xref: /openbmc/linux/drivers/hwmon/drivetemp.c (revision ad4455c6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Hwmon client for disk and solid state drives with temperature sensors
4  * Copyright (C) 2019 Zodiac Inflight Innovations
5  *
6  * With input from:
7  *    Hwmon client for S.M.A.R.T. hard disk drives with temperature sensors.
8  *    (C) 2018 Linus Walleij
9  *
10  *    hwmon: Driver for SCSI/ATA temperature sensors
11  *    by Constantin Baranov <const@mimas.ru>, submitted September 2009
12  *
13  * This drive supports reporting the temperature of SATA drives. It can be
14  * easily extended to report the temperature of SCSI drives.
15  *
16  * The primary means to read drive temperatures and temperature limits
17  * for ATA drives is the SCT Command Transport feature set as specified in
18  * ATA8-ACS.
19  * It can be used to read the current drive temperature, temperature limits,
20  * and historic minimum and maximum temperatures. The SCT Command Transport
21  * feature set is documented in "AT Attachment 8 - ATA/ATAPI Command Set
22  * (ATA8-ACS)".
23  *
24  * If the SCT Command Transport feature set is not available, drive temperatures
25  * may be readable through SMART attributes. Since SMART attributes are not well
26  * defined, this method is only used as fallback mechanism.
27  *
28  * There are three SMART attributes which may report drive temperatures.
29  * Those are defined as follows (from
30  * http://www.cropel.com/library/smart-attribute-list.aspx).
31  *
32  * 190	Temperature	Temperature, monitored by a sensor somewhere inside
33  *			the drive. Raw value typicaly holds the actual
34  *			temperature (hexadecimal) in its rightmost two digits.
35  *
36  * 194	Temperature	Temperature, monitored by a sensor somewhere inside
37  *			the drive. Raw value typicaly holds the actual
38  *			temperature (hexadecimal) in its rightmost two digits.
39  *
40  * 231	Temperature	Temperature, monitored by a sensor somewhere inside
41  *			the drive. Raw value typicaly holds the actual
42  *			temperature (hexadecimal) in its rightmost two digits.
43  *
44  * Wikipedia defines attributes a bit differently.
45  *
46  * 190	Temperature	Value is equal to (100-temp. °C), allowing manufacturer
47  *	Difference or	to set a minimum threshold which corresponds to a
48  *	Airflow		maximum temperature. This also follows the convention of
49  *	Temperature	100 being a best-case value and lower values being
50  *			undesirable. However, some older drives may instead
51  *			report raw Temperature (identical to 0xC2) or
52  *			Temperature minus 50 here.
53  * 194	Temperature or	Indicates the device temperature, if the appropriate
54  *	Temperature	sensor is fitted. Lowest byte of the raw value contains
55  *	Celsius		the exact temperature value (Celsius degrees).
56  * 231	Life Left	Indicates the approximate SSD life left, in terms of
57  *	(SSDs) or	program/erase cycles or available reserved blocks.
58  *	Temperature	A normalized value of 100 represents a new drive, with
59  *			a threshold value at 10 indicating a need for
60  *			replacement. A value of 0 may mean that the drive is
61  *			operating in read-only mode to allow data recovery.
62  *			Previously (pre-2010) occasionally used for Drive
63  *			Temperature (more typically reported at 0xC2).
64  *
65  * Common denominator is that the first raw byte reports the temperature
66  * in degrees C on almost all drives. Some drives may report a fractional
67  * temperature in the second raw byte.
68  *
69  * Known exceptions (from libatasmart):
70  * - SAMSUNG SV0412H and SAMSUNG SV1204H) report the temperature in 10th
71  *   degrees C in the first two raw bytes.
72  * - A few Maxtor drives report an unknown or bad value in attribute 194.
73  * - Certain Apple SSD drives report an unknown value in attribute 190.
74  *   Only certain firmware versions are affected.
75  *
76  * Those exceptions affect older ATA drives and are currently ignored.
77  * Also, the second raw byte (possibly reporting the fractional temperature)
78  * is currently ignored.
