xref: /openbmc/linux/drivers/hwmon/fschmd.c (revision 39b6f3aa)
1 /*
2  * fschmd.c
3  *
4  * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  *  Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
23  *  Scylla, Heracles, Heimdall, Hades and Syleus chips
24  *
25  *  Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
26  *  (candidate) fschmd drivers:
27  *  Copyright (C) 2006 Thilo Cestonaro
28  *			<thilo.cestonaro.external@fujitsu-siemens.com>
29  *  Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
30  *  Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
31  *  Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
32  *  Copyright (C) 2000 Hermann Jung <hej@odn.de>
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/jiffies.h>
39 #include <linux/i2c.h>
40 #include <linux/hwmon.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/err.h>
43 #include <linux/mutex.h>
44 #include <linux/sysfs.h>
45 #include <linux/dmi.h>
46 #include <linux/fs.h>
47 #include <linux/watchdog.h>
48 #include <linux/miscdevice.h>
49 #include <linux/uaccess.h>
50 #include <linux/kref.h>
51 
52 /* Addresses to scan */
53 static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
54 
55 /* Insmod parameters */
56 static bool nowayout = WATCHDOG_NOWAYOUT;
57 module_param(nowayout, bool, 0);
58 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
59 	__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
60 
61 enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
62 
63 /*
64  * The FSCHMD registers and other defines
65  */
66 
67 /* chip identification */
68 #define FSCHMD_REG_IDENT_0		0x00
69 #define FSCHMD_REG_IDENT_1		0x01
70 #define FSCHMD_REG_IDENT_2		0x02
71 #define FSCHMD_REG_REVISION		0x03
72 
73 /* global control and status */
74 #define FSCHMD_REG_EVENT_STATE		0x04
75 #define FSCHMD_REG_CONTROL		0x05
76 
77 #define FSCHMD_CONTROL_ALERT_LED	0x01
78 
79 /* watchdog */
80 static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
81 	0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
82 static const u8 FSCHMD_REG_WDOG_STATE[7] = {
83 	0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
84 static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
85 	0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
86 
87 #define FSCHMD_WDOG_CONTROL_TRIGGER	0x10
88 #define FSCHMD_WDOG_CONTROL_STARTED	0x10 /* the same as trigger */
89 #define FSCHMD_WDOG_CONTROL_STOP	0x20
90 #define FSCHMD_WDOG_CONTROL_RESOLUTION	0x40
91 
92 #define FSCHMD_WDOG_STATE_CARDRESET	0x02
93 
94 /* voltages, weird order is to keep the same order as the old drivers */
95 static const u8 FSCHMD_REG_VOLT[7][6] = {
96 	{ 0x45, 0x42, 0x48 },				/* pos */
97 	{ 0x45, 0x42, 0x48 },				/* her */
98 	{ 0x45, 0x42, 0x48 },				/* scy */
99 	{ 0x45, 0x42, 0x48 },				/* hrc */
100 	{ 0x45, 0x42, 0x48 },				/* hmd */
101 	{ 0x21, 0x20, 0x22 },				/* hds */
102 	{ 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 },		/* syl */
103 };
104 
105 static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
106 
107 /*
108  * minimum pwm at which the fan is driven (pwm can by increased depending on
109  * the temp. Notice that for the scy some fans share there minimum speed.
110  * Also notice that with the scy the sensor order is different than with the
111  * other chips, this order was in the 2.4 driver and kept for consistency.
112  */
113 static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
114 	{ 0x55, 0x65 },					/* pos */
115 	{ 0x55, 0x65, 0xb5 },				/* her */
116 	{ 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 },		/* scy */
117 	{ 0x55, 0x65, 0xa5, 0xb5 },			/* hrc */
118 	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hmd */
119 	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hds */
120 	{ 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 },	/* syl */
121 };
122 
123 /* actual fan speed */
124 static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
125 	{ 0x0e, 0x6b, 0xab },				/* pos */
126 	{ 0x0e, 0x6b, 0xbb },				/* her */
127 	{ 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb },		/* scy */
128 	{ 0x0e, 0x6b, 0xab, 0xbb },			/* hrc */
129 	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hmd */
130 	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hds */
131 	{ 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 },	/* syl */
132 };
133 
134 /* fan status registers */
135 static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
136 	{ 0x0d, 0x62, 0xa2 },				/* pos */
137 	{ 0x0d, 0x62, 0xb2 },				/* her */
138 	{ 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 },		/* scy */
139 	{ 0x0d, 0x62, 0xa2, 0xb2 },			/* hrc */
140 	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hmd */
141 	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hds */
142 	{ 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 },	/* syl */
143 };
144 
145 /* fan ripple / divider registers */
146 static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
147 	{ 0x0f, 0x6f, 0xaf },				/* pos */
148 	{ 0x0f, 0x6f, 0xbf },				/* her */
149 	{ 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf },		/* scy */
150 	{ 0x0f, 0x6f, 0xaf, 0xbf },			/* hrc */
151 	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hmd */
152 	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hds */
153 	{ 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 },	/* syl */
154 };
155 
156 static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
157 
158 /* Fan status register bitmasks */
159 #define FSCHMD_FAN_ALARM	0x04 /* called fault by FSC! */
160 #define FSCHMD_FAN_NOT_PRESENT	0x08
161 #define FSCHMD_FAN_DISABLED	0x80
162 
163 
164 /* actual temperature registers */
165 static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
166 	{ 0x64, 0x32, 0x35 },				/* pos */
167 	{ 0x64, 0x32, 0x35 },				/* her */
168 	{ 0x64, 0xD0, 0x32, 0x35 },			/* scy */
169 	{ 0x64, 0x32, 0x35 },				/* hrc */
170 	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hmd */
171 	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hds */
172 	{ 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8,		/* syl */
173 	  0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
174 };
175 
176 /* temperature state registers */
177 static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
178 	{ 0x71, 0x81, 0x91 },				/* pos */
179 	{ 0x71, 0x81, 0x91 },				/* her */
180 	{ 0x71, 0xd1, 0x81, 0x91 },			/* scy */
181 	{ 0x71, 0x81, 0x91 },				/* hrc */
182 	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hmd */
183 	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hds */
184 	{ 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9,		/* syl */
185 	  0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
186 };
187 
188 /*
189  * temperature high limit registers, FSC does not document these. Proven to be
190  * there with field testing on the fscher and fschrc, already supported / used
191  * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
192  * at these addresses, but doesn't want to confirm they are the same as with
193  * the fscher??
