1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * corsair-psu.c - Linux driver for Corsair power supplies with HID sensors interface 4 * Copyright (C) 2020 Wilken Gottwalt <wilken.gottwalt@posteo.net> 5 */ 6 7 #include <linux/completion.h> 8 #include <linux/debugfs.h> 9 #include <linux/errno.h> 10 #include <linux/hid.h> 11 #include <linux/hwmon.h> 12 #include <linux/hwmon-sysfs.h> 13 #include <linux/jiffies.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 20 /* 21 * Corsair protocol for PSUs 22 * 23 * message size = 64 bytes (request and response, little endian) 24 * request: 25 * [length][command][param0][param1][paramX]... 26 * reply: 27 * [echo of length][echo of command][data0][data1][dataX]... 28 * 29 * - commands are byte sized opcodes 30 * - length is the sum of all bytes of the commands/params 31 * - the micro-controller of most of these PSUs support concatenation in the request and reply, 32 * but it is better to not rely on this (it is also hard to parse) 33 * - the driver uses raw events to be accessible from userspace (though this is not really 34 * supported, it is just there for convenience, may be removed in the future) 35 * - a reply always start with the length and command in the same order the request used it 36 * - length of the reply data is specific to the command used 37 * - some of the commands work on a rail and can be switched to a specific rail (0 = 12v, 38 * 1 = 5v, 2 = 3.3v) 39 * - the format of the init command 0xFE is swapped length/command bytes 40 * - parameter bytes amount and values are specific to the command (rail setting is the only 41 * for now that uses non-zero values) 42 * - there are much more commands, especially for configuring the device, but they are not 43 * supported because a wrong command/length can lockup the micro-controller 44 * - the driver supports debugfs for values not fitting into the hwmon class 45 * - not every device class (HXi, RMi or AXi) supports all commands 46 * - it is a pure sensors reading driver (will not support configuring) 47 */ 48 49 #define DRIVER_NAME "corsair-psu" 50 51 #define REPLY_SIZE 16 /* max length of a reply to a single command */ 52 #define CMD_BUFFER_SIZE 64 53 #define CMD_TIMEOUT_MS 250 54 #define SECONDS_PER_HOUR (60 * 60) 55 #define SECONDS_PER_DAY (SECONDS_PER_HOUR * 24) 56 #define RAIL_COUNT 3 /* 3v3 + 5v + 12v */ 57 #define TEMP_COUNT 2 58 #define OCP_MULTI_RAIL 0x02 59 60 #define PSU_CMD_SELECT_RAIL 0x00 /* expects length 2 */ 61 #define PSU_CMD_RAIL_VOLTS_HCRIT 0x40 /* the rest of the commands expect length 3 */ 62 #define PSU_CMD_RAIL_VOLTS_LCRIT 0x44 63 #define PSU_CMD_RAIL_AMPS_HCRIT 0x46 64 #define PSU_CMD_TEMP_HCRIT 0x4F 65 #define PSU_CMD_IN_VOLTS 0x88 66 #define PSU_CMD_IN_AMPS 0x89 67 #define PSU_CMD_RAIL_VOLTS 0x8B 68 #define PSU_CMD_RAIL_AMPS 0x8C 69 #define PSU_CMD_TEMP0 0x8D 70 #define PSU_CMD_TEMP1 0x8E 71 #define PSU_CMD_FAN 0x90 72 #define PSU_CMD_RAIL_WATTS 0x96 73 #define PSU_CMD_VEND_STR 0x99 74 #define PSU_CMD_PROD_STR 0x9A 75 #define PSU_CMD_TOTAL_UPTIME 0xD1 76 #define PSU_CMD_UPTIME 