xref: /openbmc/linux/drivers/hwmon/corsair-psu.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * corsair-psu.c - Linux driver for Corsair power supplies with HID sensors interface
4  * Copyright (C) 2020 Wilken Gottwalt <wilken.gottwalt@posteo.net>
5  */
6 
7 #include <linux/completion.h>
8 #include <linux/debugfs.h>
9 #include <linux/errno.h>
10 #include <linux/hid.h>
11 #include <linux/hwmon.h>
12 #include <linux/hwmon-sysfs.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 
20 /*
21  * Corsair protocol for PSUs
22  *
23  * message size = 64 bytes (request and response, little endian)
24  * request:
25  *	[length][command][param0][param1][paramX]...
26  * reply:
27  *	[echo of length][echo of command][data0][data1][dataX]...
28  *
29  *	- commands are byte sized opcodes
30  *	- length is the sum of all bytes of the commands/params
31  *	- the micro-controller of most of these PSUs support concatenation in the request and reply,
32  *	  but it is better to not rely on this (it is also hard to parse)
33  *	- the driver uses raw events to be accessible from userspace (though this is not really
34  *	  supported, it is just there for convenience, may be removed in the future)
35  *	- a reply always starts with the length and command in the same order the request used it
36  *	- length of the reply data is specific to the command used
37  *	- some of the commands work on a rail and can be switched to a specific rail (0 = 12v,
38  *	  1 = 5v, 2 = 3.3v)
39  *	- the format of the init command 0xFE is swapped length/command bytes
40  *	- parameter bytes amount and values are specific to the command (rail setting is the only
41  *	  one for now that uses non-zero values)
42  *	- the driver supports debugfs for values not fitting into the hwmon class
43  *	- not every device class (HXi or RMi) supports all commands
44  *	- if configured wrong the PSU resets or shuts down, often before actually hitting the
45  *	  reported critical temperature
46  *	- new models like HX1500i Series 2023 have changes in the reported vendor and product
47  *	  strings, both are slightly longer now, report vendor and product in one string and are
48  *	  the same now
49  */
50 
51 #define DRIVER_NAME		"corsair-psu"
52 
53 #define REPLY_SIZE		24 /* max length of a reply to a single command */
54 #define CMD_BUFFER_SIZE		64
55 #define CMD_TIMEOUT_MS		250
56 #define SECONDS_PER_HOUR	(60 * 60)
57 #define SECONDS_PER_DAY		(SECONDS_PER_HOUR * 24)
58 #define RAIL_COUNT		3 /* 3v3 + 5v + 12v */
59 #define TEMP_COUNT		2
60 #define OCP_MULTI_RAIL		0x02
61 
62 #define PSU_CMD_SELECT_RAIL	0x00 /* expects length 2 */
63 #define PSU_CMD_FAN_PWM		0x3B /* the rest of the commands expect length 3 */
64 #define PSU_CMD_RAIL_VOLTS_HCRIT 0x40
65 #define PSU_CMD_RAIL_VOLTS_LCRIT 0x44
66 #define PSU_CMD_RAIL_AMPS_HCRIT	0x46
67 #define PSU_CMD_TEMP_HCRIT	0x4F
68 #define PSU_CMD_IN_VOLTS	0x88
69 #define PSU_CMD_IN_AMPS		0x89
70 #define PSU_CMD_RAIL_VOLTS	0x8B
71 #define PSU_CMD_RAIL_AMPS	0x8C
72 #define PSU_CMD_TEMP0		0x8D
73 #define PSU_CMD_TEMP1		0x8E
74 #define PSU_CMD_FAN		0x90
75 #define PSU_CMD_RAIL_WATTS	0x96
76 #define PSU_CMD_VEND_STR	0x99
77 #define PSU_CMD_PROD_STR	0x9A
78 #define PSU_CMD_TOTAL_UPTIME	0xD1
79 #define PSU_CMD_UPTIME		0xD2
80 #define PSU_CMD_OCPMODE		0xD8
81 #define PSU_CMD_TOTAL_WATTS	0xEE
82 #define PSU_CMD_FAN_PWM_ENABLE	0xF0
83 #define PSU_CMD_INIT		0xFE
84 
85 #define L_IN_VOLTS		"v_in"
86 #define L_OUT_VOLTS_12V		"v_out +12v"
87 #define L_OUT_VOLTS_5V		"v_out +5v"
88 #define L_OUT_VOLTS_3_3V	"v_out +3.3v"
89 #define L_IN_AMPS		"curr in"
90 #define L_AMPS_12V		"curr +12v"
91 #define L_AMPS_5V		"curr +5v"
92 #define L_AMPS_3_3V		"curr +3.3v"
93 #define L_FAN			"psu fan"
94 #define L_TEMP0			"vrm temp"
95 #define L_TEMP1			"case temp"
