dev_attr);
1207 		if (err)
1208 			goto exit_detach;
1209 	}
1210 
1211 	data->hwmon_dev = hwmon_device_register(&client->dev);
1212 	if (IS_ERR(data->hwmon_dev)) {
1213 		err = PTR_ERR(data->hwmon_dev);
1214 		data->hwmon_dev = NULL;
1215 		goto exit_detach;
1216 	}
1217 
1218 	/*
1219 	 * We take the data_mutex lock early so that watchdog_open() cannot
1220 	 * run when misc_register() has completed, but we've not yet added
1221 	 * our data to the watchdog_data_list (and set the default timeout)
1222 	 */
1223 	mutex_lock(&watchdog_data_mutex);
1224 	for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
1225 		/* Register our watchdog part */
1226 		snprintf(data->watchdog_name, sizeof(data->watchdog_name),
1227 			"watchdog%c", (i == 0) ? '\0' : ('0' + i));
1228 		data->watchdog_miscdev.name = data->watchdog_name;
1229 		data->watchdog_miscdev.fops = &watchdog_fops;
1230 		data->watchdog_miscdev.minor = watchdog_minors[i];
1231 		err = misc_register(&data->watchdog_miscdev);
1232 		if (err == -EBUSY)
1233 			continue;
1234 		if (err) {
1235 			data->watchdog_miscdev.minor = 0;
1236 			dev_err(&client->dev,
1237 				"Registering watchdog chardev: %d\n", err);
1238 			break;
1239 		}
1240 
1241 		list_add(&data->list, &watchdog_data_list);
1242 		watchdog_set_timeout(data, 60);
1243 		dev_info(&client->dev,
1244 			"Registered watchdog chardev major 10, minor: %d\n",
1245 			watchdog_minors[i]);
1246 		break;
1247 	}
1248 	if (i == ARRAY_SIZE(watchdog_minors)) {
1249 		data->watchdog_miscdev.minor = 0;
1250 		dev_warn(&client->dev,
1251 			 "Couldn't register watchdog chardev (due to no free minor)\n");
1252 	}
1253 	mutex_unlock(&watchdog_data_mutex);
1254 
1255 	dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
1256 		names[data->kind], (int) data->revision);
1257 
1258 	return 0;
1259 
1260 exit_detach:
1261 	fschmd_remove(client); /* will also free data for us */
1262 	return err;
1263 }
1264 
1265 static int fschmd_remove(struct i2c_client *client)
1266 {
1267 	struct fschmd_data *data = i2c_get_clientdata(client);
1268 	int i;
1269 
1270 	/* Unregister the watchdog (if registered) */
1271 	if (data->watchdog_miscdev.minor) {
1272 		misc_deregister(&data->watchdog_miscdev);
1273 		if (data->watchdog_is_open) {
1274 			dev_warn(&client->dev,
1275 				"i2c client detached with watchdog open! "
1276 				"Stopping watchdog.\n");
1277 			watchdog_stop(data);
1278 		}
1279 		mutex_lock(&watchdog_data_mutex);
1280 		list_del(&data->list);
1281 		mutex_unlock(&watchdog_data_mutex);
1282 		/* Tell the watchdog code the client is gone */
1283 		mutex_lock(&data->watchdog_lock);
1284 		data->client = NULL;
1285 		mutex_unlock(&data->watchdog_lock);
1286 	}
1287 
1288 	/*
1289 	 * Check if registered in case we're called from fschmd_detect
1290 	 * to cleanup after an error
1291 	 */
1292 	if (data->hwmon_dev)
1293 		hwmon_device_unregister(data->hwmon_dev);
1294 
1295 	device_remove_file(&client->dev, &dev_attr_alert_led);
1296 	for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
1297 		device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
1298 	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
1299 		device_remove_file(&client->dev,
1300 					&fschmd_temp_attr[i].dev_attr);
1301 	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
1302 		device_remove_file(&client->dev,
1303 					&fschmd_fan_attr[i].dev_attr);
1304 
1305 	mutex_lock(&watchdog_data_mutex);
1306 	kref_put(&data->kref, fschmd_release_resources);
1307 	mutex_unlock(&watchdog_data_mutex);
1308 
1309 	return 0;
1310 }
1311 
1312 static struct fschmd_data *fschmd_update_device(struct device *dev)
1313 {
1314 	struct i2c_client *client = to_i2c_client(dev);
1315 	struct fschmd_data *data = i2c_get_clientdata(client);
1316 	int i;
1317 
1318 	mutex_lock(&data->update_lock);
1319 
1320 	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
1321 
1322 		for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
1323 			data->temp_act[i] = i2c_smbus_read_byte_data(client,
1324 					FSCHMD_REG_TEMP_ACT[data->kind][i]);
1325 			data->temp_status[i] = i2c_smbus_read_byte_data(client,
1326 					FSCHMD_REG_TEMP_STATE[data->kind][i]);
1327 
1328 			/* The fscpos doesn't have TEMP_LIMIT registers */
1329 			if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
1330 				data->temp_max[i] = i2c_smbus_read_byte_data(
1331 					client,
1332 					FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
1333 
1334 			/*
1335 			 * reset alarm if the alarm condition is gone,
1336 			 * the chip doesn't do this itself
1337 			 */
1338 			if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
1339 					FSCHMD_TEMP_ALARM_MASK &&
1340 					data->temp_act[i] < data->temp_max[i])
1341 				i2c_smbus_write_byte_data(client,
1342 					FSCHMD_REG_TEMP_STATE[data->kind][i],
1343 					data->temp_status[i]);
1344 		}
1345 
1346 		for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
1347 			data->fan_act[i] = i2c_smbus_read_byte_data(client,
1348 					FSCHMD_REG_FAN_ACT[data->kind][i]);
1349 			data->fan_status[i] = i2c_smbus_read_byte_data(client,
1350 					FSCHMD_REG_FAN_STATE[data->kind][i]);
1351 			data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
1352 					FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
1353 
1354 			/* The fscpos third fan doesn't have a fan_min */
1355 			if (FSCHMD_REG_FAN_MIN[data->kind][i])
1356 				data->fan_min[i] = i2c_smbus_read_byte_data(
1357 					client,
1358 					FSCHMD_REG_FAN_MIN[data->kind][i]);
1359 
1360 			/* reset fan status if speed is back to > 0 */
1361 			if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
1362 					data->fan_act[i])
1363 				i2c_smbus_write_byte_data(client,
1364 					FSCHMD_REG_FAN_STATE[data->kind][i],
1365 					data->fan_status[i]);
1366 		}
1367 
1368 		for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
1369 			data->volt[i] = i2c_smbus_read_byte_data(client,
1370 					       FSCHMD_REG_VOLT[data->kind][i]);
1371 
1372 		data->last_updated = jiffies;
1373 		data->valid = 1;
1374 	}
1375 
1376 	mutex_unlock(&data->update_lock);
1377 
1378 	return data;
1379 }
1380 
1381 module_i2c_driver(fschmd_driver);
1382 
1383 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1384 MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
1385 			"and Syleus driver");
1386 MODULE_LICENSE("GPL");
1387