1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * emc1403.c - SMSC Thermal Driver 4 * 5 * Copyright (C) 2008 Intel Corp 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/i2c.h> 16 #include <linux/hwmon.h> 17 #include <linux/hwmon-sysfs.h> 18 #include <linux/err.h> 19 #include <linux/sysfs.h> 20 #include <linux/mutex.h> 21 #include <linux/regmap.h> 22 23 #define THERMAL_PID_REG 0xfd 24 #define THERMAL_SMSC_ID_REG 0xfe 25 #define THERMAL_REVISION_REG 0xff 26 27 enum emc1403_chip { emc1402, emc1403, emc1404 }; 28 29 struct thermal_data { 30 struct regmap *regmap; 31 struct mutex mutex; 32 const struct attribute_group *groups[4]; 33 }; 34 35 static ssize_t temp_show(struct device *dev, struct device_attribute *attr, 36 char *buf) 37 { 38 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); 39 struct thermal_data *data = dev_get_drvdata(dev); 40 unsigned int val; 41 int retval; 42 43 retval = regmap_read(data->regmap, sda->index, &val); 44 if (retval < 0) 45 return retval; 46 return sprintf(buf, "%d000\n", val); 47 } 48 49 static ssize_t bit_show(struct device *dev, struct device_attribute *attr, 50 char *buf) 51 { 52 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr); 53 struct thermal_data *data = dev_get_drvdata(dev); 54 unsigned int val; 55 int retval; 56 57 retval = regmap_read(data->regmap, sda->nr, &val); 58 if (retval < 0) 59 return retval; 60 return sprintf(buf, "%d\n", !!(val & sda->index)); 61 } 62 63 static ssize_t temp_store(struct device *dev, struct device_attribute *attr, 64 const char *buf, size_t count) 65 { 66 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); 67 struct thermal_data *data = dev_get_drvdata(dev); 68 unsigned long val; 69 int retval; 70 71 if (kstrtoul(buf, 10, &val)) 72 return -EINVAL; 73 retval = regmap_write(data->regmap, sda->index, 74 DIV_ROUND_CLOSEST(val, 1000)); 75 if (retval < 0) 76 return retval; 77 return count; 78 } 79 80 static ssize_t bit_store(struct device *dev, struct device_attribute *attr, 81 const char *buf, size_t count) 82 { 83 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr); 84 struct thermal_data *data = dev_get_drvdata(dev); 85 unsigned long val; 86 int retval; 87 88 if (kstrtoul(buf, 10, &val)) 89 return -EINVAL; 90 91 retval = regmap_update_bits(data->regmap, sda->nr, sda->index, 92 val ? sda->index : 0); 93 if (retval < 0) 94 return retval; 95 return count; 96 } 97 98 static ssize_t show_hyst_common(struct device *dev, 99 struct device_attribute *attr, char *buf, 100 bool is_min) 101 { 102 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); 103 struct thermal_data *data = dev_get_drvdata(dev); 104 struct regmap *regmap = data->regmap; 105 unsigned int limit; 106 unsigned int hyst; 107 int retval; 108 109 retval = regmap_read(regmap, sda->index, &limit); 110 if (retval < 0) 111 return retval; 112 113 retval = regmap_read(regmap, 0x21, &hyst); 114 if (retval < 0) 115 return retval; 116 117 return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst); 118 } 119 120 static ssize_t hyst_show(struct device *dev, struct device_attribute *attr, 121 char *buf) 122 { 123 return show_hyst_common(dev, attr, buf, false); 124 } 125 126 static ssize_t min_hyst_show(struct device *dev, 127 struct device_attribute *attr, char *buf) 128 { 129 return show_hyst_common(dev, attr, buf, true); 130 } 131 132 static ssize_t hyst_store(struct device *dev, struct device_attribute *attr, 133 const char *buf, size_t count) 134 { 135 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); 136 struct thermal_data *data = dev_get_drvdata(dev); 137 struct regmap *regmap = data->regmap; 138 unsigned int limit; 139 int retval; 140 int hyst; 141 unsigned long val; 142 143 if (kstrtoul(buf, 10, &val)) 144 return -EINVAL; 145 146 mutex_lock(&data->mutex); 147 retval = regmap_read(regmap, sda->index, &limit); 148 if (retval < 0) 149 goto fail; 150 151 hyst = limit * 1000 - val; 152 hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255); 153 retval = regmap_write(regmap, 0x21, hyst); 154 if (retval == 0) 155 retval = count; 156 fail: 157 mutex_unlock(&data->mutex); 158 return retval; 159 } 160 161 /* 162 * Sensors. We pass the actual i2c register to the methods. 163 */ 164 165 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06); 166 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05); 167 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20); 168 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00); 169 static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01); 170 static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01); 171 static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01); 172 static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06); 173 static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05); 174 static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20); 175 176 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08); 177 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07); 178 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19); 179 