0xD2 77 #define PSU_CMD_OCPMODE 0xD8 78 #define PSU_CMD_TOTAL_WATTS 0xEE 79 #define PSU_CMD_INIT 0xFE 80 81 #define L_IN_VOLTS "v_in" 82 #define L_OUT_VOLTS_12V "v_out +12v" 83 #define L_OUT_VOLTS_5V "v_out +5v" 84 #define L_OUT_VOLTS_3_3V "v_out +3.3v" 85 #define L_IN_AMPS "curr in" 86 #define L_AMPS_12V "curr +12v" 87 #define L_AMPS_5V "curr +5v" 88 #define L_AMPS_3_3V "curr +3.3v" 89 #define L_FAN "psu fan" 90 #define L_TEMP0 "vrm temp" 91 #define L_TEMP1 "case temp" 92 #define L_WATTS "power total" 93 #define L_WATTS_12V "power +12v" 94 #define L_WATTS_5V "power +5v" 95 #define L_WATTS_3_3V "power +3.3v" 96 97 static const char *const label_watts[] = { 98 L_WATTS, 99 L_WATTS_12V, 100 L_WATTS_5V, 101 L_WATTS_3_3V 102 }; 103 104 static const char *const label_volts[] = { 105 L_IN_VOLTS, 106 L_OUT_VOLTS_12V, 107 L_OUT_VOLTS_5V, 108 L_OUT_VOLTS_3_3V 109 }; 110 111 static const char *const label_amps[] = { 112 L_IN_AMPS, 113 L_AMPS_12V, 114 L_AMPS_5V, 115 L_AMPS_3_3V 116 }; 117 118 struct corsairpsu_data { 119 struct hid_device *hdev; 120 struct device *hwmon_dev; 121 struct dentry *debugfs; 122 struct completion wait_completion; 123 struct mutex lock; /* for locking access to cmd_buffer */ 124 u8 *cmd_buffer; 125 char vendor[REPLY_SIZE]; 126 char product[REPLY_SIZE]; 127 long temp_crit[TEMP_COUNT]; 128 long in_crit[RAIL_COUNT]; 129 long in_lcrit[RAIL_COUNT]; 130 long curr_crit[RAIL_COUNT]; 131 u8 temp_crit_support; 132 u8 in_crit_support; 133 u8 in_lcrit_support; 134 u8 curr_crit_support; 135 bool in_curr_cmd_support; /* not all commands are supported on every PSU */ 136 }; 137 138 /* some values are SMBus LINEAR11 data which need a conversion */ 139 static int corsairpsu_linear11_to_int(const u16 val, const int scale) 140 { 141 const int exp = ((s16)val) >> 11; 142 const int mant = (((s16)(val & 0x7ff)) << 5) >> 5; 143 const int result = mant * scale; 144 145 return (exp >= 0) ? (result << exp) : (result >> -exp); 146 } 147 148 static int corsairpsu_usb_cmd(struct corsairpsu_data *priv, u8 p0, u8 p1, u8 p2, void *data) 149 { 150 unsigned long time; 151 int ret; 152 153 memset(priv->cmd_buffer, 0, CMD_BUFFER_SIZE); 154 priv->cmd_buffer[0] = p0; 155 priv->cmd_buffer[1] = p1; 156 priv->cmd_buffer[2] = p2; 157 158 reinit_completion(&priv->wait_completion); 159 160 ret = hid_hw_output_report(priv->hdev, priv->cmd_buffer, CMD_BUFFER_SIZE); 161 if (ret < 0) 162 return ret; 163 164 time = wait_for_completion_timeout(&priv->wait_completion, 165 msecs_to_jiffies(CMD_TIMEOUT_MS)); 166 if (!time) 167 return -ETIMEDOUT; 168 169 /* 170 * at the start of the reply is an echo of the send command/length in the same order it 171 * was send, not every command is supported on every device class, if a command is not 172 * supported, the length value in the reply is okay, but the command value is set to 0 173 */ 174 if (p0 != priv->cmd_buffer[0] || p1 != priv->cmd_buffer[1]) 175 return -EOPNOTSUPP; 176 177 if (data) 178 memcpy(data, priv->cmd_buffer + 2, REPLY_SIZE); 179 180 return 0; 181 } 182 183 static int corsairpsu_init(struct