79  *
80  * Many drives also report temperature limits in additional SMART data raw
81  * bytes. The format of those is not well defined and varies widely.
82  * The driver does not currently attempt to report those limits.
83  *
84  * According to data in smartmontools, attribute 231 is rarely used to report
85  * drive temperatures. At the same time, several drives report SSD life left
86  * in attribute 231, but do not support temperature sensors. For this reason,
87  * attribute 231 is currently ignored.
88  *
89  * Following above definitions, temperatures are reported as follows.
90  *   If SCT Command Transport is supported, it is used to read the
91  *   temperature and, if available, temperature limits.
92  * - Otherwise, if SMART attribute 194 is supported, it is used to read
93  *   the temperature.
94  * - Otherwise, if SMART attribute 190 is supported, it is used to read
95  *   the temperature.
96  */
97 
98 #include <linux/ata.h>
99 #include <linux/bits.h>
100 #include <linux/device.h>
101 #include <linux/hwmon.h>
102 #include <linux/kernel.h>
103 #include <linux/list.h>
104 #include <linux/module.h>
105 #include <linux/mutex.h>
106 #include <scsi/scsi_cmnd.h>
107 #include <scsi/scsi_device.h>
108 #include <scsi/scsi_driver.h>
109 #include <scsi/scsi_proto.h>
110 
111 struct drivetemp_data {
112 	struct list_head list;		/* list of instantiated devices */
113 	struct mutex lock;		/* protect data buffer accesses */
114 	struct scsi_device *sdev;	/* SCSI device */
115 	struct device *dev;		/* instantiating device */
116 	struct device *hwdev;		/* hardware monitoring device */
117 	u8 smartdata[ATA_SECT_SIZE];	/* local buffer */
118 	int (*get_temp)(struct drivetemp_data *st, u32 attr, long *val);
119 	bool have_temp_lowest;		/* lowest temp in SCT status */
120 	bool have_temp_highest;		/* highest temp in SCT status */
121 	bool have_temp_min;		/* have min temp */
122 	bool have_temp_max;		/* have max temp */
123 	bool have_temp_lcrit;		/* have lower critical limit */
124 	bool have_temp_crit;		/* have critical limit */
125 	int temp_min;			/* min temp */
126 	int temp_max;			/* max temp */
127 	int temp_lcrit;			/* lower critical limit */
128 	int temp_crit;			/* critical limit */
129 };
130 
131 static LIST_HEAD(drivetemp_devlist);
132 
133 #define ATA_MAX_SMART_ATTRS	30
134 #define SMART_TEMP_PROP_190	190
135 #define SMART_TEMP_PROP_194	194
136 
137 #define SCT_STATUS_REQ_ADDR	0xe0
138 #define  SCT_STATUS_VERSION_LOW		0	/* log byte offsets */
139 #define  SCT_STATUS_VERSION_HIGH	1
140 #define  SCT_STATUS_TEMP		200
141 #define  SCT_STATUS_TEMP_LOWEST		201
142 #define  SCT_STATUS_TEMP_HIGHEST	202
143 #define SCT_READ_LOG_ADDR	0xe1
144 #define  SMART_READ_LOG			0xd5
145 #define  SMART_WRITE_LOG		0xd6
146 
147 #define INVALID_TEMP		0x80
148 
149 #define temp_is_valid(temp)	((temp) != INVALID_TEMP)
150 #define temp_from_sct(temp)	(((s8)(temp)) * 1000)
151 
152 static inline bool ata_id_smart_supported(u16 *id)
153 {
154 	return id[ATA_ID_COMMAND_SET_1] & BIT(0);
155 }
156 
157 static inline bool ata_id_smart_enabled(u16 *id)
158 {
159 	return id[ATA_ID_CFS_ENABLE_1] & BIT(0);
160 }
161 
162 static int drivetemp_scsi_command(struct drivetemp_data *st,
163 				 u8 ata_command, u8 feature,
164 				 u8 lba_low, u8 lba_mid, u8 lba_high)
165 {
166 	u8 scsi_cmd[MAX_COMMAND_SIZE];
167 	enum req_op op;
168 
169 	memset(scsi_cmd, 0, sizeof(scsi_cmd));
170 	scsi_cmd[0] = ATA_16;
171 	if (ata_command == ATA_CMD_SMART && feature == SMART_WRITE_LOG) {
172 		scsi_cmd[1] = (5 << 1);	/* PIO Data-out */
173 		/*
174 		 * No off.line or cc, write to dev, block count in sector count
175 		 * field.