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01); 180 static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02); 181 static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02); 182 static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02); 183 static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02); 184 static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08); 185 static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07); 186 static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19); 187 188 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16); 189 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15); 190 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A); 191 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23); 192 static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04); 193 static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04); 194 static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04); 195 static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04); 196 static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16); 197 static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15); 198 static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A); 199 200 static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D); 201 static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C); 202 static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30); 203 static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A); 204 static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08); 205 static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08); 206 static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08); 207 static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08); 208 static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D); 209 static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C); 210 static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30); 211 212 static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40); 213 214 static struct attribute *emc1402_attrs[] = { 215 &sensor_dev_attr_temp1_min.dev_attr.attr, 216 &sensor_dev_attr_temp1_max.dev_attr.attr, 217 &sensor_dev_attr_temp1_crit.dev_attr.attr, 218 &sensor_dev_attr_temp1_input.dev_attr.attr, 219 &sensor_dev_attr_temp1_min_hyst.dev_attr.attr, 220 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 221 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, 222 223 &sensor_dev_attr_temp2_min.dev_attr.attr, 224 &sensor_dev_attr_temp2_max.dev_attr.attr, 225 &sensor_dev_attr_temp2_crit.dev_attr.attr, 226 &sensor_dev_attr_temp2_input.dev_attr.attr, 227 &sensor_dev_attr_temp2_min_hyst.dev_attr.attr, 228 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 229 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, 230 231 &sensor_dev_attr_power_state.dev_attr.attr, 232 NULL 233 }; 234 235 static const struct attribute_group emc1402_group = { 236 .attrs = emc1402_attrs, 237 }; 238 239 static struct attribute *emc1403_attrs[] = { 240 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, 241 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, 242 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, 243 244 &sensor_dev_attr_temp2_fault.dev_attr.attr, 245 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, 246 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, 247 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, 248 249 &sensor_dev_attr_temp3_min.dev_attr.attr, 250 &sensor_dev_attr_temp3_max.dev_attr.attr, 251 &sensor_dev_attr_temp3_crit.dev_attr.attr, 252 &sensor_dev_attr_temp3_input.dev_attr.attr, 253 &sensor_dev_attr_temp3_fault.dev_attr.attr, 254 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, 255 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, 256 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, 257 &sensor_dev_attr_temp3_min_hyst.dev_attr.attr, 258 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 259 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, 260 NULL 261 }; 262 263 static const struct attribute_group emc1403_group = { 264 .attrs = emc1403_attrs, 265 }; 266 267 static struct attribute *emc1404_attrs[] = { 268 &sensor_dev_attr_temp4_min.dev_attr.attr, 269 &sensor_dev_attr_temp4_max.dev_attr.attr, 270 &sensor_dev_attr_temp4_crit.dev_attr.attr, 271 &sensor_dev_attr_temp4_input.dev_attr.attr, 272 &sensor_dev_attr_temp4_fault.dev_attr.attr, 273 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, 274 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, 275 &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr, 276 &sensor_dev_attr_temp4_min_hyst.dev_attr.attr, 277 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, 278 &sensor_dev_attr_temp4_crit_hyst.dev_attr.attr, 279 NULL 280 }; 281 282 static const struct attribute_group emc1404_group = { 283 .attrs = emc1404_attrs, 284 }; 285 286 /* 287 * EMC14x2 uses a different register and different bits to report alarm and 288 * fault status. For simplicity, provide a separate attribute group for this 289 * chip series. 