corsairpsu_data *priv) 184 { 185 /* 186 * PSU_CMD_INIT uses swapped length/command and expects 2 parameter bytes, this command 187 * actually generates a reply, but we don't need it 188 */ 189 return corsairpsu_usb_cmd(priv, PSU_CMD_INIT, 3, 0, NULL); 190 } 191 192 static int corsairpsu_fwinfo(struct corsairpsu_data *priv) 193 { 194 int ret; 195 196 ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_VEND_STR, 0, priv->vendor); 197 if (ret < 0) 198 return ret; 199 200 ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_PROD_STR, 0, priv->product); 201 if (ret < 0) 202 return ret; 203 204 return 0; 205 } 206 207 static int corsairpsu_request(struct corsairpsu_data *priv, u8 cmd, u8 rail, void *data) 208 { 209 int ret; 210 211 mutex_lock(&priv->lock); 212 switch (cmd) { 213 case PSU_CMD_RAIL_VOLTS_HCRIT: 214 case PSU_CMD_RAIL_VOLTS_LCRIT: 215 case PSU_CMD_RAIL_AMPS_HCRIT: 216 case PSU_CMD_RAIL_VOLTS: 217 case PSU_CMD_RAIL_AMPS: 218 case PSU_CMD_RAIL_WATTS: 219 ret = corsairpsu_usb_cmd(priv, 2, PSU_CMD_SELECT_RAIL, rail, NULL); 220 if (ret < 0) 221 goto cmd_fail; 222 break; 223 default: 224 break; 225 } 226 227 ret = corsairpsu_usb_cmd(priv, 3, cmd, 0, data); 228 229 cmd_fail: 230 mutex_unlock(&priv->lock); 231 return ret; 232 } 233 234 static int corsairpsu_get_value(struct corsairpsu_data *priv, u8 cmd, u8 rail, long *val) 235 { 236 u8 data[REPLY_SIZE]; 237 long tmp; 238 int ret; 239 240 ret = corsairpsu_request(priv, cmd, rail, data); 241 if (ret < 0) 242 return ret; 243 244 /* 245 * the biggest value here comes from the uptime command and to exceed MAXINT total uptime 246 * needs to be about 68 years, the rest are u16 values and the biggest value coming out of 247 * the LINEAR11 conversion are the watts values which are about 1200 for the strongest psu 248 * supported (HX1200i) 249 */ 250 tmp = ((long)data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0]; 251 switch (cmd) { 252 case PSU_CMD_RAIL_VOLTS_HCRIT: 253 case PSU_CMD_RAIL_VOLTS_LCRIT: 254 case PSU_CMD_RAIL_AMPS_HCRIT: 255 case PSU_CMD_TEMP_HCRIT: 256 case PSU_CMD_IN_VOLTS: 257 case PSU_CMD_IN_AMPS: 258 case PSU_CMD_RAIL_VOLTS: 259 case PSU_CMD_RAIL_AMPS: 260 case PSU_CMD_TEMP0: 261 case PSU_CMD_TEMP1: 262 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000); 263 break; 264 case PSU_CMD_FAN: 265 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1); 266 break; 267 case PSU_CMD_RAIL_WATTS: 268 case PSU_CMD_TOTAL_WATTS: 269 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000000); 270 break; 271 case PSU_CMD_TOTAL_UPTIME: 272 case PSU_CMD_UPTIME: 273 case PSU_CMD_OCPMODE: 274 *val = tmp; 275 break; 276 default: 277 ret = -EOPNOTSUPP; 278 break; 279 } 280 281 return ret; 282 } 283 284 static void corsairpsu_get_criticals(struct corsairpsu_data *priv) 285 { 286 long tmp; 287 int rail; 288 289 for (rail = 0; rail < TEMP_COUNT; ++rail) { 290 if (!corsairpsu_get_value(priv, PSU_CMD_TEMP_HCRIT, rail, &tmp)) { 291 priv->temp_crit_support |= BIT(rail); 292 priv->temp_crit[rail] = tmp; 293 } 294 } 295 296 for (rail = 0; rail < RAIL_COUNT; ++rail) { 