176 		 */
177 		scsi_cmd[2] = 0x06;
178 		op = REQ_OP_DRV_OUT;
179 	} else {
180 		scsi_cmd[1] = (4 << 1);	/* PIO Data-in */
181 		/*
182 		 * No off.line or cc, read from dev, block count in sector count
183 		 * field.
184 		 */
185 		scsi_cmd[2] = 0x0e;
186 		op = REQ_OP_DRV_IN;
187 	}
188 	scsi_cmd[4] = feature;
189 	scsi_cmd[6] = 1;	/* 1 sector */
190 	scsi_cmd[8] = lba_low;
191 	scsi_cmd[10] = lba_mid;
192 	scsi_cmd[12] = lba_high;
193 	scsi_cmd[14] = ata_command;
194 
195 	return scsi_execute_cmd(st->sdev, scsi_cmd, op, st->smartdata,
196 				ATA_SECT_SIZE, HZ, 5, NULL);
197 }
198 
199 static int drivetemp_ata_command(struct drivetemp_data *st, u8 feature,
200 				 u8 select)
201 {
202 	return drivetemp_scsi_command(st, ATA_CMD_SMART, feature, select,
203 				     ATA_SMART_LBAM_PASS, ATA_SMART_LBAH_PASS);
204 }
205 
206 static int drivetemp_get_smarttemp(struct drivetemp_data *st, u32 attr,
207 				  long *temp)
208 {
209 	u8 *buf = st->smartdata;
210 	bool have_temp = false;
211 	u8 temp_raw;
212 	u8 csum;
213 	int err;
214 	int i;
215 
216 	err = drivetemp_ata_command(st, ATA_SMART_READ_VALUES, 0);
217 	if (err)
218 		return err;
219 
220 	/* Checksum the read value table */
221 	csum = 0;
222 	for (i = 0; i < ATA_SECT_SIZE; i++)
223 		csum += buf[i];
224 	if (csum) {
225 		dev_dbg(&st->sdev->sdev_gendev,
226 			"checksum error reading SMART values\n");
227 		return -EIO;
228 	}
229 
230 	for (i = 0; i < ATA_MAX_SMART_ATTRS; i++) {
231 		u8 *attr = buf + i * 12;
232 		int id = attr[2];
233 
234 		if (!id)
235 			continue;
236 
237 		if (id == SMART_TEMP_PROP_190) {
238 			temp_raw = attr[7];
239 			have_temp = true;
240 		}
241 		if (id == SMART_TEMP_PROP_194) {
242 			temp_raw = attr[7];
243 			have_temp = true;
244 			break;
245 		}
246 	}
247 
248 	if (have_temp) {
249 		*temp = temp_raw * 1000;
250 		return 0;
251 	}
252 
253 	return -ENXIO;
254 }
255 
256 static int drivetemp_get_scttemp(struct drivetemp_data *st, u32 attr, long *val)
257 {
258 	u8 *buf = st->smartdata;
259 	int err;
260 
261 	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
262 	if (err)
263 		return err;
264 	switch (attr) {
265 	case hwmon_temp_input:
266 		if (!temp_is_valid(buf[SCT_STATUS_TEMP]))
267 			return -ENODATA;
268 		*val = temp_from_sct(buf[SCT_STATUS_TEMP]);
269 		break;
270 	case hwmon_temp_lowest:
271 		if (!temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]))
272 			return -ENODATA;
273 		*val = temp_from_sct(buf[SCT_STATUS_TEMP_LOWEST]);
274 		break;
275 	case hwmon_temp_highest:
276 		if (!temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]))
277 			return -ENODATA;
278 		*val = temp_from_sct(buf[SCT_STATUS_TEMP_HIGHEST]);
279 		break;
280 	default:
281 		err = -EINVAL;
282 		break;
283 	}
284 	return err;
285 }
286 
287 static const char * const sct_avoid_models[] = {
288 /*
289  * These drives will have WRITE FPDMA QUEUED command timeouts and sometimes just
290  * freeze until power-cycled under heavy write loads when their temperature is
291  * getting polled in SCT mode. The SMART mode seems to be fine, though.