290 * Since we can not re-use the same attribute names, create a separate attribute 291 * array. 292 */ 293 static struct sensor_device_attribute_2 emc1402_alarms[] = { 294 SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20), 295 SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40), 296 SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01), 297 298 SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04), 299 SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08), 300 SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10), 301 SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02), 302 }; 303 304 static struct attribute *emc1402_alarm_attrs[] = { 305 &emc1402_alarms[0].dev_attr.attr, 306 &emc1402_alarms[1].dev_attr.attr, 307 &emc1402_alarms[2].dev_attr.attr, 308 &emc1402_alarms[3].dev_attr.attr, 309 &emc1402_alarms[4].dev_attr.attr, 310 &emc1402_alarms[5].dev_attr.attr, 311 &emc1402_alarms[6].dev_attr.attr, 312 NULL, 313 }; 314 315 static const struct attribute_group emc1402_alarm_group = { 316 .attrs = emc1402_alarm_attrs, 317 }; 318 319 static int emc1403_detect(struct i2c_client *client, 320 struct i2c_board_info *info) 321 { 322 int id; 323 /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */ 324 325 id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG); 326 if (id != 0x5d) 327 return -ENODEV; 328 329 id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG); 330 switch (id) { 331 case 0x20: 332 strlcpy(info->type, "emc1402", I2C_NAME_SIZE); 333 break; 334 case 0x21: 335 strlcpy(info->type, "emc1403", I2C_NAME_SIZE); 336 break; 337 case 0x22: 338 strlcpy(info->type, "emc1422", I2C_NAME_SIZE); 339 break; 340 case 0x23: 341 strlcpy(info->type, "emc1423", I2C_NAME_SIZE); 342 break; 343 case 0x25: 344 strlcpy(info->type, "emc1404", I2C_NAME_SIZE); 345 break; 346 case 0x27: 347 strlcpy(info->type, "emc1424", I2C_NAME_SIZE); 348 break; 349 default: 350 return -ENODEV; 351 } 352 353 id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG); 354 if (id < 0x01 || id > 0x04) 355 return -ENODEV; 356 357 return 0; 358 } 359 360 static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg) 361 { 362 switch (reg) { 363 case 0x00: /* internal diode high byte */ 364 case 0x01: /* external diode 1 high byte */ 365 case 0x02: /* status */ 366 case 0x10: /* external diode 1 low byte */ 367 case 0x1b: /* external diode fault */ 368 case 0x23: /* external diode 2 high byte */ 369 case 0x24: /* external diode 2 low byte */ 370 case 0x29: /* internal diode low byte */ 371 case 0x2a: /* externl diode 3 high byte */ 372 case 0x2b: /* external diode 3 low byte */ 373 case 0x35: /* high limit status */ 374 case 0x36: /* low limit status */ 375 case 0x37: /* therm limit status */ 376 return true; 377 default: 378 return false; 379 } 380 } 381 382 static const struct regmap_config emc1403_regmap_config = { 383 .reg_bits = 8, 384 .val_bits = 8, 385 .cache_type = REGCACHE_RBTREE, 386 .volatile_reg = emc1403_regmap_is_volatile, 387 }; 388 389 static int emc1403_probe(struct i2c_client *client, 390 const struct i2c_device_id *id) 391 { 392 struct thermal_data *data; 393 struct device *hwmon_dev; 394 395 data = devm_kzalloc(&client->dev, sizeof(struct thermal_data), 396 GFP_KERNEL); 397 if (data == NULL) 398 return -ENOMEM; 399 400 data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config); 401 if (IS_ERR(data->regmap)) 402 return PTR_ERR(data->regmap); 403 404 mutex_init(&data->mutex); 405 406 switch (id->driver_data) { 407 case emc1404: 408 data->groups[2] = &emc1404_group; 409 fallthrough; 410 case emc1403: 411 data->groups[1] = &emc1403_group; 412 fallthrough; 413 case emc1402: 414 data->groups[0] = &emc1402_group; 415 } 416 417 if (id->driver_data == emc1402) 418 data->groups[1] = &emc1402_alarm_group; 419 420 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev, 421 client->name, data, 422 data->groups); 423 if (IS_ERR(hwmon_dev)) 424 return PTR_ERR(hwmon_dev); 425 426 dev_info(&client->dev, "%s Thermal chip found\n", id->name); 427 return 0; 428 } 429 430 static const unsigned short emc1403_address_list[] = { 431 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END 432 }; 433 434 /* Last digit of chip name indicates number of channels */ 435 static const struct i2c_device_id emc1403_idtable[] = { 436 { "emc1402", emc1402 }, 437 { "emc1403", emc1403 }, 438 { "emc1404", emc1404 }, 439 { "emc1412", emc1402 }, 440 { "emc1413", emc1403 }, 441 { "emc1414", emc1404 }, 442 { "emc1422", emc1402 }, 443 { "emc1423", emc1403 }, 444 { "emc1424", emc1404 }, 445 { } 446 }; 447 MODULE_DEVICE_TABLE(i2c, emc1403_idtable); 448 449 static struct i2c_driver sensor_emc1403 = { 450 .class = I2C_CLASS_HWMON, 451 .driver = { 452 .name = "emc1403", 453 }, 454 .detect = emc1403_detect, 455 .probe = emc1403_probe, 456 .id_table = emc1403_idtable, 457 .address_list = emc1403_address_list, 458 }; 459 460 module_i2c_driver(sensor_emc1403); 461 462 MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com"); 463 MODULE_DESCRIPTION("emc1403 Thermal Driver"); 464 MODULE_LICENSE("GPL v2"); 465