96 #define L_WATTS			"power total"
97 #define L_WATTS_12V		"power +12v"
98 #define L_WATTS_5V		"power +5v"
99 #define L_WATTS_3_3V		"power +3.3v"
100 
101 static const char *const label_watts[] = {
102 	L_WATTS,
103 	L_WATTS_12V,
104 	L_WATTS_5V,
105 	L_WATTS_3_3V
106 };
107 
108 static const char *const label_volts[] = {
109 	L_IN_VOLTS,
110 	L_OUT_VOLTS_12V,
111 	L_OUT_VOLTS_5V,
112 	L_OUT_VOLTS_3_3V
113 };
114 
115 static const char *const label_amps[] = {
116 	L_IN_AMPS,
117 	L_AMPS_12V,
118 	L_AMPS_5V,
119 	L_AMPS_3_3V
120 };
121 
122 struct corsairpsu_data {
123 	struct hid_device *hdev;
124 	struct device *hwmon_dev;
125 	struct dentry *debugfs;
126 	struct completion wait_completion;
127 	struct mutex lock; /* for locking access to cmd_buffer */
128 	u8 *cmd_buffer;
129 	char vendor[REPLY_SIZE];
130 	char product[REPLY_SIZE];
131 	long temp_crit[TEMP_COUNT];
132 	long in_crit[RAIL_COUNT];
133 	long in_lcrit[RAIL_COUNT];
134 	long curr_crit[RAIL_COUNT];
135 	u8 temp_crit_support;
136 	u8 in_crit_support;
137 	u8 in_lcrit_support;
138 	u8 curr_crit_support;
139 	bool in_curr_cmd_support; /* not all commands are supported on every PSU */
140 };
141 
142 /* some values are SMBus LINEAR11 data which need a conversion */
143 static int corsairpsu_linear11_to_int(const u16 val, const int scale)
144 {
145 	const int exp = ((s16)val) >> 11;
146 	const int mant = (((s16)(val & 0x7ff)) << 5) >> 5;
147 	const int result = mant * scale;
148 
149 	return (exp >= 0) ? (result << exp) : (result >> -exp);
150 }
151 
152 /* the micro-controller uses percentage values to control pwm */
153 static int corsairpsu_dutycycle_to_pwm(const long dutycycle)
154 {
155 	const int result = (256 << 16) / 100;
156 
157 	return (result * dutycycle) >> 16;
158 }
159 
160 static int corsairpsu_usb_cmd(struct corsairpsu_data *priv, u8 p0, u8 p1, u8 p2, void *data)
161 {
162 	unsigned long time;
163 	int ret;
164 
165 	memset(priv->cmd_buffer, 0, CMD_BUFFER_SIZE);
166 	priv->cmd_buffer[0] = p0;
167 	priv->cmd_buffer[1] = p1;
168 	priv->cmd_buffer[2] = p2;
169 
170 	reinit_completion(&priv->wait_completion);
171 
172 	ret = hid_hw_output_report(priv->hdev, priv->cmd_buffer, CMD_BUFFER_SIZE);
173 	if (ret < 0)
174 		return ret;
175 
176 	time = wait_for_completion_timeout(&priv->wait_completion,
177 					   msecs_to_jiffies(CMD_TIMEOUT_MS));
178 	if (!time)
179 		return -ETIMEDOUT;
180 
181 	/*
182 	 * at the start of the reply is an echo of the send command/length in the same order it
183 	 * was send, not every command is supported on every device class, if a command is not
184 	 * supported, the length value in the reply is okay, but the command value is set to 0
185 	 */
186 	if (p0 != priv->cmd_buffer[0] || p1 != priv->cmd_buffer[1])
187 		return -EOPNOTSUPP;
188 
189 	if (data)
190 		memcpy(data, priv->cmd_buffer + 2, REPLY_SIZE);
191 
192 	return 0;
193 }
194 
195 static int corsairpsu_init(struct corsairpsu_data *priv)
196 {
197 	/*
198 	 * PSU_CMD_INIT uses swapped length/command and expects 2 parameter bytes, this command
199 	 * actually generates a reply, but we don't need it
200 	 */
201 	return corsairpsu_usb_cmd(priv, PSU_CMD_INIT, 3, 0, NULL);
202 }
203 
204 static int corsairpsu_fwinfo(struct corsairpsu_data *priv)
205 {
206 	int ret;
207 
208 	ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_VEND_STR, 0, priv->vendor);
209 	if (ret < 0)
210 		return ret;
211 
212 	ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_PROD_STR, 0, priv->product);
213 	if (ret < 0)
214 		return ret;
215 
216 	return 0;
217 }
218 
219 static int corsairpsu_request(struct corsairpsu_data *priv, u8 cmd, u8 rail, void *data)
220 {
221 	int ret;
222 
223 	mutex_lock(&priv->lock);
224 	switch (cmd) {
225 	case PSU_CMD_RAIL_VOLTS_HCRIT:
226 	case PSU_CMD_RAIL_VOLTS_LCRIT:
227 	case PSU_CMD_RAIL_AMPS_HCRIT:
228 	case PSU_CMD_RAIL_VOLTS:
229 	case PSU_CMD_RAIL_AMPS:
230 	case PSU_CMD_RAIL_WATTS:
231 		ret = corsairpsu_usb_cmd(priv, 2, PSU_CMD_SELECT_RAIL, rail, NULL);
232 		if (ret < 0)
233 			goto cmd_fail;
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	ret = corsairpsu_usb_cmd(priv, 3, cmd, 0, data);
240 
241 cmd_fail:
242 	mutex_unlock(&priv->lock);
243 	return ret;
244 }
245 
246 static int corsairpsu_get_value(struct corsairpsu_data *priv, u8 cmd, u8 rail, long *val)
247 {
248 	u8 data[REPLY_SIZE];
249 	long tmp;
250 	int ret;
251 
252 	ret = corsairpsu_request(priv, cmd, rail, data);
253 	if (ret < 0)
254 		return ret;
255 
256 	/*
257 	 * the biggest value here comes from the uptime command and to exceed MAXINT total uptime
258 	 * needs to be about 68 years, the rest are u16 values and the biggest value coming out of
259 	 * the LINEAR11 conversion are the watts values which are about 1500 for the strongest psu
260 	 * supported (HX1500i)
261 	 */
262 	tmp = ((long)data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
263 	switch (cmd) {
264 	case PSU_CMD_RAIL_VOLTS_HCRIT:
265 	case PSU_CMD_RAIL_VOLTS_LCRIT:
266 	case PSU_CMD_RAIL_AMPS_HCRIT:
267 	case PSU_CMD_TEMP_HCRIT:
268 	case PSU_CMD_IN_VOLTS:
269 	case PSU_CMD_IN_AMPS:
270 	case PSU_CMD_RAIL_VOLTS:
271 	case PSU_CMD_RAIL_AMPS:
272 	case PSU_CMD_TEMP0:
273 	case PSU_CMD_TEMP1:
274 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000);
275 		break;
276 	case PSU_CMD_FAN:
277 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
278 		break;
279 	case PSU_CMD_FAN_PWM_ENABLE:
280 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
281 		/*
282 		 * 0 = automatic mode, means the micro-controller controls the fan using a plan
283 		 *     which can be modified, but changing this plan is not supported by this
284 		 *     driver, the matching PWM mode is automatic fan speed control = PWM 2
285 		 * 1 = fixed mode, fan runs at a fixed speed represented by a percentage
286 		 *     value 0-100, this matches the PWM manual fan speed control = PWM 1
287 		 * technically there is no PWM no fan speed control mode, it would be a combination
288 		 * of 1 at 100%
289 		 */
290 		if (*val == 0)
291 			*val = 2;
292 		break;
293 	case PSU_CMD_FAN_PWM:
294 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
295 		*val = corsairpsu_dutycycle_to_pwm(*val);
296 		break;
297 	case PSU_CMD_RAIL_WATTS:
298 	case PSU_CMD_TOTAL_WATTS:
299 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000000);
300 		break;
301 	case PSU_CMD_TOTAL_UPTIME:
302 	case PSU_CMD_UPTIME:
303 	case PSU_CMD_OCPMODE:
304 		*val = tmp;
305 		break;
306 	default:
307 		ret = -EOPNOTSUPP;
308 		break;
309 	}
310 
311 	return ret;
312 }
313 
314 static void corsairpsu_get_criticals(struct corsairpsu_data *priv)
315 {
316 	long tmp;
317 	int rail;
318 
319 	for (rail = 0; rail < TEMP_COUNT; ++rail) {
320 		if (!corsairpsu_get_value(priv, PSU_CMD_TEMP_HCRIT, rail, &tmp)) {
321 			priv->temp_crit_support |= BIT(rail);
322 			priv->temp_crit[rail] = tmp;
323 		}
324 	}
325 
326 	for (rail = 0; rail < RAIL_COUNT; ++rail) {
327 		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_HCRIT, rail, &tmp)) {
328 			priv->in_crit_support |= BIT(rail);
329 			priv->in_crit[rail] = tmp;
330 		}
331 
332 		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_LCRIT, rail, &tmp)) {
333 			priv->in_lcrit_support |= BIT(rail);
334 			priv->in_lcrit[rail] = tmp;
335 		}
336 
337 		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS_HCRIT, rail, &tmp)) {
338 			priv->curr_crit_support |= BIT(rail);
339 			priv->curr_crit[rail] = tmp;
340 		}
341 	}
342 }
343 
344 static void corsairpsu_check_cmd_support(struct corsairpsu_data *priv)