292  *
293  * While only the 3 TB model (DT01ACA3) was actually caught exhibiting the
294  * problem let's play safe here to avoid data corruption and ban the whole
295  * DT01ACAx family.
296 
297  * The models from this array are prefix-matched.
298  */
299 	"TOSHIBA DT01ACA",
300 };
301 
302 static bool drivetemp_sct_avoid(struct drivetemp_data *st)
303 {
304 	struct scsi_device *sdev = st->sdev;
305 	unsigned int ctr;
306 
307 	if (!sdev->model)
308 		return false;
309 
310 	/*
311 	 * The "model" field contains just the raw SCSI INQUIRY response
312 	 * "product identification" field, which has a width of 16 bytes.
313 	 * This field is space-filled, but is NOT NULL-terminated.
314 	 */
315 	for (ctr = 0; ctr < ARRAY_SIZE(sct_avoid_models); ctr++)
316 		if (!strncmp(sdev->model, sct_avoid_models[ctr],
317 			     strlen(sct_avoid_models[ctr])))
318 			return true;
319 
320 	return false;
321 }
322 
323 static int drivetemp_identify_sata(struct drivetemp_data *st)
324 {
325 	struct scsi_device *sdev = st->sdev;
326 	u8 *buf = st->smartdata;
327 	struct scsi_vpd *vpd;
328 	bool is_ata, is_sata;
329 	bool have_sct_data_table;
330 	bool have_sct_temp;
331 	bool have_smart;
332 	bool have_sct;
333 	u16 *ata_id;
334 	u16 version;
335 	long temp;
336 	int err;
337 
338 	/* SCSI-ATA Translation present? */
339 	rcu_read_lock();
340 	vpd = rcu_dereference(sdev->vpd_pg89);
341 
342 	/*
343 	 * Verify that ATA IDENTIFY DEVICE data is included in ATA Information
344 	 * VPD and that the drive implements the SATA protocol.
345 	 */
346 	if (!vpd || vpd->len < 572 || vpd->data[56] != ATA_CMD_ID_ATA ||
347 	    vpd->data[36] != 0x34) {
348 		rcu_read_unlock();
349 		return -ENODEV;
350 	}
351 	ata_id = (u16 *)&vpd->data[60];
352 	is_ata = ata_id_is_ata(ata_id);
353 	is_sata = ata_id_is_sata(ata_id);
354 	have_sct = ata_id_sct_supported(ata_id);
355 	have_sct_data_table = ata_id_sct_data_tables(ata_id);
356 	have_smart = ata_id_smart_supported(ata_id) &&
357 				ata_id_smart_enabled(ata_id);
358 
359 	rcu_read_unlock();
360 
361 	/* bail out if this is not a SATA device */
362 	if (!is_ata || !is_sata)
363 		return -ENODEV;
364 
365 	if (have_sct && drivetemp_sct_avoid(st)) {
366 		dev_notice(&sdev->sdev_gendev,
367 			   "will avoid using SCT for temperature monitoring\n");
368 		have_sct = false;
369 	}
370 
371 	if (!have_sct)
372 		goto skip_sct;
373 
374 	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
375 	if (err)
376 		goto skip_sct;
377 
378 	version = (buf[SCT_STATUS_VERSION_HIGH] << 8) |
379 		  buf[SCT_STATUS_VERSION_LOW];
380 	if (version != 2 && version != 3)
381 		goto skip_sct;
382 
383 	have_sct_temp = temp_is_valid(buf[SCT_STATUS_TEMP]);
384 	if (!have_sct_temp)
385 		goto skip_sct;
386 
387 	st->have_temp_lowest = temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]);
388 	st->have_temp_highest = temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]);
389 
390 	if (!have_sct_data_table)
391 		goto skip_sct_data;
