xref: /openbmc/linux/drivers/hwmon/drivetemp.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Hwmon client for disk and solid state drives with temperature sensors
4  * Copyright (C) 2019 Zodiac Inflight Innovations
5  *
6  * With input from:
7  *    Hwmon client for S.M.A.R.T. hard disk drives with temperature sensors.
8  *    (C) 2018 Linus Walleij
9  *
10  *    hwmon: Driver for SCSI/ATA temperature sensors
11  *    by Constantin Baranov <const@mimas.ru>, submitted September 2009
12  *
13  * This drive supports reporting the temperatire of SATA drives. It can be
14  * easily extended to report the temperature of SCSI drives.
15  *
16  * The primary means to read drive temperatures and temperature limits
17  * for ATA drives is the SCT Command Transport feature set as specified in
18  * ATA8-ACS.
19  * It can be used to read the current drive temperature, temperature limits,
20  * and historic minimum and maximum temperatures. The SCT Command Transport
21  * feature set is documented in "AT Attachment 8 - ATA/ATAPI Command Set
22  * (ATA8-ACS)".
23  *
24  * If the SCT Command Transport feature set is not available, drive temperatures
25  * may be readable through SMART attributes. Since SMART attributes are not well
26  * defined, this method is only used as fallback mechanism.
27  *
28  * There are three SMART attributes which may report drive temperatures.
29  * Those are defined as follows (from
30  * http://www.cropel.com/library/smart-attribute-list.aspx).
31  *
32  * 190	Temperature	Temperature, monitored by a sensor somewhere inside
33  *			the drive. Raw value typicaly holds the actual
34  *			temperature (hexadecimal) in its rightmost two digits.
35  *
36  * 194	Temperature	Temperature, monitored by a sensor somewhere inside
37  *			the drive. Raw value typicaly holds the actual
38  *			temperature (hexadecimal) in its rightmost two digits.
39  *
40  * 231	Temperature	Temperature, monitored by a sensor somewhere inside
41  *			the drive. Raw value typicaly holds the actual
42  *			temperature (hexadecimal) in its rightmost two digits.
43  *
44  * Wikipedia defines attributes a bit differently.
45  *
46  * 190	Temperature	Value is equal to (100-temp. °C), allowing manufacturer
47  *	Difference or	to set a minimum threshold which corresponds to a
48  *	Airflow		maximum temperature. This also follows the convention of
49  *	Temperature	100 being a best-case value and lower values being
50  *			undesirable. However, some older drives may instead
51  *			report raw Temperature (identical to 0xC2) or
52  *			Temperature minus 50 here.
53  * 194	Temperature or	Indicates the device temperature, if the appropriate
54  *	Temperature	sensor is fitted. Lowest byte of the raw value contains
55  *	Celsius		the exact temperature value (Celsius degrees).
56  * 231	Life Left	Indicates the approximate SSD life left, in terms of
57  *	(SSDs) or	program/erase cycles or available reserved blocks.
58  *	Temperature	A normalized value of 100 represents a new drive, with
59  *			a threshold value at 10 indicating a need for
60  *			replacement. A value of 0 may mean that the drive is
61  *			operating in read-only mode to allow data recovery.
62  *			Previously (pre-2010) occasionally used for Drive
63  *			Temperature (more typically reported at 0xC2).
64  *
65  * Common denominator is that the first raw byte reports the temperature
66  * in degrees C on almost all drives. Some drives may report a fractional
67  * temperature in the second raw byte.
68  *
69  * Known exceptions (from libatasmart):
70  * - SAMSUNG SV0412H and SAMSUNG SV1204H) report the temperature in 10th
71  *   degrees C in the first two raw bytes.
72  * - A few Maxtor drives report an unknown or bad value in attribute 194.
73  * - Certain Apple SSD drives report an unknown value in attribute 190.
74  *   Only certain firmware versions are affected.
75  *
76  * Those exceptions affect older ATA drives and are currently ignored.
77  * Also, the second raw byte (possibly reporting the fractional temperature)
78  * is currently ignored.
79  *
80  * Many drives also report temperature limits in additional SMART data raw
81  * bytes. The format of those is not well defined and varies widely.
82  * The driver does not currently attempt to report those limits.
83  *
84  * According to data in smartmontools, attribute 231 is rarely used to report
85  * drive temperatures. At the same time, several drives report SSD life left
86  * in attribute 231, but do not support temperature sensors. For this reason,
87  * attribute 231 is currently ignored.
88  *
89  * Following above definitions, temperatures are reported as follows.