194  */
195 static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
196 	{ 0, 0, 0 },					/* pos */
197 	{ 0x76, 0x86, 0x96 },				/* her */
198 	{ 0x76, 0xd6, 0x86, 0x96 },			/* scy */
199 	{ 0x76, 0x86, 0x96 },				/* hrc */
200 	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hmd */
201 	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hds */
202 	{ 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa,		/* syl */
203 	  0xba, 0xca, 0xda, 0xea, 0xfa },
204 };
205 
206 /*
207  * These were found through experimenting with an fscher, currently they are
208  * not used, but we keep them around for future reference.
209  * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
210  * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
211  * the fan speed.
212  * static const u8 FSCHER_REG_TEMP_AUTOP1[] =	{ 0x73, 0x83, 0x93 };
213  * static const u8 FSCHER_REG_TEMP_AUTOP2[] =	{ 0x75, 0x85, 0x95 };
214  */
215 
216 static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
217 
218 /* temp status register bitmasks */
219 #define FSCHMD_TEMP_WORKING	0x01
220 #define FSCHMD_TEMP_ALERT	0x02
221 #define FSCHMD_TEMP_DISABLED	0x80
222 /* there only really is an alarm if the sensor is working and alert == 1 */
223 #define FSCHMD_TEMP_ALARM_MASK \
224 	(FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
225 
226 /*
227  * Functions declarations
228  */
229 
230 static int fschmd_probe(struct i2c_client *client,
231 			const struct i2c_device_id *id);
232 static int fschmd_detect(struct i2c_client *client,
233 			 struct i2c_board_info *info);
234 static int fschmd_remove(struct i2c_client *client);
235 static struct fschmd_data *fschmd_update_device(struct device *dev);
236 
237 /*
238  * Driver data (common to all clients)
239  */
240 
241 static const struct i2c_device_id fschmd_id[] = {
242 	{ "fscpos", fscpos },
243 	{ "fscher", fscher },
244 	{ "fscscy", fscscy },
245 	{ "fschrc", fschrc },
246 	{ "fschmd", fschmd },
247 	{ "fschds", fschds },
248 	{ "fscsyl", fscsyl },
249 	{ }
250 };
251 MODULE_DEVICE_TABLE(i2c, fschmd_id);
252 
253 static struct i2c_driver fschmd_driver = {
254 	.class		= I2C_CLASS_HWMON,
255 	.driver = {
256 		.name	= "fschmd",
257 	},
258 	.probe		= fschmd_probe,
259 	.remove		= fschmd_remove,
260 	.id_table	= fschmd_id,
261 	.detect		= fschmd_detect,
262 	.address_list	= normal_i2c,
263 };
264 
265 /*
266  * Client data (each client gets its own)
267  */
268 
269 struct fschmd_data {
270 	struct i2c_client *client;
271 	struct device *hwmon_dev;
272 	struct mutex update_lock;
273 	struct mutex watchdog_lock;
274 	struct list_head list; /* member of the watchdog_data_list */
275 	struct kref kref;
276 	struct miscdevice watchdog_miscdev;
277 	enum chips kind;
278 	unsigned long watchdog_is_open;
279 	char watchdog_expect_close;
280 	char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
281 	char valid; /* zero until following fields are valid */
282 	unsigned long last_updated; /* in jiffies */
283 
284 	/* register values */
285 	u8 revision;            /* chip revision */
286 	u8 global_control;	/* global control register */
287 	u8 watchdog_control;    /* watchdog control register */
288 	u8 watchdog_state;      /* watchdog status register */
289 	u8 watchdog_preset;     /* watchdog counter preset on trigger val */
290 	u8 volt[6];		/* voltage */
291 	u8 temp_act[11];	/* temperature */
292 	u8 temp_status[11];	/* status of sensor */
293 	u8 temp_max[11];	/* high temp limit, notice: undocumented! */
294 	u8 fan_act[7];		/* fans revolutions per second */
295 	u8 fan_status[7];	/* fan status */
296 	u8 fan_min[7];		/* fan min value for rps */
297 	u8 fan_ripple[7];	/* divider for rps */
298 };
299 
300 /*
301  * Global variables to hold information read from special DMI tables, which are
302  * available on FSC machines with an fscher or later chip. There is no need to
303  * protect these with a lock as they are only modified from our attach function
304  * which always gets called with the i2c-core lock held and never accessed
305  * before the attach function is done with them.
306  */
307 static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
308 static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
309 static int dmi_vref = -1;
310 
311 /*
312  * Somewhat ugly :( global data pointer list with all fschmd devices, so that
313  * we can find our device data as when using misc_register there is no other
314  * method to get to ones device data from the open fop.
315  */
316 static LIST_HEAD(watchdog_data_list);
317 /* Note this lock not only protect list access, but also data.kref access */
318 static DEFINE_MUTEX(watchdog_data_mutex);
319 
320 /*
321  * Release our data struct when we're detached from the i2c client *and* all
322  * references to our watchdog device are released
323  */
324 static void fschmd_release_resources(struct kref *ref)
325 {
326 	struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
327 	kfree(data);
328 }
329 
330 /*
331  * Sysfs attr show / store functions
332  */
333 
334 static ssize_t show_in_value(struct device *dev,
335 	struct device_attribute *devattr, char *buf)
336 {
337 	const int max_reading[3] = { 14200, 6600, 3300 };
338 	int index = to_sensor_dev_attr(devattr)->index;
339 	struct fschmd_data *data = fschmd_update_device(dev);
340 
341 	if (data->kind == fscher || data->kind >= fschrc)
342 		return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
343 			dmi_mult[index]) / 255 + dmi_offset[index]);
344 	else