297 if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_HCRIT, rail, &tmp)) { 298 priv->in_crit_support |= BIT(rail); 299 priv->in_crit[rail] = tmp; 300 } 301 302 if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_LCRIT, rail, &tmp)) { 303 priv->in_lcrit_support |= BIT(rail); 304 priv->in_lcrit[rail] = tmp; 305 } 306 307 if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS_HCRIT, rail, &tmp)) { 308 priv->curr_crit_support |= BIT(rail); 309 priv->curr_crit[rail] = tmp; 310 } 311 } 312 } 313 314 static void corsairpsu_check_cmd_support(struct corsairpsu_data *priv) 315 { 316 long tmp; 317 318 priv->in_curr_cmd_support = !corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, &tmp); 319 } 320 321 static umode_t corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data *priv, u32 attr, 322 int channel) 323 { 324 umode_t res = 0444; 325 326 switch (attr) { 327 case hwmon_temp_input: 328 case hwmon_temp_label: 329 case hwmon_temp_crit: 330 if (channel > 0 && !(priv->temp_crit_support & BIT(channel - 1))) 331 res = 0; 332 break; 333 default: 334 break; 335 } 336 337 return res; 338 } 339 340 static umode_t corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data *priv, u32 attr, 341 int channel) 342 { 343 switch (attr) { 344 case hwmon_fan_input: 345 case hwmon_fan_label: 346 return 0444; 347 default: 348 return 0; 349 } 350 } 351 352 static umode_t corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data *priv, u32 attr, 353 int channel) 354 { 355 switch (attr) { 356 case hwmon_power_input: 357 case hwmon_power_label: 358 return 0444; 359 default: 360 return 0; 361 } 362 } 363 364 static umode_t corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data *priv, u32 attr, 365 int channel) 366 { 367 umode_t res = 0444; 368 369 switch (attr) { 370 case hwmon_in_input: 371 case hwmon_in_label: 372 case hwmon_in_crit: 373 if (channel > 0 && !(priv->in_crit_support & BIT(channel - 1))) 374 res = 0; 375 break; 376 case hwmon_in_lcrit: 377 if (channel > 0 && !(priv->in_lcrit_support & BIT(channel - 1))) 378 res = 0; 379 break; 380 default: 381 break; 382 } 383 384 return res; 385 } 386 387 static umode_t corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data *priv, u32 attr, 388 int channel) 389 { 390 umode_t res = 0444; 391 392 switch (attr) { 393 case hwmon_curr_input: 394 if (channel == 0 && !priv->in_curr_cmd_support) 395 res = 0; 396 break; 397 case hwmon_curr_label: 398 case hwmon_curr_crit: 399 if (channel > 0 && !(priv->curr_crit_support & BIT(channel - 1))) 400 res = 0; 401 break; 402 default: 403 break; 404 } 405 406 return res; 407 } 408 409 static umode_t corsairpsu_hwmon_ops_is_visible(const void *data, enum hwmon_sensor_types type, 410 u32 attr, int channel) 411 { 412 const struct corsairpsu_data *priv = data; 413 414 switch (type) { 415 case hwmon_temp: 416 return corsairpsu_hwmon_temp_is_visible(priv, attr, channel); 417 case hwmon_fan: 418 return corsairpsu_hwmon_fan_is_visible(priv, attr, channel); 419 case hwmon_power: 420 return corsairpsu_hwmon_power_is_visible(priv, attr, channel); 