90  *   If SCT Command Transport is supported, it is used to read the
91  *   temperature and, if available, temperature limits.
92  * - Otherwise, if SMART attribute 194 is supported, it is used to read
93  *   the temperature.
94  * - Otherwise, if SMART attribute 190 is supported, it is used to read
95  *   the temperature.
96  */
97 
98 #include <linux/ata.h>
99 #include <linux/bits.h>
100 #include <linux/device.h>
101 #include <linux/hwmon.h>
102 #include <linux/kernel.h>
103 #include <linux/list.h>
104 #include <linux/module.h>
105 #include <linux/mutex.h>
106 #include <scsi/scsi_cmnd.h>
107 #include <scsi/scsi_device.h>
108 #include <scsi/scsi_driver.h>
109 #include <scsi/scsi_proto.h>
110 
111 struct drivetemp_data {
112 	struct list_head list;		/* list of instantiated devices */
113 	struct mutex lock;		/* protect data buffer accesses */
114 	struct scsi_device *sdev;	/* SCSI device */
115 	struct device *dev;		/* instantiating device */
116 	struct device *hwdev;		/* hardware monitoring device */
117 	u8 smartdata[ATA_SECT_SIZE];	/* local buffer */
118 	int (*get_temp)(struct drivetemp_data *st, u32 attr, long *val);
119 	bool have_temp_lowest;		/* lowest temp in SCT status */
120 	bool have_temp_highest;		/* highest temp in SCT status */
121 	bool have_temp_min;		/* have min temp */
122 	bool have_temp_max;		/* have max temp */
123 	bool have_temp_lcrit;		/* have lower critical limit */
124 	bool have_temp_crit;		/* have critical limit */
125 	int temp_min;			/* min temp */
126 	int temp_max;			/* max temp */
127 	int temp_lcrit;			/* lower critical limit */
128 	int temp_crit;			/* critical limit */
129 };
130 
131 static LIST_HEAD(drivetemp_devlist);
132 
133 #define ATA_MAX_SMART_ATTRS	30
134 #define SMART_TEMP_PROP_190	190
135 #define SMART_TEMP_PROP_194	194
136 
137 #define SCT_STATUS_REQ_ADDR	0xe0
138 #define  SCT_STATUS_VERSION_LOW		0	/* log byte offsets */
139 #define  SCT_STATUS_VERSION_HIGH	1
140 #define  SCT_STATUS_TEMP		200
141 #define  SCT_STATUS_TEMP_LOWEST		201
142 #define  SCT_STATUS_TEMP_HIGHEST	202
143 #define SCT_READ_LOG_ADDR	0xe1
144 #define  SMART_READ_LOG			0xd5
145 #define  SMART_WRITE_LOG		0xd6
146 
147 #define INVALID_TEMP		0x80
148 
149 #define temp_is_valid(temp)	((temp) != INVALID_TEMP)
150 #define temp_from_sct(temp)	(((s8)(temp)) * 1000)
151 
152 static inline bool ata_id_smart_supported(u16 *id)
153 {
154 	return id[ATA_ID_COMMAND_SET_1] & BIT(0);
155 }
156 
157 static inline bool ata_id_smart_enabled(u16 *id)
158 {
159 	return id[ATA_ID_CFS_ENABLE_1] & BIT(0);
160 }
161 
162 static int drivetemp_scsi_command(struct drivetemp_data *st,
163 				 u8 ata_command, u8 feature,
164 				 u8 lba_low, u8 lba_mid, u8 lba_high)
165 {
166 	u8 scsi_cmd[MAX_COMMAND_SIZE];
167 	int data_dir;
168 
169 	memset(scsi_cmd, 0, sizeof(scsi_cmd));
170 	scsi_cmd[0] = ATA_16;
171 	if (ata_command == ATA_CMD_SMART && feature == SMART_WRITE_LOG) {
172 		scsi_cmd[1] = (5 << 1);	/* PIO Data-out */
173 		/*
174 		 * No off.line or cc, write to dev, block count in sector count
175 		 * field.
176 		 */
177 		scsi_cmd[2] = 0x06;
178 		data_dir = DMA_TO_DEVICE;
179 	} else {
180 		scsi_cmd[1] = (4 << 1);	/* PIO Data-in */
181 		/*
182 		 * No off.line or cc, read from dev, block count in sector count
183 		 * field.