345 		return sprintf(buf, "%d\n", (data->volt[index] *
346 			max_reading[index] + 128) / 255);
347 }
348 
349 
350 #define TEMP_FROM_REG(val)	(((val) - 128) * 1000)
351 
352 static ssize_t show_temp_value(struct device *dev,
353 	struct device_attribute *devattr, char *buf)
354 {
355 	int index = to_sensor_dev_attr(devattr)->index;
356 	struct fschmd_data *data = fschmd_update_device(dev);
357 
358 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
359 }
360 
361 static ssize_t show_temp_max(struct device *dev,
362 	struct device_attribute *devattr, char *buf)
363 {
364 	int index = to_sensor_dev_attr(devattr)->index;
365 	struct fschmd_data *data = fschmd_update_device(dev);
366 
367 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
368 }
369 
370 static ssize_t store_temp_max(struct device *dev, struct device_attribute
371 	*devattr, const char *buf, size_t count)
372 {
373 	int index = to_sensor_dev_attr(devattr)->index;
374 	struct fschmd_data *data = dev_get_drvdata(dev);
375 	long v;
376 	int err;
377 
378 	err = kstrtol(buf, 10, &v);
379 	if (err)
380 		return err;
381 
382 	v = clamp_val(v / 1000, -128, 127) + 128;
383 
384 	mutex_lock(&data->update_lock);
385 	i2c_smbus_write_byte_data(to_i2c_client(dev),
386 		FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
387 	data->temp_max[index] = v;
388 	mutex_unlock(&data->update_lock);
389 
390 	return count;
391 }
392 
393 static ssize_t show_temp_fault(struct device *dev,
394 	struct device_attribute *devattr, char *buf)
395 {
396 	int index = to_sensor_dev_attr(devattr)->index;
397 	struct fschmd_data *data = fschmd_update_device(dev);
398 
399 	/* bit 0 set means sensor working ok, so no fault! */
400 	if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
401 		return sprintf(buf, "0\n");
402 	else
403 		return sprintf(buf, "1\n");
404 }
405 
406 static ssize_t show_temp_alarm(struct device *dev,
407 	struct device_attribute *devattr, char *buf)
408 {
409 	int index = to_sensor_dev_attr(devattr)->index;
410 	struct fschmd_data *data = fschmd_update_device(dev);
411 
412 	if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
413 			FSCHMD_TEMP_ALARM_MASK)
414 		return sprintf(buf, "1\n");
415 	else
416 		return sprintf(buf, "0\n");
417 }
418 
419 
420 #define RPM_FROM_REG(val)	((val) * 60)
421 
422 static ssize_t show_fan_value(struct device *dev,
423 	struct device_attribute *devattr, char *buf)
424 {
425 	int index = to_sensor_dev_attr(devattr)->index;
426 	struct fschmd_data *data = fschmd_update_device(dev);
427 
428 	return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
429 }
430 
431 static ssize_t show_fan_div(struct device *dev,
432 	struct device_attribute *devattr, char *buf)
433 {
434 	int index = to_sensor_dev_attr(devattr)->index;
435 	struct fschmd_data *data = fschmd_update_device(dev);
436 
437 	/* bits 2..7 reserved => mask with 3 */
438 	return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
439 }
440 
441 static ssize_t store_fan_div(struct device *dev, struct device_attribute
442 	*devattr, const char *buf, size_t count)
443 {
444 	u8 reg;
445 	int index = to_sensor_dev_attr(devattr)->index;
446 	struct fschmd_data *data = dev_get_drvdata(dev);
447 	/* supported values: 2, 4, 8 */
448 	unsigned long v;
449 	int err;
450 
451 	err = kstrtoul(buf, 10, &v);
452 	if (err)
453 		return err;
454 
455 	switch (v) {
456 	case 2:
457 		v = 1;
458 		break;
459 	case 4:
460 		v = 2;
461 		break;
462 	case 8:
463 		v = 3;
464 		break;
465 	default:
466 		dev_err(dev,
467 			"fan_div value %lu not supported. Choose one of 2, 4 or 8!\n",
468 			v);
469 		return -EINVAL;
470 	}
471 
472 	mutex_lock(&data->update_lock);
473 
474 	reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
475 		FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
476 
477 	/* bits 2..7 reserved => mask with 0x03 */
478 	reg &= ~0x03;
479 	reg |= v;
480 
481 	i2c_smbus_write_byte_data(to_i2c_client(dev),
482 		FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
483 
484 	data->fan_ripple[index] = reg;
485 
486 	mutex_unlock(&data->update_lock);
487 
488 	return count;
489 }
490 
491 static ssize_t show_fan_alarm(struct device *dev,
492 	struct device_attribute *devattr, char *buf)
493 {
494 	int index = to_sensor_dev_attr(devattr)->index;
495 	struct fschmd_data *data = fschmd_update_device(dev);
496 
497 	if (data->fan_status[index] & FSCHMD_FAN_ALARM)
498 		return sprintf(buf, "1\n");
499 	else
500 		return sprintf(buf, "0\n");
501 }
502 
503 static ssize_t show_fan_fault(struct device *dev,
504 	struct device_attribute *devattr, char *buf)
505 {
506 	int index = to_sensor_dev_attr(devattr)->index;
507 	struct fschmd_data *data = fschmd_update_device(dev);
508 
509 	if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
510 		return sprintf(buf, "1\n");
511 	else
512 		return sprintf(buf, "0\n");
513 }
514 
515 
516 static ssize_t show_pwm_auto_point1_pwm(struct device *dev,
517 	struct device_attribute *devattr, char *buf)
518 {
519 	int index = to_sensor_dev_attr(devattr)->index;
520 	struct fschmd_data *data = fschmd_update_device(dev);
521 	int val = data->fan_min[index];
522 
523 	/* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
524 	if (val || data->kind == fscsyl)
525 		val = val / 2 + 128;
526 
527 	return sprintf(buf, "%d\n", val);
528 }
529 
530 static ssize_t store_pwm_auto_point1_pwm(struct device *dev,
531 	struct device_attribute *devattr, const char *buf, size_t count)
532 {
533 	int index = to_sensor_dev_attr(devattr)->index;