421 case hwmon_in: 422 return corsairpsu_hwmon_in_is_visible(priv, attr, channel); 423 case hwmon_curr: 424 return corsairpsu_hwmon_curr_is_visible(priv, attr, channel); 425 default: 426 return 0; 427 } 428 } 429 430 static int corsairpsu_hwmon_temp_read(struct corsairpsu_data *priv, u32 attr, int channel, 431 long *val) 432 { 433 int err = -EOPNOTSUPP; 434 435 switch (attr) { 436 case hwmon_temp_input: 437 return corsairpsu_get_value(priv, channel ? PSU_CMD_TEMP1 : PSU_CMD_TEMP0, 438 channel, val); 439 case hwmon_temp_crit: 440 *val = priv->temp_crit[channel]; 441 err = 0; 442 break; 443 default: 444 break; 445 } 446 447 return err; 448 } 449 450 static int corsairpsu_hwmon_power_read(struct corsairpsu_data *priv, u32 attr, int channel, 451 long *val) 452 { 453 if (attr == hwmon_power_input) { 454 switch (channel) { 455 case 0: 456 return corsairpsu_get_value(priv, PSU_CMD_TOTAL_WATTS, 0, val); 457 case 1 ... 3: 458 return corsairpsu_get_value(priv, PSU_CMD_RAIL_WATTS, channel - 1, val); 459 default: 460 break; 461 } 462 } 463 464 return -EOPNOTSUPP; 465 } 466 467 static int corsairpsu_hwmon_in_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val) 468 { 469 int err = -EOPNOTSUPP; 470 471 switch (attr) { 472 case hwmon_in_input: 473 switch (channel) { 474 case 0: 475 return corsairpsu_get_value(priv, PSU_CMD_IN_VOLTS, 0, val); 476 case 1 ... 3: 477 return corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS, channel - 1, val); 478 default: 479 break; 480 } 481 break; 482 case hwmon_in_crit: 483 *val = priv->in_crit[channel - 1]; 484 err = 0; 485 break; 486 case hwmon_in_lcrit: 487 *val = priv->in_lcrit[channel - 1]; 488 err = 0; 489 break; 490 } 491 492 return err; 493 } 494 495 static int corsairpsu_hwmon_curr_read(struct corsairpsu_data *priv, u32 attr, int channel, 496 long *val) 497 { 498 int err = -EOPNOTSUPP; 499 500 switch (attr) { 501 case hwmon_curr_input: 502 switch (channel) { 503 case 0: 504 return corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, val); 505 case 1 ... 3: 506 return corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS, channel - 1, val); 507 default: 508 break; 509 } 510 break; 511 case hwmon_curr_crit: 512 *val = priv->curr_crit[channel - 1]; 513 err = 0; 514 break; 515 default: 516 break; 517 } 518 519 return err; 520 } 521 522 static int corsairpsu_hwmon_ops_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, 523 int channel, long *val) 524 { 525 struct corsairpsu_data *priv = dev_get_drvdata(dev); 526 527 switch (type) { 528 case hwmon_temp: 529 return corsairpsu_hwmon_temp_read(priv, attr, channel, val); 530 case hwmon_fan: 531 if (attr == hwmon_fan_input) 532 return corsairpsu_get_value(priv, PSU_CMD_FAN, 0, val); 533 return -EOPNOTSUPP; 534 case hwmon_power: 535 return corsairpsu_hwmon_power_read(priv, attr, channel, val); 536 case hwmon_in: 537 return corsairpsu_hwmon_in_read(priv, attr, channel, val); 538 case hwmon_curr: 539 return corsairpsu_hwmon_curr_read(priv, attr, channel, val); 540 default: 541 return -EOPNOTSUPP; 542 } 543 } 