392 
393 	/* Request and read temperature history table */
394 	memset(buf, '\0', sizeof(st->smartdata));
395 	buf[0] = 5;	/* data table command */
396 	buf[2] = 1;	/* read table */
397 	buf[4] = 2;	/* temperature history table */
398 
399 	err = drivetemp_ata_command(st, SMART_WRITE_LOG, SCT_STATUS_REQ_ADDR);
400 	if (err)
401 		goto skip_sct_data;
402 
403 	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_READ_LOG_ADDR);
404 	if (err)
405 		goto skip_sct_data;
406 
407 	/*
408 	 * Temperature limits per AT Attachment 8 -
409 	 * ATA/ATAPI Command Set (ATA8-ACS)
410 	 */
411 	st->have_temp_max = temp_is_valid(buf[6]);
412 	st->have_temp_crit = temp_is_valid(buf[7]);
413 	st->have_temp_min = temp_is_valid(buf[8]);
414 	st->have_temp_lcrit = temp_is_valid(buf[9]);
415 
416 	st->temp_max = temp_from_sct(buf[6]);
417 	st->temp_crit = temp_from_sct(buf[7]);
418 	st->temp_min = temp_from_sct(buf[8]);
419 	st->temp_lcrit = temp_from_sct(buf[9]);
420 
421 skip_sct_data:
422 	if (have_sct_temp) {
423 		st->get_temp = drivetemp_get_scttemp;
424 		return 0;
425 	}
426 skip_sct:
427 	if (!have_smart)
428 		return -ENODEV;
429 	st->get_temp = drivetemp_get_smarttemp;
430 	return drivetemp_get_smarttemp(st, hwmon_temp_input, &temp);
431 }
432 
433 static int drivetemp_identify(struct drivetemp_data *st)
434 {
435 	struct scsi_device *sdev = st->sdev;
436 
437 	/* Bail out immediately if there is no inquiry data */
438 	if (!sdev->inquiry || sdev->inquiry_len < 16)
439 		return -ENODEV;
440 
441 	/* Disk device? */
442 	if (sdev->type != TYPE_DISK && sdev->type != TYPE_ZBC)
443 		return -ENODEV;
444 
445 	return drivetemp_identify_sata(st);
446 }
447 
448 static int drivetemp_read(struct device *dev, enum hwmon_sensor_types type,
449 			 u32 attr, int channel, long *val)
450 {
451 	struct drivetemp_data *st = dev_get_drvdata(dev);
452 	int err = 0;
453 
454 	if (type != hwmon_temp)
455 		return -EINVAL;
456 
457 	switch (attr) {
458 	case hwmon_temp_input:
459 	case hwmon_temp_lowest:
460 	case hwmon_temp_highest:
461 		mutex_lock(&st->lock);
462 		err = st->get_temp(st, attr, val);
463 		mutex_unlock(&st->lock);
464 		break;
465 	case hwmon_temp_lcrit:
466 		*val = st->temp_lcrit;
467 		break;
468 	case hwmon_temp_min:
469 		*val = st->temp_min;
470 		break;
471 	case hwmon_temp_max:
472 		*val = st->temp_max;
473 		break;
474 	case hwmon_temp_crit:
475 		*val = st->temp_crit;
476 		break;
477 	default:
478 		err = -EINVAL;
479 		break;
480 	}
481 	return err;
482 }
483 
484 static umode_t drivetemp_is_visible(const void *data,
485 				   enum hwmon_sensor_types type,
486 				   u32 attr, int channel)
487 {
488 	const struct drivetemp_data *st = data;
489 
490 	switch (type) {
491 	case hwmon_temp:
492 		switch (attr) {
493 		case hwmon_temp_input:
494 			return 0444;
495 		case hwmon_temp_lowest:
496 			if (st->have_temp_lowest)
497 				return 0444;
498 			break;
499 		case hwmon_temp_highest:
500 			if (st->have_temp_highest)
501 				return 0444;