184 		 */
185 		scsi_cmd[2] = 0x0e;
186 		data_dir = DMA_FROM_DEVICE;
187 	}
188 	scsi_cmd[4] = feature;
189 	scsi_cmd[6] = 1;	/* 1 sector */
190 	scsi_cmd[8] = lba_low;
191 	scsi_cmd[10] = lba_mid;
192 	scsi_cmd[12] = lba_high;
193 	scsi_cmd[14] = ata_command;
194 
195 	return scsi_execute_req(st->sdev, scsi_cmd, data_dir,
196 				st->smartdata, ATA_SECT_SIZE, NULL, HZ, 5,
197 				NULL);
198 }
199 
200 static int drivetemp_ata_command(struct drivetemp_data *st, u8 feature,
201 				 u8 select)
202 {
203 	return drivetemp_scsi_command(st, ATA_CMD_SMART, feature, select,
204 				     ATA_SMART_LBAM_PASS, ATA_SMART_LBAH_PASS);
205 }
206 
207 static int drivetemp_get_smarttemp(struct drivetemp_data *st, u32 attr,
208 				  long *temp)
209 {
210 	u8 *buf = st->smartdata;
211 	bool have_temp = false;
212 	u8 temp_raw;
213 	u8 csum;
214 	int err;
215 	int i;
216 
217 	err = drivetemp_ata_command(st, ATA_SMART_READ_VALUES, 0);
218 	if (err)
219 		return err;
220 
221 	/* Checksum the read value table */
222 	csum = 0;
223 	for (i = 0; i < ATA_SECT_SIZE; i++)
224 		csum += buf[i];
225 	if (csum) {
226 		dev_dbg(&st->sdev->sdev_gendev,
227 			"checksum error reading SMART values\n");
228 		return -EIO;
229 	}
230 
231 	for (i = 0; i < ATA_MAX_SMART_ATTRS; i++) {
232 		u8 *attr = buf + i * 12;
233 		int id = attr[2];
234 
235 		if (!id)
236 			continue;
237 
238 		if (id == SMART_TEMP_PROP_190) {
239 			temp_raw = attr[7];
240 			have_temp = true;
241 		}
242 		if (id == SMART_TEMP_PROP_194) {
243 			temp_raw = attr[7];
244 			have_temp = true;
245 			break;
246 		}
247 	}
248 
249 	if (have_temp) {
250 		*temp = temp_raw * 1000;
251 		return 0;
252 	}
253 
254 	return -ENXIO;
255 }
256 
257 static int drivetemp_get_scttemp(struct drivetemp_data *st, u32 attr, long *val)
258 {
259 	u8 *buf = st->smartdata;
260 	int err;
261 
262 	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
263 	if (err)
264 		return err;
265 	switch (attr) {
266 	case hwmon_temp_input:
267 		if (!temp_is_valid(buf[SCT_STATUS_TEMP]))
268 			return -ENODATA;
269 		*val = temp_from_sct(buf[SCT_STATUS_TEMP]);
270 		break;
271 	case hwmon_temp_lowest:
272 		if (!temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]))
273 			return -ENODATA;
274 		*val = temp_from_sct(buf[SCT_STATUS_TEMP_LOWEST]);
275 		break;
276 	case hwmon_temp_highest:
277 		if (!temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]))
278 			return -ENODATA;
279 		*val = temp_from_sct(buf[SCT_STATUS_TEMP_HIGHEST]);
280 		break;
281 	default:
282 		err = -EINVAL;
283 		break;
284 	}
285 	return err;
286 }
287 
288 static int drivetemp_identify_sata(struct drivetemp_data *st)
289 {
290 	struct scsi_device *sdev = st->sdev;
291 	u8 *buf = st->smartdata;
292 	struct scsi_vpd *vpd;
293 	bool is_ata, is_sata;
294 	bool have_sct_data_table;
295 	bool have_sct_temp;
296 	bool have_smart;
297 	bool have_sct;
298 	u16 *ata_id;
299 	u16 version;
300 	long temp;
301 	int err;
302 
303 	/* SCSI-ATA Translation present? */
304 	rcu_read_lock();
305 	vpd = rcu_dereference(sdev->vpd_pg89);
306 
307 	/*
308 	 * Verify that ATA IDENTIFY DEVICE data is included in ATA Information
309 	 * VPD and that the drive implements the SATA protocol.