534 	struct fschmd_data *data = dev_get_drvdata(dev);
535 	unsigned long v;
536 	int err;
537 
538 	err = kstrtoul(buf, 10, &v);
539 	if (err)
540 		return err;
541 
542 	/* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
543 	if (v || data->kind == fscsyl) {
544 		v = clamp_val(v, 128, 255);
545 		v = (v - 128) * 2 + 1;
546 	}
547 
548 	mutex_lock(&data->update_lock);
549 
550 	i2c_smbus_write_byte_data(to_i2c_client(dev),
551 		FSCHMD_REG_FAN_MIN[data->kind][index], v);
552 	data->fan_min[index] = v;
553 
554 	mutex_unlock(&data->update_lock);
555 
556 	return count;
557 }
558 
559 
560 /*
561  * The FSC hwmon family has the ability to force an attached alert led to flash
562  * from software, we export this as an alert_led sysfs attr
563  */
564 static ssize_t show_alert_led(struct device *dev,
565 	struct device_attribute *devattr, char *buf)
566 {
567 	struct fschmd_data *data = fschmd_update_device(dev);
568 
569 	if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
570 		return sprintf(buf, "1\n");
571 	else
572 		return sprintf(buf, "0\n");
573 }
574 
575 static ssize_t store_alert_led(struct device *dev,
576 	struct device_attribute *devattr, const char *buf, size_t count)
577 {
578 	u8 reg;
579 	struct fschmd_data *data = dev_get_drvdata(dev);
580 	unsigned long v;
581 	int err;
582 
583 	err = kstrtoul(buf, 10, &v);
584 	if (err)
585 		return err;
586 
587 	mutex_lock(&data->update_lock);
588 
589 	reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
590 
591 	if (v)
592 		reg |= FSCHMD_CONTROL_ALERT_LED;
593 	else
594 		reg &= ~FSCHMD_CONTROL_ALERT_LED;
595 
596 	i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
597 
598 	data->global_control = reg;
599 
600 	mutex_unlock(&data->update_lock);
601 
602 	return count;
603 }
604 
605 static DEVICE_ATTR(alert_led, 0644, show_alert_led, store_alert_led);
606 
607 static struct sensor_device_attribute fschmd_attr[] = {
608 	SENSOR_ATTR(in0_input, 0444, show_in_value, NULL, 0),
609 	SENSOR_ATTR(in1_input, 0444, show_in_value, NULL, 1),
610 	SENSOR_ATTR(in2_input, 0444, show_in_value, NULL, 2),
611 	SENSOR_ATTR(in3_input, 0444, show_in_value, NULL, 3),
612 	SENSOR_ATTR(in4_input, 0444, show_in_value, NULL, 4),
613 	SENSOR_ATTR(in5_input, 0444, show_in_value, NULL, 5),
614 };
615 
616 static struct sensor_device_attribute fschmd_temp_attr[] = {
617 	SENSOR_ATTR(temp1_input, 0444, show_temp_value, NULL, 0),
618 	SENSOR_ATTR(temp1_max,   0644, show_temp_max, store_temp_max, 0),
619 	SENSOR_ATTR(temp1_fault, 0444, show_temp_fault, NULL, 0),
620 	SENSOR_ATTR(temp1_alarm, 0444, show_temp_alarm, NULL, 0),
621 	SENSOR_ATTR(temp2_input, 0444, show_temp_value, NULL, 1),
622 	SENSOR_ATTR(temp2_max,   0644, show_temp_max, store_temp_max, 1),
623 	SENSOR_ATTR(temp2_fault, 0444, show_temp_fault, NULL, 1),
624 	SENSOR_ATTR(temp2_alarm, 0444, show_temp_alarm, NULL, 1),
625 	SENSOR_ATTR(temp3_input, 0444, show_temp_value, NULL, 2),
626 	SENSOR_ATTR(temp3_max,   0644, show_temp_max, store_temp_max, 2),
627 	SENSOR_ATTR(temp3_fault, 0444, show_temp_fault, NULL, 2),
628 	SENSOR_ATTR(temp3_alarm, 0444, show_temp_alarm, NULL, 2),
629 	SENSOR_ATTR(temp4_input, 0444, show_temp_value, NULL, 3),
630 	SENSOR_ATTR(temp4_max,   0644, show_temp_max, store_temp_max, 3),
631 	SENSOR_ATTR(temp4_fault, 0444, show_temp_fault, NULL, 3),
632 	SENSOR_ATTR(temp4_alarm, 0444, show_temp_alarm, NULL, 3),
633 	SENSOR_ATTR(temp5_input, 0444, show_temp_value, NULL, 4),
634 	SENSOR_ATTR(temp5_max,   0644, show_temp_max, store_temp_max, 4),
635 	SENSOR_ATTR(temp5_fault, 0444, show_temp_fault, NULL, 4),
636 	SENSOR_ATTR(temp5_alarm, 0444, show_temp_alarm, NULL, 4),
637 	SENSOR_ATTR(temp6_input, 0444, show_temp_value, NULL, 5),
638 	SENSOR_ATTR(temp6_max,   0644, show_temp_max, store_temp_max, 5),
639 	SENSOR_ATTR(temp6_fault, 0444, show_temp_fault, NULL, 5),
640 	SENSOR_ATTR(temp6_alarm, 0444, show_temp_alarm, NULL, 5),
641 	SENSOR_ATTR(temp7_input, 0444, show_temp_value, NULL, 6),
642 	SENSOR_ATTR(temp7_max,   0644, show_temp_max, store_temp_max, 6),
643 	SENSOR_ATTR(temp7_fault, 0444, show_temp_fault, NULL, 6),
644 	SENSOR_ATTR(temp7_alarm, 0444, show_temp_alarm, NULL, 6),
645 	SENSOR_ATTR(temp8_input, 0444, show_temp_value, NULL, 7),
646 	SENSOR_ATTR(temp8_max,   0644, show_temp_max, store_temp_max, 7),
647 	SENSOR_ATTR(temp8_fault, 0444, show_temp_fault, NULL, 7),
648 	SENSOR_ATTR(temp8_alarm, 0444, show_temp_alarm, NULL, 7),
649 	SENSOR_ATTR(temp9_input, 0444, show_temp_value, NULL, 8),
650 	SENSOR_ATTR(temp9_max,   0644, show_temp_max, store_temp_max, 8),
651 	SENSOR_ATTR(temp9_fault, 0444, show_temp_fault, NULL, 8),
652 	SENSOR_ATTR(temp9_alarm, 0444, show_temp_alarm, NULL, 8),
653 	SENSOR_ATTR(temp10_input, 0444, show_temp_value, NULL, 9),
654 	SENSOR_ATTR(temp10_max,   0644, show_temp_max, store_temp_max, 9),
655 	SENSOR_ATTR(temp10_fault, 0444, show_temp_fault, NULL, 9),
656 	SENSOR_ATTR(temp10_alarm, 0444, show_temp_alarm, NULL, 9),
657 	SENSOR_ATTR(temp11_input, 0444, show_temp_value, NULL, 10),
658 	SENSOR_ATTR(temp11_max,   0644, show_temp_max, store_temp_max, 10),
659 	SENSOR_ATTR(temp11_fault, 0444, show_temp_fault, NULL, 10),
660 	SENSOR_ATTR(temp11_alarm, 0444, show_temp_alarm, NULL, 10),
661 };
662 
663 static struct sensor_device_attribute fschmd_fan_attr[] = {
664 	SENSOR_ATTR(fan1_input, 0444, show_fan_value, NULL, 0),
665 	SENSOR_ATTR(fan1_div,   0644, show_fan_div, store_fan_div, 0),
666 	SENSOR_ATTR(fan1_alarm, 0444, show_fan_alarm, NULL, 0),
667 	SENSOR_ATTR(fan1_fault, 0444, show_fan_fault, NULL, 0),