345 {
346 	long tmp;
347 
348 	priv->in_curr_cmd_support = !corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, &tmp);
349 }
350 
351 static umode_t corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data *priv, u32 attr,
352 						int channel)
353 {
354 	umode_t res = 0444;
355 
356 	switch (attr) {
357 	case hwmon_temp_input:
358 	case hwmon_temp_label:
359 	case hwmon_temp_crit:
360 		if (channel > 0 && !(priv->temp_crit_support & BIT(channel - 1)))
361 			res = 0;
362 		break;
363 	default:
364 		break;
365 	}
366 
367 	return res;
368 }
369 
370 static umode_t corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data *priv, u32 attr,
371 					       int channel)
372 {
373 	switch (attr) {
374 	case hwmon_fan_input:
375 	case hwmon_fan_label:
376 		return 0444;
377 	default:
378 		return 0;
379 	}
380 }
381 
382 static umode_t corsairpsu_hwmon_pwm_is_visible(const struct corsairpsu_data *priv, u32 attr,
383 					       int channel)
384 {
385 	switch (attr) {
386 	case hwmon_pwm_input:
387 	case hwmon_pwm_enable:
388 		return 0444;
389 	default:
390 		return 0;
391 	}
392 }
393 
394 static umode_t corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data *priv, u32 attr,
395 						 int channel)
396 {
397 	switch (attr) {
398 	case hwmon_power_input:
399 	case hwmon_power_label:
400 		return 0444;
401 	default:
402 		return 0;
403 	}
404 }
405 
406 static umode_t corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data *priv, u32 attr,
407 					      int channel)
408 {
409 	umode_t res = 0444;
410 
411 	switch (attr) {
412 	case hwmon_in_input:
413 	case hwmon_in_label:
414 	case hwmon_in_crit:
415 		if (channel > 0 && !(priv->in_crit_support & BIT(channel - 1)))
416 			res = 0;
417 		break;
418 	case hwmon_in_lcrit:
419 		if (channel > 0 && !(priv->in_lcrit_support & BIT(channel - 1)))
420 			res = 0;
421 		break;
422 	default:
423 		break;
424 	}
425 
426 	return res;
427 }
428 
429 static umode_t corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data *priv, u32 attr,
430 						int channel)
431 {
432 	umode_t res = 0444;
433 
434 	switch (attr) {
435 	case hwmon_curr_input:
436 		if (channel == 0 && !priv->in_curr_cmd_support)
437 			res = 0;
438 		break;
439 	case hwmon_curr_label:
440 	case hwmon_curr_crit:
441 		if (channel > 0 && !(priv->curr_crit_support & BIT(channel - 1)))
442 			res = 0;
443 		break;
444 	default:
445 		break;
446 	}
447 
448 	return res;
449 }
450 
451 static umode_t corsairpsu_hwmon_ops_is_visible(const void *data, enum hwmon_sensor_types type,
452 					       u32 attr, int channel)
453 {
454 	const struct corsairpsu_data *priv = data;
455 
456 	switch (type) {
457 	case hwmon_temp:
458 		return corsairpsu_hwmon_temp_is_visible(priv, attr, channel);
459 	case hwmon_fan:
460 		return corsairpsu_hwmon_fan_is_visible(priv, attr, channel);
461 	case hwmon_pwm:
462 		return corsairpsu_hwmon_pwm_is_visible(priv, attr, channel);
463 	case hwmon_power:
464 		return corsairpsu_hwmon_power_is_visible(priv, attr, channel);
465 	case hwmon_in:
466 		return corsairpsu_hwmon_in_is_visible(priv, attr, channel);
467 	case hwmon_curr:
468 		return corsairpsu_hwmon_curr_is_visible(priv, attr, channel);
469 	default:
470 		return 0;
471 	}
472 }
473 
474 static int corsairpsu_hwmon_temp_read(struct corsairpsu_data *priv, u32 attr, int channel,
475 				      long *val)
476 {
477 	int err = -EOPNOTSUPP;
478 
479 	switch (attr) {
480 	case hwmon_temp_input:
481 		return corsairpsu_get_value(priv, channel ? PSU_CMD_TEMP1 : PSU_CMD_TEMP0,
482 					    channel, val);
483 	case hwmon_temp_crit:
484 		*val = priv->temp_crit[channel];
485 		err = 0;
486 		break;
487 	default:
488 		break;
489 	}
490 
491 	return err;
492 }
493 