544 545 static int corsairpsu_hwmon_ops_read_string(struct device *dev, enum hwmon_sensor_types type, 546 u32 attr, int channel, const char **str) 547 { 548 if (type == hwmon_temp && attr == hwmon_temp_label) { 549 *str = channel ? L_TEMP1 : L_TEMP0; 550 return 0; 551 } else if (type == hwmon_fan && attr == hwmon_fan_label) { 552 *str = L_FAN; 553 return 0; 554 } else if (type == hwmon_power && attr == hwmon_power_label && channel < 4) { 555 *str = label_watts[channel]; 556 return 0; 557 } else if (type == hwmon_in && attr == hwmon_in_label && channel < 4) { 558 *str = label_volts[channel]; 559 return 0; 560 } else if (type == hwmon_curr && attr == hwmon_curr_label && channel < 4) { 561 *str = label_amps[channel]; 562 return 0; 563 } 564 565 return -EOPNOTSUPP; 566 } 567 568 static const struct hwmon_ops corsairpsu_hwmon_ops = { 569 .is_visible = corsairpsu_hwmon_ops_is_visible, 570 .read = corsairpsu_hwmon_ops_read, 571 .read_string = corsairpsu_hwmon_ops_read_string, 572 }; 573 574 static const struct hwmon_channel_info *corsairpsu_info[] = { 575 HWMON_CHANNEL_INFO(chip, 576 HWMON_C_REGISTER_TZ), 577 HWMON_CHANNEL_INFO(temp, 578 HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT, 579 HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT), 580 HWMON_CHANNEL_INFO(fan, 581 HWMON_F_INPUT | HWMON_F_LABEL), 582 HWMON_CHANNEL_INFO(power, 583 HWMON_P_INPUT | HWMON_P_LABEL, 584 HWMON_P_INPUT | HWMON_P_LABEL, 585 HWMON_P_INPUT | HWMON_P_LABEL, 586 HWMON_P_INPUT | HWMON_P_LABEL), 587 HWMON_CHANNEL_INFO(in, 588 HWMON_I_INPUT | HWMON_I_LABEL, 589 HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT, 590 HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT, 591 HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT), 592 HWMON_CHANNEL_INFO(curr, 593 HWMON_C_INPUT | HWMON_C_LABEL, 594 HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT, 595 HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT, 596 HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT), 597 NULL 598 }; 599 600 static const struct hwmon_chip_info corsairpsu_chip_info = { 601 .ops = &corsairpsu_hwmon_ops, 602 .info = corsairpsu_info, 603 }; 604 605 #ifdef CONFIG_DEBUG_FS 606 607 static void print_uptime(struct seq_file *seqf, u8 cmd) 608 { 609 struct corsairpsu_data *priv = seqf->private; 610 long val; 611 int ret; 612 613 ret = corsairpsu_get_value(priv, cmd, 0, &val); 614 if (ret < 0) { 615 seq_puts(seqf, "N/A\n"); 616 return; 617 } 618 619 if (val > SECONDS_PER_DAY) { 620 seq_printf(seqf, "%ld day(s), %02ld:%02ld:%02ld\n", val / SECONDS_PER_DAY, 621 val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60, 622 val % 60); 623 return; 624 } 625 626 seq_printf(seqf, "%02ld:%02ld:%02ld\n", val % SECONDS_PER_DAY / SECONDS_PER_HOUR, 627 val % SECONDS_PER_HOUR / 60, val % 60); 628 } 629 630 static int uptime_show(struct seq_file *seqf, void *unused) 631 { 632 print_uptime(seqf, PSU_CMD_UPTIME); 633 634 return 0; 635 } 636 DEFINE_SHOW_ATTRIBUTE(uptime); 637 638 static int uptime_total_show(struct seq_file *seqf, void *unused) 639 { 640 