668 	SENSOR_ATTR(pwm1_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
669 		store_pwm_auto_point1_pwm, 0),
670 	SENSOR_ATTR(fan2_input, 0444, show_fan_value, NULL, 1),
671 	SENSOR_ATTR(fan2_div,   0644, show_fan_div, store_fan_div, 1),
672 	SENSOR_ATTR(fan2_alarm, 0444, show_fan_alarm, NULL, 1),
673 	SENSOR_ATTR(fan2_fault, 0444, show_fan_fault, NULL, 1),
674 	SENSOR_ATTR(pwm2_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
675 		store_pwm_auto_point1_pwm, 1),
676 	SENSOR_ATTR(fan3_input, 0444, show_fan_value, NULL, 2),
677 	SENSOR_ATTR(fan3_div,   0644, show_fan_div, store_fan_div, 2),
678 	SENSOR_ATTR(fan3_alarm, 0444, show_fan_alarm, NULL, 2),
679 	SENSOR_ATTR(fan3_fault, 0444, show_fan_fault, NULL, 2),
680 	SENSOR_ATTR(pwm3_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
681 		store_pwm_auto_point1_pwm, 2),
682 	SENSOR_ATTR(fan4_input, 0444, show_fan_value, NULL, 3),
683 	SENSOR_ATTR(fan4_div,   0644, show_fan_div, store_fan_div, 3),
684 	SENSOR_ATTR(fan4_alarm, 0444, show_fan_alarm, NULL, 3),
685 	SENSOR_ATTR(fan4_fault, 0444, show_fan_fault, NULL, 3),
686 	SENSOR_ATTR(pwm4_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
687 		store_pwm_auto_point1_pwm, 3),
688 	SENSOR_ATTR(fan5_input, 0444, show_fan_value, NULL, 4),
689 	SENSOR_ATTR(fan5_div,   0644, show_fan_div, store_fan_div, 4),
690 	SENSOR_ATTR(fan5_alarm, 0444, show_fan_alarm, NULL, 4),
691 	SENSOR_ATTR(fan5_fault, 0444, show_fan_fault, NULL, 4),
692 	SENSOR_ATTR(pwm5_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
693 		store_pwm_auto_point1_pwm, 4),
694 	SENSOR_ATTR(fan6_input, 0444, show_fan_value, NULL, 5),
695 	SENSOR_ATTR(fan6_div,   0644, show_fan_div, store_fan_div, 5),
696 	SENSOR_ATTR(fan6_alarm, 0444, show_fan_alarm, NULL, 5),
697 	SENSOR_ATTR(fan6_fault, 0444, show_fan_fault, NULL, 5),
698 	SENSOR_ATTR(pwm6_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
699 		store_pwm_auto_point1_pwm, 5),
700 	SENSOR_ATTR(fan7_input, 0444, show_fan_value, NULL, 6),
701 	SENSOR_ATTR(fan7_div,   0644, show_fan_div, store_fan_div, 6),
702 	SENSOR_ATTR(fan7_alarm, 0444, show_fan_alarm, NULL, 6),
703 	SENSOR_ATTR(fan7_fault, 0444, show_fan_fault, NULL, 6),
704 	SENSOR_ATTR(pwm7_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm,
705 		store_pwm_auto_point1_pwm, 6),
706 };
707 
708 
709 /*
710  * Watchdog routines
711  */
712 
713 static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
714 {
715 	int ret, resolution;
716 	int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
717 
718 	/* 2 second or 60 second resolution? */
719 	if (timeout <= 510 || kind == fscpos || kind == fscscy)
720 		resolution = 2;
721 	else
722 		resolution = 60;
723 
724 	if (timeout < resolution || timeout > (resolution * 255))
725 		return -EINVAL;
726 
727 	mutex_lock(&data->watchdog_lock);
728 	if (!data->client) {
729 		ret = -ENODEV;
730 		goto leave;
731 	}
732 
733 	if (resolution == 2)
734 		data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
735 	else
736 		data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
737 
738 	data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
739 
740 	/* Write new timeout value */
741 	i2c_smbus_write_byte_data(data->client,
742 		FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
743 	/* Write new control register, do not trigger! */
744 	i2c_smbus_write_byte_data(data->client,
745 		FSCHMD_REG_WDOG_CONTROL[data->kind],
746 		data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
747 
748 	ret = data->watchdog_preset * resolution;
749 
750 leave:
751 	mutex_unlock(&data->watchdog_lock);
752 	return ret;
753 }
754 
755 static int watchdog_get_timeout(struct fschmd_data *data)
756 {
757 	int timeout;
758 
759 	mutex_lock(&data->watchdog_lock);
760 	if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
761 		timeout = data->watchdog_preset * 60;
762 	else
763 		timeout = data->watchdog_preset * 2;
764 	mutex_unlock(&data->watchdog_lock);
765 
766 	return timeout;
767 }
768 
769 static int watchdog_trigger(struct fschmd_data *data)
770 {
771 	int ret = 0;
772 
773 	mutex_lock(&data->watchdog_lock);
774 	if (!data->client) {
775 		ret = -ENODEV;
776 		goto leave;
777 	}
778 
779 	data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
780 	i2c_smbus_write_byte_data(data->client,
781 				  FSCHMD_REG_WDOG_CONTROL[data->kind],
782 				  data->watchdog_control);
783 leave:
784 	mutex_unlock(&data->watchdog_lock);
785 	return ret;
786 }
787 
788 static int watchdog_stop(struct fschmd_data *data)
789 {
790 	int ret = 0;
791 
792 	mutex_lock(&data->watchdog_lock);
793 	if (!data->client) {
794 		ret = -ENODEV;
795 		goto leave;
796 	}
797 
798 	data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
799 	/*
800 	 * Don't store the stop flag in our watchdog control register copy, as
801 	 * its a write only bit (read always returns 0)
802 	 */
803 	i2c_smbus_write_byte_data(data->client,
804 		FSCHMD_REG_WDOG_CONTROL[data->kind],
805 		data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
806 leave:
807 	mutex_unlock(&data->watchdog_lock);
808 	return ret;
809 }
810 
811 static int watchdog_open(struct inode *inode, struct file *filp)
812 {
813 	struct fschmd_data *pos, *data = NULL;
814 	int watchdog_is_open;
815 
816 	/*
817 	 * We get called from drivers/char/misc.c with misc_mtx hold, and we
818 	 * call misc_register() from fschmd_probe() with watchdog_data_mutex
819 	 * hold, as misc_register() takes the misc_mtx lock, this is a possible
820 	 * deadlock, so we use mutex_trylock here.