494 static int corsairpsu_hwmon_pwm_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
495 {
496 	switch (attr) {
497 	case hwmon_pwm_input:
498 		return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM, 0, val);
499 	case hwmon_pwm_enable:
500 		return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM_ENABLE, 0, val);
501 	default:
502 		break;
503 	}
504 
505 	return -EOPNOTSUPP;
506 }
507 
508 static int corsairpsu_hwmon_power_read(struct corsairpsu_data *priv, u32 attr, int channel,
509 				       long *val)
510 {
511 	if (attr == hwmon_power_input) {
512 		switch (channel) {
513 		case 0:
514 			return corsairpsu_get_value(priv, PSU_CMD_TOTAL_WATTS, 0, val);
515 		case 1 ... 3:
516 			return corsairpsu_get_value(priv, PSU_CMD_RAIL_WATTS, channel - 1, val);
517 		default:
518 			break;
519 		}
520 	}
521 
522 	return -EOPNOTSUPP;
523 }
524 
525 static int corsairpsu_hwmon_in_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
526 {
527 	int err = -EOPNOTSUPP;
528 
529 	switch (attr) {
530 	case hwmon_in_input:
531 		switch (channel) {
532 		case 0:
533 			return corsairpsu_get_value(priv, PSU_CMD_IN_VOLTS, 0, val);
534 		case 1 ... 3:
535 			return corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS, channel - 1, val);
536 		default:
537 			break;
538 		}
539 		break;
540 	case hwmon_in_crit:
541 		*val = priv->in_crit[channel - 1];
542 		err = 0;
543 		break;
544 	case hwmon_in_lcrit:
545 		*val = priv->in_lcrit[channel - 1];
546 		err = 0;
547 		break;
548 	}
549 
550 	return err;
551 }
552 
553 static int corsairpsu_hwmon_curr_read(struct corsairpsu_data *priv, u32 attr, int channel,
554 				      long *val)
555 {
556 	int err = -EOPNOTSUPP;
557 
558 	switch (attr) {
559 	case hwmon_curr_input:
560 		switch (channel) {
561 		case 0:
562 			return corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, val);
563 		case 1 ... 3:
564 			return corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS, channel - 1, val);
565 		default:
566 			break;
567 		}
568 		break;
569 	case hwmon_curr_crit:
570 		*val = priv->curr_crit[channel - 1];
571 		err = 0;
572 		break;
573 	default:
574 		break;
575 	}
576 
577 	return err;
578 }
579 
580 static int corsairpsu_hwmon_ops_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
581 				     int channel, long *val)
582 {
583 	struct corsairpsu_data *priv = dev_get_drvdata(dev);
584 
585 	switch (type) {
586 	case hwmon_temp:
587 		return corsairpsu_hwmon_temp_read(priv, attr, channel, val);
588 	case hwmon_fan:
589 		if (attr == hwmon_fan_input)
590 			return corsairpsu_get_value(priv, PSU_CMD_FAN, 0, val);
591 		return -EOPNOTSUPP;
592 	case hwmon_pwm:
593 		return corsairpsu_hwmon_pwm_read(priv, attr, channel, val);
594 	case hwmon_power:
595 		return corsairpsu_hwmon_power_read(priv, attr, channel, val);
596 	case hwmon_in:
597 		return corsairpsu_hwmon_in_read(priv, attr, channel, val);
598 	case hwmon_curr:
599 		return corsairpsu_hwmon_curr_read(priv, attr, channel, val);
600 	default:
601 		return -EOPNOTSUPP;
602 	}
603 }
604 
605 static int corsairpsu_hwmon_ops_read_string(struct device *dev, enum hwmon_sensor_types type,
606 					    u32 attr, int channel, const char **str)
607 {
608 	if (type == hwmon_temp && attr == hwmon_temp_label) {
609 		*str = channel ? L_TEMP1 : L_TEMP0;
610 		return 0;
611 	} else if (type == hwmon_fan && attr == hwmon_fan_label) {
612 		*str = L_FAN;
613 		return 0;
614 	} else if (type == hwmon_power && attr == hwmon_power_label && channel < 4) {
615 		*str = label_watts[channel];
616 		return 0;
617 	} else if (type == hwmon_in && attr == hwmon_in_label && channel < 4) {
618 		*str = label_volts[channel];
619 		return 0;
620 	} else if (type == hwmon_curr && attr == hwmon_curr_label && channel < 4) {