print_uptime(seqf, PSU_CMD_TOTAL_UPTIME); 641 642 return 0; 643 } 644 DEFINE_SHOW_ATTRIBUTE(uptime_total); 645 646 static int vendor_show(struct seq_file *seqf, void *unused) 647 { 648 struct corsairpsu_data *priv = seqf->private; 649 650 seq_printf(seqf, "%s\n", priv->vendor); 651 652 return 0; 653 } 654 DEFINE_SHOW_ATTRIBUTE(vendor); 655 656 static int product_show(struct seq_file *seqf, void *unused) 657 { 658 struct corsairpsu_data *priv = seqf->private; 659 660 seq_printf(seqf, "%s\n", priv->product); 661 662 return 0; 663 } 664 DEFINE_SHOW_ATTRIBUTE(product); 665 666 static int ocpmode_show(struct seq_file *seqf, void *unused) 667 { 668 struct corsairpsu_data *priv = seqf->private; 669 long val; 670 int ret; 671 672 /* 673 * The rail mode is switchable on the fly. The RAW interface can be used for this. But it 674 * will not be included here, because I consider it somewhat dangerous for the health of the 675 * PSU. The returned value can be a bogus one, if the PSU is in the process of switching and 676 * getting of the value itself can also fail during this. Because of this every other value 677 * than OCP_MULTI_RAIL can be considered as "single rail". 678 */ 679 ret = corsairpsu_get_value(priv, PSU_CMD_OCPMODE, 0, &val); 680 if (ret < 0) 681 seq_puts(seqf, "N/A\n"); 682 else 683 seq_printf(seqf, "%s\n", (val == OCP_MULTI_RAIL) ? "multi rail" : "single rail"); 684 685 return 0; 686 } 687 DEFINE_SHOW_ATTRIBUTE(ocpmode); 688 689 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv) 690 { 691 char name[32]; 692 693 scnprintf(name, sizeof(name), "%s-%s", DRIVER_NAME, dev_name(&priv->hdev->dev)); 694 695 priv->debugfs = debugfs_create_dir(name, NULL); 696 debugfs_create_file("uptime", 0444, priv->debugfs, priv, &uptime_fops); 697 debugfs_create_file("uptime_total", 0444, priv->debugfs, priv, &uptime_total_fops); 698 debugfs_create_file("vendor", 0444, priv->debugfs, priv, &vendor_fops); 699 debugfs_create_file("product", 0444, priv->debugfs, priv, &product_fops); 700 debugfs_create_file("ocpmode", 0444, priv->debugfs, priv, &ocpmode_fops); 701 } 702 703 #else 704 705 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv) 706 { 707 } 708 709 #endif 710 711 static int corsairpsu_probe(struct hid_device *hdev, const struct hid_device_id *id) 712 { 713 struct corsairpsu_data *priv; 714 int ret; 715 716 priv = devm_kzalloc(&hdev->dev, sizeof(struct corsairpsu_data), GFP_KERNEL); 717 if (!priv) 718 return -ENOMEM; 719 720 priv->cmd_buffer = devm_kmalloc(&hdev->dev, CMD_BUFFER_SIZE, GFP_KERNEL); 721 if (!priv->cmd_buffer) 722 return -ENOMEM; 723 724 ret = hid_parse(hdev); 725 if (ret) 726 return ret; 727 728 ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); 729 if (ret) 730 return ret; 731 732 ret = hid_hw_open(hdev); 733 if (ret) 734 goto fail_and_stop; 735 736 priv->hdev = hdev; 737 hid_set_drvdata(hdev, priv); 738 mutex_init(&priv->lock); 739 init_completion(&priv->wait_completion); 740 741 hid_device_io_start(hdev); 742 743 ret = corsairpsu_init(priv); 744 if (ret < 0) { 745 dev_err(&hdev->dev, "unable to