821 	 */
822 	if (!mutex_trylock(&watchdog_data_mutex))
823 		return -ERESTARTSYS;
824 	list_for_each_entry(pos, &watchdog_data_list, list) {
825 		if (pos->watchdog_miscdev.minor == iminor(inode)) {
826 			data = pos;
827 			break;
828 		}
829 	}
830 	/* Note we can never not have found data, so we don't check for this */
831 	watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
832 	if (!watchdog_is_open)
833 		kref_get(&data->kref);
834 	mutex_unlock(&watchdog_data_mutex);
835 
836 	if (watchdog_is_open)
837 		return -EBUSY;
838 
839 	/* Start the watchdog */
840 	watchdog_trigger(data);
841 	filp->private_data = data;
842 
843 	return nonseekable_open(inode, filp);
844 }
845 
846 static int watchdog_release(struct inode *inode, struct file *filp)
847 {
848 	struct fschmd_data *data = filp->private_data;
849 
850 	if (data->watchdog_expect_close) {
851 		watchdog_stop(data);
852 		data->watchdog_expect_close = 0;
853 	} else {
854 		watchdog_trigger(data);
855 		dev_crit(&data->client->dev,
856 			"unexpected close, not stopping watchdog!\n");
857 	}
858 
859 	clear_bit(0, &data->watchdog_is_open);
860 
861 	mutex_lock(&watchdog_data_mutex);
862 	kref_put(&data->kref, fschmd_release_resources);
863 	mutex_unlock(&watchdog_data_mutex);
864 
865 	return 0;
866 }
867 
868 static ssize_t watchdog_write(struct file *filp, const char __user *buf,
869 	size_t count, loff_t *offset)
870 {
871 	int ret;
872 	struct fschmd_data *data = filp->private_data;
873 
874 	if (count) {
875 		if (!nowayout) {
876 			size_t i;
877 
878 			/* Clear it in case it was set with a previous write */
879 			data->watchdog_expect_close = 0;
880 
881 			for (i = 0; i != count; i++) {
882 				char c;
883 				if (get_user(c, buf + i))
884 					return -EFAULT;
885 				if (c == 'V')
886 					data->watchdog_expect_close = 1;
887 			}
888 		}
889 		ret = watchdog_trigger(data);
890 		if (ret < 0)
891 			return ret;
892 	}
893 	return count;
894 }
895 
896 static long watchdog_ioctl(struct file *filp, unsigned int cmd,
897 			   unsigned long arg)
898 {
899 	struct watchdog_info ident = {
900 		.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
901 				WDIOF_CARDRESET,
902 		.identity = "FSC watchdog"
903 	};
904 	int i, ret = 0;
905 	struct fschmd_data *data = filp->private_data;
906 
907 	switch (cmd) {
908 	case WDIOC_GETSUPPORT:
909 		ident.firmware_version = data->revision;
910 		if (!nowayout)
911 			ident.options |= WDIOF_MAGICCLOSE;
912 		if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
913 			ret = -EFAULT;
914 		break;
915 
916 	case WDIOC_GETSTATUS:
917 		ret = put_user(0, (int __user *)arg);
918 		break;
919 
920 	case WDIOC_GETBOOTSTATUS:
921 		if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
922 			ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
923 		else
924 			ret = put_user(0, (int __user *)arg);
925 		break;
926 
927 	case WDIOC_KEEPALIVE:
928 		ret = watchdog_trigger(data);
929 		break;
930 
931 	case WDIOC_GETTIMEOUT:
932 		i = watchdog_get_timeout(data);
933 		ret = put_user(i, (int __user *)arg);
934 		break;
935 
936 	case WDIOC_SETTIMEOUT:
937 		if (get_user(i, (int __user *)arg)) {
938 			ret = -EFAULT;
939 			break;
940 		}
941 		ret = watchdog_set_timeout(data, i);
942 		if (ret > 0)
943 			ret = put_user(ret, (int __user *)arg);
944 		break;
945 
946 	case WDIOC_SETOPTIONS:
947 		if (get_user(i, (int __user *)arg)) {
948 			ret = -EFAULT;
949 			break;
950 		}
951 
952 		if (i & WDIOS_DISABLECARD)
953 			ret = watchdog_stop(data);
954 		else if (i & WDIOS_ENABLECARD)
955 			ret = watchdog_trigger(data);
956 		else
957 			ret = -EINVAL;
958 
959 		break;
960 	default:
961 		ret = -ENOTTY;
962 	}
963 	return ret;
964 }
965 
966 static const struct file_operations watchdog_fops = {
967 	.owner = THIS_MODULE,
968 	.llseek = no_llseek,
969 	.open = watchdog_open,
970 	.release = watchdog_release,
971 	.write = watchdog_write,
972 	.unlocked_ioctl = watchdog_ioctl,
973 };
974 
975 
976 /*
977  * Detect, register, unregister and update device functions
978  */
979 
980 /*
981  * DMI decode routine to read voltage scaling factors from special DMI tables,
982  * which are available on FSC machines with an fscher or later chip.