621 		*str = label_amps[channel];
622 		return 0;
623 	}
624 
625 	return -EOPNOTSUPP;
626 }
627 
628 static const struct hwmon_ops corsairpsu_hwmon_ops = {
629 	.is_visible	= corsairpsu_hwmon_ops_is_visible,
630 	.read		= corsairpsu_hwmon_ops_read,
631 	.read_string	= corsairpsu_hwmon_ops_read_string,
632 };
633 
634 static const struct hwmon_channel_info *const corsairpsu_info[] = {
635 	HWMON_CHANNEL_INFO(chip,
636 			   HWMON_C_REGISTER_TZ),
637 	HWMON_CHANNEL_INFO(temp,
638 			   HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
639 			   HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT),
640 	HWMON_CHANNEL_INFO(fan,
641 			   HWMON_F_INPUT | HWMON_F_LABEL),
642 	HWMON_CHANNEL_INFO(pwm,
643 			   HWMON_PWM_INPUT | HWMON_PWM_ENABLE),
644 	HWMON_CHANNEL_INFO(power,
645 			   HWMON_P_INPUT | HWMON_P_LABEL,
646 			   HWMON_P_INPUT | HWMON_P_LABEL,
647 			   HWMON_P_INPUT | HWMON_P_LABEL,
648 			   HWMON_P_INPUT | HWMON_P_LABEL),
649 	HWMON_CHANNEL_INFO(in,
650 			   HWMON_I_INPUT | HWMON_I_LABEL,
651 			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
652 			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
653 			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT),
654 	HWMON_CHANNEL_INFO(curr,
655 			   HWMON_C_INPUT | HWMON_C_LABEL,
656 			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
657 			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
658 			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT),
659 	NULL
660 };
661 
662 static const struct hwmon_chip_info corsairpsu_chip_info = {
663 	.ops	= &corsairpsu_hwmon_ops,
664 	.info	= corsairpsu_info,
665 };
666 
667 #ifdef CONFIG_DEBUG_FS
668 
669 static void print_uptime(struct seq_file *seqf, u8 cmd)
670 {
671 	struct corsairpsu_data *priv = seqf->private;
672 	long val;
673 	int ret;
674 
675 	ret = corsairpsu_get_value(priv, cmd, 0, &val);
676 	if (ret < 0) {
677 		seq_puts(seqf, "N/A\n");
678 		return;
679 	}
680 
681 	if (val > SECONDS_PER_DAY) {
682 		seq_printf(seqf, "%ld day(s), %02ld:%02ld:%02ld\n", val / SECONDS_PER_DAY,
683 			   val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60,
684 			   val % 60);
685 		return;
686 	}
687 
688 	seq_printf(seqf, "%02ld:%02ld:%02ld\n", val % SECONDS_PER_DAY / SECONDS_PER_HOUR,
689 		   val % SECONDS_PER_HOUR / 60, val % 60);
690 }
691 
692 static int uptime_show(struct seq_file *seqf, void *unused)
693 {
694 	print_uptime(seqf, PSU_CMD_UPTIME);
695 
696 	return 0;
697 }
698 DEFINE_SHOW_ATTRIBUTE(uptime);
699 
700 static int uptime_total_show(struct seq_file *seqf, void *unused)
701 {
702 	print_uptime(seqf, PSU_CMD_TOTAL_UPTIME);
703 
704 	return 0;
705 }
706 DEFINE_SHOW_ATTRIBUTE(uptime_total);
707 
708 static int vendor_show(struct seq_file *seqf, void *unused)
709 {
710 	struct corsairpsu_data *priv = seqf->private;
711 
712 	seq_printf(seqf, "%s\n", priv->vendor);
713 
714 	return 0;
715 }
716 DEFINE_SHOW_ATTRIBUTE(vendor);
717 
718 static int product_show(struct seq_file *seqf, void *unused)
719 {
720 	struct corsairpsu_data *priv = seqf->private;
721 
722 	seq_printf(seqf, "%s\n", priv->product);
723 
724 	return 0;
725 }
726 DEFINE_SHOW_ATTRIBUTE(product);
727 
728 static int ocpmode_show(struct seq_file *seqf, void *unused)
729 {
730 	struct corsairpsu_data *priv = seqf->private;
731 	long val;
732 	int ret;
733 
734 	/*
735 	 * The rail mode is switchable on the fly. The RAW interface can be used for this. But it
736 	 * will not be included here, because I consider it somewhat dangerous for the health of the
737 	 * PSU. The returned value can be a bogus one, if the PSU is in the process of switching and
738 	 * getting of the value itself can also fail during this. Because of this every other value
739 	 * than OCP_MULTI_RAIL can be considered as "single rail".