310 	 */
311 	if (!vpd || vpd->len < 572 || vpd->data[56] != ATA_CMD_ID_ATA ||
312 	    vpd->data[36] != 0x34) {
313 		rcu_read_unlock();
314 		return -ENODEV;
315 	}
316 	ata_id = (u16 *)&vpd->data[60];
317 	is_ata = ata_id_is_ata(ata_id);
318 	is_sata = ata_id_is_sata(ata_id);
319 	have_sct = ata_id_sct_supported(ata_id);
320 	have_sct_data_table = ata_id_sct_data_tables(ata_id);
321 	have_smart = ata_id_smart_supported(ata_id) &&
322 				ata_id_smart_enabled(ata_id);
323 
324 	rcu_read_unlock();
325 
326 	/* bail out if this is not a SATA device */
327 	if (!is_ata || !is_sata)
328 		return -ENODEV;
329 	if (!have_sct)
330 		goto skip_sct;
331 
332 	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
333 	if (err)
334 		goto skip_sct;
335 
336 	version = (buf[SCT_STATUS_VERSION_HIGH] << 8) |
337 		  buf[SCT_STATUS_VERSION_LOW];
338 	if (version != 2 && version != 3)
339 		goto skip_sct;
340 
341 	have_sct_temp = temp_is_valid(buf[SCT_STATUS_TEMP]);
342 	if (!have_sct_temp)
343 		goto skip_sct;
344 
345 	st->have_temp_lowest = temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]);
346 	st->have_temp_highest = temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]);
347 
348 	if (!have_sct_data_table)
349 		goto skip_sct_data;
350 
351 	/* Request and read temperature history table */
352 	memset(buf, '\0', sizeof(st->smartdata));
353 	buf[0] = 5;	/* data table command */
354 	buf[2] = 1;	/* read table */
355 	buf[4] = 2;	/* temperature history table */
356 
357 	err = drivetemp_ata_command(st, SMART_WRITE_LOG, SCT_STATUS_REQ_ADDR);
358 	if (err)
359 		goto skip_sct_data;
360 
361 	err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_READ_LOG_ADDR);
362 	if (err)
363 		goto skip_sct_data;
364 
365 	/*
366 	 * Temperature limits per AT Attachment 8 -
367 	 * ATA/ATAPI Command Set (ATA8-ACS)
368 	 */
369 	st->have_temp_max = temp_is_valid(buf[6]);
370 	st->have_temp_crit = temp_is_valid(buf[7]);
371 	st->have_temp_min = temp_is_valid(buf[8]);
372 	st->have_temp_lcrit = temp_is_valid(buf[9]);
373 
374 	st->temp_max = temp_from_sct(buf[6]);
375 	st->temp_crit = temp_from_sct(buf[7]);
376 	st->temp_min = temp_from_sct(buf[8]);
377 	st->temp_lcrit = temp_from_sct(buf[9]);
378 
379 skip_sct_data:
380 	if (have_sct_temp) {
381 		st->get_temp = drivetemp_get_scttemp;
382 		return 0;
383 	}
384 skip_sct:
385 	if (!have_smart)
386 		return -ENODEV;
387 	st->get_temp = drivetemp_get_smarttemp;
388 	return drivetemp_get_smarttemp(st, hwmon_temp_input, &temp);
389 }
390 
391 static int drivetemp_identify(struct drivetemp_data *st)
392 {
393 	struct scsi_device *sdev = st->sdev;
394 
395 	/* Bail out immediately if there is no inquiry data */
396 	if (!sdev->inquiry || sdev->inquiry_len < 16)
397 		return -ENODEV;
398 
399 	/* Disk device? */
400 	if (sdev->type != TYPE_DISK && sdev->type != TYPE_ZBC)
401 		return -ENODEV;
402 
403 	return drivetemp_identify_sata(st);
404 }
405 
406 static int drivetemp_read(struct device *dev, enum hwmon_sensor_types type,
407 			 u32 attr, int channel, long *val)
408 {
409 	struct drivetemp_data *st = dev_get_drvdata(dev);
410 	int err = 0;
411 
412 	if (type != hwmon_temp)
413 		return -EINVAL;
414 
415 	switch (attr) {
416 	case hwmon_temp_input:
417 	case hwmon_temp_lowest:
418 	case hwmon_temp_highest:
419 		mutex_lock(&st->lock);
420 		err = st->get_temp(st, attr, val);
421 		mutex_unlock(&st->lock);
422 		break;
423 	case hwmon_temp_lcrit:
424 		*val = st->temp_lcrit;
425 		break;
426 	case hwmon_temp_min:
427 		*val = st->temp_min;
428 		break;
429 	case hwmon_temp_max:
430 		*val = st->temp_max;
431 		break;