983  */
984 static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
985 {
986 	int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
987 
988 	/*
989 	 * dmi code ugliness, we get passed the address of the contents of
990 	 * a complete DMI record, but in the form of a dmi_header pointer, in
991 	 * reality this address holds header->length bytes of which the header
992 	 * are the first 4 bytes
993 	 */
994 	u8 *dmi_data = (u8 *)header;
995 
996 	/* We are looking for OEM-specific type 185 */
997 	if (header->type != 185)
998 		return;
999 
1000 	/*
1001 	 * we are looking for what Siemens calls "subtype" 19, the subtype
1002 	 * is stored in byte 5 of the dmi block
1003 	 */
1004 	if (header->length < 5 || dmi_data[4] != 19)
1005 		return;
1006 
1007 	/*
1008 	 * After the subtype comes 1 unknown byte and then blocks of 5 bytes,
1009 	 * consisting of what Siemens calls an "Entity" number, followed by
1010 	 * 2 16-bit words in LSB first order
1011 	 */
1012 	for (i = 6; (i + 4) < header->length; i += 5) {
1013 		/* entity 1 - 3: voltage multiplier and offset */
1014 		if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
1015 			/* Our in sensors order and the DMI order differ */
1016 			const int shuffle[3] = { 1, 0, 2 };
1017 			int in = shuffle[dmi_data[i] - 1];
1018 
1019 			/* Check for twice the same entity */
1020 			if (found & (1 << in))
1021 				return;
1022 
1023 			mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1024 			offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
1025 
1026 			found |= 1 << in;
1027 		}
1028 
1029 		/* entity 7: reference voltage */
1030 		if (dmi_data[i] == 7) {
1031 			/* Check for twice the same entity */
1032 			if (found & 0x08)
1033 				return;
1034 
1035 			vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1036 
1037 			found |= 0x08;
1038 		}
1039 	}
1040 
1041 	if (found == 0x0F) {
1042 		for (i = 0; i < 3; i++) {
1043 			dmi_mult[i] = mult[i] * 10;
1044 			dmi_offset[i] = offset[i] * 10;
1045 		}
1046 		/*
1047 		 * According to the docs there should be separate dmi entries
1048 		 * for the mult's and offsets of in3-5 of the syl, but on
1049 		 * my test machine these are not present
1050 		 */
1051 		dmi_mult[3] = dmi_mult[2];
1052 		dmi_mult[4] = dmi_mult[1];
1053 		dmi_mult[5] = dmi_mult[2];
1054 		dmi_offset[3] = dmi_offset[2];
1055 		dmi_offset[4] = dmi_offset[1];
1056 		dmi_offset[5] = dmi_offset[2];
1057 		dmi_vref = vref;
1058 	}
1059 }
1060 
1061 static int fschmd_detect(struct i2c_client *client,
1062 			 struct i2c_board_info *info)
1063 {
1064 	enum chips kind;
1065 	struct i2c_adapter *adapter = client->adapter;
1066 	char id[4];
1067 
1068 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1069 		return -ENODEV;
1070 
1071 	/* Detect & Identify the chip */
1072 	id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
1073 	id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
1074 	id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
1075 	id[3] = '\0';
1076 
1077 	if (!strcmp(id, "PEG"))
1078 		kind = fscpos;
1079 	else if (!strcmp(id, "HER"))
1080 		kind = fscher;
1081 	else if (!strcmp(id, "SCY"))
1082 		kind = fscscy;
1083 	else if (!strcmp(id, "HRC"))
1084 		kind = fschrc;
1085 	else if (!strcmp(id, "HMD"))
1086 		kind = fschmd;
1087 	else if (!strcmp(id, "HDS"))
1088 		kind = fschds;
1089 	else if (!strcmp(id, "SYL"))
1090 		kind = fscsyl;
1091 	else
1092 		return -ENODEV;
1093 
1094 	strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
1095 
1096 	return 0;
1097 }
1098 
1099 static int fschmd_probe(struct i2c_client *client,
1100 			const struct i2c_device_id *id)
1101 {
1102 	struct fschmd_data *data;
1103 	const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
1104 				"Heracles", "Heimdall", "Hades", "Syleus" };
1105 	const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
1106 	int i, err;
1107 	enum chips kind = id->driver_data;
1108 
1109 	data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
1110 	if (!data)
1111 		return -ENOMEM;
1112 
1113 	i2c_set_clientdata(client, data);
1114 	mutex_init(&data->update_lock);
1115 	mutex_init(&data->watchdog_lock);
1116 	INIT_LIST_HEAD(&data->list);
1117 	kref_init(&data->kref);
1118 	/*
1119 	 * Store client pointer in our data struct for watchdog usage
1120 	 * (where the client is found through a data ptr instead of the
1121 	 * otherway around)
1122 	 */
1123 	data->client = client;
1124 	data->kind = kind;
1125 
1126 	if (kind == fscpos) {
1127 		/*
1128 		 * The Poseidon has hardwired temp limits, fill these
1129 		 * in for the alarm resetting code
1130 		 */
1131 		data->temp_max[0] = 70 + 128;
1132 		data->temp_max[1] = 50 + 128;
1133 		data->temp_max[2] = 50 + 128;
1134 	}
1135 
1136 	/* Read the special DMI table for fscher and newer chips */
1137 	if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
1138 		dmi_walk(fschmd_dmi_decode, NULL);
1139 		if (dmi_vref == -1) {
1140 			dev_warn(&client->dev,
1141 				"Couldn't get voltage scaling factors from "
1142 				"BIOS DMI table, using builtin defaults\n");
1143 			dmi_vref = 33;
1144 		}
1145 	}
1146 
1147 	/* Read in some never changing registers */
1148 	data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
1149 	data->global_control = i2c_smbus_read_byte_data(client,
1150 					FSCHMD_REG_CONTROL);
1151 	data->watchdog_control = i2c_smbus_read_byte_data(client,
1152 					FSCHMD_REG_WDOG_CONTROL[data->kind]);
1153 	data->watchdog_state = i2c_smbus_read_byte_data(client,
1154 					FSCHMD_REG_WDOG_STATE[data->kind]);
1155 	data->watchdog_preset = i2c_smbus_read_byte_data(client,
1156 					FSCHMD_REG_WDOG_PRESET[data->kind]);
1157 
1158 	err = device_create_file(&client->dev, &dev_attr_alert_led);
1159 	if (err)
1160 		goto exit_detach;
1161 
1162 	for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
1163 		err = device_create_file(&client->dev,
1164 					&fschmd_attr[i].dev_attr);
1165 		if (err)
1166 			goto exit_detach;
1167 	}
1168 
1169 	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
1170 		/* Poseidon doesn't have TEMP_LIMIT registers */
1171 		if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
1172 				show_temp_max)
1173 			continue;
1174 
1175 		if (kind == fscsyl) {
1176 			if (i % 4 == 0)
1177 				data->temp_status[i / 4] =
1178 					i2c_smbus_read_byte_data(client,
1179 						FSCHMD_REG_TEMP_STATE
1180 						[data->kind][i / 4]);
1181 			if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
1182 				continue;
1183 		}
1184 
1185 		err = device_create_file(&client->dev,
1186 					&fschmd_temp_attr[i].dev_attr);
1187 		if (err)
1188 			goto exit_detach;
1189 	}
1190 
1191 	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
1192 		/* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
1193 		if (kind == fscpos &&