740 	 */
741 	ret = corsairpsu_get_value(priv, PSU_CMD_OCPMODE, 0, &val);
742 	if (ret < 0)
743 		seq_puts(seqf, "N/A\n");
744 	else
745 		seq_printf(seqf, "%s\n", (val == OCP_MULTI_RAIL) ? "multi rail" : "single rail");
746 
747 	return 0;
748 }
749 DEFINE_SHOW_ATTRIBUTE(ocpmode);
750 
751 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
752 {
753 	char name[32];
754 
755 	scnprintf(name, sizeof(name), "%s-%s", DRIVER_NAME, dev_name(&priv->hdev->dev));
756 
757 	priv->debugfs = debugfs_create_dir(name, NULL);
758 	debugfs_create_file("uptime", 0444, priv->debugfs, priv, &uptime_fops);
759 	debugfs_create_file("uptime_total", 0444, priv->debugfs, priv, &uptime_total_fops);
760 	debugfs_create_file("vendor", 0444, priv->debugfs, priv, &vendor_fops);
761 	debugfs_create_file("product", 0444, priv->debugfs, priv, &product_fops);
762 	debugfs_create_file("ocpmode", 0444, priv->debugfs, priv, &ocpmode_fops);
763 }
764 
765 #else
766 
767 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
768 {
769 }
770 
771 #endif
772 
773 static int corsairpsu_probe(struct hid_device *hdev, const struct hid_device_id *id)
774 {
775 	struct corsairpsu_data *priv;
776 	int ret;
777 
778 	priv = devm_kzalloc(&hdev->dev, sizeof(struct corsairpsu_data), GFP_KERNEL);
779 	if (!priv)
780 		return -ENOMEM;
781 
782 	priv->cmd_buffer = devm_kmalloc(&hdev->dev, CMD_BUFFER_SIZE, GFP_KERNEL);
783 	if (!priv->cmd_buffer)
784 		return -ENOMEM;
785 
786 	ret = hid_parse(hdev);
787 	if (ret)
788 		return ret;
789 
790 	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
791 	if (ret)
792 		return ret;
793 
794 	ret = hid_hw_open(hdev);
795 	if (ret)
796 		goto fail_and_stop;
797 
798 	priv->hdev = hdev;
799 	hid_set_drvdata(hdev, priv);
800 	mutex_init(&priv->lock);
801 	init_completion(&priv->wait_completion);
802 
803 	hid_device_io_start(hdev);
804 
805 	ret = corsairpsu_init(priv);
806 	if (ret < 0) {
807 		dev_err(&hdev->dev, "unable to initialize device (%d)\n", ret);
808 		goto fail_and_stop;
809 	}
810 
811 	ret = corsairpsu_fwinfo(priv);
812 	if (ret < 0) {
813 		dev_err(&hdev->dev, "unable to query firmware (%d)\n", ret);
814 		goto fail_and_stop;
815 	}
816 
817 	corsairpsu_get_criticals(priv);
818 	corsairpsu_check_cmd_support(priv);
819 
820 	priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsairpsu", priv,
821 							  &corsairpsu_chip_info, NULL);
822 
823 	if (IS_ERR(priv->hwmon_dev)) {
824 		ret = PTR_ERR(priv->hwmon_dev);
825 		goto fail_and_close;
826 	}
827 
828 	corsairpsu_debugfs_init(priv);
829 
830 	return 0;
831 
832 fail_and_close:
833 	hid_hw_close(hdev);
834 fail_and_stop:
835 	hid_hw_stop(hdev);
836 	return ret;
837 }
838 
839 static void corsairpsu_remove(struct hid_device *hdev)
840 {
841 	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
842 