initialize device (%d)\n", ret); 746 goto fail_and_stop; 747 } 748 749 ret = corsairpsu_fwinfo(priv); 750 if (ret < 0) { 751 dev_err(&hdev->dev, "unable to query firmware (%d)\n", ret); 752 goto fail_and_stop; 753 } 754 755 corsairpsu_get_criticals(priv); 756 corsairpsu_check_cmd_support(priv); 757 758 priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsairpsu", priv, 759 &corsairpsu_chip_info, NULL); 760 761 if (IS_ERR(priv->hwmon_dev)) { 762 ret = PTR_ERR(priv->hwmon_dev); 763 goto fail_and_close; 764 } 765 766 corsairpsu_debugfs_init(priv); 767 768 return 0; 769 770 fail_and_close: 771 hid_hw_close(hdev); 772 fail_and_stop: 773 hid_hw_stop(hdev); 774 return ret; 775 } 776 777 static void corsairpsu_remove(struct hid_device *hdev) 778 { 779 struct corsairpsu_data *priv = hid_get_drvdata(hdev); 780 781 debugfs_remove_recursive(priv->debugfs); 782 hwmon_device_unregister(priv->hwmon_dev); 783 hid_hw_close(hdev); 784 hid_hw_stop(hdev); 785 } 786 787 static int corsairpsu_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, 788 int size) 789 { 790 struct corsairpsu_data *priv = hid_get_drvdata(hdev); 791 792 if (completion_done(&priv->wait_completion)) 793 return 0; 794 795 memcpy(priv->cmd_buffer, data, min(CMD_BUFFER_SIZE, size)); 796 complete(&priv->wait_completion); 797 798 return 0; 799 } 800 801 #ifdef CONFIG_PM 802 static int corsairpsu_resume(struct hid_device *hdev) 803 { 804 struct corsairpsu_data *priv = hid_get_drvdata(hdev); 805 806 /* some PSUs turn off the microcontroller during standby, so a reinit is required */ 807 return corsairpsu_init(priv); 808 } 809 #endif 810 811 static const struct hid_device_id corsairpsu_idtable[] = { 812 { HID_USB_DEVICE(0x1b1c, 0x1c03) }, /* Corsair HX550i */ 813 { HID_USB_DEVICE(0x1b1c, 0x1c04) }, /* Corsair HX650i */ 814 { HID_USB_DEVICE(0x1b1c, 0x1c05) }, /* Corsair HX750i */ 815 { HID_USB_DEVICE(0x1b1c, 0x1c06) }, /* Corsair HX850i */ 816 { HID_USB_DEVICE(0x1b1c, 0x1c07) }, /* Corsair HX1000i revision 1 */ 817 { HID_USB_DEVICE(0x1b1c, 0x1c08) }, /* Corsair HX1200i */ 818 { HID_USB_DEVICE(0x1b1c, 0x1c09) }, /* Corsair RM550i */ 819 { HID_USB_DEVICE(0x1b1c, 0x1c0a) }, /* Corsair RM650i */ 820 { HID_USB_DEVICE(0x1b1c, 0x1c0b) }, /* Corsair RM750i */ 821 { HID_USB_DEVICE(0x1b1c, 0x1c0c) }, /* Corsair RM850i */ 822 { HID_USB_DEVICE(0x1b1c, 0x1c0d) }, /* Corsair RM1000i */ 823 { HID_USB_DEVICE(0x1b1c, 0x1c1e) }, /* Corsaur HX1000i revision 2 */ 824 { }, 825 }; 826 MODULE_DEVICE_TABLE(hid, corsairpsu_idtable); 827 828 static struct hid_driver corsairpsu_driver = { 829 .name = DRIVER_NAME, 830 .id_table = corsairpsu_idtable, 831 .probe = corsairpsu_probe, 832 .remove = corsairpsu_remove, 833 .raw_event = corsairpsu_raw_event, 834 #ifdef CONFIG_PM 835 .resume = corsairpsu_resume, 836 .reset_resume = corsairpsu_resume, 837 #endif 838 }; 839 module_hid_driver(corsairpsu_driver); 840 841 MODULE_LICENSE("GPL"); 842 MODULE_AUTHOR("Wilken Gottwalt <wilken.gottwalt@posteo.net>"); 843 MODULE_DESCRIPTION("Linux driver for Corsair power supplies with HID sensors interface"); 844