432 	case hwmon_temp_crit:
433 		*val = st->temp_crit;
434 		break;
435 	default:
436 		err = -EINVAL;
437 		break;
438 	}
439 	return err;
440 }
441 
442 static umode_t drivetemp_is_visible(const void *data,
443 				   enum hwmon_sensor_types type,
444 				   u32 attr, int channel)
445 {
446 	const struct drivetemp_data *st = data;
447 
448 	switch (type) {
449 	case hwmon_temp:
450 		switch (attr) {
451 		case hwmon_temp_input:
452 			return 0444;
453 		case hwmon_temp_lowest:
454 			if (st->have_temp_lowest)
455 				return 0444;
456 			break;
457 		case hwmon_temp_highest:
458 			if (st->have_temp_highest)
459 				return 0444;
460 			break;
461 		case hwmon_temp_min:
462 			if (st->have_temp_min)
463 				return 0444;
464 			break;
465 		case hwmon_temp_max:
466 			if (st->have_temp_max)
467 				return 0444;
468 			break;
469 		case hwmon_temp_lcrit:
470 			if (st->have_temp_lcrit)
471 				return 0444;
472 			break;
473 		case hwmon_temp_crit:
474 			if (st->have_temp_crit)
475 				return 0444;
476 			break;
477 		default:
478 			break;
479 		}
480 		break;
481 	default:
482 		break;
483 	}
484 	return 0;
485 }
486 
487 static const struct hwmon_channel_info *drivetemp_info[] = {
488 	HWMON_CHANNEL_INFO(chip,
489 			   HWMON_C_REGISTER_TZ),
490 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT |
491 			   HWMON_T_LOWEST | HWMON_T_HIGHEST |
492 			   HWMON_T_MIN | HWMON_T_MAX |
493 			   HWMON_T_LCRIT | HWMON_T_CRIT),
494 	NULL
495 };
496 
497 static const struct hwmon_ops drivetemp_ops = {
498 	.is_visible = drivetemp_is_visible,
499 	.read = drivetemp_read,
500 };
501 
502 static const struct hwmon_chip_info drivetemp_chip_info = {
503 	.ops = &drivetemp_ops,
504 	.info = drivetemp_info,
505 };
506 
507 /*
508  * The device argument points to sdev->sdev_dev. Its parent is
509  * sdev->sdev_gendev, which we can use to get the scsi_device pointer.
510  */
511 static int drivetemp_add(struct device *dev, struct class_interface *intf)
512 {
513 	struct scsi_device *sdev = to_scsi_device(dev->parent);
514 	struct drivetemp_data *st;
515 	int err;
516 
517 	st = kzalloc(sizeof(*st), GFP_KERNEL);
518 	if (!st)
519 		return -ENOMEM;
520 
521 	st->sdev = sdev;
522 	st->dev = dev;
523 	mutex_init(&st->lock);
524 
525 	if (drivetemp_identify(st)) {
526 		err = -ENODEV;
527 		goto abort;
528 	}
529 
530 	st->hwdev = hwmon_device_register_with_info(dev->parent, "drivetemp",
531 						    st, &drivetemp_chip_info,
532 						    NULL);
533 	if (IS_ERR(st->hwdev)) {
534 		err = PTR_ERR(st->hwdev);
535 		goto abort;
536 	}
537 
538 	list_add(&st->list, &drivetemp_devlist);
539 	return 0;
540 
541 abort:
542 	kfree(st);
543 	return err;
544 }
545 
546 static void drivetemp_remove(struct device *dev, struct class_interface *intf)
547 {
548 	struct drivetemp_data *st, *tmp;
549 
550 	list_for_each_entry_safe(st, tmp, &drivetemp_devlist, list) {
551 		if (st->dev == dev) {
552 			list_del(&st->list);
553 			hwmon_device_unregister(st->hwdev);
554 			kfree(st);
555 			break;
556 		}
557 	}
558 }
559 
560 static struct class_interface drivetemp_interface = {
561 	.add_dev = drivetemp_add,
562 	.remove_dev = drivetemp_remove,
563 };
564 
565 static int __init drivetemp_init(void)
566 {
567 	return scsi_register_interface(&drivetemp_interface);
568 }
569 
570 static void __exit drivetemp_exit(void)
571 {
572 	scsi_unregister_interface(&drivetemp_interface);
573 }
574 
575 module_init(drivetemp_init);
576 module_exit(drivetemp_exit);
577 
578 MODULE_AUTHOR("Guenter Roeck <linus@roeck-us.net>");
579 MODULE_DESCRIPTION("Hard drive temperature monitor");
580 MODULE_LICENSE("GPL");
581