502 			break;
503 		case hwmon_temp_min:
504 			if (st->have_temp_min)
505 				return 0444;
506 			break;
507 		case hwmon_temp_max:
508 			if (st->have_temp_max)
509 				return 0444;
510 			break;
511 		case hwmon_temp_lcrit:
512 			if (st->have_temp_lcrit)
513 				return 0444;
514 			break;
515 		case hwmon_temp_crit:
516 			if (st->have_temp_crit)
517 				return 0444;
518 			break;
519 		default:
520 			break;
521 		}
522 		break;
523 	default:
524 		break;
525 	}
526 	return 0;
527 }
528 
529 static const struct hwmon_channel_info * const drivetemp_info[] = {
530 	HWMON_CHANNEL_INFO(chip,
531 			   HWMON_C_REGISTER_TZ),
532 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT |
533 			   HWMON_T_LOWEST | HWMON_T_HIGHEST |
534 			   HWMON_T_MIN | HWMON_T_MAX |
535 			   HWMON_T_LCRIT | HWMON_T_CRIT),
536 	NULL
537 };
538 
539 static const struct hwmon_ops drivetemp_ops = {
540 	.is_visible = drivetemp_is_visible,
541 	.read = drivetemp_read,
542 };
543 
544 static const struct hwmon_chip_info drivetemp_chip_info = {
545 	.ops = &drivetemp_ops,
546 	.info = drivetemp_info,
547 };
548 
549 /*
550  * The device argument points to sdev->sdev_dev. Its parent is
551  * sdev->sdev_gendev, which we can use to get the scsi_device pointer.
552  */
553 static int drivetemp_add(struct device *dev)
554 {
555 	struct scsi_device *sdev = to_scsi_device(dev->parent);
556 	struct drivetemp_data *st;
557 	int err;
558 
559 	st = kzalloc(sizeof(*st), GFP_KERNEL);
560 	if (!st)
561 		return -ENOMEM;
562 
563 	st->sdev = sdev;
564 	st->dev = dev;
565 	mutex_init(&st->lock);
566 
567 	if (drivetemp_identify(st)) {
568 		err = -ENODEV;
569 		goto abort;
570 	}
571 
572 	st->hwdev = hwmon_device_register_with_info(dev->parent, "drivetemp",
573 						    st, &drivetemp_chip_info,
574 						    NULL);
575 	if (IS_ERR(st->hwdev)) {
576 		err = PTR_ERR(st->hwdev);
577 		goto abort;
578 	}
579 
580 	list_add(&st->list, &drivetemp_devlist);
581 	return 0;
582 
583 abort:
584 	kfree(st);
585 	return err;
586 }
587 
588 static void drivetemp_remove(struct device *dev)
589 {
590 	struct drivetemp_data *st, *tmp;
591 
592 	list_for_each_entry_safe(st, tmp, &drivetemp_devlist, list) {
593 		if (st->dev == dev) {
594 			list_del(&st->list);
595 			hwmon_device_unregister(st->hwdev);
596 			kfree(st);
597 			break;
598 		}
599 	}
600 }
601 
602 static struct class_interface drivetemp_interface = {
603 	.add_dev = drivetemp_add,
604 	.remove_dev = drivetemp_remove,
605 };
606 
607 static int __init drivetemp_init(void)
608 {
609 	return scsi_register_interface(&drivetemp_interface);
610 }
611 
612 static void __exit drivetemp_exit(void)
613 {
614 	scsi_unregister_interface(&drivetemp_interface);
615 }
616 
617 module_init(drivetemp_init);
618 module_exit(drivetemp_exit);
619 
620 MODULE_AUTHOR("Guenter Roeck <linus@roeck-us.net>");
621 MODULE_DESCRIPTION("Hard drive temperature monitor");
622 MODULE_LICENSE("GPL");
623 MODULE_ALIAS("platform:drivetemp");
624