843 	debugfs_remove_recursive(priv->debugfs);
844 	hwmon_device_unregister(priv->hwmon_dev);
845 	hid_hw_close(hdev);
846 	hid_hw_stop(hdev);
847 }
848 
849 static int corsairpsu_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data,
850 				int size)
851 {
852 	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
853 
854 	if (completion_done(&priv->wait_completion))
855 		return 0;
856 
857 	memcpy(priv->cmd_buffer, data, min(CMD_BUFFER_SIZE, size));
858 	complete(&priv->wait_completion);
859 
860 	return 0;
861 }
862 
863 #ifdef CONFIG_PM
864 static int corsairpsu_resume(struct hid_device *hdev)
865 {
866 	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
867 
868 	/* some PSUs turn off the microcontroller during standby, so a reinit is required */
869 	return corsairpsu_init(priv);
870 }
871 #endif
872 
873 static const struct hid_device_id corsairpsu_idtable[] = {
874 	{ HID_USB_DEVICE(0x1b1c, 0x1c03) }, /* Corsair HX550i */
875 	{ HID_USB_DEVICE(0x1b1c, 0x1c04) }, /* Corsair HX650i */
876 	{ HID_USB_DEVICE(0x1b1c, 0x1c05) }, /* Corsair HX750i */
877 	{ HID_USB_DEVICE(0x1b1c, 0x1c06) }, /* Corsair HX850i */
878 	{ HID_USB_DEVICE(0x1b1c, 0x1c07) }, /* Corsair HX1000i Legacy */
879 	{ HID_USB_DEVICE(0x1b1c, 0x1c08) }, /* Corsair HX1200i Legacy */
880 	{ HID_USB_DEVICE(0x1b1c, 0x1c09) }, /* Corsair RM550i */
881 	{ HID_USB_DEVICE(0x1b1c, 0x1c0a) }, /* Corsair RM650i */
882 	{ HID_USB_DEVICE(0x1b1c, 0x1c0b) }, /* Corsair RM750i */
883 	{ HID_USB_DEVICE(0x1b1c, 0x1c0c) }, /* Corsair RM850i */
884 	{ HID_USB_DEVICE(0x1b1c, 0x1c0d) }, /* Corsair RM1000i */
885 	{ HID_USB_DEVICE(0x1b1c, 0x1c1e) }, /* Corsair HX1000i Series 2023 */
886 	{ HID_USB_DEVICE(0x1b1c, 0x1c1f) }, /* Corsair HX1500i Legacy and Series 2023 */
887 	{ HID_USB_DEVICE(0x1b1c, 0x1c23) }, /* Corsair HX1200i Series 2023 */
888 	{ },
889 };
890 MODULE_DEVICE_TABLE(hid, corsairpsu_idtable);
891 
892 static struct hid_driver corsairpsu_driver = {
893 	.name		= DRIVER_NAME,
894 	.id_table	= corsairpsu_idtable,
895 	.probe		= corsairpsu_probe,
896 	.remove		= corsairpsu_remove,
897 	.raw_event	= corsairpsu_raw_event,
898 #ifdef CONFIG_PM
899 	.resume		= corsairpsu_resume,
900 	.reset_resume	= corsairpsu_resume,
901 #endif
902 };
903 
904 static int __init corsair_init(void)
905 {
906 	return hid_register_driver(&corsairpsu_driver);
907 }
908 
909 static void __exit corsair_exit(void)
910 {
911 	hid_unregister_driver(&corsairpsu_driver);
912 }
913 
914 /*
915  * With module_init() the driver would load before the HID bus when
916  * built-in, so use late_initcall() instead.
917  */
918 late_initcall(corsair_init);
919 module_exit(corsair_exit);
920 
921 MODULE_LICENSE("GPL");
922 MODULE_AUTHOR("Wilken Gottwalt <wilken.gottwalt@posteo.net>");
923 MODULE_DESCRIPTION("Linux driver for Corsair power supplies with HID sensors interface");
924