1194 				!strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
1195 					"pwm3_auto_point1_pwm"))
1196 			continue;
1197 
1198 		if (kind == fscsyl) {
1199 			if (i % 5 == 0)
1200 				data->fan_status[i / 5] =
1201 					i2c_smbus_read_byte_data(client,
1202 						FSCHMD_REG_FAN_STATE
1203 						[data->kind][i / 5]);
1204 			if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
1205 				continue;
1206 		}
1207 
1208 		err = device_create_file(&client->dev,
1209 					&fschmd_fan_attr[i].dev_attr);
1210 		if (err)
1211 			goto exit_detach;
1212 	}
1213 
1214 	data->hwmon_dev = hwmon_device_register(&client->dev);
1215 	if (IS_ERR(data->hwmon_dev)) {
1216 		err = PTR_ERR(data->hwmon_dev);
1217 		data->hwmon_dev = NULL;
1218 		goto exit_detach;
1219 	}
1220 
1221 	/*
1222 	 * We take the data_mutex lock early so that watchdog_open() cannot
1223 	 * run when misc_register() has completed, but we've not yet added
1224 	 * our data to the watchdog_data_list (and set the default timeout)
1225 	 */
1226 	mutex_lock(&watchdog_data_mutex);
1227 	for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
1228 		/* Register our watchdog part */
1229 		snprintf(data->watchdog_name, sizeof(data->watchdog_name),
1230 			"watchdog%c", (i == 0) ? '\0' : ('0' + i));
1231 		data->watchdog_miscdev.name = data->watchdog_name;
1232 		data->watchdog_miscdev.fops = &watchdog_fops;
1233 		data->watchdog_miscdev.minor = watchdog_minors[i];
1234 		err = misc_register(&data->watchdog_miscdev);
1235 		if (err == -EBUSY)
1236 			continue;
1237 		if (err) {
1238 			data->watchdog_miscdev.minor = 0;
1239 			dev_err(&client->dev,
1240 				"Registering watchdog chardev: %d\n", err);
1241 			break;
1242 		}
1243 
1244 		list_add(&data->list, &watchdog_data_list);
1245 		watchdog_set_timeout(data, 60);
1246 		dev_info(&client->dev,
1247 			"Registered watchdog chardev major 10, minor: %d\n",
1248 			watchdog_minors[i]);
1249 		break;
1250 	}
1251 	if (i == ARRAY_SIZE(watchdog_minors)) {
1252 		data->watchdog_miscdev.minor = 0;
1253 		dev_warn(&client->dev,
1254 			 "Couldn't register watchdog chardev (due to no free minor)\n");
1255 	}
1256 	mutex_unlock(&watchdog_data_mutex);
1257 
1258 	dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
1259 		names[data->kind], (int) data->revision);
1260 
1261 	return 0;
1262 
1263 exit_detach:
1264 	fschmd_remove(client); /* will also free data for us */
1265 	return err;
1266 }
1267 
1268 static int fschmd_remove(struct i2c_client *client)
1269 {
1270 	struct fschmd_data *data = i2c_get_clientdata(client);
1271 	int i;
1272 
1273 	/* Unregister the watchdog (if registered) */
1274 	if (data->watchdog_miscdev.minor) {
1275 		misc_deregister(&data->watchdog_miscdev);
1276 		if (data->watchdog_is_open) {
1277 			dev_warn(&client->dev,
1278 				"i2c client detached with watchdog open! "
1279 				"Stopping watchdog.\n");
1280 			watchdog_stop(data);
1281 		}
1282 		mutex_lock(&watchdog_data_mutex);
1283 		list_del(&data->list);
1284 		mutex_unlock(&watchdog_data_mutex);
1285 		/* Tell the watchdog code the client is gone */
1286 		mutex_lock(&data->watchdog_lock);
1287 		data->client = NULL;
1288 		mutex_unlock(&data->watchdog_lock);
1289 	}
1290 
1291 	/*
1292 	 * Check if registered in case we're called from fschmd_detect
1293 	 * to cleanup after an error
1294 	 */
1295 	if (data->hwmon_dev)
1296 		hwmon_device_unregister(data->hwmon_dev);
1297 
1298 	device_remove_file(&client->dev, &dev_attr_alert_led);
1299 	for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
1300 		device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
1301 	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
1302 		device_remove_file(&client->dev,
1303 					&fschmd_temp_attr[i].dev_attr);
1304 	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
1305 		device_remove_file(&client->dev,
1306 					&fschmd_fan_attr[i].dev_attr);
1307 
1308 	mutex_lock(&watchdog_data_mutex);
1309 	kref_put(&data->kref, fschmd_release_resources);
1310 	mutex_unlock(&watchdog_data_mutex);
1311 
1312 	return 0;
1313 }
1314 
1315 static struct fschmd_data *fschmd_update_device(struct device *dev)
1316 {
1317 	struct i2c_client *client = to_i2c_client(dev);
1318 	struct fschmd_data *data = i2c_get_clientdata(client);
1319 	int i;
1320 
1321 	mutex_lock(&data->update_lock);
1322 
1323 	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
1324 
1325 		for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
1326 			data->temp_act[i] = i2c_smbus_read_byte_data(client,
1327 					FSCHMD_REG_TEMP_ACT[data->kind][i]);
1328 			data->temp_status[i] = i2c_smbus_read_byte_data(client,
1329 					FSCHMD_REG_TEMP_STATE[data->kind][i]);
1330 
1331 			/* The fscpos doesn't have TEMP_LIMIT registers */
1332 			if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
1333 				data->temp_max[i] = i2c_smbus_read_byte_data(
1334 					client,
1335 					FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
1336 
1337 			/*
1338 			 * reset alarm if the alarm condition is gone,
1339 			 * the chip doesn't do this itself
1340 			 */
1341 			if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
1342 					FSCHMD_TEMP_ALARM_MASK &&
1343 					data->temp_act[i] < data->temp_max[i])
1344 				i2c_smbus_write_byte_data(client,
1345 					FSCHMD_REG_TEMP_STATE[data->kind][i],
1346 					data->temp_status[i]);
1347 		}
1348 
1349 		for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
1350 			data->fan_act[i] = i2c_smbus_read_byte_data(client,
1351 					FSCHMD_REG_FAN_ACT[data->kind][i]);
1352 			data->fan_status[i] = i2c_smbus_read_byte_data(client,
1353 					FSCHMD_REG_FAN_STATE[data->kind][i]);
1354 			data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
1355 					FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
1356 
1357 			/* The fscpos third fan doesn't have a fan_min */
1358 			if (FSCHMD_REG_FAN_MIN[data->kind][i])
1359 				data->fan_min[i] = i2c_smbus_read_byte_data(
1360 					client,
1361 					FSCHMD_REG_FAN_MIN[data->kind][i]);
1362 
1363 			/* reset fan status if speed is back to > 0 */
1364 			if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
1365 					data->fan_act[i])
1366 				i2c_smbus_write_byte_data(client,
1367 					FSCHMD_REG_FAN_STATE[data->kind][i],
1368 					data->fan_status[i]);
1369 		}
1370 
1371 		for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
1372 			data->volt[i] = i2c_smbus_read_byte_data(client,
1373 					       FSCHMD_REG_VOLT[data->kind][i]);
1374 
1375 		data->last_updated = jiffies;
1376 		data->valid = 1;
1377 	}
1378 
1379 	mutex_unlock(&data->update_lock);
1380 
1381 	return data;
1382 }
1383 
1384 module_i2c_driver(fschmd_driver);
1385 
1386 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1387 MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
1388 			"and Syleus driver");
1389 MODULE_LICENSE("GPL");
1390